A Concept Analysis Approach for Guiding Users in Service Discovery

Bipin Upadhyaya, Foutse Khomh, Ying Zou
Department of Electrical and Computer Engineering
Queen’s University
Kingston, Canada
{bipin.upadhyaya, foutse.khomh, ying.zou}@queensu.ca

Abstract—Web services are widely used as basic constructs to
build complex distributed applications with fast speed and low
cost. However, existing service discovery techniques provide
users with poor results which require substantial human
intervention to filter the services to locate the desired ones. In
particular, users often have no prior knowledge of the functional
description of the available services on the Web. The queries
formulated by the users may not match well with the service
descriptions of existing services. As a consequence, a user's
query can result in a large number of returned services. In this
paper, we propose an approach that derives the semantic
concepts conveyed in the service descriptions and clusters the
services based on the concepts. As a result, each concept is
associated with a set of relevant services. To understand the
semantic meanings of a user's query, we identify concepts behind
the query and recommend related concepts associated with
services. Our approach also guides users to formulate their
queries. We conducted a case study and found that the average
precision and recall of our approach for service discovery are
respectively, 83% and 100%. We also performed a user study
which shows that for 85% of time, a user reformulates their
queries using the suggestion provided by our approach to
improve the precision of the retrieved services.

Keywords- Web service discovery; search, concepts

I. INTRODUCTION

A Web service is a software component designed to
support interoperation between machines over the Web [2].
Web services are increasingly used as basic constructs for
rapidly developing low-cost distributed applications [6]. A
service description document describes the interface of a
Web service. A Web service can be implemented by various
technologies, such as SOAP based Services and RESTful
Services. SOAP based services are described in the Web
Service Description Language (WSDL) [17] and
communicated over Simple Object Application Protocol
(SOAP). RESTful services are resource centric [14]. A
resource is a remote accessible object of an application. Each
URL in RESTful service represents a resource and can be
invoked using standard HTTP methods’. RESTful services
can be described by different languages, including Web
Application Description Language (WADL) [18] and
Resource Linking Language (ReLL) [13].

Typically, a service is discovered in four steps: 1) service
providers advertise the capabilities of a service using service
description documents (e.g., WSDL and WADL) and
register the service in a service repository; 2) an agent crawls
different service repositories and stores the service
description documents locally; 3) a service requester queries
the agent to request for service providers that can best match

1

Alex Lau, Joanna Ng

IBM Canada CAS Research
Markham, Ontario, Canada
{alexlau, jwng}@ca.ibm.com

the desired capabilities of services; and 4) the agent matches
the request against the stored service descriptions and returns
the matched result.

With the ever-increasing number of Web services
published on the Internet (e.g., Google has indexed 204,000'
WSDL), it becomes challenging to find desired Web
services. In particular, current approaches often return a large
number of irrelevant Web services as the result of service
discovery. It is time consuming for users to sift through the
results to locate a desired Web service. Therefore, an
effective service discovery mechanism is essential to help
developers harness the benefits offered by Web services. The
large body of research on service discovery can be
summarized into three main categories: semantic Web
approaches; Web search engines; and information retrieval
(IR) approaches. Semantic Web approach is proposed to
enhance service description documents by annotating the
description document with domain specific ontologies. Web
search engines (e.g., Google' and Bing®) are used as new
tools for discovering Web services [15]. Service descriptions
usually reside in Web servers. Web search engines crawl and
index the contents of servers and enable users to retrieve
Web services. IR approaches [22, 23, 24] such as word sense
disambiguation, stop-words removal, and stemming, have
been used to extract relevant information conveyed in service
description documents to index Web services. However, the
existing approaches in service discovery suffer from the
following two limitations:

Gap in the semantics of service descriptions and users'
search queries. The precision of service discovery
approaches is dependent on the understanding of the
semantics of service description documents and user's query.
The vocabulary adopted in service description is often used
by developers in the software development domain. It can be
very different from the ones used in users’ queries. For
example, a user may query for transportation services with
vague description. However, service providers may describe
services with more specific types such as, car, taxi, and bus.
Without a good understanding of the semantics of service
descriptions and queries, a service discovery approach is
likely to retrieve a large number of irrelevant Web services
or fail to return any Web service.

Limited support for query formulation. The available
service descriptions act as a black box to users. A user has to
conduct many trials to formulate an appropriate query to
retrieve the desired services when an initial query fails. A
user cannot specify searching criteria based on a particular
requirement. For example, to reserve a two bed room hotel in
downtown Toronto, users may either write a whole sentence

"http://www.google.com
*http://www.bing.com
Swww.w3.org/Protocols/rfc2616/rfc2616.html



or specify a few keywords, like “reserve room”. In both
cases, users may receive too many results that need
considerable amount of manual filtering. Therefore, it is
critical to provide users with efficient ways to articulate
service queries (i.e., considering input and output of
operations) to improve the precision of the service discovery.

To address the aforementioned limitations, we propose an
approach that identifies the semantic meanings of service
descriptions and wusers' queries as concepts. More
specifically, a concept is a semantic notion or a keyword for
describing a subject, e.g., “traveling”, “weather” or “taxi
reservation”. In particular, we identify a set of concepts from
the service description documents. We further index services
in terms of their associated concepts and the relations among
concepts using WordNet [8], a lexical database. Moreover,
our approach assists users in formulating their queries using
the similar vocabulary as the ones specified in service
description documents. We use the commonsense knowledge
(e.g., checking reviews before watching a movie), encoded
in ConceptNet [5] to link the concepts delivered in the
service descriptions and the concepts extracted from a user's
query. Commonsense knowledge is not available in a lexical
database like WordNet. We provide a graphic tool that
guides users to select the generated concepts from their
queries, and allows users to combine different concepts to
better describe their searching criteria.

The remainder of this paper is organized as follows.
Section II discusses background knowledge on Web service
description documents, WordNet and ConceptNet. Section
IIl presents an overview of our approach. Section IV
describes the prototype of our approach. Section V describes
the case study and discusses results. Section VI discusses the
related works. Finally, Section VII concludes the paper and
explores future work.

II.  BACKGROUND

A Web service description document is used by service
providers to specify the interface and the capabilities of a
Web service. Moreover, we use WordNet and ConceptNet to
identify the semantic relations between concepts associated
to Web services. In the following sub sections, we give a
brief overview of service description documents, WordNet
and ConceptNet.

A. Web Service Description Documents

WSDL is an XML-based language that describes the
interface of Web services. A WSDL document specifies
messages, operations, interfaces, bindings, and service
endpoints. Figure 1 shows an excerpt of a WSDL document.
The <portType> element in a WSDL lists one or more
operations and the <message> element defines data
elements corresponding to input, output and fault. Some of
the service description documents link data types in a
separate XML schema document. As illustrated in Figure
1(A), getRate is an operation which takes two inputs,
countryl and country2, and returns, Result as a float type.

WADL is an XML-based file format that provides a
machine-readable description for HTTP-based
Web applications. WADL describes the name of RESTful

services, resource URLSs, request parameters and response
parameters. A URL usually consists of a scheme name, a
domain name, a port number, a path for fetching a resource,
a query string, and an optional fragment identifier. Figure 1
(B) shows an example URL for a resource, i.e.,
http://search.yahooapis.com/NewsSearchService/V1/news
Search. It uses the HTTP method GET. The parameters for
the request are appid and query. The parameter for the
response is the status code along with an element (i.e.,
yn:ResultSet), and a media-type (i.e., application/xml) to
define the schema for interpreting the results.

<resource path="newsSearch">
<method name="GET" id="search">
<request>

name="get| P >
<part name="country1" type="xsd:string />
<part name="country1" type="xsd:string />

</message> " " " S ow
<param name="que type="xsd:strin; >
name="get ponse”> p query" typ g" /
<part name="Result” type="xsd:float”/>
P vP / </request>
</message>

< -"200">
<portType name="CurrencyExchangePortType”>| response status="200

<operation name="getRate”>
<input

ge="tns:getl quest”/>

< >
<input tnsioat quest”/> /response:
</operation> :./method>
</portType> </resource>

(A) WSDL (CurrencyExchange.wsdl)
Figure 1: Excerpt of service description documents

B.  WordNet and ConceptNet

WordNet is a lexical database to group concepts into sets
of synonyms and connects concepts via semantic relations.
WordNet defines four types of relations between concepts as
follows:

e Hypernym represents “kind of” relation. For example, car
is a hypernym of vehicle;

e Hyponym is the inverse of hypernym meaning that a
concept is a super name of another. For example, vehicle is

a hyponym of car;

e Holonym describes whole-part (i.e., partOf) relation. For
example, building is a holonym of window;

e Meronym represents a part-whole relation. For example,
window is a meronym of building.

ConceptNet [5] is a relational semantic network of
different concepts that encompasses spatial, physical, social,
temporal, and psychological aspects of everyday life.
ConceptNet can be visualized as a graph of nodes and edges.
A node represents a concept in the form of natural language
fragments (e.g., food’, and ‘grocery store’). An edge
describes semantic relations between two concepts. Each
edge is labeled with a relation type (e.g., “Is4” or
“LocatedAr”) and a score that describes the validity of the
relation. There are 20 types of relations define to cover
commonsense knowledge used in the real world [5].
ConceptNet provides a richer and pragmatic set of semantic
relations between concepts.

III.  OVERVIEW OF OUR APPROACH

Our approach consists of two major steps: 1) service
indexing which extracts concepts from service description
documents and cluster services using the concepts conveyed
in the service description; and 2) service retrieval that

<param name="appid" type="xsd:string" />

<representation mediaType="application/
xml" element="yn:ResultSet"/>

(B) RESTful Service (Yahoo news search)



SOAP-based Service Group Relevant Identify
Description Services > » Meaningful
Description Words

Recognize

Concepts

Service
Description Sets
RESTful Service Description

+*

Meaningful
word list

Ly > Index Services
using Concepts

Concepts

18

Concept and
service Index

Figure 2: Overall steps for indexing services using the concepts extracted from service description documents

extracts concepts from a user’s query, guides users to
formulate queries and returns the services associated with the
concepts. The service indexing is an offline procedure which
is invoked once for each service. The service retrieval is an
online step that is executed for each query. In the service
retrieval step, we provide a mechanism to recommend
concepts and allow a user to navigate through the concepts
associated with services. In the following subsections, we
discuss the two steps in more details.

<portType name="CurrencyExchangePortType”>
<operation name="getRate”>
<input message="tns:getRateRequest”>
<message name="getRateResponse”>
<part name="country1" type="xsd:string />
<part name="country1" type="xsd:string />
</message> </input>
<output message="tns:getRateRequest”/>
<message name="getRateResponse”>
<part name="Result” type="xsd:float”/>
</message> </output>
</operation></portType>

Figure 3: Rearranged service description of Figure 1(A)

A. Service Indexing

Figure 2 gives an overview of the steps involved in the
service indexing process. We explain each step as follows:
Grouping  Relevant Service Descriptions. The
functionality is reflected in the operation descriptions in
SOAP based Web services and the resource descriptions for
RESTful services. We call an operation or a resource as a
service. However, such descriptions are often scattered
throughout a Web service description document. For
example in Figure 1(A) XML fragments related to getRate is
scattered in multiple elements, such as portType and message
in the description document. Instead of analyzing the entire
service description document, we rearrange tags in service
description documents and assemble information related to a
service (i.e., an operation or a resource) in one location. The
information related to a service is called as a service
description set. A service description documents can have
multiple service description sets due to multiple operations
or resources defined. For SOAP-based services, a service
description set contains an operation, its input parameters, its
output parameters, and the documentation corresponding to
the operation, input and output. Similarly, for RESTful
services, a service description set includes a resource, the
URL of the resource, request, response, and the
documentation corresponding to the resource, its request and
its response. Figure 3 shows a service description set after
the relevant tag rearrangement of the example shown in
Figure 1(A).
Identifying Meaningful Words. To identify concepts
from each service description set, we first extract the name
of the service (i.e., operation or resource), messages and

parameters in a service description set. For example shown
in Figure 1(A), the extracted names include
CurrencyExchangePortType, getRate, getRateResponse,
getRateRequest, countryl, Result. The extracted names can
be compound words. For example, two words are joined by
the change of case (e.g., findCity); words are separated by
underscore (i.e., “ ) or dash (i.e., “-”) (e.g., find_city), and
words are added with a suffix (e.g., cityl). We tokenize
compound words into single words. We use WordNet to
check if a single word is a valid English word and keep the
valid words.

Some names used in service descriptions are not separated
by special symbols (e.g., " ", "-" or camel case). For
example a RESTful service describes a resource using URL.
The names are not valid English words either. To identify
meaningful words, we perform an n-gram analysis which can
be used to detect sub words within a word by extracting a
contiguous sequence of n letters from a string. For example,
the 3-gram analysis of a word, improve, extracts all the
possible consecutive three letters in the string, i.e., imp, pro,
rov, ove. We perform n-gram analysis starting from 3-grams
(i.e., i-grams and i=3) to check if the three consecutive letters
in a string are a valid English word using WordNet. Then,
we iteratively increase from i-grams to i+l- grams to
recognize valid words and continue until i+1 is the maximum
length of the string. For example, an n-gram analysis of the
URL, http://bookmooch.com/topic/{topic},  generates a
vector, i.e., {book, topic, mooch,}.

TABLE I: RULES FOR DECOMPOSING WORDS

Rule Original Word Tokenized
Word

CaseChange FindCity Find, City
addCity add, City

Suffix with Number countryl country

Underscore Separator Find_city Find, City

n-gram Analysis http://bookmooch. book, topic,
com/topic mooch

Root words reserves, reserved reserve

Moreover, we reduce the words to the root words using
the Porter stemmer [9]. For example, ‘reserve’, ‘reserved’,
‘reserving’, and ‘reserves’ have the same stem ‘reserve’.
All these words have the similar semantic meanings. Table I
summarizes the rules used to decompose words to identify
meaningful words.

Each service description set has one or more words
extracted from the service (i.e., operation or resource), inputs
and outputs. We classify the words into three groups:
service (i.e., resource and operation) Keyword (SK)); input
parameters (i.e., IP); and output parameters (i.e., OP). The




extracted words are stored in the format shown in Equation
(1). A word list (i.e., SWord) stores each word (i.e., W)
extracted from a service description set, the frequency (i.e.,
freq) of the word (W;) appeared in a service description set.
The type attribute separate the SWord in the three groups
(i.e., SK, IP and OP).

SWord = { (Wi, freq, type)} (1)

Where SWord is a list of words with frequency and type; W;
is an element in the word list, SWord, freq is the frequency of
W and type € {SK, IP, and OP).

Recognizing Concepts. A word list (i.e., SWord) may
contain a lot of words. However, not all the words reflect the
functionalities of a service. In particular, the names used in a
service often consist of verb and noun, such as getCustomer
and deleteCustomer. As a result of the last step (ie.,
extracting meaningful words), get, delete and customers are
valid words in the word list. However, the general
operational words, such as delete, update and get, describe
the manipulation on the data without indication of the
functionality of a service which is related to customer
services in the example. Our aim is to identify and filter
general operational words from the words extracted from a
service description set. We consider the remaining words as
functional words, i.e., concepts.

mcp(cp)
- 2
mcep(cp) + dep (cp,root)
where cp is the common parent of the two words x, y; root is
the root of the WordNet ontology; mcp(cp) is the shortest
path from either x ory to cp, and dcp(cp, root) is the length
of the path from cp to root.

To separate words in the word list, SWord, into two
clusters (i.e, general operational words and functional
specific words). We apply k-means algorithm [4], a
clustering algorithm, on the word list. We set the number of
clusters generated to 2 (i.e, k=2). K-means algorithm is
selected due to its simplicity and efficiency. The clustering
algorithm groups similar words using the semantic similarity
as shown in Equation (2). Concepts in WordNet can be
connected by different types of relations such as hypernym,
hyponym and holonym. The two concepts can be directly or
indirectly connected through many intermediate relations
and concepts. A path length is the number of intermediate
concepts to traverse from one concept to another. The
similarity between two concepts x and y is measured by the
path length between concepts to reach their common parent
in WordNet ontology. The value of the similarity metric
shown in Equation (2) ranges from O to 1. O represents
unrelated words and 1 signifies synonymous words.

To determine the cluster that contains the general
operational words, we predefine an oracle of general
operational words (e.g., update, data, post, add, and create)
by manually examining a number of service description sets
in different domains. The cluster semantically closer to this
oracle is determined to contain operational words and
discarded from the word list (i.e., SWord). For example, the
operation getRate shown in Figure 3, we extract a set of
words from the service description, i.e., {get, country,
currency, rate, exchange, request, result}. We further divide

wordSim(x,y) =1

the words into two clusters, i.e., {get, request, result} and
{country, rate, exchange, currency}. The cluster {get
request, result} is close to the predefined oracle and hence is
discarded. The remaining cluster {country, rate, exchange,
currency} contains the functional words, i.e., the concepts
representing the functionality of the service.

R(x) = WordSim(x,y) f(y) ¢ +f(x) (3)
YEC;y£X
where R(x) denotes the rank of the concept x in the cluster C;
WordSim(x, y) is the similarity between concept x and y, and
f(x) is the frequency of the concept x.

Vacation  Flight

Trip
Taxi

Transport
Hotel Holiday Travel P

Clustering Concepts
Selecting

Restaurant Vacation

O O Representative Concepts & k3
Restaurand /Vacation O Jaxi( — & )
O O )[Flight~ & a
O Hotel Trave| Q Trip p]
oliday Transport O
Hdtel Transport

Figure 4: Process for creating a concept map

Indexing Services using Concepts. There is more than
one concept describing the functionality of a service. Some
of the concepts might be redundant. Other concepts can be
less frequently used. We aim to identify a set of
representative concepts that can capture the major
functionality delivered by a service. We consider the most
frequently used concepts as the representatives of the
functionality. As aforementioned, the concepts in the refined
word list (i.e., SWord) are divided in three groups (i.e., SK,
IP and OP). For example, the concept set {country, rate,
exchange, currency} contains {exchange, rate, currency}
associated with the operation (i.e, SK) and {country}
derived from the input (i.e, IP). We treat each group
individually and rank the frequency of a concept based on
the semantic similarity among the concepts within the group.
Equation (3) is defined to compute the frequency of concepts
in each group. The rank of a concept x (i.e., R(x)) is the sum
of the frequency of concept x and the frequency of concept y
prorated by the semantic similarity between the concepts x
and y. The rank of concept x increases if the cluster has more
concepts semantically similar to concept x. Ranking concepts
signifies the frequency of a concept with respect to other
concepts in a group. The computed rank is then normalized
between 0 to 1 by dividing a rank of a concept with sum of
all concepts rank in a group. 1 signifies the most dominant
concept. For example, the similarity between exchange and
currency is 0.3; exchange and rate is 0.4, and rate and
currency is 0.6. Using these similarity values, we compute
the rank of the concepts {exchange, currency, rate}, the
concept rank as described in Equation (3) is {exchange
(0.3+0.4+1=1.7),  currency  (0.3+0.6+1=1.9), rate
(0.6+0.4+1=2)}. If we select two representative concepts, it
will be rate and currency. The input has only one concept
and its rank is {country (1)}. The number of representative
concepts to use is a design decision. We manually examined
a few service description sets and found that two concepts
can effectively represent a group. Thus we use two



representative concepts for each group. The operation
getRate in Figure 1(A) is indexed under concepts currency
and exchange due to the semantic relation with the operation
concept and also associated with concept country because of
the relation with the input concept. Similarly the resource
“newsSearch” in Figure 1(B) is indexed under concept news.

B. Service Retrieval

A user expresses queries using the natural language.
Studies on users' Web search behaviors have shown that a
large portion of Web search queries consist of only one to
three keywords [21]. Short queries indicate that users often
have difficulties in crafting queries to reflect the information
needed. To understand user’s intention and requirements, we
extract concepts from wusers’ queries and retrieve
semantically related concepts from service sets (i.e., SWord).
Users can select one or more concepts from the retrieved
concepts from the service sets to formulate their query. This
can provide some knowledge on the available services and
help users articulate their specific needs. Hence we can
provide services with the best matches. The service retrieval
consists of two steps: 1) analyzing queries; and 2) grouping
services.

Analyzing Users’ Query. A user query can have two
characteristics: 1) a few keywords containing key concepts;
and 2) a long verbose query including “wh-" questions (who,
what, when, where). In the former case, the concepts are
directly provided by the user. In the latter case, we parse the
user’s query to analyze the structure of the sentences in the
query and identify concepts from the sentences.

Rep(x) = Yyecyyzx WordSim(x,y) (4)

where Rep(x) is the rank of the concept in a cluster; and
WordSim(x, y) is the similarity between concepts x and y.

We create a concept map to help a user visually select
concepts to formulate their query. A concept map is a set of
concepts identified from a user’s query and their relations.
The concepts are represented as nodes. A relation between
two concepts is derived from ConceptNet and illustrated as
an edge linking two concepts. To create a concept map, we
cross-reference concepts in a query with semantically related
concepts in the service repository. For example if the concept
“vacation” is present in a user’s query, we retrieve concepts
related to “vacation” from ConceptNet, provided that there
are services associated with the retrieved concepts. For
example the concept “vacation” is related to {motel, hotel,
restaurant, flight, trip, taxi, transport, travel, holiday} as
shown in Figure 4. There may be a large number of related
concepts which can be overwhelming to users. We cluster
related concepts by measuring their similarity as defined in
Equation (2). Each cluster is represented by a representative
concept. Equation (4) computes the rank of each concept
with respect to other concepts in the cluster. A concept with
the highest rank is considered as the representative candidate
of the concept cluster. We represent the selected
representative concepts and their relations as a concept map.
Figure 4 shows the process of creating a concept map.

Table II shows an example of concept clustering and
selection of a representative concept. For simplicity we use

number of cluster as 3. A concept map should not contain a
lot of recommendations that requires a considerable time for
a user to explore. Miller [12] claims that there are 7 + 2 slots
available in human short-term memory. To guide a user to
make instant decision, we list maximum seven concepts and
their relations in a concept map.

TABLE II: EXAMPLES OF CONCEPT CLUSTERS AND REPRESENTATIVE

CONCEPTS
Concept In | Cluster of Related | Representative
Query Concepts Concepts
Holiday { car, taxi, vehicle} {vehicle}
{hotel, motel, hostel} {hotel}
{airplane, flight} {flight}
Hotel {car, taxi, vehicle} {vehicle}
{motel} {motel}
{ hostel} {hostel}
Weather {climate} {climate}
{wind} {wind}
{temperature} {temperature}
Flight {aero plane, plane} {aero plane}
{car, taxi, vehicle} {vehicle}
{holiday} {holiday}
Computer {monitor} {monitor}
{CPU, hard disk} {CPU}
{keyboard, mouse} {keyboard}
Camera {review} {review}
{feedback} {feedback}
{raking, rank} {rank}
Entertainment | {movie, theater, film} {movie}
{casino, sport} {sport}
{ nightlife, dance} {nightlife}

To allow a user to conduct a specific search in terms of
the type of services (i.e., operation in SOAP-based Web
services or resource in RESTful services), the input and the
output, we define a simple query syntax for a user to specify
the location of a concept (i.e., input, output and operation) in
the query and combine more than one concepts using
operators, such as, and, or, and exclude. For example, a
search for a service that returns hotels by postal code can be
specified as “postal code ctype:IC & hotel cytpe:IC”,
meaning that the user wants to find services with the hotel
concept delivered in a service and the concept postal code as
an input.

[IP(x) N IP(Y)| * |OP(x) N OP(y)|
[IP(x) U IP(Y)| % |OP(x) U OP(y)|
if OP(x)NOP(y) #@AIP(x)NIP(y) # 0
[IP(x) N IP(y)|
[IP(x) U IP(y)|
ifIPC)NIP(Y) # @A OP(x)nOP(y) =0  (5)
|OP(x) N OP(y)|
[0P(x) U OP(y)|
if IP)NIP(y) =@ AOP(x) N OP(y) # 0
0
if IP(x)NIP(y) =@ AOP(x) NOP(y) =@

Clx,y) =

where C(x, y) is the ration of common concepts to the total
concepts between service description set x and y; IP(x) is the



Input concept of the service description set and OP(x) is the
output concept of the service description set x

Grouping Services. The returned result may contain
multiple services. Grouping the returned services makes it
easier for a user to find a specific service. Web services can
share common attributes, such as the location of services,
Quality of Service (QoS) and the number of shared common
concepts. However, most of the services do not have the
location and QoS information. In our work, we group
services using the common concepts between operations or
resources (SK), inputs (/P) and outputs (OP). More
specifically, our approach groups the retrieved result into
four categories with varying restrictive levels: (1) services
that share common concepts in SK, IP and OP; (2) services
that have common concepts in SK and OP; (3) services that
contain common concepts in SK and IP; and (4) services that
share common concepts in SK. Each group consists of the
similar type of service description sets.

Equation (5) measures the similarity between two
services. It is the ratio of the common concepts divided by
the total number of concepts of the two services. The
services in each group are ranked based on the sum of the
rank of a concept in services and the rank of a query concept
in the service description sets. We compute the rank of a
concept extracted a query using Equation (3).

Cuery St Gty Trip Vacation
@ Combine with Previows Concepts e
Concept Conceptlocation  Operations  Zemove ;:-.‘-..-.: T
----- portatio A1 - @ And O 0 O Exclude X Transportati -
s (Y P —— Concept
*
[}
T Query car o !?\m Map
Cinar Al Avabable Cancept Regio n i Misee lights  Cruise
==
—e
R IR Rk o] Siriflaity I BC and I Sirrilarity bn RC and OC Sienilarity In RC

Retrieved
Services

getCanByShep
» tracgetCarstiyShapsonpin
» tnazgetCarsByShoptoaput

Figure 5: Annotated screenshot of our prototype tool

IV.  PROTOTYPE IMPLEMENTATION

We have designed and developed a prototype of our
proposed approach. Figure 5 shows the annotated screenshot
of the user interface (UI) of our prototype. The user interface
is divided into three areas: “Query Region” where a user can
submit a query and select concepts and concept locations
(i.e., input, output, or a service name); “Concept Map” shows
the concepts extracted from a query as well as the related
concepts to the query using ConceptNet; and the "Retrieved
Service" area lists the retrieved services. As shown in Figure
5, a user submits a query (i.e., “transportation in Kingston”)
in the "Query Region"; our prototype retrieves the related
concepts shown in the "Concept Map" area. The Concept
Map displays different types of transportation, such as car,
flight and cruise. These concepts serve as an initial point to
help a user to craft a more specific query. Once a user finds a

relevant concept in the Concept Map, the prototype retrieves
services related to the concept and lists them in the
"Retrieved Services" area. To ease the user to go through the
services, our prototype further divides the services into four
categories from the strict matching of the concepts appearing
in all three fields (i.e., the input, the output and the name of a
service) to a looser matching which matches one concept in
one of the fields (i.e., input, output or the name of the
service).

V. CASESTUDY

We conduct a case study to evaluate the effectiveness of
our approach. The objectives of the case study include: 1)
evaluating if our approach can achieve high precision and
recall to index services based on the concepts extracted from
the service descriptions. We compared the precision and the
recall of our approach with a baseline approach which
indexes services using textual description (i.e., service
documentation) of Web services; and 2) examining the
precision of our approach for concept recommendation and
query formulation through a user study.

TABLE III : DESCRIPTIVE STATISTICS OF OUR DATA SET

# WSDL documents 550
#WADL documents for RESTful Services 61

#Service Description Set (i.e., Services) 10,100
#Concept Identified 4100

Setup of the Case Study

Table III presents a descriptive statistics of our data set. We
gathered 611 service description documents for SOAP based
Web Services and Restful Services. Each Web service can
contain several operations. Similarly, each RESTful service
may include multiple resources. We consider an operation
and a resource as a service. The services are such as
WebserviceXl, WebserviceList’, and xMethods®. In total, we
identified 4100 concepts from the 10,100 services.

To evaluate the effectiveness of our approach to extract
concepts from service, we need to know the number of
services relevant to a given concept among the 10,100
services. However, due to the limited resources, we cannot
go through each of the services for a given concept. We
choose six concepts with different popularity (i.e., high,
medium and low): holiday, weather, hotel, flight, computer
and camera by manually examining the service description
documents. The most popular concept, holiday, is associated
with 200 similar service description sets. Flight, hotel and
weather are a medium level of popularity and associated with
40, 60 and 40 services respectively and camera by manually
examining the service description documents. The most
popular concept, holiday, is associated with 200 similar
service description sets. Flight, hotel and weather are a
medium level of popularity and associated with 40, 60 and
40 services respectively. Camera and computer are the
concepts with the lowest popularity and associated with 10
and 8 similar services, respectively. For the sake of
performance comparison, we implemented a baseline
approach used by the current UDDI registry. The baseline



TABLE IV: COMPARISON OF THE PRECISION, RECALL AND R-PRECISION OF OUR APPROACH WITH A BASELINE APPROACH

Concept in User’s Query Our Approach Baseline Approach
Precision Recall R-precision | Precision Recall R-precision

Holiday 80% 100% 90% 67% 75% 50%
Hotel 78% 100% 90% 62% 70% 60%
Weather 93% 100% 100% 75% 95% 100%
Flight 82% 100% 90% 69% 85% 60%
Computer 85% 100% 100% 70% 83% 60%
Camera 83% 100% 100% 78% 81% 50%

approach groups services using textual description in service
description documentation of Web services and allows users
to find services. We setup a user study to evaluate the
correctness of the concept recommendation and the
assistances in the query formulation. We recruited eight
participants to participate in our user study. For each
participant, we gave eight different goals, such as booking a
hotel room, booking a flight ticket and planning a holiday
and ask them to use our prototype to find the services to
fulfill the goals. Each participant has the software
engineering background and had experience in using Web
services.

{relevant services} n {retrieved services}

)
(6)

{retrieved services}
_ {relevant services} n {retrieved services}

{relevant services}
{# of relevant services in top R}

R

)

Rprecision =

Evaluation Criteria

We use precision and recall to measure the performance
of our approach to group services using concepts. Precision
measures the exactness of the retrieved results and is the
ratio of the total number of services correctly retrieved by
our approach to the total number of services retrieved as
shown in Equation (6). Recall evaluates the completeness of
the retrieved result [19]. As shown in Equation (6), recall, is
the ratio of the total number of services correctly retrieved to
the total number of services existed. The retrieved results
could be very large. It could be a tedious job for a user to go
through all of them. Therefore, we use R-precision to
measure the precision of top R retrieved services [19]. For
example, if there are 10 services relevant to the query within
the data set and 7 of them are retrieved before the 11% (ie,
R= 11) services, the R-precision is 70%. We choose to
compute the R-precision of 10 retrieved result (i.e., R=10)
since Silverstein et al. [16] have shown that users mostly
look at the first 10 results.

TABLE V: RESULTS OF CONCEPT RECOMMENDATION, QUERY FORMULATION
AND PRECISION OF SERVICE RETRIEVAL FROM OUR USER STUDY

Average number of recommended concepts | 95%
participants found useful

Average number of times a participant | 85%
reformulates the query

Average precision of service retrieval 98%

To evaluate the correctness of concept recommendation
and the assistance in query formulation in the service

retrieval process, each participant determines the number of
recommended concepts related to their query. Each
participant also tracks if he or she reformulated their query
using the recommended concepts. We calculate the precision
of the retrieved result based on the user’s query.

Case Study Results

Table IV shows the results of precision, recall and R-
precision of our approach and the baseline approach. Our
approach achieves a high recall for all the services and an
average precision of 83%. The baseline approach has an
average precision of 70% and a recall of 82%. The R-
precision of top 10 retrieved results of our approach is 95%
in comparison to 63% in the baseline approach. The high
precision means that our approach lists relevant results in the
beginning of retrieved services. Some of the services in the
hotel domain also contain “trip” in their service description
documentation; hence our approach indexes the service with
both concepts. The recall of our approach is 100%, meaning
that our approach can effectively extract concepts from
service descriptions. The low recall of the baseline approach
is due to the uses of textual description in service description
documentation to group services. However, the
documentation is not always available for many Web
services. The baseline approach uses various terms to index
the same services in different concepts. For example,
http://www.holidayguide.co.nz/webservices/frontdesk/holida
yguide.asmx.xml has the “motel” and “holiday” in the
documentation whereas all operations are only related to
motel reservation.

Table V shows the result of the number of recommend
concepts that participants found useful, the number of times
that participants formulate the query and the precision of the
service retrieval in the user study. The user study shows that
95% of recommended concepts are related to the user’s
query and 85% of times a user reformulates the query using
the concepts recommended. The average precision of the
service retrieval is 98%. Retrieving services using a single
concept gives a precision of 83% as shown in Table IV.
When a user formulates a query with specific requirement,
the precision increase to 98%. Thus, we found that query
formulation helps participants to obtain a higher precision
result and increases the precision of the service retrieval by
15%.

Threats to Validity

The main threat of our case study that could affect the
generalization of the presented results relates to the number



of service description documents analyzed. We have
analyzed 611 services from different domains. Nevertheless,
further validation of our approach requires an analysis of a
larger set of service description documents. The user study
is based on eight people; all of them have good knowledge
on Web services. The validation of the concept
recommendation and query formulation requires a study on
diverse group of people.

VI.  RELATED WORK

A large body of research on service discovery can be
summarized into two main categories: semantic Web
approaches and information retrieval (IR) approaches for
non-semantic Web services. Semantic Web approaches
propose to enhance service descriptions by annotating
service description with domain specific ontologies.
Semantic Web services are discovered by high level match-
making approaches [20]. However non-semantic Web
services are more popular and supported by both the industry
and development tools. In our approach, we target the
discovery of non-semantic Web services.

IR approaches, such as word sense disambiguation, stop-
words removal, and stemming, have been used to extract
relevant information conveyed within service description
documents to index Web services. Sajjanhar et al. [10]
propose a SVD-Based algorithm to locate matched services
for a given service. This algorithm uses characteristics of
singular value decomposition to find relationships among
services. However, it only considers service description
documentation and cannot reveal the semantic relationship
between Web services. Al-Masri et al. [22] proposed a web
service crawler and indexed services based on service
documentation. Their approach does not filter important
concept from the services and result of service retrieval were
not ranked. Dong et al. [3] develop a clustering algorithm to
group parameter names of operations into semantically
meaningful concepts. Then these concepts are used to
measure similarity of operations. It relies on names of
parameters. Instead, our approach index services based on
the semantic concepts and help users formulate queries in
order to bridge the semantic gap. Liu et al. [24] and Elgazzar
et al. [23] use a text mining techniques to extract features
from WSDL documents. These features are then used to
cluster services together. The mentioned clustering
approached helps to functionally similar services and totally
forgets about the user requirement. Similar to their approach
we cluster the service description documents. However our
approach puts the user on the center of service discovery
process helping to reduce the semantic gap by suggesting
concepts and narrow down the requirements.

VII. CONCLUSION

The paper presents an approach to index services based on
the concepts shared between services. The proposed
approach guides users to formulate queries and group the
retrieved results. Our approach can minimize the human
effort to find a specific service and bridge the semantic gap
between users and service providers by assisting the users in
formulating queries and recommending services related to a

user’s query. We found that our approach is effective in
grouping services with a precision of 83% and a recall of
100%. A user study shows that the concept recommendation
and query formulation make the user queries more specific
and increase the precision of the service retrieval to up to
15%. In future, we plan to conduct a larger case study using
a large number of Web services.
References

[1] E. Al-Masri, Q. H. Mahmoud, “Investigating web services on the
world wide web,” International World Wide Web, pp. 795-804, 2008.

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C.
Ferris, D. Orchard, "Web Services Architecture", World Wide Web
Consortium, Note NOTE-ws-arch-20040211, February 2004.

[3] X. Dong, Halevy A., Madhavan J., Nemes E., and Zhang J. ,
Similarity Search for Web Services, 30th VLDB Conference, 2004

[4] AX. Jain, R.C Dubes , Algorithms for clustering data. Prentice-Hall,
Englewood Cliffs, 1988.

[5] H. Liu, P. Singh, ConceptNet: A Practical Commonsense Reasoning
Toolkit. BT Technology Journal, To Appear. Volume 22.

[6] M. P. Papazoglou and D. Georgakopoulos. Service Oriented
Computing. Communication of ACM, Volume 46, Number 10,
October 2003. pp. 25 —28.

[7] C. D. Manning, H. Schiitze, "Foundations of Statistical Natural
Language Processing, MIT Press: 1999.

[8] G. A. Miller, "WordNet: A Lexical Database for English",
Communications of the ACM Vol. 38, No. 11:39-41.

[9] M.F. Porter, "An algorithm for suffix stripping, Program", 14(3) pp
130-137, 1980

[10] A. Sajjanhar, J. Hou and Y. Zhang, Algorithm for web services
matching, Lecture Notes in Computer Science, 2004.

[11] A. Hulth. Improved automatic keyword extraction given more
linguistic knowledge. Proceedings of the 2003 Conf. on Empirical
Methods in Natural Language Processing, pp 216-223, 2003.

[12] G. A. Miller, "The magical number seven, plus or minus two: Some
limits on our capacity for processing 1nf0rmat10n Psychol. Rev., vol.
63, pp. 81-97, 1956

[13] R. Alarcén and E. Wilde. “RESTler: crawling RESTful services.” In
Proceedings of the 19th international conference on WWW '10,
pages 1051-1052, New York, USA, 2010. ACM.

[14] R.T. Fielding. “Architectural Styles and The Design of Network-
based Software Architectures”. PhD thesis, University of California,
Irvine, 2000

[15] H. Song, D. Cheng, A. Messer, S. Kalasapur, Web Service discovery
using general-purpose search engines, in: IEEE International
Conference on Web Services ICWS), 2007, pp. 265-271.

[16] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of
a very large web search engine query log. SIGIR Forum, 1999.

[17] Web Service Definition Language (WSDL), www.w3.org/TR/wsdl
last accessed on 25" February, 2012

[18] Web Application Description Language,
www.w3.org/Submission/wadl/, last accessed on 25" February, 2012

[19] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel, “Performance
measures for information extraction,” DARPA Broadcast News
Workshop, Herndon, VA, February 1999.

[20] Matthias Klusch, Benedikt Fries, Katia Sycara, “Automated semantic
web service discovery with owlsmx,” International Conference on
Autonomous Agents and Multi-Agent Systems, 2006.

[21] A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic. Searching the
Web: The public and their queries. Journal of the American Society
for Information Science and Technology, 52(3):226-234, 2001

[22] E. Al-Masri, Q.H. Mahmoud, "WSCE: A Crawler Engine for Large-
Scale Discovery of Web Services", ICWS, 2007

[23] K. Elgazzar, A. E. Hassan, P. Martin, Clustering WSDL Documents
to Bootstrap the Discovery of Web Services, ICWS, 2010

[24] Fangfang Liu, Yuliang Shi, Jie Yu, Tianhong Wang, Jingzhe Wu,
Measuring Similarity of Web Services Based on WSDL, ICWS, 2010

[25] Q. Yu: Place Semantics into Context: Service Community Discovery
from the WSDL Corpu, Paphos, Cyprus, ICSOC 2011

All URLSs are last accessed on 20™ October, 2012




