An Empirical Study of Design Patterns
and Software Quality

Foutse Khomh and Yann-Gaél Guéhéneuc
PTIDEJ Team

GEODES — Research Group on Open, Distributed
Systems, Experimental Software Engineering

University of Montreal
Montreal, Quebec, Canada
guehene@iro.umontreal.ca

January 29, 2008

Abstract

We present an empirical study of the impact of design patterns on
quality attributes in the context of software maintenance and evolution.
Our first hypothesis verifies software engineering lore: design patterns
impact software quality positively. We show that, contrary to popular
beliefs, design patterns in practice impact negatively several quality at-
tributes, thus providing concrete evidence against common lore. We then
study design patterns and object-oriented best practices by formulating a
second hypothesis on the impact of these principles on quality. We show
that results for some design patterns cannot be explained and conclude
on the need for further studies on the relation between design patterns
and object-oriented best practices. Thus, we bring further evidence that
design patterns should be used with caution during development because
they may actually impede maintenance and evolution.

Contents

1 Introduction

2 Related Work

3 Objective and Hypothesis

4 Collection and Processing
4.1 Definition of the Questionnaire
4.2 Data Collection
4.3 Data Processing oL

5 Analyses
5.1 Qualitative Analysis L o
5.2 Design Patterns oo Lo
5.3 Quality Attributes
5.4 Quantitative Analysis L L.
5.5 Complete Results L o

6 Impact of patterns on quality and object-oriented Program-
ming

7 Principles of Object Oriented Programming
8 Design Patterns and Principles

9 Discussion

10 Threats to Validity

11 Conclusion

11

12

14

17

17

18

1 Introduction

Many studies in the literature (including some by these authors) have for premise
that design patterns [4] improve the quality of object-oriented software systems.
Indeed, it is claimed that design patterns improve the quality of systems and
that every well-structured object oriented designs contain pattern, for example
[4, page xiii] or [12].

Yet, some studies, e.g., [13], suggest that the use of design patterns do
not always result in “good” designs. For example, a tangled implementation of
patterns impacts negatively the quality that these patterns claim to improve [9].
Also, patterns generally ease future enhancement at the expense of simplicity.

Thus, evidence of quality improvements through the use of design patterns
consists primarily of intuitive statements and examples. There is little empiri-
cal evidence to support the claims of improved reusability!, expandability and
understandability as put forward in [4] when applying design patterns. Also,
the impact of design patterns on other quality attributes is unclear.

The lack of concrete evidence on the impact of design patterns on quality
led us to carry an empirical study of the impact of these patterns on the quality
of systems as perceived by software engineers in the context of maintenance and
evolution. Our hypothesis verifies software engineering lore: design patterns im-
pact software quality positively. Our objective is to provide evidence to confirm
or refute the hypothesis.

We perform the study by asking respondents their evaluations of the impact
of design patterns on several quality attributes after application, thus in the
context of maintenance and evolution. We choose this approach because, as
explained in Section 3, there exists no quality model that takes into account the
use of design patterns. Existing quality models fail to assess correctly systems
in which design patterns are used [5]. Thus, the evaluation of the perceived
impact of design patterns on quality is a necessary step to build a model that
takes into account design patterns.

We present detailed results for three design patterns: Abstract Factory,
Composite, Flyweight and three quality attributes: reusability, understand-
ability, and expandability, and global results for other patterns and quality
attributes. We conclude that, contrary to popular beliefs, design patterns in
practice do not always improve quality attributes, thus providing concrete evi-
dence against common lore. We attempt to explain the results with respect to
object-oriented best practices and show their limitations. We conclude that de-
sign patterns and object-oriented best practices require further study and that
patterns should be used with caution during development because they may
actually impede maintenance and evolution.

The contribution of this paper is three fold. First, we propose an empirical
method to study the impact of design patterns on quality attributes. Second,
we carry out a qualitative and quantitative study and show that some design

LAlthough reusability in [4] may refer to the reusability of the solutions of the design
patterns, we consider reusability as the reusability of the piece of code in which a pattern is
implemented.

patterns impact quality negatively. Third, we show that principles of object-
oriented programming fail to explain previous results.

We organise our paper as follows: Section 2 presents related work and their
limitations. Section 3 states the hypothesis and objective of the study. Section
4 describes our quantification method. Section 5 presents the results of our
survey. Section 6 contains a discussion on the results of our survey. Section 7
concludes our research and introduces future work.

2 Related Work

Since their introduction by Gamma et al. [4] in 1994, there has been a growing
interest on the use of design patterns. In particular, work has been carried out
to study the potential impact of patterns on software systems. Yet, few work
investigated empirically their impact on quality. We present here main lines of
work.

Lange and Nakamura demonstrated [7] that design patterns can serve as
guide in program exploration and thus make the process of program under-
standing more efficient. Through a trail of pattern execution, they showed that
if patterns were recognized at a certain point in the understanding process, they
could help in “filling in the blanks” and in further exploring a system, improving
thus the understandability of the system. However this study was limited to a
single quality attribute and to a little number of patterns.

Wydaeghe et al. [14] presented a study on the concrete use of six design
patterns when building an OMT editor. They discussed the impact of these
patterns on reusability, modularity, flexibility, and understandability. They
also discussed the difficulty of the concrete implementation of these patterns.
They concluded that although design patterns offer several advantages, not all
patterns have a positive impact on quality attributes. However, this study is
limited to the authors’ own experience and thus their evaluations of the impact
of these patterns on quality can hardly been generalized to other contexts of
development.

Wendorff [13] evaluated the use of design patterns in large commercial soft-
ware systems. The author concluded that patterns do not necessarily improve
a system design. Indeed, a design can be over-engineered [6] and the cost of
removing design patterns is high. He did not perform a study on the impact of
patterns on quality and provide only qualitative arguments.

McNatt and Bieman [9] examined the coupling between design patterns.
They dressed a parallel between modularity and abstraction in software systems
and modularity and abstraction in patterns. They showed that when patterns
are loosely coupled and abstracted, maintainability, factorability, and reusability
are well supported by the patterns. They concluded on the need for further
studies to understand “good” pattern coupling methods. This study did not
study the quantitative impact of patterns on quality.

Tahvildari et al. [11] studied the 23 design patterns from [4] and presented
a layered classification of three primary relationships between these patterns:

use, refine, and conflict, and of three secondary relationships: similar, combine,
and require, which can be expressed using the primary ones. They divided the
patterns into two abstraction levels. They discussed how their classification
can assist with understanding better the complex relationships among patterns,
organising existing patterns as well as categorising and describing new patterns
and building tool support for the application of patterns during restructuring.
They did not investigate the impact of patterns on quality.

Bieman et al. [2, 3] examined common recommended programming styles
on several different software systems, with and without patterns, and concluded
that in contrast with common lore, the use of design patterns can lead to more
change-prone classes rather than less change-prone classes during evolution.

Therefore, there is little evidence on the impact of design patterns on quality.
Claims supporting the hypothesis are intuitive.

3 Objective and Hypothesis

The hypothesis of this study is that design patterns impact quality positively.
Our objective is to qualify and quantify this impact on the overall quality of
systems to confirm or refute the hypothesis.

There is a lack of a consensual framework to evaluate the quality of systems
taking into account design patterns and other architectural characteristics. For
example, the evaluation of a system with QMOOD [1] produces numerical values
for some quality attributes that are difficult to interpret as there is no clear
mapping between these numbers and object-oriented design principles.

Therefore, we chose an empirical study to collect, process, and analyse
software engineers’ evaluations of the impact of design patterns on quality at-
tributes.

4 Collection and Processing

To collect evaluations of the impact of design patterns on quality attributes, we
defined a questionnaire and carried out a survey electronically.

4.1 Definition of the Questionnaire

Following our previous work [5] and the work done in [1, 4], we chose the fol-
lowing set of quality attributes, based on their relevance to design patterns.

e Attributes related to design:

— Expandability: The degree to which the design of a system can be

extended.
— Simplicity: The degree to which the design of a system can be

understood easily.
— Reusability: The degree to which a piece of design can be reused

in another design.

e Attributes related to implementation:

— Learnability: The degree to which the code source of a system is

easy to learn.
— Understandability: The degree to which the code source can be

understood easily.
— Modularity: The degree to which the implementation of the func-

tions of a system are independent from one another.

e Attributes related to runtime:

— Generality: The degree to which a system provides a wide range of

functions at runtime.
— Modularity at runtime: The degree to which the functions of a

system are independent from one another at runtime.
— Scalability: The degree to which the system can cope with large

amount of data and computation at runtime.
— Robustness: The degree to which a system continues to function

properly under abnormal conditions or circumstances.

Each quality attribute was evaluated using a six-point Likert scale:
- Very positive

- Positive

- Not significant

Negative

- Very Negative

- Not applicable

Mmoo QWi
|

The sixth value allowed respondents to not answer a question if they did not
know or are not sure about the impact of a design pattern on a quality attribute.

For every design pattern in [4] and for every quality attribute from our set,
the respondents were asked to assess the impact of the patterns on the quality
of a hypothetical system in which the pattern would be used appropriately, to
assess the impact of this pattern on quality as they would during a technical re-
view [10] or possibly while performing a program comprehension-related activity
during maintenance and evolution.

The questionnaire is available on the Internet at http://www.ptidej.net/
downloads/.

4.2 Data Collection

The questionnaire was sent out in January 2007 to experienced software en-
gineers and posted on three mailing lists, refactoring, patterns-discussion, and
gang-of-4-patterns. We collected respondents’ evaluations during the period of
January to April 2007.

Among the many answers that we received, we selected the questionnaires
of 20 software engineers with a verifiable long experience in the use of design
patterns in software development and maintenance.

Although among these selected 20 questionnaires, some respondents did not
evaluate the quality of all design patterns, we argue that the sample is repre-
sentative enough. Moreover, the number of collected evaluations is the largest
of all studied previous work.

4.3 Data Processing

Due to the variations between answers, we felt that the differences between
Positive and Very Positive answers were due to the fact that some respon-
dents were less strict than others and thus, that their Very Positive evalua-
tions were not directly relevant to the impact of the patterns. This fact has
been confirmed in discussions with the respondents. For example, for Builder
and expandability, we had 19% of respondents considering the pattern Very
Positive while 63% considered it Positive and 18% considered it Neutral.
Therefore, we chose to aggregate answers A and B and answers D and E:

Positive = A and B

Neutral = C

Negative = D and E

Using the previous three-point Likert scale, we computed the frequencies
of the answers on each quality attribute: Positive, Neutral, and Negative
and we carried out a Null hypothesis test to assess the perceived impact of the
patterns on the quality attributes.

Answers F were not considered because they represented situations where
the respondents did not know or did not want to evaluate the impact.

5 Analyses

We now present the detailed results of a qualitative and a quantitative analyses
for three design patterns: Abstract Factory, Composite, and Flyweight, and
the three quality attributes mentioned by the GoF [4, page xiii]: reusability,
expandability, and understandability. Complete results then follows.

We choose the following three design patterns to illustrate our respondents’
assessments first because of their popularity—they are among the most com-
monly used patterns and thus we felt that their evaluation would be more
accurate—and second because they appear to be considered as globally posi-
tive, globally neutral, and globally negative.

5.1 Qualitative Analysis

We study qualitatively the results, without making comparison between the
numbers of answers, which is the subject of the quantitative analysis in Section
5.4.

[Attributes | Positive | Neutral | Negative

Expandability 100.00% 0.00% 0.00%
Simplicity 69.23% | 15.38% 15.38%
Reusability 61.54% 23.08% 15.38%
Learnability 76.92% 7.69% 15.38%
Understandability 69.23% 15.38% 15.38%
Modularity 71.43% | 21.43% 7.14%
Generality 76.92% | 15.38% 7.69%
Mod. at Runtime 53.85% | 38.46% 7.69%
Scalability 41.67% 41.67% 16.67%
Robustness 8.33% | 91.67% 0.00%

Table 1: Impact of Composite (in percentage of the number of respondents.)

[Attributes | Positive | Neutral | Negative]
Expandability 100.00% 0.00% 0.00%
Simplicity 53.33% 13.33% 33.33%
Reusability 50.00% 42.86% 7.14%
Learnability 35.71% | 28.57% 35.71%
Understandability 38.46% | 30.77% 30.77%
Modularity 85.71% 7.14% 7.14%
Generality 78.57% | 21.43% 0.00%
Mod. at Runtime 46.15% 38.46% 15.38%
Scalability 21.43% 64.29% 14.29%
Robustness 0.00% | 72.73% 27.27%

Table 2: Impact of Abstract Factory.

5.2 Design Patterns

Composite. Table 1 presents the respondents’ evaluations of the impact of
the Composite pattern on the quality attributes. It appears that the Composite
pattern is mostly perceived as having a positive impact on the quality of systems.
All quality attributes are impacted positively but for scalability and robustness,
which are consider neutral. Given the purpose of the Composite pattern, having
a neutral impact on scalability is rather surprising.

Abstract Factory. Table 2 presents the respondents’ evaluations of the im-
pact of the Abstract Factory pattern on the quality attributes. It shows that
half the quality attributes is considered as positively impacted while the other
half is not. It is not surprising that the pattern is overall judged as neutral given
its purpose and complexity. It is striking that learnability and understandability
are felt negatively impacted.

Flyweight. Table 3 presents the respondents’ evaluations of the impact of
the Flyweight pattern on the quality attributes. It reports that this pattern is
perceived as impacting negatively all quality attributes but scalability. Given
the purpose of the pattern, it is not surprising that its impact on scalability
is judged positively. The negative perception could be explained by the less
frequent use of Flyweight in comparison with Composite and Abstract Factory.

[Attributes | Positive | Neutral | Negative]

Expandability 22.22% | 44.44% 33.33%
Simplicity 0.00% | 22.22% 77.78%
Reusability 37.50% 12.50% 50.00%
Learnability 0.00% 20.00% 80.00%
Understandability 0.00% 10.00% 90.00%
Modularity 33.33% 33.33% 33.33%
Generality 11.11% | 44.44% 44.44%
Mod. at Runtime 11.11% | 66.67% 22.22%
Scalability 77.78% 0.00% 22.22%
Robustness 22.22% | 66.67% 11.11%

Table 3: Impact of Flyweight.

5.3 Quality Attributes

We choose the following three quality attributes because it is claimed in [4, 12]
that they are improved by the use of design patterns.

Expandability. Table 4 presents the respondents’ evaluations of the impact
of the design patterns on expendability. All respondents felt that expandability
is improved when using patterns, in conformance with the claims made in [4].

Reusability. Table 5 presents the respondents’ evaluations of the impact of
design patterns on reusability. Reusability is felt as being slightly more nega-
tively impacted by design patterns, with 13 neutral or negative patterns and 10
positive patterns. This is rather surprising as the use of patterns is claimed to
improve reusability.

Understandability. Table 6 presents the respondents’ evaluations of the im-
pact of design patterns on understandability. Similarly to reusability, respon-
dents felt that understandability was rather slightly negatively impacted by the
use of patterns.

5.4 Quantitative Analysis

Using the results presented in Tables 1, 2, 3, 5, 4 and 6, we carry out Null
hypothesis tests to quantify the impact of the design patterns on the quality
attributes and then confirm or refute the hypothesis that design patterns impact
software quality positively. We use the frequencies of Positive and non-positive
answers (combining Neutral and Negative answers) to decide on the impact
of a pattern on a quality attribute.

For a given question from our questionnaire, we consider the random variable
X, that takes the value 0 when the impact of the pattern on the attribute is
Positive and 1 when the impact is not positive. We defined P as the probability
that the pattern does not impact positively the attribute. The probability that
the pattern impacts positively the attribute is therefore 1 — P. Considering the

[Patterns | Positive [Neutral | Negative

A Factory 100.00% 0.00% 0.00%
Builder 90.91% 9.09% 0.00%
F.Method 72.73% 9.09% 18.18%
Prototype 63.64% | 27.27% 9.09%
Singleton 9.09% | 27.27% 63.64%
Adapter 50.00% 41.67% 8.33%
Bridge 83.33% 16.67% 0.00%
Composite 100.00% 0.00% 0.00%
Decorator 90.91% 0.00% 9.09%
Facade 58.33% 16.67% 25.00%
Flyweight 22.22% 44.44% 33.33%
Proxy 45.45% | 45.45% 9.09%

Ch.Of.Resp 91.67% 8.33% 0.00%
Command 66.67% | 16.67% 16.67%

Interpreter 63.64% | 27.27% 9.09%
Iterator 90.91% 9.09% 0.00%
Mediator 58.33% 25.00% 16.67%
Memento 33.33% 55.56% 11.11%
Observer 85.71% 7.14% 7.14%
State 72.73% 18.18% 9.09%
Strategy 76.92% | 15.38% 7.69%
T.Method 84.62% 15.38% 0.00%
Visitor 71.43% 7.14% 21.43%

Table 4: Impact on expandability.

N respondents j = 1,..., N answering the question, we view their answers as
occurrences of the random variable X and note them: Xj, Xo,.....Xy. Then,
we set our Null hypothesis to be Hy : P < %, which means that the impact of
the pattern on the quality attribute is positive. The alternative hypothesis is
then Hy : P > %, which means that the pattern does not impact positively the

attribute. Our decision rule is:

e We confirm Hj if fx is not high enough;
e We confirm H; if fy is high enough;

where fy is the frequency of the respondents who answered that the pattern
impacts negatively or does not impact the attribute. By “high enough”, we refer
to a rate level that directly impacts the risk of making the decision at that level.
For example if high enough is > 80%, the risk encountered by deciding at that
level is 0.37, while if high enough is > 60% the risk encountered by deciding at
that level is 15.09. These values are computed using the Bernoulli distribution.

The risk that we encounter by rejecting the Null hypothesis Hy, i.e., the
pattern positively impacts the quality attribute, is then: 1 — F(fx), where F is
the cumulative density of the Bernoulli distribution 3(NV, 1).

The Null hypothesis test yields the results summarized in Tables 7, 8, 9 and
10 for all design patterns and quality attributes. In these tables, the sign +
means that, with our Null hypothesis test, the impact of the pattern on the
quality attribute is positive else the sign is — (it can be negative or neutral).
The number next to a sign represents the risk of making this decision.

10

[Patterns [Positive | Neutral [Negative

A Factory 46.15% | 46.15% 7.69%
Builder 36.36% 45.45% 18.18%
F.Method 60.00% 20.00% 20.00%
Prototype 63.64% 0.00% 36.36%

Singleton 18.18% | 54.55% 27.27%
Adapter 66.67% 25.0% 8.33%
Bridge 41.67% 16.67% 41.67%

Composite 58.33% 25.00% 16.67%
Decorator 36.36% | 18.18% 45.45%

Facade 36.36% | 45.45% 18.18%
Flyweight 37.5% 12.5% 50.00%
Proxy 45.45% | 36.36% 18.18%

Ch.Of.Resp | 54.55% | 27.27% 18.18%
Command 30.00% 20.00% 50.00%
Interpreter 50.00% 0.00% 50.00%

Iterator 72.73% 9.09% 18.18%
Mediator 20.00% 50.00% 30.00%
Memento 28.57% 42.86% 28.57%
Observer 53.85% | 23.08% 23.08%
State 20.00% 40.00% 40.00%
Strategy 41.67% | 33.33% 25.00%
T.Method 58.33% 33.33% 8.33%
Visitor 28.57% 28.57% 42.86%

Table 5: Impact on reusability.

5.5 Complete Results

Tables 9 and 10 present the complete results of the impact of the 23 patterns
on the quality attributes.

6 Impact of patterns on quality and object-oriented
Programming

The analysis of the results of our study reveal that, in contrary to common lore,
design patterns do not always impact quality attributes positively. Our respon-
dents consider that, although patterns are useful to solve design problems, they
do not always improve the quality of the systems in which they are applied. In
particular, a large number of respondents considered that they sensibly decrease
simplicity, learnability, and understandability. Some patterns, like Flyweight,
are considered as impacting most attributes negatively.

We now attempt to explain these results by studying design patterns from the
point of view of object-oriented software practices. We focus on some “famous”
patterns as we consider their evaluations by the respondents more accurate. By
“famous”, we mean that all selected respondents fill the entire evaluations of
these patterns.

We make the hypothesis that the principles help in improving the quality
and thus should explain the results found on the impact of design patterns on

11

[Patterns [Positive | Neutral [Negative

A Factory 38.46% | 30.77% 30.77%
Builder 81.82% 9.09% 9.09%
F.Method 45.45% 27.27% 27.27%
Prototype 58.33% 16.67% 25.00%

Singleton 91.67% 8.33% 0.00%
Adapter 50.00% 25.00% 25.00%
Bridge 50.00% 33.33% 16.67%

Composite 75.00% 16.67% 8.33%
Decorator 45.45% 9.09% 45.45%

Facade 81.82% 18.18% 0.00%
Flyweight 0.00% | 10.00% | 90.00%
Proxy 33.33% | 50.00% 16.67%

Ch.Of.Resp 33.33% 33.33% 33.33%
Command 33.33% | 33.33% 33.33%
Interpreter 63.64% 0.00% 36.36%

Iterator 50.00% 41.67% 8.33%
Mediator 58.33% 25.00% 16.67%
Memento 33.33% 55.56% 11.11%
Observer 42.86% | 35.71% 21.43%
State 54.55% 0.00% 45.45%
Strategy 69.23% | 23.08% 7.69%
T.Method 38.46% 38.46% 23.08%
Visitor 21.43% 21.43% 57.14%

Table 6: Impact on understandability.

quality.

7 Principles of Object Oriented Programming

Since the inception of object-oriented programming, several work provided guide-
lines and principles. We recall here some principles, summarised from [8]. We
choose these principles among the many available ones because these are well-
known, hard-won products of decades of experience in software engineering.

e Open Close Principle: Software entities like classes, packages, and
methods should be open to extension but closed to modifications. The
Open Close Principle encourages software engineers to design and write
code so that adding new functionalities involve minimal changes. Most
changes are handled as new methods and new classes. Designs follow-
ing this principle are more resilient and do not break when adding new
functionalities.

e Liskov Substitution Principle: An instance of a derived class must be
able to take the place of an instance of the base class. For example, if a
method has an object of a class as an argument, the same method must
be able to work with an instance of a derived class.

e Dependency Inversion Principle: High-level modules should not de-
pend upon low-level modules, both should depend upon abstractions. Ab-
stractions should not depend upon details. Details should depend upon

12

. Composite | A.Factory | Flyweight
Attributes E [R(%) | E[R%) | B[R%
Expendability + 0.00 | + 0.00 | — 1.76
Simplicity + 592 | + | 30.36 | — 0.00
Reusability + | 15.09 | + | 50.00 | — | 15.09
Learnability + 1.76 | — 15.09 | — 0.00
Understandability | + 592 | — | 15.09 | — 0.00
Modularity + 592 | + 0.37 | — 5.92
Generality + 1.76 | + 1.76 | — 0.15
Mod. at Runtime | + | 30.36 | — | 30.36 | — 0.15
Scalability — | 30.36 | — 1.76 | + 1.76
Robustness — 0.15 | — 0.00 | — 1.76
[[8+/2—-[5+/5—-]1+/9—]

Table 7: Estimation of the impact of the three design patterns on quality at-
tributes.

abstractions. This principle “inverts” the conventional idea that high level
modules should depend upon the lower level ones.

e Interface Segregation Principle: Clients should not be forced to de-
pend upon interfaces that they do not use. Many client-specific interfaces
are better than a general-purpose one.

¢ Reuse/Release Equivalency Principle: The granule of reuse is the
same as the granule of release. Only components that are released through
a tracking system can be effectively reused.

e Common Reuse Principle: Classes that are not reused together should
not be grouped together.

e Common Closure Principle: Classes that change together, belong to-
gether.

e Stable Abstractions Principle: The more stable a category of classes
is, the more it should consist of abstract classes. A completely stable
category should consist of only abstract classes.

e Least Astonishment Principle: When two elements of an interface
conflict or are ambiguous, the behavior should be that which least sur-
prises the software engineer at the time of the conflict, because the least
surprising behavior must be usually the correct one.

e Deep Abstract Hierarchies Principle: Class hierarchies should be
deep and abstract.

e The Acyclic Dependencies Principle: There should be no cycles in
the dependency graph.

e The Stable Dependencies Principle: Depend in the direction of sta-
bility. The dependencies between components in a design should be in the
direction of stability. A component should only depend upon components
that are more stable than it is.

e Demeter Principle: Each unit (class, method) should only use a limited
set of other units: only units “closely” related to the current unit.

13

. Expendability (%) | Understandability(%) | Reusability(%)
Design Patterns o [R(%) | E [R(%) | E [R(%)
A.Factory + 0.00 | — 15.09 | + 50.00
Builder + 0.15 | + 0.37 | — 15.09
F.Method + 1.76 | — 30.36 | + 15.09
Prototype + 30.36 | + 30.36 | + 30.36
Singleton - 0.15 | + 0.15 | — 0.37
Adapter + 30.36 | — 30.36 | + 5.92
Bridge + 0.37 | + 50.00 | — 30.36
Composite + 0.00 | + 5.92 | + 15.09
Decorator + 0.15 | — 30.36 | — 5.92
Facade + 30.36 | + 1.76 | — 5.92
Flyweight - 1.76 | — 0.00 | — 15.09
Proxy - 30.36 | — 592 | + 50.00
Ch.Of.Resp + 0.15 | — 592 | + 30.36
Command + 592 | — 592 | — 5.92
Interpreter + 5.92 | + 592 | + 30.36
Iterator + 0.15 | + 50.00 | + 5.92
Mediator + 30.36 | + 30.36 | — 1.76
Memento — 592 | — 30.36 | — 15.09
Observer + 0.15 | — 30.36 | + 50.00
State + 592 | + 30.36 | — 1.76
Strategy + 1.76 | + 15.09 | — 30.36
T.Method + 0.37 | — 15.09 | + 30.36
Visitor + 5.92 — 1.76 | — 1.76

[[194/4—] 11+ /12 — [114+ /12—]

Table 8: Estimation of the impact of design patterns on the three quality at-
tributes

8 Design Patterns and Principles

We now study the evaluations of the three design patterns, shown in Tables 9
and 10, with respect to object-oriented principles.

Composite. The Composite pattern allows an instance of a class to be treated
in the same way as a group of objects. It makes it easy to add new kinds of
objects. It makes clients simpler, because they do not have to know if they are
dealing with a leaf or a composite object. Thus its use in a system impacts
positively the expandability and the simplicity, which is in accordance with the
evaluations of our respondents. However, the Composite pattern makes it harder
to restrict the type of objects in a composite and may lead to large amount of
objects being instantiated and referenced, thus possibly explaining the neutral
evaluations of its impact on robustness and scalability.

Abstract Factory. The intent of the Abstract Factory pattern is to separate
the creation of objects from their uses. It allows for new derived types to
be introduced with no change to the code that uses the base objects. This
pattern thus respects the Open Close Principle and improves the expandability,
the simplicity, and the generality of systems. Also, it makes it possible to

14

. Expendability (%) | Simplicity(%) | Generality(%) | Modularity(%) | Mod. at runtime(%)
Design Patterns =gy E] R% [E] K% [B] K% [B] R%
A.Factory + 0.00 | + 30.36 | + 1.76 | + 0.37 | — 30.36
Builder + 0.15 | + 30.36 | + 30.36 | + 0.15 | — 30.36
F.Method + 1.76 | + 30.36 | + 30.36 | + 592 | — 30.36
Prototype + 30.36 | + 30.36 | + 1.76 | — 15.09 | + 30.36
Singleton - 0.15 | + 0.15 | — 592 | — 0.37 | — 0.37
Adapter + 30.36 | — 30.36 | + 15.09 | + 1.76 | + 30.36
Bridge + 0.37 | — 0.37 | + 592 | + 1.76 | + 50.00
Composite + 0.00 | + 592 | + 1.76 | + 5.92 | + 30.36
Decorator + 0.15 | — 5.92 | + 0.15 | + 5.92 | + 5.92
Facade + 30.36 | + 0.37 | + 50.00 | + 50.00 | — 15.09
Flyweight - 176 | — 0.00 | — 015 | — 592 | — 0.15
Proxy - 30.36 | + 15.09 | + 15.09 | + 1.76 | — 15.09
Ch.Of.Resp + 0.15 | + 5.92 | + 0.37 | + 5.92 | + 30.36
Command + 592 | — 30.36 | + 15.09 | + 15.09 | — 30.36
Interpreter + 592 | + 50.00 | + 15.09 | + 30.36 | — 30.36
Iterator + 0.15 | + 592 | + 592 | + 30.36 | + 50.00
Mediator + 30.36 | — 592 | — 30.36 | + 50.00 | — 5.92
Memento — 592 | + 50.00 | — 30.36 | — 0.15 | — 0.15
Observer + 0.15 | + 15.09 | + 1.76 | + 1.76 | + 5.92
State + 592 | + 15.09 | + 15.09 | + 15.09 | + 30.36
Strategy + 1.76 | + 592 | + 592 | + 0.37 | + 1.76
T.Method + 0.37 | + 592 | + 1.76 | — 592 | — 5.92
Visitor + 592 | — 0.15 | + 1.76 | + 1.76 | + 30.36

[[194/4— [16+/7—] 19+/4-— [1B8+/5—-] 11+ /12 —

Table 9: Estimation of the impact of design patterns on quality attributes (Part
1).

interchange concrete classes without changing the code that uses them, even at
runtime, thus improving modularity and reusability, in accordance with the our
respondents’ evaluations.

However, due to the flexibility of interchanging concrete classes at runtime,
the pattern should improve the modularity at runtime and the scalability of
systems in which it is used, a position which contradicts our respondents’ results.
We believe that this unexpected results can be explain by the difficulty of writing
optimal implementations of this pattern. The use of this pattern, as with similar
design patterns, induces the risk of unnecessary complexity and extra work in
the initial design and implementation, thus decreasing understandability and
learnability.

Flyweight. The Flyweight pattern is considered by our respondents as im-
pacting negatively most quality attributes. The Flyweight pattern is tied to
a very specific problem and thus is not expandable. Yet, it allows thousands
of objects to work together improving thus scalability. It is not simple and
not generalizable, it decreases learnability, understandability, and reusability,
as software engineers must know the specific solved problem to be able to un-
derstand the implementation. This pattern violates the Open Close Principle
as engineers cannot extend the piece of code in which it is used without almost

15

. Learnability(%) | Understandability(%) | Reusability(%) | Scalability(%) | Robustness(%)
Design Patterns =m0 =11 | R(%) E] R% [E] R% |[E] R%)
A .Factory - 15.09 | — 15.09 | + 50.00 | — 1.76 | — 0.00
Builder + 30.36 | + 0.37 | — 15.09 | — 0.00 | — 0.00
F.Method + 50.00 | — 30.36 | + 15.09 | — 592 | — 0.00
Prototype - 30.36 | + 30.36 | + 30.36 | — 5.92 | — 0.15
Singleton + 0.37 | + 0.15 | — 0.37 | — 15.09 | — 0.37
Adapter + 592 | — 30.36 | + 592 | — 0.00 | — 0.00
Bridge — 5.92 | + 50.00 | — 30.36 | — 0.15 | — 0.15
Composite + 1.76 | + 592 | + 15.09 | — 30.36 | — 0.15
Decorator - 30.36 | — 30.36 | — 592 | — 0.37 | — 0.00
Facade + 592 | + 1.76 | — 592 | — 1.76 | — 1.76
Flyweight - 0.00 | — 0.00 | — 15.09 | + 176 | — 1.76
Proxy - 30.36 | — 592 | + 50.00 | — 592 | — 0.15
Ch.Of.Resp + 15.09 | — 592 | + 30.36 | — 0.15 | — 1.76
Command — 15.09 | — 592 | — 592 | — 1.76 | — 5.92
Interpreter + 592 | + 592 | + 30.36 | — 592 | — 0.15
Iterator + 50.00 | + 50.00 | + 5.92 | — 0.37 | — 30.36
Mediator + 30.36 | + 30.36 | — 1.76 | — 1.76 | — 0.15
Memento — 30.36 | — 30.36 | — 15.09 | — 0.00 | — 0.15
Observer + 50.00 | — 30.36 | + 50.00 | — 0.37 | — 0.15
State + 30.36 | + 30.36 | — 1.76 | — 0.37 | — 0.15
Strategy + 1.76 | + 15.09 | — 30.36 | — 1.76 | — 5.92
T.Method + 30.36 | — 15.09 | + 30.36 | — 1.76 | — 0.37
Visitor — 0.37 | — 1.76 | — 1.76 | — 1.76 | — 0.00

[[14+/9-] 11+ /12 — [114+/12— [1+/22— | 0+/23—]

Table 10: Estimation of the impact of design patterns on quality attributes
(Part 2).

rewriting it all.

Other Patterns. The Observer pattern does not make a system more modu-
lar but improves the modularity of other patterns [14]. It enables, for example,
the separation between model, view, and controller in the MVC pattern. The
use of this pattern makes a system more flexible: by removing dependencies be-
tween modules, the Observer pattern makes it possible to replace these modules
seamlessly. It is also easy to extend functionalities by adding one or more enti-
ties that cooperates with existing ones. This pattern respects the Open Close
Principle. Thus, we could expect that it impacts positively reusability, expand-
ability, and simplicity, which is the case according to our respondents’ evalua-
tions, but negatively learnability and understandability because the complexity
of the structure and the implicit coupling make it difficult for a maintainer to
identify at first the relationships among classes. The Observer pattern weakens
the encapsulation and decreases robustness because the implicit coupling makes
the correction of bugs difficult.

Visitor promotes “good” programming because it encapsulates operations in
classes instead of having this operation spread over a number of classes, thus
improving modularity. It also improves reusability because one can choose to
drop unnecessary visitors when reusing the implementation and because writ-

16

ing new visitors is eased by reusing common functions of existing visitors. The
implementation of this pattern respect the Common Reuse and the Common
Closure Principles. However, the internal working of the pattern may be hard
to understand thus impacting understandability negatively. The pattern im-
plies many indirections and thus weakens encapsulation. The cost of the many
indirections may become too much for the cache and thus decrease scalability.
Chain of Responsibility does not make a system more modular as it adds
dependencies between previously separated objects. Spreading functionality
through the code does not make the code more readable thus decreasing learn-
ability. Understandability is also decreased as it is very dynamic. Our survey
showed that in practice this pattern is not consider to be simple and, in case
of bugs, it is sometimes hard to fix so it decreases the robustness of systems.
These weaknesses are compensated by a gain in flexibility because with a chain
of responsibility, it is easy to insert a new object to handle new events.
Singleton is considered as impacting negatively the expandability of systems
because it is a sort of euphemism for a global variable, which weakens the
encapsulation, and it is reported to produce high coupling, thus violating the
Dependency Inversion principle. It is reported robust due to its simplicity.

9 Discussion

From this study, we remark that most design patterns respect the principles of
object-oriented programming. Hence, according to our hypothesis that object-
oriented best practices help producing systems with good quality, it is surprising
that their use seems to decrease quality. A possible explanation could be that,
for a pattern, many implementations are possible and that the concrete imple-
mentations may not be conform to the principles of object-oriented program-
ming. Also, it may be that these best practices are necessary but not sufficient
to build systems with good quality. In addition, we notice that, for the studied
design patterns, several principles do not seem to apply or explain the results
of the study, thus calling for further studies on the impact of these principles
on quality.

10 Threats to Validity

This empirical study has the advantage to focus on concrete implementations
of design patterns and thus produce accurate evaluations of the impact of the
patterns on quality as perceived by software engineers. However, it has some
limitations.

There is a difficulty in collecting a large number of data. In this study, we
focused on the answers of 20 software engineers with a long experience in the
use of patterns. Choosing experienced engineers introduces a bias against novice
engineers.

17

The subjectivity of a respondent’s evaluation may affect the results: some
respondents are more strict than others, even though we tried to lessen this risk.

Among the 23 patterns from the GOF, some are not frequently used in
systems. Thus, the negative evaluations may be just an a priori on the pattern
because our respondents considered the pattern to be not suitable and then
their evaluation may not reflect the real impact of the implementation of the
pattern on quality.

There is no threat to the validity of the conclusion of this study as there is
a direct relationship between the design of a system and its quality. The design
of a system directly impacts the quality attributes presented in Section 4.1 thus
we can say that there is no threat to the construct and internal validities of our
study. However, the results of our study may not be fully generalisable to any
software engineers, patterns, and systems. Future work will enrich the number
of answers and provide more generalisable results.

11 Conclusion

With this study, we show that design patterns do not always improve the quality
of systems. Some patterns are reported to decrease some quality attributes and
to not necessarily promote reusability, expandability, and understandability.
Therefore, we bring further evidence that design patterns should be used with
caution during development because they may actually impede maintenance
and evolution. This study also reveals that object-oriented principles may not
be so “good” as they may not necessarily result in systems with good quality.
Thus, there is a need for studies to assess the impact of these principles on the
quality of systems.

This study is the largest to date in term of the number of collected evalua-
tions on design patterns and quality of systems. However, we plan to continue
collecting evaluations to improve the accuracy of our results and to generalise our
conclusions to different software context. The questionnaire is available on the
Internet at http://www.ptidej.net/downloads/ (it may take some minutes
to load as it weighs 4 MB). We are looking forward receiving more evaluations.

Acknowledgments

We are grateful to Kim Mens for the fruitful discussions. We would like to thank
all the respondents for their evaluations and comments. This work has been
partially funded by NSERC and the VINCI program of University of Montreal.

References
[1] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented

design quality assessment. IEEE Transactions on Software Engineering, 28:4-17,
January 2002.

18

2]

[5]
(6]

[9]

[10]

[11]

[12]

[13]

[14]

James Bieman, Greg Straw, Huxia Wang, P. Willard Munger, and Roger T.
Alexander. Design patterns and change proneness: An examination of five evolv-
ing systems. In Michael Berry and Warren Harrison, editors, Proceedings of the
9*" international Software Metrics Symposium, pages 40-49. IEEE Computer So-
ciety Press, September 2003.

James M. Bieman, Roger Alexander, P. Willard Munger III, and Erin Meunier.
Software design quality: Style and substance. In Proceedings of the 4" Workshop
on Software Quality. ACM Press, March 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns — Elements of Reusable Object-Oriented Software. Addison-Wesley, 1 edi-
tion, 1994.

Yann-Gaél Guéhéneuc, Jean-Yves Guyomarc’h, Khashayar Khosravi, and Houari
Sahraoui. Design patterns as laws of quality. University of Montreal, 2005.

J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 1st edition, August 2004.

Danny B. Lange and Yuichi Nakamura. Interactive visualization of design pat-
terns can help in framework understanding. In Proceedings of the 10*" annual
conference on Object-oriented programming systems, languages, and applications,
pages 342 — 357. ACM Press, 1995.

Robert C. Martin. Agile Software Development, Principles, Patterns, and Prac-
tices. 2002.

William B. McNatt and James M. Bieman. Coupling of design patterns: Common
practices and their benefits. In T.H. Tse, editor, Proceedings of the 25" Computer
Software and Applications Conference, pages 574-579. IEEE Computer Society
Press, October 2001.

Roger S. Pressman. Software Engineering — A Practitioner’s Approach. McGraw-
Hill Higher Education, 5" edition, November 2001.

Ladan Tahvildari and Kostas Kontogiannis. On the role of design patterns in
quality-driven re-engineering. In Tibor Gyimothy and Fernando Brito e Abreu,
editors, Proceedings of the6!" European Conference on Software Maintenance and
Reengineering, pages 230-240. IEEE Computer Society, March 2002.

Bill Venners. How to use design patterns — A conversation with Erich Gamma,
part I, May 2005. http://www.artima.com/lejava/articles/gammadp.html.

Peter Wendorff. Assessment of design patterns during software reengineering:
Lessons learned from a large commercial project. In Pedro Sousa and Jiirgen
Ebert, editors, Proceedings of 5" Conference on Software Maintenance and
Reengineering, pages 77-84. IEEE Computer Society Press, March 2001.

B. Wydaeghe, K. Verschaeve, B. Michiels, B. Van Damme, E. Arckens, and
V. Jonckers. Building an OMT-editor using design patterns: An experience re-
port. 1998.

19

Click Here to Send by Mail

Survey on Design Pattern and Quality of
Programs

Considering situations where patterns are used appropriately in a program to solve their
corresponding design problems and assuming that the developers have a good knowledge
of design patterns, please circle the letter corresponding to your answer to the questions. If
you hesitate between options, please make the most conservative choice. If you have a
doubt, please choose option F.

We are investigating the impact of design patterns on the overall quality of program in a
developer/maintainer point of view, thus attributes like Learnability and Understandability
refer to the whole program and not to the pattern solely. Remember to add any comment in
provided spaces.

The quality attributes are defined as:

Expendability: The degree to which architectural, data or procedural design can be
extended.

Simplicity: The degree to which a program can be understood without difficulty.

Generality: The degree to which a software product can perform a wide range of
functions.

Modularity: The degree to which the implementation of functions in a program are
independent from one another.

Modularity at runtime: The degree to which functions of a program are independent
from one another at runtime.

Learnability: The degree to which the code source of a program is easy to learn by new
developers

Understandability: The degree to which the code source of a program is easy to
understand.

Reusability(!): Reusability here is the degree to which a piece of design (or a subset of a
piece of design) can be reused in another design.

Scalability: Scalability is the ease with which an application or component can be
modified to expand its existing capacities at runtime.

Robustness: The degree to which an executable program continues to function properly
under abnormal conditions or circumstances.

Very Positive
Positive

Not significant
Negative

Very Negative
I don't know

TECAO R

Answering the whole questionnaire will take maximum 45 minutes, depending on your
knowledge of the 23 design patterns.

Your name and e-mail address will be used solely for tracking purposes and will never be

disclose to any third party under any circumstances.

How do you evaluate your experience with design patterns ?

Beginner —
Good —

Expert

1-Abstract Factory

ki

|

AbxtractProdices |

AbsrectFaciony

ConcrateFactary?

i

Evaluate the impact of the Abstract Factory pattern in a program:

Abstract Factory Comments
Expendability Al B| C| D| E| F
€ ¢ €| € € ¢€
Simplicity Al B| C| Dl E| F
¢l € €| € € ¢€
Generality Al B| C| Dl E| F
c| ¢ €| ¢ ¢ ¢
Modularity Al B| C| D| E| F
¢l ¢ € ¢ c ¢
Modularity at Al B| C| Dl E| F
Runtime cl ¢ ¢ ¢ ¢ ¢
Learnability Al B| C| Dl E| F
¢l € ¢ € ¢ ¢
Understandability Al B| C| D| E| F
¢l € € ¢ ¢ ¢
Reusability(!) Al B| C| D| E| F
€| € € €| ¢ ¢
Scalability Al B| C| D| E| F
¢ €| ¢ €| ¢ ¢
Robustness Al B| C| Dl E| F
¢l ¢ € ¢ ¢ ¢C

2- Builder

Director huilder Builder
IS

+Constiuct) . +BubdPari(}
| x

: |

|y]j e -y Product
E +BubdPari()
+GeiResull])
Evaluate the impact of the Builder pattern in a program:
Builder Comments

Expendability Al B| C| D| E| F
€ ¢ € € ¢ ¢€
Simplicity Al B| C| D| E| F
¢l € €| €| € ¢€
Generality Al B| C| D| E| F
cl €| ¢ € ¢ cC
Modularity Al B| C| D| E| F
¢l € ¢l ¢ ¢ ¢
Modularity at Al B C| D| E| F
Runtime ¢l € ¢l € ¢ ¢
Learnability Al B| C| D| E| F
¢l € €| €| ¢ ¢
Understandability Al B| C| D| E| F
€l € € €| ¢ ¢
Reusability(!) Al B| C| D| E| F
cf €| ¢ €| ¢ ¢
Scalability Al B| C| D| E| F
¢l € € € ¢ ¢
Robustness Al B| C| D| E| F
¢l € ¢ ¢l ¢ C

3-Factory Method

Creafor

Product .
+Factoryblathodl) — — —~{ proatenct = Factoryhethad]} T
+AnDperation])
T‘ AN
ConcreteProduct ConcreteCreator
+Factorydathod() — 7 — + retun new ConcrateProduct f
Evaluate the impact of the Factory Method pattern in a program:
Factory Method Comments
Expendability Al B| C| D| E| F
¢l ¢ € € € €
Simplicity Al B| C| D| E| F
¢l € €| € € ¢€
Generality Al B| C| D| E| F
cl ¢| ¢ €| ¢ cC
Modularity Al B| C| D| E| F
¢l € ¢l ¢ c C
Modularity at Al B|] C| D| E| F
Runtime ¢l € ¢ ¢ ¢ ¢©
Learnability Al B C| D| E| F
c| € € €| € ¢
Understandability Al B| C| D| E| F
€| € €| €| € ¢
Reusability(!) Al B|] C| D| E| F
€| €| ¢ €| ¢ ¢
Scalability Al B| C| Dl E| F
€| €| € €| ¢ ¢
Robustness Al B| C| D| E| F
¢l € € ¢ ¢ ¢

Cliant

e Dy e

4-Prototype

Protofype

+pearaton)

i
| prproiotype, Clone()

e)

L
,_’|E‘

Li;

IC oncretaPrototypet

ConcratlePrototypez]

raiierm copy of this :}_] rixtuam copy of this [—-\E

Evaluate the impact of the Prototype pattern in a program:

Prototype Comments
Expendability Al B| C| D| E| F

€ ¢ €| € € ¢€
Simplicity Al B| C| Dl E| F

¢ €| ¢| €| ¢ ¢€
Generality Al B| C| Dl E| F

cf ¢ ¢ € ¢ c
Modularity Al B| C| D| E| F

¢l ¢ € ¢ ¢ ¢
Modularity at Al B| C| D| E| F
Runtime ¢l € ¢ ¢ ¢ ¢
Learnability Al B| C| Dl E| F

¢l € € € ¢ ¢
Understandability Al B| C| D| E| F

¢l € €| € ¢ ¢
Reusability(!) Al B| C| D| E| F

¢ € € €| € ¢
Scalability Al B| C| D| E| F

¢ €| € €| ¢ ¢
Robustness Al B| C| Dl E| F

¢l ¢ € ¢ ¢ ¢

Evaluate the impact of the Singleton pattern in a program:

5-Singleton

Singleton

-instance : Singlston

=ingleton()
+Instance() : Singleton

Singleton Comments
Expendability Al B| C| D| E| F
€ ¢l €| €| ¢ €
Simplicity Al B| C| D| E| F
¢l €| €| € € ¢€
Generality Al B| C| D| E| F
cl ¢ €| ¢ ¢ ¢
Modularity Al B| C| D| E| F
¢l ¢ €| ¢ ¢ ¢C
Modularity at Al B| C| D| E| F
Runtime ¢l € ¢l ¢ ¢ ¢
Learnability Al B| C| D| E| F
c| €| € €| ¢ ¢
Understandability A| B| C| D| E| F
¢l € € € ¢ ¢
Reusability(!) Al B| C| D| E| F
¢c| €| € €| ¢ ¢
Scalability Al B| C| D| E| F
¢l € € € ¢ ¢
Robustness Al B| C| D| E| F
¢l € €| ¢ ¢ ¢

Cliant Langet

Evaluate the impact of the Adapter pattern in a program:

...............................

adaplea

+Requesll) i

adapies SpeciicRequest()

.

+EpacihcRegquest{)

Adapter Comments
Expendability Al B| C| D| E| F
€l ¢ € € € ¢
Simplicity Al B| C| Dl E| F
¢l € ¢ € € ¢€
Generality Al B|] C| D| E| F
c| ¢ ¢ € ¢ c¢
Modularity Al B| C| D| E| F
¢l € ¢l ¢ ¢ C€
Modularity at Al B| C| Dl E| F
Runtime €| € €| ¢ ¢ ¢
Learnability Al B| C| Dl E| F
¢l € € € ¢ ¢
Understandability Al B| C| D| E| F
€| € €| €| ¢ ¢
Reusability(!) Al B| C| D| E| F
€| € € €| € ¢
Scalability Al B| C| D| E| F
€l € € € ¢ ¢
Robustness Al B| C| Dl E| F
¢l € € ¢ Cc ¢C

Operation])

)

Abstraction | |mnisy

7-Bridge

Irnplemantor

FOperabonimgl)

Fs r\.

RofinedAbstraction

Fat

{

Imptemanior Opsrabonkmal ﬁ

Concretelmplementord

ConcreteimplementorB

+Diparalaaribmpl

s Ciparalionimpl)

Evaluate the impact of the Bridge pattern in a program:

Bridge Comments
Expendability Al B| C| D| E| F
€ ¢ € € € ¢
Simplicity Al B| C| Dl E| F
¢l € €| € ¢ ¢
Generality Al B| C| D| E| F
c|l € €| € ¢ cC
Modularity Al B| C| D| E| F
¢l € ¢| €| ¢ C
Modularity at Al B| C| Dl E| F
Runtime cl ¢ ¢ ¢ ¢ ¢
Learnability Al B| C| Dl E| F
¢l € € ¢ ¢ ¢
Understandability Al B| C| D| E| F
¢l € € €| ¢ ¢
Reusability(!) Al B| C| D| E| F
€l €| ¢ €| ¢ ¢
Scalability Al B| C| Dl E| F
€l € € €| ¢ ¢
Robustness Al B| C| D| E| F
¢l ¢ € €| ¢ ¢C

Chent

8-Composite

Compomant

+Cprration)
& Ackdlin Companant)

s Ramovaiin Goanmponant)
=+ GalChiddiin index

N

I

|
Laaf

+ Crperation|)

)
ey b

Composile

+Craratiorn
afctdiine Cornpeansat}

+Removedin Component) :

+ GetChild(in mdex @ int)

|
|
1

foeach chikd i chilfren
ghild. Qpemation|)

Evaluate the impact of the Composite pattern in a program:

Composite Comments
Expendability Al B| C| D| E| F
€l ¢ €| €| € ¢
Simplicity Al B| C| D| E| F
¢l € ¢ € ¢ ¢€
Generality Al B C| D| E| F
¢l € € ¢ ¢ cC
Modularity Al B| C| D| E| F
¢l € ¢l ¢ Cc C
Modularity at Al B| C| D| E| F
Runtime cl ¢ ¢ ¢ ¢ ¢
Learnability Al B| C| D| E| F
¢ €| € €| € ¢
Understandability Al B| C| D| E| F
€| € €| €| € ¢
Reusability(!) Al B| C| D| E| F
€| €| €| €| € ¢
Scalability Al B| C| D| E| F
€| €| € €| € ¢
Robustness Al B| C| D| E| F
¢l € ¢ ¢ C ¢

9-Decorator

Cormponant o

i s o

£ £

-y L

Care et o pomant

Dacar @iy

+Dparation)

+ Oparation] }

ConcrsteDacorntori

b d States

Ot)

+IDETAEaN) '
""" + A dded Besbawior) |

i

- — ~{ T O] f.lr1d_-l:.-|‘.:-|_1|'| ¥

)

ConcreteDacoratoerB

base, Operation])
AicdedBeharian] |

]

Evaluate the impact of the Decorator pattern in a program:

Decorator Comments
Expendability Al B| C| D| E| F
€l ¢ € €| ¢ €
Simplicity Al B| C| D| E| F
¢ € ¢ € ¢ ¢
Generality Al B| C| D| E| F
cl ¢ €| ¢ ¢ ¢
Modularity Al B| C| D| E| F
¢l € €| ¢ ¢ €
Modularity at Al B| C| D| E| F
Runtime c| ¢ ¢l € ¢ ¢
Learnability Al B| C| D| E| F
¢l € €| € ¢ ¢
Understandability A| B| C| D| E| F
€l ¢ € € ¢ ¢
Reusability(!) Al B| C| D| E| F
c| € € € ¢ ¢
Scalability Al B| C| D| E| F
¢l € € € ¢ ¢
Robustness Al B| C| D| E| F
¢l ¢ € ¢ ¢ ¢

10-Facade

Facade

PSS

Subsysiam /
I |
I |

N

.
AN

S

Evaluate the impact of the Facade pattern in a program:

Facade Comments
Expendability Al B| C| D| E| F
€l C| €| €| € ¢€
Simplicity Al B| C| D| E| F
¢l € €| € € ¢€
Generality Al B| C| D| E| F
¢l €| € € ¢ ¢
Modularity Al B| C| D| E| F
¢l € €| ¢ ¢ C
Modularity at Al B| C| Dl E| F
Runtime ¢l € €| € ¢ ¢
Learnability Al B| C| D| E| F
€| €| € €| € ¢
Understandability Al B| C| D| E| F
€| € €| € ¢ ¢
Reusability(!) Al B| C| D| E| F
€| € €| €| € ¢
Scalability Al B| C| D| E| F
€| €| €| €| € ¢
Robustness Al B| C| D| E| F
¢l € €| ¢ Cc C

FlyweightFactory

+ GatFiywalghi(in key} s

11-Flyweight

Wrﬂhiﬂ

i ﬂywuﬂghm[key] gt
ratiern exlsting Mywalght

efne

cremte naw Mywelght
add 1o pool aof iyweights
restierm maww Syrasgight

Flyweight

10para=|on[m axtrinsichiane)

Client

1] 1

[urshareaconaretaFiywaight

-arvirna s Slale

-aliShate

TOperAnON|In SN AT)

i

Evaluate the impact of the Flyweight pattern in a program:

Flyweight Comments
Expendability Al B| C| Dl E| F
€l ¢ € € ¢ ¢€
Simplicity Al B| C| D| E| F
¢l € €| €| ¢ ¢€
Generality Al B| C| D| E| F
cl € ¢l ¢ ¢ cC
Modularity Al B| C| D| E| F
¢l € € €| ¢ ¢
Modularity at Al B| C| D| E| F
Runtime ¢l €| ¢l ¢ ¢ ¢
Learnability Al B| C| D| E| F
€l € € € ¢ ¢
Understandability Al B| C| D| E| F
€l € € €| ¢ ¢
Reusability(!) Al B| C| D| E| F
¢ €| ¢ €| ¢ ¢
Scalability Al B| C| D| E| F
¢ €| € €| ¢ ¢
Robustness Al B| C| D| E| F
¢l € € ¢ ¢ C

ConcreteFlyweaight

b e 8 WO B BETANEICSIAE II

Cliant

12-Proxy

Raal5ubject

Subjact
-
+Request()
Proxy
e 3 .
reaiSubject TRequest)

AN

reslSubiect Reguest) |

I

Evaluate the impact of the Proxy pattern in a program:
Proxy Comments

Expendability Al B| C| D| E| F
€ ¢l €| €| ¢ €
Simplicity Al B| C| D| E| F
¢l €| €| €| ¢ ¢€
Generality Al B| C| D| E| F
cl ¢ €| €| ¢ cC
Modularity Al B| C| D| E| F
¢l € ¢l ¢l ¢ ¢
Modularity at Al B| C| D| E| F
Runtime ¢l €| ¢l ¢ C ¢
Learnability Al B| C| D| E| F
c| € ¢ € ¢ ¢
Understandability A| B| C| D| E| F
¢l € €| € ¢ ¢
Reusability(!) Al B C| D| E| F
¢l € € € ¢ ¢
Scalability Al B| C| D| E| F
¢l € € ¢ ¢ ¢
Robustness Al B| C| D| E| F
¢l ¢l € ¢ ¢ ¢

13-Chain of Responsibility

Client Hamdlar
tHandlaRequesil}
_____ oo
ConcreteHandler iConcroteHandler?

K-

+HandleRequasti)

SUCCESI0T

+HandleReguast))

Evaluate the impact of the Chain of Responsibility pattern in a program:

Chain of Responsibility Comments
Expendability Al B| C| Dl E| F
€ ¢ € €4 € ¢€
Simplicity Al B| C| D| E| F
¢f € €| €| ¢ ¢€
Generality Al B| C| D| E| F
cl ¢ €l € ¢ cC
Modularity Al B| C| Dl E| F
¢l ¢ €| ¢ ¢ ¢
Modularity at Al B| C| D| E| F
Runtime ¢l € ¢ € ¢ ¢
Learnability Al B| C| D| E| F
c| €| € €| ¢ ¢
Understandability Al B| C| D| E| F
€l € € €| ¢ ¢
Reusability(!) Al B| C| Dl E| F
€| €| ¢ €| ¢ ¢
Scalability Al B| C| Dl E| F
¢l € ¢ € ¢ ¢
Robustness Al B| C| D| E| F
¢l € €| €| ¢ ¢

14-Command

Invaoker Command
b
v Ewscubed)
Receiver ConcreteCommand
- PECEET
— o AR R
+Actiond) +Execuiel)

o

i
§
%,
recaeiar Acton)

Evaluate the impact of the Command pattern in a program:

Command Comments
Expendability Al B| C| D| E| F
€l ¢ € €| ¢ €
Simplicity Al B| C| D| E| F
¢l €| €| € ¢ ¢€
Generality Al B| C| D| E| F
¢l €l ¢l ¢ ¢ cC
Modularity Al B| C| D| E| F
¢l € €| ¢ ¢ €
Modularity at Al B| C| D| E| F
Runtime ¢l ¢ ¢ ¢ ¢ C
Learnability Al B| C| D| E| F
c| €| € €| ¢ ¢
Understandability A| B| C| D| E| F
¢l € ¢ ¢ ¢ ¢
Reusability(!) Al Bl C| D| E| F
c| € € ¢ ¢ ¢
Scalability Al B| C| D| E| F
€| € € €| € ¢
Robustness Al B| C| D| E| F
¢l € ¢ ¢ ¢ ¢

1 5-Interpreter

Client

Contaxt

AbstractExpression :

&

+interpretiin Contaxt}

o

TerminalExpression

MonterminalExprassion

+intarpratiin Context)

+intarpratiin Context)

Evaluate the impact of the Interpreter pattern in a program:

Interpreter Comments
Expendability Al B| C| Dl E| F
€ ¢ € € € ¢€
Simplicity Al B| C| D| E| F
¢l € €| €| € ¢€
Generality Al B| C| D| E| F
cl € ¢l ¢ ¢ cC
Modularity Al B| C| Dl E| F
¢l € ¢l ¢ ¢ C
Modularity at Al B C| D| E| F
Runtime €| € ¢ € ¢ ¢
Learnability Al B| C| D| E| F
¢f €| € €| ¢ ¢
Understandability Al B| C| D| E| F
€l € € € ¢ ¢
Reusability(!) Al B| C| Dl E| F
€| €| ¢ €| ¢ ¢
Scalability Al B| C| Dl E| F
¢l € € ¢ ¢ ¢
Robustness Al B| C| D E| F
¢l € €| €| ¢ ¢

Aggragate

16-Iterator

Chient

+Hizrealalerator])

ConoretefAgoregmbe | o o o o e i e e e e e

o
—

Iteraior

+*Farst)

el b
+isDhored)

e rrant] ternd

________ e

e oncreteltorator

#Crea teliaratos]) ¥

|

return new Concretelteraton this) |

Evaluate the impact of the Iterator pattern in a program:

Iterator Comments
Expendability Al B| C| D| E| F
€ ¢ € € € ¢€
Simplicity Al B| C| Dl E| F
¢l €| ¢ €| ¢ ¢€
Generality Al B| C| Dl E| F
c|l €| ¢l ¢l ¢ ¢
Modularity Al B| C| D| E| F
¢l € € ¢l ¢ ¢
Modularity at Al B| C| D| E| F
Runtime cl ¢ ¢ ¢ ¢ ¢C
Learnability Al B| C| Dl E| F
€| €| € €| € ¢
Understandability Al B| C| D| E| F
€| € €| €| ¢ ¢
Reusability(!) Al B| C| D| E| F
€| € € €| € ¢
Scalability Al B| C| D| E| F
€| €| € €| ¢ ¢
Robustness Al B| C| D| E| F
¢l € € ¢ ¢ ¢C

17-Mediator

Meadiator madians | Colleague
2
ConcreteMediator IConcreteColleaguet ConcreteColleague2

| /s /s
Evaluate the impact of the Mediator pattern in a program:

Mediator Comments
Expendability Al Bl C| D| E| F

€l C| €| €| € ¢€
Simplicity Al B| C| Dl E| F

¢l €| €| €| € ¢€
Generality Al B| C| Dl E| F

cf €l ¢l €| € ¢
Modularity Al Bl C| D| E| F

¢l € €| €| ¢ ¢
Modularity at Al B| C| D| E| F
Runtime c| €| €| €| ¢ ¢€
Learnability Al B| C| D| E| F

€| €| €| €| € ¢
Understandability Al B| C| D| E| F

€| € €| €| € ¢
Reusability(!) Al B| C| D| E| F

€| €| €| €| € ¢€
Scalability Al B| C| D| E| F

€| €| €| €| € ¢€
Robustness Al B| C| D| E F

c| €| €| €| € ¢€

18-Memento

Originator Mamanto memenio] Caretaker
slale S _}1-.\5.-'1[‘:' .a: {:h
+SetMementofin Memento) +GetStatel)
+HCregleblemeantol) , . +SatState()

.r‘rl) ~ %,
refurn naw Mementol siate | Il} state = m. GelStalal) ﬁ
Evaluate the impact of the Memento pattern in a program:

Memento Comments
Expendability Al B| C| Dl E| F

€l C¢| €| €@ € ¢€
Simplicity Al B| C| D| E| F

¢l €| €| €| € €
Generality Al B| C| D| E| F

cl € ¢ € € cC
Modularity Al B| C| Dl E| F

¢l €| ¢l €| ¢ C¢C
Modularity at Al B C| D| E| F
Runtime €| €| ¢ ¢ ¢ ¢€
Learnability Al B| C| D| E| F

€| € €| € € ¢
Understandability Al B| C| D| E| F

€| € €| €| € ¢
Reusability(!) Al B| C| D| E F

€| € €| €| € ¢
Scalability Al B| C| D| E F

€| €| €| €| ¢ ¢
Robustness Al B| C| D| E F

¢l € € €| ¢ ¢

19-Observer

Subject

obSarver

Crbs orviar

Attach{in Obsarvarn)
+Detachiin Obsanver)
Ity) ~

o
T
S

foraach o in observans ﬁ

sublect

+lpdate])

iIConcroteObserver

o Update()
onereteSubjoct
-subjectSiale e
G elS Al

relum subjectSiate I\—\]

obsarverState

Flpdatelr

chsanserState =
subjecl GetStated)

Evaluate the impact of the Observer pattern in a program:

Observer Comments
Expendability Al B| C| D| E| F
€l ¢| €| €| € €
Simplicity Al B| C| D| E| F
¢ €| €| €| ¢ ¢€
Generality Al B| C| D| E| F
c| ¢ €l € ¢ c¢
Modularity Al B| C| D| E| F
¢l ¢ € ¢ ¢ C¢C
Modularity at Al B| C| D| E| F
Runtime ¢l € €| €| ¢ ¢
Learnability Al B| C| D| E| F
¢l € €| € ¢ ¢
Understandability Al B| C| D| E| F
¢l € €| € ¢ ¢
Reusability(!) Al B| C| D| E| F
€| € €| €| ¢ ¢
Scalability Al Bl C| Dl E| F
¢l € €| € ¢ ¢
Robustness Al B| C| D| E| F
¢l € €| €| C ¢C

20-State

Context state Stafe
K> —
HRequest() I +Handbe(}
I e
|
! N ConcreteStates ConcreteStateB
state Handlel) h—l
tHandla() tHandiel)
Evaluate the impact of the State pattern in a program:
State Comments
Expendability Al B| C| D| E| F
€l ¢ €| €| € €
Simplicity Al B| C| D| E| F
¢l €| €| €| ¢ ¢
Generality Al B| C| D| E| F
c| €| ¢l ¢l ¢ cC
Modularity Al B| C| D| E| F
€| € €| ¢ Cc| €
Modularity at Al B| C| D| E| F
Runtime cl ¢ ¢ ¢ ¢ ¢C
Learnability Al B| C| Dl E| F
€| €| € €| € ¢
Understandability A{ B| C| D| E| F
€| € €| €| ¢ ¢
Reusability(!) Al B| C| D| E| F
€| €| €| €| € ¢
Scalability Al B| C| D| E| F
€| € € €| € ¢
Robustness Al B| C| D| E| F
¢l € ¢ ¢ Cc ¢C

21-Strategy

Context

+Contextinterface()

strategy Strategy
s
+Alporithminterface])
JANPAGAY
ConcreteStrategy ConcreteStrategyB ConcreteStrategyC

+Algorthminterface()

+Algorthminterfacs()

+Algorthminterface()

Evaluate the impact of the Strategy pattern in a program:

Strategy Comments
Expendability Al B| C| D| E| F
€l ¢| €| €| € €
Simplicity Al Bl C| D| E| F
¢l €| €| €| ¢ ¢€
Generality Al B| C| D| E| F
cl € €| €| € ¢
Modularity Al B| C| D| E| F
¢l € €| €| c C
Modularity at Al B| C| D| E| F
Runtime ¢l € ¢l € ¢ ¢
Learnability Al B| C| D| E| F
¢l € €| € ¢ ¢
Understandability Al B| C| D| E| F
€l € €| € ¢ ¢
Reusability(!) Al B| C| D| E| F
c| € € €| ¢ ¢
Scalability Al B| C| D| E| F
¢l € €| € ¢ ¢
Robustness Al B| C| D| E| F
¢l ¢ ¢l €l ¢ ¢

22-Template Method

AbstraciClass

+TamplateMethod() -
+PrimitiveQperationt()

tPrimitivel peration2i)

ConcreteClass

+PrimitiveCOperationi()
+HPimitiveQperation()

PrimitiveOperation1()

PrimitiveOperation2()

Evaluate the impact of the Template Method pattern in a program:

Template Method Comments
Expendability Al B| C| D| E| F
€ ¢ € € ¢ €
Simplicity Al B| C| D| E| F
¢l € €| €| € ¢€
Generality Al B| C| D| E| F
¢l € ¢l ¢ ¢ cC
Modularity Al B| C| D| E| F
¢l € C¢| ¢ ¢ ¢C
Modularity at Al B C| D| E| F
Runtime ¢l € ¢l € € ¢
Learnability Al B C| D| E| F
¢l €| €| €| € ¢
Understandability Al B| C| D| E| F
€l € € € ¢ ¢
Reusability(!) Al B|] C| D| E| F
¢f €| ¢ €| ¢ ¢
Scalability Al B| C| Dl E| F
¢l € € € ¢ ¢
Robustness Al B| C| D| E| F
¢l € ¢ ¢ ¢ ¢

Cllsnt

23-Visitor

Visiter

B Do I E R AL LT etelE i)
+ iibConoesERsmanlin ConcreteElemantB)

ConsretaVisitor?

PR CorreeE lemeniAln ConcrateElemenin |
sk ConoreeE emantB(in ConorebaElamaen|

ConoreteVisilart

Vi nncreis b lmmwnta o Corcratelilemeants g
i oncrsteElemantB i ConcretsElemaent)

ObjeatStriaturs

Elpmant

vACTRpIn o

W Tniry

et —

Concretoffiements,

Concretelilementd

rAncaptin vmaloe | inton, -
FQparalicn Ay #

oAt veslor | Wessne) .
s Cgmraanil]) T

&
-
-

I
-
e

wishor VishConorebsElsmendfy T) b}

wisibar. Wisi Conome s ElsmeantBi this Ej

Evaluate the impact of the Visitor pattern in a program:

Visitor Comments
Expendability Al B| C| D| E| F
€l €| €| €| € ¢€
Simplicity Al B| C| Dl E| F
¢l € ¢ € € ¢
Generality Al B| C| Dl E| F
cl €| €l € ¢ cC
Modularity Al B| C| D| E| F
¢l €| € ¢ ¢ ¢
Modularity at Al B| C| D| E| F
Runtime cl ¢ ¢ € ¢ ¢
Learnability Al B| C| Dl E| F
€| €| € €| ¢ ¢
Understandability Al B| C| D| E| F
€| €| € €| ¢ ¢
Reusability(!) Al B| C| D| E| F
€| € € €| € ¢€
Scalability Al B| C| D| E| F
€l €| € €| € ¢
Robustness Al B| C| D| E| F
¢l ¢ ¢ € ¢ ¢

