Code Smells for Multi-language Systems

Mouna Abidi
Polytechnique Montreal
mouna.abidi@polymtl.ca

Foutse Khomh
Polytechnique Montreal
foutse.khomh@polymtl.ca

ABSTRACT

Software quality becomes a necessity and no longer an advantage.
In fact, with the advancement of technologies, companies must
provide software with good quality. Many studies introduce the use
of design patterns as improving software quality and discuss the
presence of occurrences of design defects as decreasing software
quality. Code smells include low-level problems in source code, poor
coding decisions that are symptoms of the presence of anti-patterns
in the code. Most of the studies present in the literature discuss the
occurrences of design defects for mono-language systems. However,
nowadays most of the systems are developed using a combination
of several programming languages, in order to use particular fea-
tures of each of them. As the number of languages increases, so
does the number of design defects. They generally do not prevent
the program from functioning correctly, but they indicate a higher
risk of future bugs and makes the code less readable and harder
to maintain. We analysed open-source systems, developers’ docu-
mentation, bug reports, and programming language specifications
and extracted bad practices related to multi-language systems. We
encoded these practices in the form of code smells. We report in
this paper 12 code smells.

KEYWORDS

Code smells, multi-language systems, code analysis, software qual-
ity

ACM Reference Format:

Mouna Abidi, Manel Grichi, Foutse Khomh, and Yann-Gaél Guéhéneuc. 2019.
Code Smells for Multi-language Systems. In 24th European Conference on

Pattern Languages of Programs (EuroPLoP °19), July 3-7, 2019, Irsee, Germany.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3361149.3361161

1 INTRODUCTION

Nowadays, most of the systems are written using a combination
of several programming languages and technologies. The core of
an application might be written in Java, while it has some rou-
tines written in C, with user interface written in PHP, JavaScript,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroPLoP '19, July 3-7, 2019, Irsee, Germany

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6206-1/19/07...$15.00
https://doi.org/10.1145/3361149.3361161

Manel Grichi
Polytechnique Montreal
manel.grichi@polymtl.ca

Yann-Gaél Guéhéneuc
Concordia University
yann-gael.gueheneuc@concordia.ca

and HTML [1]. Most of the systems with which we interact daily
are built using a combination of programming languages, such as
Facebook, Youtube, etc [2]. Developers can reuse existing modules
without re-implementing the source code from scratch [3]. They
often choose the programming language suitable for their needs,
instead of having all the tasks written in a single language [4-6].
Consequently, software systems became more complex, and their
maintenance becomes more challenging [7].

software quality presents one of the most important concerns
during the software development, providing software with high
quality could reduce maintenance and testing cost [8, 9]. Software
quality has been widely studied in the literature and has been often
directly related to the presence of design patterns, anti-patterns
and code smells. Design patterns are defined in the GOF as reusable
good solution to recurring design problems [10]. Design defects are
known as the opposite of design patterns [11]. They include anti-
patterns, which are higher-level design defects, and code smells,
which are lower-level defects [12]. Code smells include low-level
problems in source code, poor coding decisions that are symptoms
of the presence of anti-patterns in the code. As code smells are
error-prone and change-prone, it is important to detect and correct
them as soon as possible.

Several studies in the literature studied occurrences of code
smells and their impact on software quality with studies mostly
focusing on a single programming language [13-16]. Few studies
investigated such good or bad practices for multi-language systems
[3, 17]. Some studies also focused on the design patterns related to
such systems [18-21]. With the aim of improving the software qual-
ity of multi-language systems, we mined open-source systems, de-
velopers’ documentation, bug reports, and programming language
specifications. We observed and cataloged bad practices related
to the development and maintenance of multi-language systems.
The systems we analysed contain mainly Java/C(++) but they are
also developed using other programming languages. We observed
multi-language practices at the implementation level, we cataloged
and documented these practices in the form of code smells. These
code smells could apply to cloud applications, microservices or to
their implementation, and to any other pieces of code written with
more than one programming language. These multi-language files
do not have to compile in a single binary file, they just have to
interact with each other.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the background of multi-language systems, code
smells, and related works. Section 3 describes our methodology for
gathering the code smells. Section 4 reports multi-language systems

https://doi.org/10.1145/3361149.3361161
https://doi.org/10.1145/3361149.3361161

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

code smells. Section 5 summarises threats to the validity. Section 6
concludes the paper and discusses future works.

2 BACKGROUND AND RELATED WORK

We now describe a background about multi-language systems and
code smells. We later discuss some related works.

Multi-language Systems: Nowadays software applications
are moving from the usage of a single programming language to-
wards the combination of several programming languages. Devel-
opers often choose the “best” programming language suitable for
their needs instead of implementing all the code with a single pro-
gramming language [2]. The benefits of reusing existing code is an
increasingly powerful reason behind the increase of multi-language
systems usage.

Code Smells: Design defects are known as the opposite of design
patterns, they are defined as a bad solution to a recurring problem.
“Bad”, in this context, means that, for instance, the chosen solution
can be ineffective, make the code unclear and difficult to maintain,
yet maintenance is costly. They include anti-patterns, which are
higher-level design defects, and code smells, which are lower-level
defects [22, 23]. Code smells include low-level problems in source
code, poor coding decisions that are symptoms of the presence of
anti-patterns in the code.

Encoding and Cataloguing: Several templates are used in the
literature to define patterns and defects. We adapted the template
provided by Brown [22] to the specificity of our work as follows:

Code Smell: It provides the name of the code smell.
Context: The context in which the code smell could occur.
o Problem: It describes the problem that may lead to the wrong
solution.

Bad Solution: The bad Solution is the solution attempting to
solve the problem, but that presents poor decision coding.
e Consequences of the code smell: They describe the impact
of using the “bad” solution to solve the problem.
Refactoring: This solution illustrates the steps to apply to
remove the code smell or apply the good solution. This also
provides an example off applying the refactored solution.
Benefits of the Refactoring: These benefits describe the posi-
tive impact of applying the refactoring to remove the occur-
rences of the code smell.

Examples: These examples describe concrete examples of
“bad” coding decision. It presents the code smell in context.
These examples are mainly extracted from concrete examples
of developer’s documentation discussing the bad practice
and impact of applying the bad solution.

Related Work: Several studies in the literature investigated the
quality of multi-language systems.

Kondoh et al. [24] presented four kinds of common JNI mistakes
frequently made by developers. They proposed a static-analysis
tool to retrieve JNI mistakes pertaining to error checking, virtual
machine resources, invalid local references, and JNI methods in
critical sections of the code.

Osmani et al. [25] introduced the Lazy Initialisation pattern
which describes guidelines to execute Ajax requests in JavaScript.

Abidi et al.

The Ajax request includes a URL and some data, possibly in JSON or
XML, to communicate with a server, likely implemented in C/C++.

Li and Tan [26] studied the risks existing in JNI systems and
proposed a pattern of mishandling the exceptions. They studied
the bugs caused by a lack of management of the exceptions. They
argued that such issues negatively impact the security of the system
and introduce failures. They discussed their pattern in the case of
JNI system but argued that it can be applied with other kinds of
FFIs.

Tan et al. [3] defined JNI bug patterns extracted from the JDK.
They examined a range of bug patterns in the native code and iden-
tified six bugs related to the use of JNI methods in the JDK. The re-
ported causes may lead to a JVM crash or can introduce other vulner-
abilities. They argued that bugs are likely to occur due to the differ-
ence and incompatibilities between programming languages. They
also discussed the assumptions made by the Java code regarding the

C(++) code, including, the native method java.util.zip.Deflater.deflatesByte()

which assumes that its Java callers check bounds, which could lead
to buffer overflows.

Ayers et al. [27] collected bugs in multi-language systems. They
proposed TraceBack a tool that collects bugs in multi-languages
systems by storing data through runtime instrumentation of control-
flow blocks. The approach is based on intermediate language repre-
sentation to provide a unified trace of components’ execution.

Mayer and Schroeder [28] investigated the dependencies exist-
ing in multi-language systems code. They proposed a technique to
automatically retrieve dependencies among multi-languages mod-
ules, warn of potential missing dependencies, and also propagate
renaming among multi-language source code.

3 STUDY DESIGN

In this section, we present the steps followed to collect the code
smells.

We provided in our paper focusing on anti-patterns of multi-
language systems a deep presentation of all the steps used for the
data collection, analysis, and documentation of the anti-patterns
and code smells of multi-language systems [29]. The figure 1 presents
an overview of the methodology to collect the anti-patterns and
code smells.

We started by setting the objective of this study. Our objective in
this paper is to collect and document code smells for multi-language
systems. For that, we mined all possible sources of information that
we could access, including developers’ blog and bug reports. We pre-
viously performed a systematic literature review on multi-language
systems and found that the most used combination of languages
is Java/C(++). Thus, we decided to start our research with this set
of programming languages and then include more programming
languages. We collected common practices and guidelines discussed
in the Java Native Interface specification [17] and developers’ doc-
umentation. We also studied common pitfalls made by developers
and reported in developers’ blogs and bug reports? . From all these
sources of information, we build a list of possible practices and
documented them in terms of definition, context, and examples.

We then considered the case of multi-language systems in gen-
eral, systems with more than one programming language. We

Code Smells for Multi-language Systems

Prerequisites (1)

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

Data Collection (2)

Set of Potential
! Keywords - . Practices
PGSF DesA'g?, y Mining Documentation to Collect
atterns, Anti- -] Practices Using Keywords = m—
Patterns, Code S — -I I —
Smells - —) I) ™ -A-
N
SLR, Practice £ l l l
l;\e\{::weog ’\S/Itlg:;s Literature Specifications Developers' Bug Reports
RSy Blogs
Validation Process (3) Evaluation Process (4) Documentation Process (5)
Validated Evaluated N
; ! Practices Practices ection
) Coding Step for Each Practice Surveying Developers e i Documentation -
= ===-11 aboutMulti-language = —-I of and 12 3=
Mining Documentation and Projects for Each Practice = — Practices — Code Smells. L —
v
Validation Process 00 Output of the
1 | Activity step that will
Y k4 [)) = — be used as
Exclusion Criteria Inclusion Criteria - — input of the
Input - — next step

Figure 1: Overview of the Methodology Used to Collect and Document the Anti-patterns and Code smells for Multi-language

systems.

searched for any possible issues reported by developers and re-
lated to multi-language systems. We defined a set of common key-
words related to issues in multi-language systems and queried
these sources of bugs. We used the following list of keywords JNI
issue, foreign library, Python/C issue, API, polyglot, incompatibility,
compilation errors, programming languages issues, memory issues,
security issues, performance issues, foreign function interface, etc. We
deeply searched for these keywords in well-known websites such
us Stack Overflow, GitHub issues, Bugzilla, IBM Developersl, and
developer.android®. We studied the issues to understand whether
the reported issue is related to the combination of more than one
programming language or whether it is simply focusing only in a
single language. As examples of code smells extracted from Bugzilla,
was when searching for JNI issue. We had 23 results, among them
we considered only two possible bad practices. The first bad prac-
tice was related to the loading of the native library? and the second
related to the management of exceptions*. Using Stack Overflow, we
had 500 results for each of these keywords JNI issue and Python/C
issue, we then searched manually only for issues that have been
already discussed in the developers’ documentation? 1.

We relied on inclusion and exclusion criteria to validate our cat-
alog of code smells. As inclusion criteria, we considered a practice
that occurred in at least three different contexts and—or systems.
For that, we verified if the good or bad practices discussed in the

https://www.ibm.com/developerworks/library/j-jni/index.html
Zhttps://developer.android.com/training/articles/perf-jni
3https://bugzilla.redhat.com/show_bug.cgi?id=529919
“https://bugzilla.redhat.com/show_bug.cgi?id=1045623

literature were also used in at least three classes, source code files,
or systems. We also considered the case of good practice discussed
in the literature and other developers’ but was not followed in some
open source systems (e.g. The code smell Not Checking Exceptions
was discussed in several sources of information including develop-
ers’ documentation! and in some articles but was not followed in
most of the systems that we analysed). As exclusion criteria, we
excluded practices for which, we were not able to find occurrences
at least three sources of information, including open source sys-
tems. We excluded practices that seem more likely to be a simple
developers’ habits than potential code smells.

We also used data already extracted in one of our prior studies
focusing on JNI usage. The data consists of 100 multi-language
open source projects. These projects were mainly developed us-
ing the Java Native Interface (JNI) but also include other sets of
programming languages. We relied in OpenHub to have the list of
all the programming languages used in the project (e.g. OpenCv is
mainly written in C(++) but contains 25.239 Python lines of code,
24.427 Java lines of code, and other languages). We mainly focused
on these systems to perform this study: libgdx, Openj9, Rocksdb,
Google toolkit, JMonkeyEng, PortAudio Java Bindings, OpenVRML,
Jjpostal, Jna, JavaSMT, ZMQ, Telegram, reactNative, OpenCV, JatoVM,
Tenserflow, Frostwire, SQLlite, Godot, python-telegram-bot. We pro-
vide in Section 4 the sources and-or name of the projects from
which we extracted the code smells. We also performed a survey
with professional developers to validate some of the practices that
we extracted and also to ask about other practices used. We do

https://www.ibm.com/developerworks/library/j-jni/index.html
https://developer.android.com/training/articles/perf-jni
https://bugzilla.redhat.com/show_bug.cgi?id=529919
https://bugzilla.redhat.com/show_bug.cgi?id=1045623

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

not discuss in this paper the results of this survey, as it is used for
another study [30].

We reported all the observed practices and had some discussion
to validate whether the selected practices are valuable and should
be documented in form of code smells, or if they present only
some practices or developers’ habits. We discussed each case until
a consensus was reached.

4 CODE SMELLS FOR MULTI-LANGUAGE
SYSTEMS

In this section, we introduce the good and bad practices in the form
of code smells.

Passing Excessive Objects.

o Context: We have some attributes from classes and objects
in the host language that we must access and use in the
foreign code.

e Problem: Developers do not have enough knowledge
about the performance cost when integrating several
programming languages. They usually take design and
coding choices considering a single paradigm and do not
consider that combining distinct paradigms may change
those decisions.

e Bad Solution: We usually have to decide whether we pass
an object that has multiple fields or the fields individually.
The bad solution would be to always favor passing a whole
object instead of passing parameters; i.e., each time we pass
the whole object instead of passing the parameters of interest.
If we consider passing the whole object in the context of
object-oriented principle, this provides better encapsulation.
However, in the case of multi-language systems, it is better
to consider the performance cost between the two solutions
when combining different paradigms and languages.

e Consequences of the Code Smell: Passing an object from
one language to another may require an important effort of
performance and implicate intermediate methods to access
the native code as not all the language have or treat similarly
the types. In some cases, the native code uses several foreign
calls to get the value of each individual field. Such additional
calls add extra costs. Calls from native code to host language
code is more expensive than a normal method call and may
negatively impact the performance. Other consequences are
that the methods implicated by this code smell will not have
many parameters and will favor the encapsulation.

e Refactoring: To remove this code smell, a good solution
would be when few parameters are needed to be ac-
cessed, favor passing them separately instead of pass-
ing the whole object. Depending on the languages, it may
require additional effort to access the fields if they are not
passed as parameters.

Abidi et al.

¢ Benefits of the Refactoring: This will improve the perfor-
mance in the case where passing a whole object is a con-
suming task. It also improves the readability by having the
parameters of interest instead of whole objects. Another
benefit is to avoid calling heavy methods to extract the pa-
rameters from the object, especially when the programming
languages differ in term of types and paradigms.

e Examples: An example of occurrences of this code smell
has been discussed in IBM website!. In the case of JNI, when
we pass objects, it results in many calls to get the value for
each of the individual fields. This kind of calls add an extra
cost as the interactions between the native code and the Java
code is generally more expensive than a method call. It may
negatively impact performance. Figure 3 presents an example
of occurrences of this code smell. While figure 4 presents a
possible refactoring to remove this code smell. Depending on
the programming language this code smell may also occur
in Python/C and other sets and pairs of languages.

Unnecessary Parameters.

o Context: When adding new features or modifying an ex-
isting project, it may happen that we are not sure which
parameters to keep and which one to remove. This can also
happen when passing parameters to and from one language
to another which were never been used in the other lan-

guage.

e Problem: Several teams and developers are involved in the
same projects. These projects are then maintained by
other developers that do not have enough knowledge
about the architecture of the project.

Bad Solution: A bad solution would be, when applying
a change to always keep the parameters already existing
as they may be used in the other language while they are
no longer used. This can also appear when we pass all the
parameters that we believe can be used to complete the task
while concretely not all of them are used.

e Consequences of the Code Smell: Having unused param-
eters from one language to another may add complexity to
the code especially in the maintenance activities. Develop-
ers may not be sure which parameters should be used and
which not as they are related to another language. Multi-
language systems are by nature more difficult to understand,
adding unnecessary parameters or applying a change and
not removing the corresponding parameters will introduce
more complexity to the system. Some developers may go
through this solution as once all the parameters are defined
and passed from one language to the other, it is easier to use
them or apply changes that involve these parameters.

Refactoring: To remove this code smell, Keep only the
parameters that are used to avoid introducing unnec-
essary complexity and improve the readability.

Code Smells for Multi-language Systems EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

— v \
Excessive Inter-language - N " Project Mit ion L L y Use of Multi- (L Language and Paradigms
Communication Too Much Scattering Too Much Clustering <-. Related Issues language Programming Mismatch <.
A A A [A A A A A

A A A

‘ Local References Abuse
Assuming Safe Multi-
language Return Values

Passing Excessive Objects - . Memory Model Mismatch

Unused Native Method
Implementation

Unnecessary Parameters

Not Caching Objects' 3
Elements. n a o Not Handling Exceptions Unused Native Methods Not Using Relative Path to g q g
) HardicodinglCibraries Across Languages Declaration Load the Library RotSecunngllbisries
Code Smell Anti-Pattern | » Symptoms of Lead to

Figure 2: Pattern Overview Diagram

int sumValues (JNIEnvx env,jobject obj, jobject allVval)
{ jint avalue= (*env)->GetIntField(env,allVal,a);
jint bvalue= (*env)->GetIntField(env,allval,b);

jint cvalue= (*env)->GetIntField(env,allval,c);
return avalue + bvalue + cvalue;}

Figure 3: Code Smell - Passing Excessive Objects

int sumValues (JNIEnvx env, jobject obj, jint a, jint
b,jint ¢){ return a + b + ¢;}

Figure 4: Refactoring - Passing Excessive Objects

e Benefits of the Refactoring: Improve the understandabil-
ity and maintainability as the method will contain only the
parameters used. This also avoids dead code and Keep only
the parameters needed.

e Examples: Figure 5 presents an example of occurrences
of this code smell. The parameter acceleration is defined in
the native method signature. However, it is not used by the
native code. The solution would be to remove the unused
parameters.

JNIEXPORT jfloat JNICALL Java_jni_distance
(INIEnv *env, jobject thisObject,
jfloat time, jfloat speed,
jfloat acceleration) {
return time x speed;}

Figure 5: Code Smell - Unnecessary Parameters

Unused Native Methods Declaration.

¢ Context: When we have some methods declaration in the
host language that has never been implemented in the for-
eign language.

¢ Problem: Requirement or functionalities changes may
lead to unused code. Usually, different teams may be in-
volved separately to contribute in each programming lan-
guage. These teams do not have a global view of the whole
system, which methods are used and which are not.

¢ Bad Solution: A bad solution would be when applying a
change to always keep the native methods declared with-
out additional checking as they may be used in the other
language while they are no longer used.

e Consequences of the Code Smell: If a future modification
involves implementing these methods, it will be easier as
they are already declared. However, this code smell can result
in unused and unnecessary code. It may add some complexity
to the code and introduce more difficulty when reading and
maintaining the code. Depending on the languages, this kind
of methods may not crash the system or display an error,
as these methods are never called or used. However, for a
maintainer, it would require additional effort to investigate
which methods are really used in the multi-language systems
and which are not.

e Refactoring: To remove this code smell, keep only the
methods that are used in the multi-language systems’
interaction. An unused code may negatively impact the
quality of a system, the impact may be important when we
are dealing with multi-language systems. Depending on the
size of the system, it may be difficult for a maintainer to
identify the methods used. To retrace or fix a bug this may
require more effort.

¢ Benefits of the Refactoring: Improve the understandabil-
ity and maintainability as the code will contain only the
methods that are used. This also avoids dead code by provid-
ing clean code and Keeping only the methods used. Another
benefit is that it would be easier for a maintainer or new
developer to locate the code used.

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

e Examples: An example of this code smell has been per-
ceived when we analysed JNI systems and collected the num-
ber of method implementation and the number of a method
declaration. In most of the system, the number was the same
between both of these metrics. However, we found examples
where some native methods have been declared but have
never been used.

Unused Native Method Implementation.

e Context: When we have the method declaration and its cor-
responding implementation. However, it is never called from
the host language. In the case of multi-language program-
ming, it is hard for a developer working on a specific part
of the project implemented in a single language, to know
which methods are really used in the other language. Some
implementations could also be provided by different Dy-
namic Link Library not written in the same language. These
systems usually involve several developers or teams to work
separately in the project and access only a subpart of it.

e Problem: Several developers working on the same code
and maintainers do not have enough knowledge about
the project to confirm whether the code is used or not.
It can also be in situations where a project was migrated or
refactored. This can also be related to a planned extension
that never happened or renaming that failed. In the case
of multi-language systems, it can be more difficult to locate
these methods as they are implemented in a language or com-
ponent and used in another one. Developers should have a
complete vision of the architecture of the systems to know
which methods are used or are planned to be used in near
future release. Depending on the programming language and
paradigm, we may face situations where the foreign method
is not called using the same name as the one used in the
implementation or with the same signature.

e Bad Solution: Always keep the native methods implemen-
tations without additional checking as they may be used in
the other language. Avoid breakages related removing code
that is still called or used somewhere on the project.

e Consequences of the Code Smell: If a future modification
involves using these methods, it will be easier as they are
already implemented. However, this code smell adds more
complexity and may result in huge classes in which we have
an implementation of methods that are never called from the
other language. When fixing bugs or adding new features,
the developers may go through these methods and will not
be aware that they are not really used.

e Refactoring: To remove this code smell, remove all un-
necessary and unused code to reduce the complexity
and keep in each class only the methods that are re-
ally used. To prevent occurrences of this code smell, it is
also important to always remove all the code related to the
multi-language programming if it is no longer used. As these

Abidi et al.

systems usually involve different developers or teams work-
ing separately and it may be more difficult for them to know
if the code is used somewhere in the project or not.

e Benefits of the Refactoring: Improve the understandabil-
ity and maintainability as the code will contain only the
methods that are used. This also avoids dead code by having
clean code and Keeping only the methods used. It may also
be easier for a maintainer or new developer to locate the
code used.

e Examples: An example of this code smell was initially per-
ceived when we manually analysed JNI systems and found
some native methods that have been declared and imple-
mented but are never called. It may be due to changes or
refactoring in which they introduced another method. These
methods introduced some doubt as we were confused where
they were used, but then we semi-automatically checked if
they were called using grep command but we did not find
any calls to these methods.

Not Handling Exceptions Across Languages.

o Context: In the case of multi-language systems, depending
on the language we may not have the same way to manage
the exception.

Problem: The management of exceptions is not auto-
matically ensured in all the languages. Some program-
ming languages, require developers to explicitly implement
the exception handling flow after an exception has occurred.
If the exception is not explicitly implemented and handled
by the developer this may introduce bugs. Developers may
also not be aware of the consequences of not managing the
exceptions, especially in the case of multi-language program-
ming.

Bad Solution: The bad solution would be to always rely
on the exception provided by the other language and not
necessarily implement the exception handling.

e Consequences of the Code Smell: If the exception is not
explicitly implemented and handled by the developer. This
may result in bugs and unchecked exceptions will introduce
faults in the system that will be hardly debugged or retraced
to the origin of the bug.

Refactoring: To remove this code smell, always check
whether an exception has been thrown after invok-
ing any foreign methods that may throw an exception.
Multi-language systems introduce more complexity than
mono-language systems and need more effort to fix bug and
issues, it is important to consider checking and handling
exceptions to prevent issues related to no checking excep-
tion. In the case of multi-language systems, it is much easier
to prevent crashes by implementing the exception than to
debug after the crash occurred. Upon handling the excep-
tion, we should also clear it depending on the language. For
JNI, we should use the ExceptionClear function to inform the

Code Smells for Multi-language Systems

Java VM that the exception is handled and JNI can resume
serving requests to Java space. If the host language provides
the handling and management of exceptions, it possible to
simply check if an exception has occurred in the foreign
code and if so return immediately to the host code so that
the exception is thrown. It will then be either handled or
displayed using the exception-handling process provided by
the host language.

Benefits of the Refactoring: The refactored solution intro-
duces several benefits, including: prevent crashes, separate
error-handling code from regular code, and differentiating
error types.

o Examples: Examples of occurrences of this code smell have
been discussed in developers’ documentation as a wise practice!
3. Most of the systems that we analysed were not always im-
plementing a proper way to handle the exception as shown
in figure 6, this code may cause a crash if charField field no
longer exists. For the JNI case, one good example was Libgdx,
where they catch Java exceptions in native code using the JNI
API call ExceptionOccurred. Figure 7 presents a refactoring
example extracted from IBM Developer Site!. Occurrences
of this code smell will not block the execution of the native
code. However, any calls to JNI API will silently fail. As the
actual exception does not leave any traces behind, it is hard
to debug.

jclass objectClass;

jfieldID fieldID;

jchar result = 0;

objectClass= (*env)->GetObjectClass(env, obj);

fieldID= (*env)->GetFieldID(env, objectClass, "charField",
"M

result= (*env)->GetCharField(env, obj, fieldID);

Figure 6: Code Smell - Not Handling Exceptions Across Lan-
guages

jclass objectClass;

jfieldID fieldID;

jchar result = 0;

objectClass = (*env)->GetObjectClass(env, obj);

fieldID = (*env)->GetFieldID(env, objectClass, '"charField",
"

if((xenv)->ExceptionOccurred(env)) {return;}

result = (*env)->GetCharField(env, obj, fieldID);

Figure 7: Refactoring - Not Handling Exceptions Across Lan-
guages

Shttps://nachtimwald.com/2017/07/09/jni-is-not-your-friend/

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

Assuming Safe Multi-language Return Values.

e Context: Typically when we are implementing a multi-
language system, we need to access and transfer data and
information between different languages. We usually pass
and return values from one language to another.

e Problem: Exceptions are extensions of the programming
language for developers to report and handle exceptional
events that require special processing outside the actual flow
of the application. However, the management of exception
is not supported by all the languages. The same for return
values that are used to transfer data from one language to an-
other. Some developers assume that return values are
safe, others are not aware of the consequences of not
checking multi-language return values.

¢ Bad Solution: We may need to implement a specific task in
a certain language and need to have the value returned to the
other language. In most of the cases, we are just returning
the value without performing specific checks. The bad solu-
tion in case of multi-language systems is to implement the
method in the foreign language and have its result returned
to the main language assuming that return values are safe
without considering additional checks.

e Consequences of the Code Smell: It is important to con-
sider the return values as exceptions to verify that the interac-
tion between the languages was well performed. Otherwise,
it may result in introducing faults and bugs in the program.
As some values may be wrong or simply empty which can
cause problems when returned to the other language.

Refactoring: To remove this code smell, a good solution
would be to never assume that it is safe to use a value
returned by a language API call, which must always
be checked to make sure that the call was successfully
executed and the proper usable value is returned to
the native function. Multi-language methods usually have
a return value that indicates whether the call succeeded or
failed. A common bad practice, similar to not checking for
exceptions, is to assume that the return values are safe. API
functions rely on their return values instead to indicate any
errors during the execution of the API call.

Benefits of the Refactoring: Ensure that the interaction
between the languages was well performed. Other benefits
are to ensure that the usable value is returned to the foreign
code and avoid introducing bugs and faults.

e Examples: Examples of occurrences of this code smell have
been observed in most of the open source systems that we
analysed. This was also reported in several developers’ doc-
umentation and bug reports®. Depending on the languages
involved in the multi-language systems, it is mostly recom-
mended to always check the return values from one language
to another. As in most of the cases, we use another language

®https://www.developer.com/java/data/exception-handling-in-jni.html

https://nachtimwald.com/2017/07/09/jni-is-not-your-friend/
https://www.developer.com/java/data/exception-handling-in-jni.html

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

to perform a calculation or specific features that will be then
used by the main language. It is recommended to always
check the value before returning it to the host language.
As illustrated in figure 8 extracted from Libgdy, if the class
NIOAccess or one of its methods is not found, the native
code will cause a crash. As we are not applying any check
to handle the problems related to the return values. A good
solution to remove this code smell is to add a check that
handles the situations in which problems may occur with
the return values. Figure 9 is a good example to illustrate a
possible refactored solution.

staticvoid nativeClassInitBuffer(IJNIEnv *_env){
jclass nioAccessClasslLocal=
_env->FindClass("java/nio/NIOAccess");
nioAccessClass=(jclass)
_env->NewGlobalRef (nioAccessClasslLocal);
bufferClass=(jclass) _env->NewGlobalRef (bufferClassLocal);
positionID= _env->GetFieldID(bufferClass, "position", "I");

Figure 8: Code Smell - Assuming Safe Multi-language Re-
turn Values

jclass clazz;

clazz = env->FindClass("java/lang/String");
if (0 == clazz) {
} else {

}

Figure 9: Refactoring - Assuming Safe Multi-language Re-
turn Values

Not Caching Objects’ Elements.

o Context: When implementing a multi-language system, we
need to pass objects and variables from one language to the
other. In this case, we want to access an object’s field and
methods from the foreign code.

e Problem: Developers do not have enough knowledge
of how the fields and methods are retrieved when pass-
ing from one language to another. They may consider
using the most simple way to access foreign code and do not
consider the performance cost.

¢ Bad Solution: Depending on the language, use the avail-
able methods to access the objects fields and methods. Each
time we need one of the object’s field, call the methods to
retrieve the field as if it is the first time we access the field.
As example to access Java objects’ fields and their methods,

Abidi et al.

the native code perform calls to FindClass(), GetFieldID(),
GetMethodId(), and GetStaticMethodID().

e Consequences of the Code Smell: Depending on the lan-
guage, it may require an important effort to use available
methods to access the object fields and methods. Although
these methods may be used frequently in multi-language
applications, they may be heavy function calls by their na-
ture. These functions traverse the entire inheritance chain
for the class to identify the ID to return. The IDs returned
for a class using GetFieldID(), GetMethodID(), and GetStat-
icMethodID(), do not change during the lifetime of the JVM
process. However, this may be expensive in term of perfor-
mance. For that, we recommend to look them and reuse them
once needed.

o Refactoring: Neither the Class object, the Class inheritance,
nor the fieldID can be changed during the execution of the
system. These values are cached in the native layer for subse-
quent accesses. The return type of the FindClass function is a
local reference, so to cache its values, developers must create
a global reference first through the NewGlobalRef function
when it is needed. The return value of GetFieldID is jfieldID,
which is an integer that can be cached as it is. To remove this
code smell, developers should focus on caching both
the field and method IDs that are accessed multiple
times during the execution of the application, this prac-
tice makes an improvement in the execution time.

Benefits of the Refactoring: The IDs are often pointers
to internal runtime data structures. Looking them up may
require several string comparisons. Once we have them the
call to get the field or the method does not take an important
time. This also improves performance by avoiding several
lockups and avoid calling heavy functions.

e Examples: Examples of occurrences of this code smell have
been observed in JNI systems. Some developers’ documenta-
tion also reported this common bad practice as negatively
impacting the performance as shown in figure 101. In the
case of JNI, a correct way to initialise the IDs is to Create a
method in the C(++) code that performs the ID lookups. The
code will be executed once when the class is initialised. If the
class is ever unloaded and then reloaded, it will be executed
again. If commonly used classes, fields Ids, and methods Ids
are not properly cached, we lose the benefit of using the
C(++). This code smell negatively impacts the performance.
As presented in the example!, using caching field IDs will
take 3,572 ms to run 10,000,000 times 10. However, without
using the cache as illustrated in 11, it takes 86,217 ms. Using
this code smell the task takes 24 times longer than without
the occurrences of this code smell.

Not Securing Libraries.

e Context: We want to access foreign libraries or an API avail-
able in another language. We aim to integrate an external

Code Smells for Multi-language Systems

int sumVal (JNIEnv* env,jobject obj,jobject allvVal){

jclass cls=(*env)->GetObjectClass(env,allval);
jfieldID a=(*env)->GetFieldID(env,cls,"a","1");
jfieldID b=(*env)->GetFieldID(env,cls,"b","1");
jfieldID c=(*env)->GetFieldID(env,cls,"c","1");
jint aval=(*env)->GetIntField(env,allVal,a);
jint bval=(xenv)->GetIntField(env,allVal,b);
jint cval=(*env)->GetIntField(env,allVal,c);
return aval + bval + cval;}

Figure 10: Code Smell - Not Caching Objects’ Elements

jint aval=(*env)->GetIntField(env,allVal,a);
jint bval=(xenv)->GetIntField(env,allVal,b);
jint cval=(*env)->GetIntField(env,allVal,c);
return aval + bval + cval;

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

¢ Benefits of the Refactoring: One of the main benefits is
to ensure that the libraries cannot be loaded without permis-
sions. This also avoids malicious attacks and secure the load
of the library and the project.

e Examples: The occurrences of this code smell have been
observed on most of the analysed systems. In the JNI case,
we found the usage of the secure library only with the DK
and Openj9. In these systems, the loading library is always
performed in a static block and using the AccessController.
AccessController presents a safe way to load a library because
it ensures that the library cannot be loaded without permis-
sions, as shown in figure 12. Depending on the languages,
we recommend to always secure the loading library by using
available methods for the specific language.

Figure 11: Refactoring - Not Caching Objects’ Elements

library with the main application developed in a different
language.

Problem: Developers are not always aware of the con-
sequences of insecure code or do not provide enough in-
tention.

Bad Solution: When developing multi-language systems,
we always need to access some API or libraries implemented
in another language. We load the native library or API di-
rectly in the code without any security checking or restric-
tion.

Consequences of the Code Smell: As consequences of
the occurrence of this code smell, several problems may
occur due to the leak of security. An unauthorised code may
access and load the libraries. Malicious code may use this
vulnerable code to access the system. Depending on the
domain of application in which the multi-language systems
has been involved, this may have an important impact. As
for mobile application or embedded systems, a fault in the
security may have an impact at the human level.

Refactoring: To remove this code smell, always ensure
that the libraries cannot be loaded without permissions.
It is important to ensure that the loading of external libraries
is written in a secured block of code to guarantee access only
to those who are allowed to. Depending on the language
some predefined classes may ensure security and prevent
undesirable access to the system. As for the Java language,
it is recommended to always load libraries in static blocks,
wrapped in a call to AccessController.doPrivileged or use the
securityManager.

static { AccessController.doPrivileged(

new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("osxsecurity");
return null; } }); 3}

Figure 12: Securing Library Loading

Hard Coding Libraries.

o Context: We are loading different libraries for different OS,
the same code can not run in all the platforms. we need
to customise the loading according to the OS. For that, we
hard-code the loading according to the OS.

e Problem: Project was designed as a prototype and do not
consider future extensions and adaption to new platforms.

¢ Bad Solution: Depending on the used language, some of
them are expected to run on all platforms, but in other lan-
guages, there must be different native code libraries for dif-
ferent platforms, which must be loaded according to the
target OS. To ensure loading the libraries according to the
OS the loading libraries is hard-coded in the code.

e Consequences of the Code Smell: When the libraries are
hard-coded, it is difficult for a maintainer to know which
library is loaded in which time. Even to handle bugs and
errors this would require more time to locate the errors.
As consequences of this code smell, developers may require
additional effort to distinguish between the different libraries.
This also may impact the understandability and readability
of the system.

e Refactoring: To remove this code smell, a clean way to
load the library would be to handle all targeted OS on
which the library is available. This ensures better code
readability, letting the code Reader directly knows what
libraries are being loaded. Also, loading in a way to take care

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

of the OS makes sure that all cases are properly covered and
if a code is running on a new OS, errors are easy to locate.

o Benefits of the Refactoring: One of the main benefits is
to ensure readability by making the libraries easily defined
for each operating system. It also ensures handling all tar-
geted OS on which the library is available and improve the
understandability.

e Examples: Examples of occurrences of this code smell as
well as the good solution has been observed respectively in
JavasSmt and Frostwire. In JavaSmt, most of the loading
libraries were hard-coded in a way that it was difficult for
us to know which library is related to which os. As shown
in figure 13. Some of the comments were explaining the
OS related to the library. However, it is better if the way
to load the library can be self-efficient and reflect which
library is loaded. It is important when loading libraries to
take care of the OS as shown in figure 14. This ensures that
all platforms are covered and those missing libraries can be
easily identified.

public static synchronized Z3SolverContext create(
try { System.loadLibrary("z3");
System.loadLibrary("z3java");
} catch (UnsatisfiedLinkError el) {
try { System.loadLibrary("libz3");
System.loadLibrary("libz3java");
} catch (UnsatisfiedLinkError e2) {...}

Figure 13: Code Smells - Hard Coding Libraries

if (0SUtils.isWindows() && 0OSUtils.isGoodWindows()) {
if (OSUtils.isMachineX64()) {
System.loadLibrary("SystemUtilitiesxX64";}

else { System.loadLibrary("SystemUtilities");}

public final class GURLHandler {
System.loadLibrary("GURLLeopard");

public class MacOSXUtils {
System.loadLibrary("MacOSXUtilslLeopard");

Abidi et al.

e Problem: The project was designed as a prototype not for
future reuse. This can also be related to a situation where
the project was initially used locally by a single or few
developers.

¢ Bad Solution: In multi-language systems we usually need
to access or integrate foreign libraries or API. For that, we
need to specify the name or path to access the library. A
bad solution would be to load the external library by only
specifying the name of the library without providing the full
path.

e Consequences of the Code Smell: When using the rela-
tive path the loading and installation of the library can be
done everywhere. But if we just put the name, this may im-
pact the reuse of code or maintenance as the library cannot
be accessed in the same way from everywhere if we do not
specify the path. This code smell also impacts the reusability
of the code, as the library could not be reused from anywhere
without providing the full path.

Refactoring: A good solution to remove this code smell
would be to use relative or absolute Path to load a library.
When using a native library, a relative path must be
used to allow installation anywhere. A flag can specify
if an absolute or relative path must be used. To avoid issues
it is better to use an absolute path as it points to the same
location in a file system, regardless of the current working
directory. This will ensure the reusability and improve the
maintainability as in case of issues related to this library, any
future developer can directly locate the library.

Benefits of the Refactoring: One of the main benefits is
to ensure the reusability as the library can be used from
anywhere. Maintainers or developer can also easily locate
the library. This also improves maintainability.

e Examples: We perceived examples of occurrences of this
code smell when analysing JNI systems. Only a few of the
systems that we analysed followed the practice of using a
relative path. The systems Conscrypt and JatoVm are mainly
relying on the relative path to load the library, while most
of the systems that we analysed only specify the name of
the library. Figure 15 presents an example of refactoring to
remove this code smell extracted from JatoVm.

Figure 14: Refactoring - Hard Coding Libraries

Not Using Relative Path to Load the Library.

e Context: When implementing a multi-language system, we
need to load foreign code and then use external libraries or
APL We have to specify the name of the library that we are

going to load.

public class JNITest extends TestCase {
static

{System.load("./test/functional/jni/libjnitest.so"); %

Figure 15: Refactoring - Not Using Relative Path to Load the
Library

Memory Management Mismatch.

Code Smells for Multi-language Systems EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

example of occurrences of this code smell is the nonrelease of
the memory using ReleaseString or ReleaseStringUTF.

o Context: We are implementing a multi-language system in
which we are passing reference types from one language to
another. Depending on the languages, these types may be
considered as pointers when used in other languages.

¢ ?rObleI}I:: The n}anagemerllt of the types ar}nld InIemory str = env->GetStringUTFChars(javaString, &isCopy);
Is not the same from one language to another. In some if (@ !'= str) {env->ReleaseStringUTFChars(javaString, str);
languages as the C(++), the management of the memory is str = 0; }

not done automatically. Depending on the language, it may
be the developers’ responsibility to care about the manage-
ment of the memory. As in the case of JNI, if we are using a
String we should be the one taking care of releasing it after its
usage. However, developers do not have enough knowledge
of the characteristics of programming languages involved.
They are usually dealing with programming languages that
automatically handle the management of the memory.

Bad Solution: The bad solution would be to to not consider
the differences and possible incompatibilities between differ-
ent programming languages when managing the memory.
Rely on the management of memory provided by a single
programming language without additional checks to confirm
that they memory is correctly managed.

e Consequences of the Code Smell: The management of
the memory may not be the same from one language to
another. Memory leaks can occur if the developers forget to
take care of releasing such reference types.

Refactoring: To remove this code smell, a good solution
would be to always take care of the management of
such references types. It is better to assume that in for-
eign communication, the management of the memory is not
always done automatically, and may be considered by the
developers. Especially the allocation and release of mem-
ory that needs to be explicitly done by the developers. It
becomes their responsibility when dealing with more than
one programming language.

Benefits of the Refactoring: One of the main benefits is
to avoid problems due to a leak of the memory. This also
avoids performance issues and free the memory allocated to
objects that are no longer used.

e Examples: Examples of occurrences of this code smell have
been observed in few JNI systems and developers’ documen-
tation, where problems related to the leak of memory oc-
curred due to not releasing the memory. Developers’ should
take care of such memory management in multi-language
systems. For the JNI case, Java strings are handled by the
JNI as reference types. Those reference types are not null-
terminated C char arrays (C strings). When the Java string is
converted to a C string, it simply becomes a pointer to a null-
terminated character array. It is the developers’ responsibil-
ity to explicitly release the arrays using the ReleaseString or
ReleaseStringUTF functions. Figure 16 presents an example
of the refactored solution to remove this code smell. As the

Figure 16: Refactoring - Memory Management Mismatch

Local References Abuse.

e Context: Depending on the programming language, the
management of the memory is not the same. For this code
smell, we are considering the references. For the Java code,
JVM keeps an eye on the available references to the allo-
cated memory regions. When JVM detects that an allocated
memory region can no longer be reached by the application
code. It releases the memory automatically through garbage
collection leaving developer free from memory management.
But JVM garbage collectors boundaries are limited to the
Java space only.

Problem: The lifespan of a local reference is limited to the
native method itself. Depending on the language, garbage
collectors boundaries are limited to the specific space
only, so the garbage collector cannot free the memory that
the application allocates in the native space. The manage-
ment of the memory may differ from one language to another.
Thus, developers should always consider taking care of mem-
ory when using local and global references. For the JNI case,
memory models and their management defer between Java
and C. It is the developers’ responsibility to manage the
application’s memory in native space properly.

¢ Bad Solution: The bad solution would be to use local and
global references without considering the management of
the memory.

e Consequences of the Code Smell: If we do not consider
the management of memory and the criteria when using
references from one language to another, this can cause
memory leaks.

o Refactoring: To remove this code smell, always take care
of releasing the memory once using global or local ref-
erences and never assume that their release will be
done automatically. For the JNI case, it creates references
for all object arguments passed into native methods, as well
as all objects returned from JNI functions. These references
will keep Java objects from being garbage collected. To make
sure that Java objects can eventually be freed, the JNI by
default creates local references. Local references become in-
valid when the execution returns from the native method in
which the local reference is created.

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

o Benefits of the Refactoring: One of the main benefits is
to ensure releasing the memory once using global or local
references. This avoids memory allocation bugs and makes
sure to free the memory for reuse when no longer needed.

e Examples: Occurrences of this code smell have been ob-
served in JNI systems and the good practice of releasing the
memory has been discussed in several developers’ documen-
tation as well as the JNI specification. Each time we return
an object by a JNI function, local references are created. For
example, as shown in figure 17 calling GetObjectArrayEle-
ment() will return a local reference to each object in the
array. It is important to delete each reference when it is
no longer required. A native method must not store away
a local reference and expect to reuse it in subsequent in-
vocations. so whenever a state is to be maintained during
JNI calls, global references is a must. However, JNI global
references are prone to memory leaks, as they are not au-
tomatically garbage collected, and the programmer must
explicitly free them but they are necessary. Depending on
the programming language, to reuse a reference, the devel-
oper must explicitly create a global reference based on the
local reference using the NewGlobalRef JNI API call. The
global reference can be released when it is no longer needed
using the DeleteGlobalRef function. An example of refactor-
ing is: env->DeleteLocalRef(globalObject).

for (i=0; i < count; i++) {
jobject element = (*env)->GetObjectArrayElement(env, array,
i);

if((xenv)->ExceptionOccurred(env)) { break;}

Figure 17: Code smell - Local References Abuse

5 THREATS TO VALIDITY

We now discuss threats to the validity of our methodology to collect
the code smells.

Threats to internal validity: We accept this threat as we did not
provide an exhaustively list of all existing code smells related to
multi-language systems. However, we mined open-source reposi-
tories GitHub and OpenHub to identify the list of multi-language
systems. We also queried and analysed bug reports and developers’
blogs, such as StackOverflow, IBM Developers, developer.android to
extract practices.

Threats to external validity: We tried to minimise these threats
by reporting code smells observed at least more than three times
in various systems or documentation. However, depending on the
sets of programming languages used, some of these code smells
may not be existent or may have different consequences.

Threats to reliability validity: We mitigate the threats to reliabil-
ity by providing online access to all the data and scripts that we

Abidi et al.

used to conduct this study. All the information are available in the
companion website” 8.

6 CONCLUSIONS AND FUTURE WORK

The development of multi-language systems has become very preva-
lent nowadays, it offers many opportunities, developers can reuse
existing code and take advantage of existing libraries and modules
written in several programming languages [2]. Such multi-language
systems are difficult to analyse and maintain. They introduce several
challenges that developers are continuously facing when dealing
with such systems.

Software quality is achieved partly by following good practices
and avoiding bad ones. While several studies discussed the benefits
and challenges of multi-language systems, only a few reported good
and bad practices that developers should adopt when dealing with
such systems [18-21]. Good and bad practices related to the devel-
opment, maintenance, and evolution of multi-language systems are
scattered across different resources, including few academic papers,
developers’ documentation, programming-language specifications,
etc.

Therefore, through this paper, we collected, cataloged, and docu-
mented the practices observed in the form of code smells. We report
in this paper 12 code smells that we borrowed and observed from
these resources. These practices should help not only researchers
but also developers involved in the development of multi-language
systems.

In future work, we will (1) survey developers about these code
smells, (2) provide an exhaustive catalog of multi-language code
smells, (3) investigate the impact of these code smells on some
quality attributes.

ACKNOWLEDGMENTS

We thank our shepherd Uwe Zdun for his valuable suggestions that
significantly improved this paper. We also would like to thank the
review group on EuroPLoP conference ’19. This work has been par-
tially supported by the Natural Sciences and Engineering Research
Council of Canada.

REFERENCES

[1] J. Matthews and R. B. Findler, “Operational semantics for multi-language pro-
grams,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 31, no. 3, p. 12, 2009.

[2] P.S.Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple program-
ming languages and code quality,” in Software Analysis, Evolution, and Reengi-
neering (SANER), 2016 IEEE 23rd International Conference on, vol. 1. IEEE, 2016,
Pp. 563-573.

[3] G.Tan and]. Croft, “An empirical security study of the native code in the jdk,” in
Proceedings of the 17th Conference on Security Symposium, ser. SS°08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 365-377.

[4] F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-ism in
github,” in Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE 14. New York, NY, USA: ACM,
2014, pp. 17:1-17:4.

[5] R.-H. Pfeiffer and A. Wasowski, “Texmo: A multi-language development environ-
ment,” in Proceedings of the 8th European Conference on Modelling Foundations
and Applications, ser. ECMFA’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp.
178-193.

[6] Z.Mushtaq and G. Rasool, “Multilingual source code analysis: State of the art and
challenges,” in 2015 International Conference on Open Source Systems Technologies
(ICOSST), Dec 2015, pp. 170-175.

http://www.ptidej.net/downloads/replications/europlop19/
8https://github.com/ResearchML/Catalog-Patterns-MLS

env->DeleteLocalRef(globalObject)
http://www.ptidej.net/downloads/replications/europlop19/
https://github.com/ResearchML/Catalog-Patterns-MLS

Code Smells for Multi-language Systems

[11]

[12

[13

[14]

(15]

[16]

[17]

(18]

F. Boughanmi, “Multi-language and heterogeneously-licensed software analysis,”
in 17th Working Conference on Reverse Engineering, 2010.

D. Galin, Software quality assurance: from theory to implementation.
Education India, 2004.

E. Shihab, “Practical software quality prediction,” in Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on. IEEE, 2014, pp. 639—
644.

J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns: Elements of
reusable object-oriented software,” Reading: Addison-Wesley, vol. 49, no. 120, p. 11,
1995.

Y.-G. Guéhéneuc and H. Albin-Amiot, “Using design patterns and constraints to
automate the detection and correction of inter-class design defects,” in Technology
of Object-Oriented Languages and Systems, 2001. TOOLS 39. 39th International
Conference and Exhibition on. IEEE, 2001, pp. 296-305.

G. Czibula, Z. Marian, and I. G. Czibula, “Detecting software design defects using
relational association rule mining,” Knowledge and Information Systems, vol. 42,
no. 3, pp. 545-577, 2015.

F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study of the
impact of code smells on software change-proneness,” in Reverse Engineering,
2009. WCRE’09. 16th Working Conference on. IEEE, 2009, pp. 75-84.

E. van Emden and L. Moonen, “Java quality assurance by detecting code smells,”
in Ninth Working Conference on Reverse Engineering, 2002. Proceedings., Nov 2002,
pp- 97-106.

F. Khomh, M. Di Penta, and Y. Gueheneuc, “An exploratory study of the impact
of code smells on software change-proneness,” in 2009 16th Working Conference
on Reverse Engineering, Oct 2009, pp. 75-84.

M. Abbes, F. Khomh, Y. Gueheneuc, and G. Antoniol, “An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program comprehension,”
in 2011 15th European Conference on Software Maintenance and Reengineering,
March 2011, pp. 181-190.

S. Liang, Java Native Interface: Programmer’s Guide and Reference.
Wesley Longman Publishing Co., Inc., 1999.

M. Goedicke and U. Zdun, “Piecemeal legacy migrating with an architectural
pattern language: A case study,” Journal of Software Maintenance and Evolution:

Pearson

Addison-

[19

[20]

[21]

[22]

[24

[25]

[26

[27]

EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

Research and Practice, vol. 14, no. 1, pp. 1-30, 2002.

A. Neitsch, K. Wong, and M. W. Godfrey, “Build system issues in multilanguage
software,” in Software Maintenance (ICSM), 2012 28th IEEE International Conference
on. IEEE, 2012, pp. 140-149.

A. Malinova, “Design approaches to wrapping native legacy codes,” Scientific
works, Plovdiv University, vol. 36, pp. 89-100, 2008.

G. Neumann and U. Zdun, “Pattern-based design and implementation of an
xml and rdf parser and interpreter: A case study,” in European Conference on
Object-Oriented Programming. ~ Springer, 2002, pp. 392-414.

W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns:
refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.,
1998.

M. Fowler and K. Beck, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 1999.

G. Kondoh and T. Onodera, “Finding bugs in java native interface programs,” in
Proceedings of the 2008 International Symposium on Software Testing and Analysis,
ser. ISSTA 08. New York, NY, USA: ACM, 2008, pp. 109-118.

A. Osmani, Learning JavaScript Design Patterns: A JavaScript and jQuery Devel-
oper’s Guide. " O’Reilly Media, Inc.", 2012.

S. Li and G. Tan, “Finding bugs in exceptional situations of jni programs,” in
Proceedings of the 16th ACM Conference on Computer and Communications Security,
ser. CCS’09. New York, NY, USA: ACM, 2009, pp. 442-452.

A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and E. Witchel, “Trace-
back: first fault diagnosis by reconstruction of distributed control flow;” in ACM
SIGPLAN Notices, vol. 40, no. 6. ACM, 2005, pp. 201-212.

P. Mayer and A. Schroeder, “Cross-language code analysis and refactoring,” in
2012 IEEE 12th International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2012, pp. 94-103.

A. Mouna, K. Foutse, and Y.-G. Guéhéneuc, “Anti-patterns for multi-language
systems,” in 24th European Conference on Pattern Languages of Programs (EuroPLoP
’19), July 3-7, 2019, Irsee, Germany. ACM, 2019.

A. Mouna, G. Manel, and K. Foutse, “Behind the scenes: Developers’ perception
of multi-language practices,” in 29th Annual International Conference on Computer
Science and Software Engineering (CASCON’2019). ACM, 2019.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Study Design
	4 Code Smells for Multi-language Systems
	5 Threats to Validity
	6 Conclusions and Future Work
	References

