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a b s t r a c t 

Context: Hadoop, Spark, Storm, and Mesos are very well known frameworks in both research and indus- 

trial communities that allow expressing and processing distributed computations on massive amounts of 

data. Multiple scheduling algorithms have been proposed to ensure that short interactive jobs, large batch 

jobs, and guaranteed-capacity production jobs running on these frameworks can deliver results quickly 

while maintaining a high throughput. However, only a few works have examined the effectiveness of 

these algorithms. 

Objective: The Evidence-based Software Engineering (EBSE) paradigm and its core tool, i.e. , the Systematic 

Literature Review (SLR), have been introduced to the Software Engineering community in 2004 to help 

researchers systematically and objectively gather and aggregate research evidences about different topics. 

In this paper, we conduct a SLR of task scheduling algorithms that have been proposed for big data 

platforms. 

Method: We analyse the design decisions of different scheduling models proposed in the literature for 

Hadoop, Spark, Storm, and Mesos over the period between 2005 and 2016. We provide a research taxon- 

omy for succinct classification of these scheduling models. We also compare the algorithms in terms of 

performance, resources utilization, and failure recovery mechanisms. 

Results: Our searches identifies 586 studies from journals, conferences and workshops having the highest 

quality in this field. This SLR reports about different types of scheduling models (dynamic, constrained, 

and adaptive) and the main motivations behind them (including data locality, workload balancing, re- 

sources utilization, and energy efficiency). A discussion of some open issues and future challenges per- 

taining to improving the current studies is provided. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

The processing and analysis of datasets in cloud environ-

ments has become an important and challenging problem, be-

cause of the exponential growth of data generated by social net-

works, research and healthcare platforms, just to name a few.

Hadoop ( Kurazumi et al., 2012 ), Spark ( Zaharia et al., 2010b ),

Storm ( Peng et al., 2015a ), and Mesos ( Hindman et al., 2011b ) are

examples of widely used frameworks for distributed storage and

distributed processing of ultra large data-sets in the cloud. Many

large organisations like Yahoo!, Google, IBM, Facebook, or Amazon

have deployed these well-known big data frameworks ( Jian et al.,

2013a ). Hadoop, Spark, Storm, and Mesos are multi-tasking frame-

works that support a variety of different types of tasks process-

ing. They have a pluggable architecture that permits the use of
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chedulers optimized for particular workloads and applications.

he scheduling of tasks in these frameworks is of a paramount im-

ortance since it affects the computation time and resources utili-

ation. However, because of the dynamic nature of cloud environ-

ents, efficient task scheduling is very challenging. Multiple algo-

ithms have been proposed to improve how tasks are submitted,

ackaged, scheduled and recovered (in case of failures) in these

rameworks. Yet, only a few works have compared the proposed al-

orithms and investigated their impact on the performance of the

forementioned frameworks. To the best of our knowledge, there

s no published literature that clearly articulates the problem of

cheduling in big data frameworks and provides a research tax-

nomy for succinct classification of the existing scheduling tech-

iques in Hadoop, Spark, Storm, and Mesos frameworks. Previous

fforts ( Patil and Deshmukh, 2012 ), ( Rao and Reddy, 2012; Singh

nd Agrawal, 2015 ) that attempted to provide a comprehensive re-

iew of scheduling issues in big data platforms were limited to

adoop only. Moreover, they did not include all papers that were

ublished during the periods covered by their studies ( i.e. , 2012

http://dx.doi.org/10.1016/j.jss.2017.09.001
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Fig. 1. An overview of relationships among MapReduce, Hadoop, Spark, Storm, and 

Mesos 
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nd 2015). Also, these three studies only propose general descrip-

ions of Hadoop schedulers in terms of architecture and objectives

 e.g. , learning, resources management) and do not discuss their

imitations. Neither do they discuss future research directions to

mprove these existing task scheduling approaches. 

In this paper, we follow the Evidence-based Software Engineer-

ng (EBSE) paradigm in order to conduct a Systematic Literature

eview (SLR) ( Kitchenham, 2004 ) of task scheduling techniques in

adoop, Spark, Storm, and Mesos, with the aim to identify and

lassify the open challenges associated with task scheduling in

hese frameworks. 

We discuss different approaches and models of task schedul-

ng proposed for these four frameworks, that gained a lot of mo-

entum in the last decade in both research and commercial com-

unities. Also, we analyse the proposed design decision of each

pproach in terms of performance, resources utilization, failure re-

overy mechanisms, and energy efficiency. Our searches identified

86 journals, conferences and workshops papers published in top

anked software engineering venues between 2005 and 2016. We

rganize our SLR in three parts: 

• Part 1: Task Scheduling Issues in Big Data Platforms: 

irst, we present the main issues related to task scheduling in

adoop, Spark, Storm, and Mesos, and explain how these issues

re addressed by researchers in the existing literature. We clas-

ify the issues into 6 main categories as follows: resources man-

gement, data management (including data locality, replication and

lacement issues), fairness, workload balancing, fault-tolerance , and

nergy-efficiency . 

• Part 2: Task Scheduling Solutions in Big Data Platforms: 

econd, we describe the different types of scheduling approaches

vailable in the open literature and discuss their impact on the

erformance of the schedulers of the four frameworks. Overall, we

bserve that we can classify the scheduling approaches used in

adoop, Spark, Storm, and Mesos into three main categories: dy-

amic, constrained and adaptive scheduling. 

• Part 3: Research Directions on Task Scheduling in Big Data Plat-

forms: 

hird, we describe some of the future research directions that can

e addressed in each category discussed previously in part 1 and

art 2 of the SLR. From the limitations of previous work (discussed

n part 2 ), we build a roadmap for future research to improve ex-

sting scheduling approaches. 

The remainder of this paper is organized as follows:

ection 2 briefly introduces Hadoop, Spark, Storm, and Mesos.

ection 3 describes the methodology followed in this Systematic

iterature Review. Sections 4, 5 and 6 discuss our study and the

ndings of this review, and position our work in the existing

iterature. Section 7 presents our conclusions, and outlines the

ain findings of this systematic review. 

. Background 

Fig. 1 describes the relationships between MapReduce, Hadoop,

park, Storm, and Mesos. Hadoop is a well-known processing plat-

orm that implements the MapReduce programming model. Spark

s a novel in-memory computing framework that can be running

n Hadoop. Storm is a distributed computation framework for real

ime applications. Spark and Storm can implement the MapReduce

rogramming model, but with different features to handle their

opologies and data models. These platforms can be typically de-

loyed in a cluster, that can be managed by Mesos or YARN (Yet

nother Resources Negotiator), which are cluster managers. In the

equel, we briefly describe MapReduce, Hadoop, Spark, Storm, and

esos. 
.1. Programming Model: MapReduce 

MapReduce Lee et al. (2012) is a programming model for pro-

essing big amounts of data using a large number of comput-

rs (nodes). It subdivides the received users’ requests into parallel

obs and executes them on processing nodes where data are lo-

ated, instead of sending data to the nodes that execute the jobs.

 MapReduce job is composed of “map” and “reduce” functions and

he input data. The input data represents a set of distributed files

hat contain the data to be processed. The map and reduce func-

ions are commonly used in functional programming languages like

isp. The map function takes the input data and outputs a set of

 key, value > pairs. The reduce function takes the set of values

or a given key as input and emits the output data for this key.

 shuffling step is performed to transfer the map outputs to the

orresponding reducers. The set of intermediate keys are sorted

y Hadoop and given to the reducers. For each intermediate key,

adoop passes the key and its corresponding sorted intermediate

alues to the reduce function. The reducers ( i.e. , worker running

 reduce function) use a hash function to collect the intermediate

ata obtained from the mappers ( i.e. , worker running a map func-

ion) for the same key. Each reducer can execute a set of interme-

iate results belonging to the mappers at a time. The final output

f the reduce function will be stored in a file in the distributed file

ystem ( Dean and Ghemawat, 2008 ). MapReduce follows a master-

lave model. The master is known as “JobTracker”, which controls

he execution of the “map” and “reduce” functions across the slave

orkers using “TaskTrackers”. The JobTracker and the TaskTrackers

ontrol the job execution to ensure that all functions are executed

nd have their input data as shown in Fig. 2 . 

.2. Processing Platforms 

In the sequel, we describe Hadoop, Spark, and Storm processing

latforms and we briefly discuss task scheduling issues in these

latforms. 
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Fig. 2. An overview of job execution in MapReduce ( Dean and Ghemawat, 2008 ). 
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2.2.1. Apache Hadoop 

Hadoop ( Had, 2017 ) has become the de facto standard for pro-

cessing large data in today’s cloud environments. It is a Java-based

MapReduce implementation for large clusters that was proposed

by Cutting and Cafarella in 2005 ( Had, 2017 ). Hadoop is composed

of two main components: the Hadoop Distributed File System

(HDFS) and the MapReduce framework. The HDFS is responsible

for storing and managing the input of the map function as well as

the output of the reduce function. The Hadoop MapReduce frame-

work follows a master-slave model ( Dean and Ghemawat, 2008 ).

The JobTracker running on the master is responsible for managing

the job execution, progress and the status of the workers (slaves).

Each worker in Hadoop is composed of a TaskTracker and a DataN-

ode. The TaskTracker is responsible for processing the jobs using

their corresponding input data located in the DataNode ( Dean and

Ghemawat, 2008 ). Hadoop allows the processing of large data-sets

across a distributed cluster using a simple programming model. It

is designed to hide all details related to the job processing (such as

error handling or distribution of tasks across the workers). This al-

lows developers to focus only on enhancing computation issues (in

terms of response time, resources utilisation, energy consumption

etc.) in their parallel programs rather than parallelism. 

2.2.2. Apache Spark 

Spark ( Zaharia et al., 2010b ) is a novel in-memory comput-

ing framework written in Scala for Hadoop, proposed in 2010. It

was developed to address the problem in the MapReduce model,

which accepts only a particular linear data flow format for dis-

tributed programs. Spark uses a data structure called Resilient Dis-

tributed Dataset (RDD), which is a distributed memory abstrac-

tion that allows for in-memory computations on large clusters in

a fault-tolerant way ( Zaharia et al., 2012 ). In MapReduce programs,

the input data are read from the disk then mapped through a map

function, and reduced using a reduce function to get the output

data that will be stored on the disk. Whereas in Spark programs,

the RDDs serve as a working set for distributed programs, which

offer a restricted form of distributed shared memory ( Zaharia et al.,

2010b ). The RDDs support more functions, compared to MapRe-

duce, that can be classified into two main categories; the “trans-

formation” and the “action” functions. The tranformation function

can be a map, filter, sample, union, or an intersetcion operation.

While an action function can be a reduce, collect, countbykey,

take, or takeordered operation. Consequently, the RDDs allow to

reduce the latency for both iterative and interactive data analy-

sis applications by several orders of magnitude when compared

to Hadoop ( Zaharia et al., 2012 ). Spark is comprised of two main

components: a cluster manager and a distributed storage system.
park supports the native Spark cluster, Hadoop YARN ( Liu et al.,

015 ), or Mesos ( Hindman et al., 2011b ) as a cluster manager. Also,

t supports communication with a multitude of distributed storage

ystems including HDFS, MapR File System (MapR-FS), and Cassan-

ra ( Karpate et al., 2015 ). 

.2.3. Apache Storm 

MapReduce and Hadoop are designed for offline batch pro-

essing of static data in cloud environments, which makes

hem not suitable for processing stream data applications in the

loud ( e.g. , Twitter) ( Peng et al., 2015a ). To alleviate this issue,

torm ( Peng et al., 2015a ) has emerged in 2011 as a promising

omputation platform for stream data processing. Storm is a dis-

ributed computation framework written in Clojure and Java, and

esigned for performing computations of streams of data in real

ime. In order to be processed in Storm, an application should be

odelled as a directed graph called a topology that includes spouts

nd bolts, and the data strems of the applications can be routed

nd grouped through this graph. Particularly, there are different

rouping strategies to control the routing of data streams through

he directed graph including the field grouping, global grouping, all

rouping, and shuffle grouping ( Peng et al., 2015a ). The spouts are

ources of data stream (sequence of tuples), they read data from

ifferent sources including database, messaging frameworks, and

istributed file systems. The bolts are used to process data mes-

ages and to acknowledge the processing of data messages when

t is completed. Also, they can be used to generate other data mes-

ages for the subsequent bolts to process. Generally, one can utilize

he bolts for filtering, managing, aggregating the data messages, or

o interact with external systems. Storm can achieve a good relia-

ility by using efficient procedures to control message processing.

lso, it has fault-tolerant mechanisms that allow to restart failed

orkers in case of failures ( Xu et al., 2014a ). 

.2.4. Task Scheduling 

In general, task scheduling is of paramount importance since

t aims at allocating a number of dependent and/or independent

asks to the machines having enough resources in the clusters. An

ffective scheduler can find the optimal task distribution across the

achines in a cluster, in accordance with execution time require-

ents and resources availability. An optimal task distribution min-

mises the mean execution time of the scheduled tasks and max-

mises the utilisation of the allocated resources. This is in order to

aximise the response time of the received computations (tasks

o be processed), and reduce (avoid) resources waste. Each big-

ata platform in the cloud is equipped with a scheduler that man-

ges the assignment of tasks. Here, we briefly present as exam-

les the well-known schedulers proposed for Hadoop that gained

 lot of attention from both industry and academia. In Hadoop,

he JobTracker is responsible for scheduling and provisioning the

ubmitted jobs and tasks. It has a scheduling algorithm, which

nitial implementation was based on the First In First Out (FIFO)

rinciple. The scheduling functions were first regrouped in one

aemon. Hadoop developers decided later to subdivide them into

ne Resource Manager and (per-application) Application Master

o ease the addition of new pluggable schedulers. YARN (Yet An-

ther Resources Negotiator) ( Liu et al., 2015 ) is the daemon re-

ponsible for managing applications’ resources. Facebook and Ya-

oo! have developed two new schedulers for Hadoop: Fair sched-

ler ( Zaharia et al., 2009 ) and Capacity scheduler ( Raj et al., 2012 ),

espectively. 

.3. Cluster Manager: Apache Mesos 

Mesos ( Hindman et al., 2011b ) is an open-source cluster man-

ger that provides efficient resource usage and sharing across mul-
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Table 1 

A non-exhaustive list of journals, conferences, and workshops considered in our 

SLR. 

Journals 

- Journal of Systems and Software (JSS) 

- Future Generation Computer Systems (FGCS) 

- Transactions on Parallel and Distributed Systems (TPDS) 

- Transactions on Service Computing (TSC) 

Conferences 

- IEEE INFOCOM 

- IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing 

(CCGrid) 

- IEEE International Conference on Distributed Computing Systems (ICDCS) 

Workshops 

- Workshop on Data Engineering 

- Workshop on Parallel Distributed Processing and Ph.D Forum 

- Symposium on High-Performance Parallel and Distributed Computing 
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Fig. 3. Overview of SLR Methodology. 
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i

iple cluster computing frameworks. It was proposed in 2009 by

he University of California, Berkeley. Instead of a centralized ap-

roach, Mesos supports a two-level scheduling approach to allo-

ate the resources to the frameworks (in this context, a frame-

ork is a software system that executes one or more jobs in a

luster). Hence, Mesos enables efficient resources sharing in a fine-

rained way. So, the master node in Mesos decides the amount of

esources to be assigned for each framework. Then, each frame-

ork accepts the resources it needs and decides which jobs to ex-

cute on those resources. This approach can help optimize the al-

ocation of resources as well as provide near-optimal data local-

ty ( Hindman et al., 2011b ). 

. Methodology of the S.L.R. 

The following subsections present our proposed methodology to

erform the Systematic Literature Review (SLR), and the outcomes

f the SLR: 

.1. Conducting the Study 

.1.1. Data Sources 

Following the guidelines given in Kitchenham (2004) , we start

ur SLR using the following relevant search engines: IEEE Xplore,

CM, Google Scholar, CiteSeer, Engineering Village, Web of Science

nd ScienceDirect . We perform an electronically-based search and

onsider the main terms related to this review: “scheduling”, “task

cheduling”, “scheduler”, “MapReduce”, “Hadoop”, “Spark”, “Storm”, 

nd “Mesos”. We use the same search strings for all seven search

ngines. We look for published scientific literature related to task

cheduling in Hadoop, Spark, Storm and Mesos between 2005 and

016. Then, we restrict our study to a number of journals, confer-

nces, workshops and technical reports having the highest qual-

ty and considered as the most important resources in this field.

e perform this step by selecting the studies published in journals

ith high impact factors, conferences/workshops with competitive

cceptance rates and technical reports with high number of cita-

ions. Also, we check the citation of the studies in order to evalu-

te their impact in this field. Other studies are rejected for quality

easons ( e.g. , the study is only a small increment over a previous

tudy, a technical report that is extended into a journal or a confer-

nce/workshop paper, etc). Table 1 presents a non-exhaustive list

f workshops, conferences and journals considered in our SLR. 

.1.2. Search and Selection Process 

The search and selection process for the relevant studies from

ata sources is organized in three rounds as described in Fig. 3 . 

• Round 1: we perform a mapping study named also a scoping

review in order to identify and categorise the primary stud-
ies related to the SLR based on their scope. This scoping re-

view helps identify the main issues addressed and studied in

the available literature. Next, we select the most relevant stud-

ies based on their titles and abstracts. Any irrelevant study is

removed. If there is any doubt about any study at this level,

the study is kept. 
• Round 2: it consists of a manual search of the studies obtained

in the previous step ( i.e. , Round 1), which are identified as the

main sources for the SLR. It is necessary to check the reliability

of the selected studies. To do so, the remaining studies at this

step are carefully read. Then, the irrelevant studies are removed

based on the selection criteria defined in the work of Dybå and

Dingsøyr (2008) . More details about the used criteria are given

in Section 3.2 . 
• Round 3: we perform a snowball search based on guidelines

from Wohlin (2014) . We apply a backward snowball search us-

ing the reference list of papers obtained in the second round,

to identify new papers and studies. We use the same selection

criteria (as in Round 2 ) to decide whether to include or exclude

a paper. These remaining papers are read carefully. 

.2. Quality of the Selected Papers 

We apply different inclusion and exclusion criteria on the re-

aining studies in the second and third rounds. These selection

riteria can help decide whether to include or not a paper for fur-

her search. Only relevant studies that are retained will be used

n the SLR analysis to answer our research questions. (1) Only pa-

ers describing issues related to Hadoop, Spark, Storm, and Mesos

chedulers and proposing models to improve their performance are

ncluded. (2) Documents presented in the form of power point pre-

entations, abstract, and submitted papers are not included in this

eview. 

.3. Outcomes of the Study 

The different search stages of our SLR identify a total of 586 pa-

ers. Specifically, we obtain 492 papers from Round 1 , from which

e extract 237 papers after Round 2 . Next, we discover 94 new

apers during the snowball phase ( i.e. , Round 3 ). In total, the num-

er of papers analyzed in this SLR is 492 + 94 = 586 (from Round

 and Round 3). This is after removing those papers that are not

elated to task scheduling in Hadoop, Spark, Storm, or Mesos, and

uplicates that are found by more than one search engine. When

 paper is found by two search engines in Round 1, we keep the

ne published in the search engine having the highest number of

apers. For example, if a paper is found by IEEE and ACM and IEEE

as the highest number of obtained study, we keep the one in IEEE

nd remove the duplicate in ACM. The results obtained on each of

he seven search engines, for the three rounds are presented in

able 2 . 

.4. SLR Organization 

The following paragraphs describe the motivation for each part

n the SLR: 
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Table 2 

Results of SLR rounds. 

Search Engine Round 1 Round 2 Round 3 

- IEEE 252 143 50 

- ACM 95 61 28 

- CiteSeer 41 8 2 

- Google Scholar 37 6 9 

- ScienceDirect 39 12 5 

- Web of Science 5 1 0 

- Engineering Village 23 6 0 

Total 492 237 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Distribution of papers over years [2005–2016]. 
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Part 1: Task Scheduling Issues in Big Data Platforms: 

This part provides a comprehensive overview of task schedul-

ing in Hadoop, Spark, Storm, and Mesos. It aims at identifying

the main topics of task scheduling addressed in these frameworks.

Hence, it can help determine the challenges and issues that have

been studied by both research and commercial communities. The

identified challenges and issues will help draw the map of the

state of research on task scheduling in these computing frame-

works. 

Part 2: Task Scheduling Solutions in Big Data Platforms: 

This part describes the proposed solutions in the existing litera-

ture that addressed the scheduling issues identified in Part 1 . This

exhaustive analysis can help give a comprehensive overview about

the characteristics of the proposed solutions, their main objectives

and their limitations. In fact, it presents the advantages and limita-

tions of each solution that aimed to improve Hadoop, Spark, Storm,

and Mesos schedulers over time. Furthermore, it can help identify

some future work that can be addressed by researchers in order to

better improve the schedulers of these frameworks. 

Part 3: Research Directions on Task Scheduling in Big Data Platforms:

This part identifies some of the future work that can be done

to cover the drawbacks of the solutions reported in Part 2 . Based

on the limitations of these proposed solutions, we aim to iden-

tify some aspects that can be enhanced to better improve Hadoop,

Spark, Storm, and Mesos schedulers. Part 3 draws a roadmap for

further studies on task scheduling in these frameworks. 

3.5. SLR Analysis Approach 

We perform a manual search over the papers found at the dif-

ferent search stages. To do so, we proceed in two steps. First, we

skim through the papers, reading the most relevant parts to get an

overview of the issues addressed in the existing literature to con-

struct Part 1 . Next, we classify the obtained studies in different

categories based on their scope to ease the analysis of the selected

papers. Also, we compute statistics about the number of published

studies and papers (i) in each category; and (ii) the evolution of

this metric over time (from 2005 up to 2016) to get an overview

of the most studied scheduling issues in Hadoop, Spark, Storm, and

Mesos. Second, we carefully analyse all papers in order to extract

the relevant information about the proposed approaches and their

limitations to build Part 2 . Indeed, we classify the proposed ap-

proaches in different categories following the list of issues identi-

fied in Part 1 . If there is a study that is addressing two issues at

the same time, it will be included in both categories. Finally, to de-

velop Part 3 , we identify some future work that can be addressed

to cover the limitations of the approaches discussed in Part 2 . The

following sections present and dummyTXdummy- discuss the re-

sults of the three parts in our SLR. 
. Task Scheduling Issues In Big Data Infrastructures 

Before addressing the first part of the SLR, we examine the can-

idate papers based on their publication years to identify the dis-

ribution of the related studies over time. Fig. 4 shows the inter-

st of researchers on task scheduling for big data frameworks over

ime. We notice that during the first three years, after proposing

adoop in 2005, there was no study that analysed scheduling is-

ues in Hadoop. This is arguably due to the fact that researchers

ere more interested in the computing functions of Hadoop and

ere striving to improve them. Next, we observe that in 2008, the

opic of scheduling in Hadoop started gaining attraction, with 2 pa-

ers published on the topic in 2008. A limited number of studies

ere performed on the topic between 2009 (11 papers) and 2010

19 papers). Then, the number of studies significantly increased

rom 11 papers in 2009 to 50 papers in 2016. This can be explained

y the constant increase of the popularity of Hadoop (Hadoop is

ow widely used by different com panies and research labs). Also,

he high number of Hadoop users was affecting the overall perfor-

ance of the scheduler and hence many studies were needed to

esolve the issues faced while deploying Hadoop. With the emer-

ence of Mesos (2009), Spark (2010) and Storm (2011), many other

orks were done to study the performance of these platforms in

loud environments. We can claim that during three years starting

rom 2014 until 2016, a minimum of 45 studies were published

n Hadoop/Spark/Mesos/Storm scheduling issues each year; high-

ighting the importance of this research topic. Also, we find that

he majority of the studies were addressing scheduling issues in

adoop and only a few works were analysing the other three plat-

orms. This can be explained by the popularity of Hadoop in both

cademia and industry and also because Hadoop was proposed be-

ore the other platforms (in 2005). 

Next, we identify the addressed task scheduling issues in big

ata platforms using the papers obtained from the three rounds.

e find that we can classify these papers into six categories as

hown in Fig. 5 . The obtained categories can be described as fol-

ows: 

.1. Resources Utilisation (65 papers) 

In general, the resources allocation process aims to distribute

he available resources across the scheduled tasks, in order to en-

ure a good quality of services for users and to reduce the cost

f the services for cloud providers. Particularly, the computing re-

ources ( e.g. , CPU cores, memory) are distributed using the two ba-

ic computing units in a MapReduce job; map and reduce slots. A

lot is the basic unit used to abstract the computing resources (e.g.,

PU cores, memory) in Hadoop, Spark, and Storm. It is used to
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Fig. 5. Scoping review results. 
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ndicate the capacity of a worker (e.g., TaskTracker). There exist

wo types of slots in a cluster: a slot that can be assigned to a

ap task, and a slot to be assigned to a reduce task. These com-

uting units are statically configured by the administrator before

aunching a cluster. The map slots must be only allocated to the

ap tasks and the reduce slots must be only given to the reduce

asks. The allocation of these slots should be executed under the

onstraint that the map tasks should be executed and finished be-

ore their corresponding reduce task starts. Specifically, the map

nd reduce phases in a job have a tight dependency on each other.

ndeed, the map tasks can be running in parallel since they are

mall and independent. The reduce tasks will be launched in par-

llel with the copy and merge phases and will not release their as-

igned slots until all reduce tasks are completed. Hence, they take

uch longer time to be finished. So, this fundamental interdepen-

ence can lead to a repeatedly observed starvation problem. Fur-

hermore, the map and reduce tasks may have highly varying re-

ources requests over time, which makes it difficult for the sched-

ler to efficiently utilize the cluster resources. In addition, given

he dynamic nature of cloud applications, the resources allocation

rocess can be complex and may fail to allocate the required re-

ources for some jobs ( i.e. , long running-time jobs) or fail to pre-

ent tasks from the starvation problem. As a result, there can be

ome straggling map or reduce tasks because of the unexpected

ontention time for CPU, memory and other resources; resulting in

npredictable execution time for the tasks. Overall, we found 65

tudies addressing this issue. 

.2. Data Management (78 papers) 

We can claim that the problem of data management in big data

latforms can be sub-divided into three main sub-problems as fol-

ows: 

.2.1. Data Locality (44 papers) 

In big data platforms, the computations ( i.e. , received work-

oads) are sent as close as possible to where the input data of

he scheduled tasks is located. This is because of the large size

f the processed data rather than moving these large data blocks

o the computational nodes where the tasks will be running. So,

he scheduler decides where to send the computations based on

here the data exists. Data locality is an important issue addressed

y many researchers as shown in Fig. 5 . In particular, we find 44

tudies that addressed this problem in Hadoop, Spark, Storm and

esos schedulers. Scheduling tasks based on the locality of their

ssociated data is a crucial problem that can affect the overall per-

ormance of a cluster. Indeed, the execution of some jobs or tasks

equires the processing of tasks having distributed data across dif-

erent nodes. Therefore, it is necessary to find a better allocation of

hese tasks over the available nodes while maximizing the number
f tasks executing local data. This is to reduce the total execution

ime of tasks by reducing the number of non-local-data tasks since

hese tasks spend more time to read and write data compared to

he local-data tasks. 

.2.2. Data Placement (21 papers) 

Although, the proposed data locality strategies can help im-

rove the processing of tasks in the nodes having the local input

ata and enough resources, an extra overhead can be added when

rocessing the non-local data blocks and moving the intermediate

ata from one node to another to get the final output; which may

ecrease the overall performance of a cluster. Particularly, the pro-

essing of scheduled tasks highly depends on the location of the

tored data and their placement strategy. This makes it difficult

a) for the platform ( e.g. , Hadoop, Spark) to distribute the stored

ata; and (b) for the scheduler to assign the scheduled tasks across

he available nodes in a cluster. Therefore, there are some studies

hat are proposed to improve the data placement issue within the

istributed nodes in these big data platforms in order to improve

he strategies responsible for moving the data blocks especially the

arge data-sets. We find 21 studies that addressed this problem. 

.2.3. Data Replication (13 papers) 

Data locality and placement are very important problems as

hey significantly affect the system performance and the availabil-

ty of the data. However, some slow or straggling nodes can go

own and their data blocks will not be available for sometime,

hich may affect the overall performance. Therefore, several algo-

ithms are proposed to replicate the data across different process-

ng nodes. For example, if some data cannot be found, the sched-

ler may find other replicas in other nodes, racks or other clusters

nd run speculative copies of the straggling tasks. By increasing

he number of data replicas, the scheduler may be able to increase

he successful processing of tasks that are not able to find their

nput data. However, the distribution and number of these replica

an vary over time due to the dynamic nature of the applications

unning on a cluster. Therefore, it is necessary to propose better

chemes to replicate data over big data platforms nodes. This prin-

iple is known as data replication and is studied by 13 works as

resented in Fig. 5 . 

.3. Fairness (49 papers) 

Ensuring fairness is particularly important to improve the over-

ll performance of a cluster for big data infrastructures, especially

hen there are different jobs running concurrently in the clus-

er. Particularly, 49 papers addressed this issue in the existing lit-

rature; which explains the importance of this problem. A job is

omposed of multiple map and reduce tasks that occupy the avail-

ble resource slots in the cluster. The slot configuration can differ

rom one node to another. Also, jobs can have different resource

equirements and consumptions over time. For example, some jobs

an occupy their assigned resources for long time, more than ex-

ected, which may cause the starvation of some other jobs waiting

or their turn in the queue. Also, some jobs may take the advan-

age of occupying the resources to finish their tasks much faster

hile other jobs can be waiting a long time for their turn to be

xecuted using the same resources. Overall, the scheduler can ex-

erience many problems such as jobs starvation and long execu-

ion time if it does not define a fair plan to assign the available

lots across the jobs and tasks. Consequently, the scheduler should

airly assign the received tasks to the node slots in order to reduce

he makespan time between the scheduled tasks. Specifically, it

hould find the optimal task assignment across the available slots

hile reducing the overhead generated between the map and re-

uce tasks to communicate the intermediate results. 
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4.4. Workload Balancing (61 papers) 

The schedulers of cloud platforms, like Hadoop, Spark, Mesos,

or Storm, receive multiple jobs and tasks having different charac-

teristics and different resource demands, which may lead to dif-

ferent system workloads. Furthermore, workloads can be imbal-

anced when jobs are running, under a current scheduler, across the

cluster nodes, which may cause important delays and many prob-

lems related to the reliability of the system. Therefore, it is very

important to balance the workload across the distributed nodes

to improve its performance in terms of execution time and re-

sources utilisation; especially for cloud applications that should

satisfy some defined response requirements. The workload balanc-

ing is very dependent on the fairness allocation of the available

slots across the scheduled tasks. In fact, one reason behind unbal-

anced workload is a bad slot allocation in a worker, which can gen-

erate straggling tasks waiting for slots to be released. So, a good

slot allocation strategy allows to have a balanced workload. Other

factors like resources allocation, type of scheduler, can also affect

the workload behavior in each node. Many studies in the available

literature ( i.e. , 61 papers) proposed algorithms to balance the re-

ceived load in a cluster. 

4.5. Fault-Tolerance (42 papers) 

Heterogeneity is the norm in cloud environments, where

different software configurations can be found. Particularly,

Sahoo et al. (2004) claim that the complexity of software systems

and applications running on a cluster can cause several software

failures ( e.g. , memory leaks, state corruption), make them prone

to bugs and may lead to crashes in the cluster. Physical machines

in cloud clusters are subject to failure ( e.g. , they can be down

for some time), which may lead to unexpected delays to process

the received jobs. Moreover, big-data platforms’ schedulers can ex-

perience several task failures because of unpredicted demands of

service, hardware outages, loss of input data block, nodes failure,

etc. Although, Hadoop, Spark, Mesos and Storm have built fault-

tolerance mechanisms to cover the aforementioned limitations, one

task failure can cause important delays due to the tight depen-

dency between the map and reduce tasks. Also, it can lead to not-

efficient resources utilisation because of an unexpected resources

contention. Therefore, many researchers addressed this issue in

these platforms. In particular, 42 studies are found in the litera-

ture addressing this crucial problem. These studies propose differ-

ent Fault-Tolerance mechanisms to reduce the number of failures in

the processing nodes, and hence improve the overall performance

of the cluster. In addition, they describe different mechanisms to

improve the availability and reliability of platforms components, in

order to better improve the availability of the services offered to

the users. 

4.6. Energy Efficiency (36 papers) 

The cost of data-intensive applications running on large clusters

represent a critical concern in terms of energy efficiency. For in-

stance, data-intensive applications require more energy when pro-

cessing the received workload, executing I/O disk operations, and

managing and processing the huge amount of data on big data

platforms like Hadoop, Spark, or Mesos. Moreover, the design of a

scheduler for big data platforms can largely affect the energy con-

sumption of the system on which the applications are executed.

For instance, when processing tasks on the nodes where the data

exists, the node may receive a large number of tasks and these

nodes require more resources to execute them, which can increase

the level of energy consumed. Moreover, the nodes in a cloud clus-

ter can experience several failures and can face straggling tasks re-
ulting in more energy being consumed. Therefore, minimizing the

nergy consumption when processing the received workload is of

aramount importance. We find 36 studies that addressed this crit-

cal issue in cloud environments. These studies show that there is

 trade-off between improving the scheduler performance and the

nergy consumption on the studied platforms in our SLR. 

. Task Scheduling Solutions In Big Data Infrastructures 

After carefully checking the content of the obtained papers, we

an group them by scope/objective in order to analyse the solu-

ions proposed to address the issues mentioned in Section 4 . The

ifferent proposed solutions are described in the following subsec-

ions. In the following subsections, we describe each of the pro-

osed approaches in more details. Since the majority of the papers

s addressing scheduling issues on Hadoop framework in compar-

son to the other platforms (including Spark, Storm, and Mesos);

his is because of the popularity of Hadoop in both academic and

ndustrial communities. For each category, we first discuss the so-

utions proposed for Hadoop, and then, if applicable, we discuss

olutions proposed for other platforms. Finally, we present a sum-

ary to classify and discuss the proposed approaches and the ad-

ressed issues. 

.1. Resources Utilisation-aware Scheduling 

Although there is a tight dependency between the map and re-

uce tasks, these two phases are scheduled separately by exist-

ng schedulers. Additionally, Zhang et al. (2015) show that the re-

ources consumption varies significantly in these two phases. To

itigate this problem, many studies including ( Zhang et al., 2015;

ian et al., 2013c; Liang et al., 2014; PASTORELLI et al., 2015 ) are

roposed to correlate the progress of map and reduce tasks while

cheduling them and then assign them slots based on their re-

uirements. Just to name a few, the Coupling Scheduler ( Jian et al.,

013c ), PRISM ( Zhang et al., 2015 ), HFSP ( PASTORELLI et al., 2015 ),

nd Preedoop ( Liang et al., 2014 ) are proposed as fine-grained

esource-aware MapReduce schedulers for Hadoop. The main goal

f these schedulers is to assign available slots according to the

ariability of the requested resources in each phase of a Hadoop

ob and the task execution progress. This is in order to reduce the

otal execution time and to avoid a waste of resources. 

Jian et al. (2013c ) propose the Coupling Scheduler , which is com-

osed of two main parts (i) a wait scheduling for the reduce tasks;

nd (ii) a random peeking scheduling for the map tasks. The cou-

ling scheduler can reduce the average job processing time by

1.3% compared to the Fair Scheduler. However, some jobs still

ace long-waiting times because of other running jobs taking all

educe slots. The idea behind Preedoop Liang et al. (2014) is to

reempt reduce tasks that are idle and assign their allocated re-

ources to scheduled map tasks, in order to allow for a faster pro-

essing at the map phase. This is because reduce tasks waiting

or intermediate data, or results from some map tasks, often de-

ain resources that could have been used by some pending map

asks. Liang et al. (2014) report that Preedoop can reduce the execu-

ion time by up to 66.57%. However, the preemption of the reduce

asks can delay the copy/merge phases of the jobs, which may re-

ult in extra delays. 

Hadoop Fair Sojourn Protocol (HFSP) ( PASTORELLI et al., 2015 ) is

 new scheduling protocol that automatically adapts to resources

nd workload changes while achieving resources efficiency and

hort response times for Hadoop. HFSP uses job size and progress

nformation to allocate the available resources to the received

asks. HFSP uses an aging function to make scheduling decisions,

uch that jobs with higher priority have more chance to get the re-

ources. The priorities of jobs are computed using the aging func-
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ion. HFSP can reduce the execution time of the scheduled tasks

ut, it cannot reduce the number of task failures since it is based

n a preemptive technique. Moreover, HFSP delays the scheduling

f the map tasks on non-local data, for a certain time and for a

xed number of attempts. This is in order to ensure the process-

ng of the map tasks with local data and improve the performance

f Hadoop. Meanwhile, tasks having a lower priority can be pro-

essed. However, postponing the processing of the map tasks sev-

ral times can generate extra delays to the total execution times

f the tasks. Hence, some tasks execution times can exceed their

pecified deadlines; resulting in tasks deadline no-satisfaction. 

While processing batch jobs, Hadoop may encounter problems

ue to inefficient resources utilization, which may generate long

nd unpredictable delays. Particularly, the static and fixed config-

ration of slots allocated to the map and reduce tasks in Hadoop

an affect their processing time and may lead to a degradation of

he cluster resources. To alleviate this issue, some studies, includ-

ng Wolf et al. (2010) ; Shanjiang et al. (2013) ; Liu et al. (2014) ;

iayin et al. (2014) ; Yao et al. (2015) ; Tang et al. (2016a ), introduce

he dynamic assignment of the slots to the mappers and reducers

epending on their requirements. 

For instance, Fair and Efficient slot configuration and Schedul-

ng for Hadoop ( FRESH ) Jiayin et al. (2014) is designed to find the

atching between the slot settings and the scheduled tasks to im-

rove the makespan (which is defined as the difference between

he longest and the smallest execution time of the running tasks)

hile guaranteeing a fair distribution of the slots among the map

nd the reduce tasks. In the same line, Wolf et al. (2010) propose

 flexible scheduling allocation scheme called FLEX aiming to op-

imize the response time, deadline satisfaction rates, SLA (Service

evel Agreement), and makespan of different type of Hadoop jobs,

hile allocating the same minimum job slots assigned in the Fair

cheduler. Despite the fact that FRESH and FLEX show good per-

ormances in terms of total completion time and slot allocation,

heir proposed scheduling schemes should relax the scheduling de-

isions in terms of data locality. They only consider how to fairly

istribute the slots across the scheduled tasks but, they do not take

nto account the necessity to schedule them as close as possible to

heir input data. In addition, they should take into account the re-

aining execution time of the scheduled jobs to better assign, on

he fly, the resources slots. 

FiGMR ( Mao et al., 2015 ) is proposed as a fined-grained and dy-

amic scheduling scheme for Hadoop. FiGMR classifies the nodes

n a Hadoop cluster into high or low level performance according

o their resources utilisation, and tasks into slow map tasks and

low reduce tasks. It uses historical information from the nodes

o dynamically find the tasks that are slowed by a lack of re-

ources. Then, FiGMR launches speculative executions of the slow

ap and reduce tasks on the high level performance nodes in or-

er to speed up their execution. Overall, FiGMR can reduce the

xecution time of tasks and improve data locality. But, it requires

onsiderable time to find the slow tasks and to assign them to high

evel performance nodes, which can result in extra delays to the

cheduler. 

Because of the large scale of cloud environments, the applica-

ions running on top of Hadoop systems are increasingly gener-

ting a huge amount of data about the system states ( e.g. , log-

les, etc). These data can be used to make better scheduling de-

isions and improve the overall cluster performance. Whereas, the

rimary Hadoop schedulers rely only on a small amount of in-

ormation about the Hadoop environment, particularly about the

esources allocation/utilisation to make the scheduling decisions.

herefore, many research work ( Rasooli and Down, 2012; Zhang

t al., 2015; Yao et al., 2014; Rasooli and Down, 2011 ) have been

roposed to build schedulers capable of collecting data about the

esources utilisation and adapting their scheduling decisions based
n the system states and the events occurring in the cloud com-

uting environment. 

For example, HaSTE ( Yao et al., 2014 ) is designed as a pluggable

cheduler to the existing Hadoop YARN ( Liu et al., 2015 ). HaSTE

chedules the received tasks according to many system informa-

ion like the requested resources and their capacities, and the de-

endencies between the tasks. It assigns the resources to tasks

ased on the ratio between the requested resources and the ca-

acity of the available resources. Specifically, HaSTE measures the

mportance of the received tasks in order to prioritize the most im-

ortant tasks in a job and to quantify the dependencies between

he scheduled tasks. Despite the fact that HaSTE can optimize the

esources utilisations, it is limited only to the CPU and memory

esources. 

Rasooli and Down (2012, 2011) propose to use the collected in-

ormation about the Hadoop environment to classify the received

obs according to their resources requirements. They implement

n algorithm that captures the changes on the system states and

dapts the scheduling decisions according to the new system pa-

ameters ( e.g. , queue state, free slots, etc.) in order to reduce the

verage execution time of the scheduled tasks. But, their proposed

pproach is associated with an overhead to estimate the execution

ime of each received job and to make the slot allocation in accor-

ance to the captured system changes. 

There are also considerable challenges to scheduling the grow-

ng number of tasks with constraints-meeting objectives. Along

ith the broad deployment of Hadoop schedulers, many stud-

es ( Cheng et al., 2015c; Wei et al., 2014; Ullah et al., 2014; Bin

t al., 2013; Pletea et al., 2012; Khan et al., 2016 ) have been pro-

osed to improve the performance of Hadoop in terms of dead-

ine satisfaction. In a nutshell, these schedulers identify the jobs

among the submitted ones) that could be finished within a spe-

ific deadline, then, they check the availability of resources to pro-

ess the jobs. A job will be scheduled if there are enough slots to

atisfy its requirements. 

Bin et al. (2013) propose a scheduling algorithm that leverages

istorical information about scheduled and finished tasks and slot

erformance to make a decision about whether a resources slot

CPU, memory, bandwidth) is good enough for the assigned tasks,

he delay threshold, and the tasks’ deadlines. Their proposed al-

orithm also makes a decision about whether a scheduled task

hould be delayed, since there will be some other available slots

etter than the selected ones. The proposed scheduler is able to

ssign the tasks to the suitable slots with acceptable delays. How-

ver, delaying small jobs while looking for the most suitable slots

an affect their total completion time. 

Ullah et al. (2014) consider the remaining execution time of

ach job when deciding to preempt, in order to maximize the uti-

ization of the slots under the deadline constraints and the ex-

cution time requirements. However, they use a static approach

o estimate the remaining time, which can affect the average of

his value and hence negatively impact the scheduling decisions.

letea et al. (2012) implement a genetic algorithm to speculate the

xecution time of the tasks with respect to deadline constraints

nd the heterogeneity of the distributed resources in a Hadoop

luster. Overall, the genetic-based algorithm must be efficient and

ast in terms of execution time while providing the optimal so-

ution to the scheduler. However, the authors do not implement

ny optimization function to improve the performance of their pro-

osed algorithm; which may negatively impact the performance of

he scheduler. 

Khan et al. (2016) propose a Hadoop job performance model

hat can estimate the amount of required resources so that jobs

re finished before their deadlines based on the estimation of job

ompletion times. The proposed model uses historical informa-

ion about job execution records and a Locally Weighted Linear
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Regression (LWLR) technique to determine the estimated execu-

tion time of Hadoop jobs. It could reduce the total execution time

of jobs by up to 95.5% such that jobs are completed before their

expected deadlines. However, it only considers the independent

Hadoop jobs, which can affect the resource allocation mechanism

in Hadoop. 

Jiang et al. (2016) claim that the existing scheduler in Spark

does not consider any coordination between the utilization of com-

putation and network performance, which may lead to a reduced

resource utilisation. Therefore, they design and implement Sym-

biosis, which is an online scheduler that predicts resources im-

balance in Spark cluster. Jiang et al. (2016) propose to sched-

ule computation-intensive tasks (with data locality) and network-

intensive tasks (without data locality) on the same CPU core in

Symbiosis. When several tasks are scheduled and competing on

the same CPU core, they integrate a priority-based strategy to se-

lect which task to process first. Symbiosis is able to reduce the

total completion times of Spark jobs by 11.9% when compared to

the current scheduler of Spark framework. However, the authors

do not consider the resource and network utilisation for the in-

termediate steps that involve especially network transfers hence, it

can add extra delays to the processing of the jobs. 

Apache Storm is the most popular stream processing system

used in industry. It uses the default round-robin scheduling strat-

egy, which does not consider the resources availability and de-

mand. To alleviate this issue, R-Storm Peng et al. (2015b ) is pro-

posed to satisfy soft and hard resources constraints, minimize the

network latency, and increase the overall throughput. Peng et al.

implement a scheduling algorithm using the Quadratic Knapsack

Problem (QKP) and find that R-Storm outperforms Storm in terms

of throughput (30%-47%) and CPU utilisation (69%-350%). 

Mesos ( Hindman et al., 2011a ) possesses a fined-grained re-

source sharing scheduler that controls the sharing of resources

across the applications running on the platform. In other words,

Mesos decides the amount of resources that can be assigned to

an application, and this application decides the tasks to run on

them. This approach allows the application to communicate with

the available resources to build a scalable and efficient platform.

Consequently, Mesos can achieve better resource utilisation and

near-optimal data locality. But, it does not take into consideration

the requirements of applications running on Mesos while assigning

them the resources, which may result in a waste of resources. 

5.2. Data Management-aware Scheduling 

Data management is a hot issue that caught the attention of

many researchers. This is because of its direct impact on the per-

formance of big data platforms including those of the task schedul-

ing techniques. For instance, the performance of big data platforms’

schedulers is highly dependent on the procedures dedicated to

managing the data to be processed in the computing nodes. This

issue is extensively studied by researchers who aim to efficiently

distribute data schemes across the nodes. In the following para-

graphs, we describe different approaches proposed by researchers

to improve the data locality, data placement and data replication

schemes. 

5.2.1. Data Locality-aware Scheduling 

MapReduce is widely used in many systems where there are

dynamic changes over time. However, it lacks the flexibility to sup-

port small and incremental data changes. To cover this limitation,

the IncMR framework ( Cairong et al., 2012 ) is proposed to improve

the data locality incrementally. IncMR fetches the prior state of

runs in the system and combines it with the newly added data.

This can help find better scheduling decisions according to the new

changes in the systems. So, the state of system runs periodically
et updated for future incremental data changes. The conducted

xperiments in Cairong et al. (2012) show that their approach has

 good impact on non-iterative applications running in MapReduce.

ndeed, the running time is faster than the one obtained when pro-

essing the entire input data. But, IncMR is subject to high network

tilisation and the large size of files storing the system states con-

umes resources. Therefore, it is very important to optimize the

torage of the states of the system (in terms of size and location)

n order to get efficient processing times and optimize the network

andwidth. 

Tseng-Yi et al. (2013) propose the Locality-Aware Scheduling

lgorithm ( LASA ) in order to achieve better resource assignments

nd data locality in Hadoop schedulers. They present a mathemat-

cal model to calculate the weight of data interference that will

e given to LASA. The data interference is derived using the num-

er of data in each node having free slots. Next, LASA selects the

ode having the smallest weight and data locality to process the

eceived tasks. But, LASA does not guarantee a fair distribution of

he workload across the Hadoop nodes. 

Kao and Chen (2016) present a real-time scheduling framework

or Hadoop that can guarantee data locality for interactive appli-

ations. In this work, the authors present both a scheduler and a

ispatcher for Hadoop. The scheduler is responsible for assigning

asks when the required resources are available, and the dispatcher

onsiders the data locality of these tasks. The performance of the

roposed framework is evaluated using synthesized workload and

t shows good results in terms of execution time and energy con-

umption optimization. Whereas it does not consider the priority

f the tasks while assigning the tasks to the nodes having their

ocal block data; which can affect the performance of the applica-

ions running on Hadoop. 

Zaharia et al. (2008, 2010a) present the Longest Approximate

ime End ( LATE ) algorithm, which collects data about the running

asks and assigns weights to tasks based on their progress. Using

istorical information about the weights assigned to tasks in the

ast, LATE prioritizes the new tasks waiting to be executed. LATE

redicts the finish times of each task and speculates on the ones

hat can meet most the response time in the future. The proposed

lgorithm can improve the response time of the schedulers by a

actor of 2. 

Later, Liying et al. (2011) extended LATE by introducing a delay

n the processing of tasks. Each task being delayed for a maximum

f K times. They propose that a task should wait for T/S seconds

efore checking the availability of slots in the nodes having local

ata. In this equation, T is the average task execution time and S

s the number of slots in the cluster. Since a task could be delayed

p to K times, it is possible to have some tasks waiting for up to

 

∗ T/S seconds before being processed. Although, their proposed

lgorithm can reduce the overall response time of tasks and im-

rove the system throughput, it has to sort twice the whole sys-

em to find the tasks having local input data and the task that will

e launched speculatively; which may add extra delays to the re-

ponse time. Moreover, the value of K should be suitable for the

ystem status, to avoid the task starvation problem and system

erformance degradation. Also, LATE faces some issues ( i.e. , inac-

urate estimation of the remaining time of tasks) in calculating the

ask progress and identifying the straggling ones due to its static

pproach. In addition, it does not distinguish between the map and

educe tasks while calculating their progress, which may affect its

erformance. 

Processing data within a requesting node for a data-intensive

pplication represents a key factor to improve the scheduling per-

ormance in Hadoop. Many researchers ( e.g. , Zaharia et al. (2008) ;

ui et al. (2012b ); Guo et al. (2012) ; Xue et al. (2015) ) have been

orking extensively to solve this problem by evaluating the im-

act of many factors on the data locality. This can help identify the
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orrelation between data locality and those identified factors and

ence schedule tasks on the processing nodes as close as possible

o their input data. As illustration for this solution, the research

ork in Hui et al. (2012b ); Guo et al. (2012) describe mathemat-

cal models and scheduling algorithms to evaluate the impact of

any configuration factors on data locality. Examples of the con-

guration parameters can be the input data size and type, the de-

endency between the data input of tasks, the number of nodes,

he network traffic, etc. They propose to perform a job grouping

tep before scheduling the tasks; the jobs belonging to the same

roup should be ordered based on their priority and the local-

ty of their input data. Also, they propose to schedule multiple

asks simultaneously instead of one by one to consider the im-

act of other tasks that may not guarantee better scheduling’s per-

ormance. These proposed algorithms can increase the number of

asks processed using local data-blocks, which can reduce their ex-

cution time. However, these solutions do not show a good im-

rovement when job sizes are large. This is because large jobs have

ore distributed input data across different nodes and hence the

roposed algorithms cannot guarantee to have a maximum num-

er of local-data tasks for these jobs. The proposed approaches

ork well only when the job sizes are small. 

Although, Hadoop and Spark are characterized by a good per-

ormance when allocating the resources and processing the re-

eived workload, they show a poor performance in handling

kewed data. For instance, scheduled tasks can experience sev-

ral types of failure, because of straggling tasks and skewed data.

o solve this problematic issue, many studies are proposed to

void data skewness and to find the optimal distribution of data

 e.g. , Liu et al. (2014) ; Liroz-Gistau et al. (2016) ; Coppa and Finoc-

hi (2015) ; Zheng et al. (2014) ). For example, FP-Hadoop Liroz-

istau et al. (2016) is a framework that tackles the problem of

ata skewness for the reduce tasks, by integrating a new phase in

adoop job processing. The intermediate phase is called interme-

iate reduce (IR). The IR can process intermediate values between

he map and reduce tasks in parallel with other tasks. This ap-

roach can help speedup the processing of the intermediate values

ven when all of them are associated with the same key. The ex-

erimental results show that FP-Hadoop has a better performance

ompared to Hadoop and can help reduce the execution times of

educe tasks by a factor of 10 and the total execution time of

obs by a factor of 5. But, Hadoop jobs can experience extra de-

ays when there are no skewed data, because the IR workers add

ore time to the total execution time of a job. 

Although, the data locality issue is tackled as one problem in

he studies presented above, other research works address it sepa-

ately for map and reduce tasks, as described in the sequel. 

ata Locality of Map Tasks 

The pre-fetching techniques of the input data are very impor-

ant to improve the data locality factor for the map tasks and avoid

he data skewness problem. Particularly, there are several research

ork that address this issue including Sangwon et al. (2009) ;

hunguang et al. (2013) ; Wang et al. (2013) . They propose pre-

etching and scheduling techniques to address the data locality

f map tasks. These two techniques look for the suitable candi-

ate input data for the map tasks. Also, they select which re-

ucer is better in order to minimize the network traffic required

o shuffle the key-value pairs. Although these techniques can im-

rove the data locality of the map tasks, they cannot balance

he load across the processing nodes. This is because the pro-

osed techniques can only improve the number of local map tasks

nd does not take into account the resources utilisation and load

alancing. 

Asahara et al. (2012) propose LoadAtomizer to improve the

ata locality of map tasks and minimize the completion time

f multiple jobs. The LoadAtomizer strategy consists in assigning
asks on lightly loaded storage with consideration to data locality,

hich can balance the load between the storage nodes. LoadAt-

mizer can avoid I/O congestion and reduce the CPU I/O waiting

ime ratio of the map tasks. It could reduce the total execution

ime of jobs by up to 18.6%. However, it cannot reduce the data

kewness for the map and reduce tasks since it aims at balanc-

ng the I/O load and increase the data locality of the scheduled

asks. 

In Xiaohong et al. (2011b ); Polo et al. (2013) , the authors

resent scheduling techniques to improve the data locality of map

asks by dynamically collecting information about the received

orkload. Also, they propose to dynamically control and adjust the

rocess responsible for allocating the slots across the received jobs

o meet their specified deadlines. The obtained results show that

he proposed algorithm gives a better performance in terms of the

mount of transmitted data across the network and the execution

ime. To better improve these proposed scheduling techniques, the

uthors may consider the different types of received tasks (short,

ong, continuous, etc.) and calculate the remaining execution time

f the scheduled tasks. 

ata Locality of Reduce Tasks 

There are a few other research work Hammoud and Sakr (2011) ;

ian et al. (2013b ) that are proposed to improve the data-locality

or the reduce tasks. Hammoud and Sakr (2011) proposed the Lo-

ality Aware Reduce Task Scheduling ( LARTS ) algorithm to maxi-

ize data locality for the reduce tasks, i.e. , the intermediate results

enerated by the mappers. LARTS uses an early shuffling technique

o minimise the overall execution time by activating the reduce

ask after a defined percentage of mappers commit ( e.g. , a default

alue of 5%). Therefore, it can help avoid data skewness and reduce

he scheduling delay between the mappers and reducers. LARTS

s based on locating the sweet spots of the reducers. These sweet

pots can be defined as the time during which a reducer can rec-

gnize all its partitions. These spots are located by LARTS statically.

herefore, dynamic identifications of these spots can improve the

erformance of LARTS. Jian et al. (2013b ) propose a stochastic op-

imization framework to improve the data locality of reducers and

inimize the cost associated with fetching the intermediate data.

owever, this approach works under a fixed number of map and

educe slots in Hadoop; which may lead to an under or over uti-

ization of the available resources. 

Motivated by the challenges associated with the default sched-

ler in Storm, Xu et al. (2014b ) proposed a new stream-processing

ramework T-Storm based on the Storm framework. In fact, Storm

ses a default scheduler that assigns the received workload based

n the round-robin algorithm without considering the data local-

ty factor. Also, Storm assigns the workload to the nodes regardless

f their requirements or the availability of the resources Xu et al.

2014b ). Hence, T-Storm is proposed to use run time states to dy-

amically assign tasks to the nodes where the data are located

o that none of the workers is overloaded or underloaded, which

ould accelerate the task processing and minimize the online traf-

c in Storm. Moreover, it can achieve better performance with a

maller number of nodes since it allows fine-grained control over

he nodes consolidation. The experimental analysis shows that T-

torm can achieve a better performance (up to 84% speedup), and

 better data locality for the stream processing applications. Al-

hough T-STorm can achieve a good performance with 30% less

orker nodes, T-Storm still lacks a fault-tolerance mechanism to

andle failures in these nodes which have to process more work-

oad than others. 

.2.2. Data Placement-aware Scheduling 

Many studies are proposed to improve data placement strate-

ies within Hadoop and provide optimized data placement

chemes, e.g. , Jiong et al. (2010) ; Xiaohong et al. (2011a );
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Sharma et al. (2013) . These optimized schemes can help improve

the data locality for the scheduled tasks. 

For instance, Jiong et al. (2010) proposed to adapt the data

placement schemes in accordance to the workload distribution in

Hadoop clusters. They introduce an algorithm to initially distribute

input data across the nodes in accordance to the node’s data pro-

cessing speed. Second, they describe a data redistribution algo-

rithm to dynamically solve the data skew issue, by reorganizing

file fragments through the cluster nodes based on their computing

ratios. Although these proposed algorithms can help improve the

placement and the locality of data in Hadoop clusters, they do not

include a mechanism to handle redundant file fragments, neither

do they provide a mechanism to redistribute dynamically the data

for data-intensive applications working together. 

A Hierarchical MapReduce scheduler called HybridMR is pre-

sented in Sharma et al. (2013) to classify the received MapReduce

jobs based on their expected overhead to guide the placement be-

tween the physical and virtual machines in Hadoop clusters. In ad-

dition, HybridMR can dynamically organize the resources orches-

tration between the different map and reduce tasks and hence de-

crease their processing time by 40% over a virtual cluster and save

around 43% of energy. Despite the fact that HybridMR shows a good

performance, it cannot handle different types of workload in het-

erogeneous Hadoop environments and ensure a balanced workload

between the nodes. 

MRA++ ( Anjos et al., 2015 ) is a new Mapreduce framework for

Hadoop proposed to handle large heterogeneous clusters. It allows

Hadoop to efficiently process data-intensive applications. This is by

training tasks to collect information about data distribution in or-

der to dynamically update the data placement schemes within the

framework. MRA++ is mainly composed of a data division module

responsible for dividing the data for the tasks, a task scheduling

module that controls the task assignment to the available slots, a

clustering control module, that controls task execution, and a mea-

suring task module that controls and distributes the data. MRA++

can improve performance of Hadoop by 66.73%. It can also reduce

the network traffic by more than 70% in 10 Mbps networks. But, it

adds extra delays to the tasks’ processing times since they are col-

lecting more information and have to wait for the measuring task

module to assign them to the appropriate nodes. 

5.2.3. Data Replication-aware Scheduling 

Several studies address the problem of data replication in

Hadoop to improve storage space utilization, e.g. , Hui et al. (2012a );

Ananthanarayanan et al. (2011) ; Abad et al. (2011) . For instance,

Hui et al. (2012a ) propose the Availability-Aware MapReduce Data

Placement ( ADAPT ) algorithm to optimally dispatch data across

the nodes according to their availability, to reduce network traffic

without increasing the number of data replica. Their strategy can

improve network traffic, however, it may lead to more disk utiliza-

tion. 

Ananthanarayanan et al. (2011) propose Scarlett , which uses a

proactive replication scheme that periodically replicates files based

on the predicted popularity of data. In other words, Scarlett cal-

culates a replication factor for the data based on their observed

usage probability in the past history in order to avoid the problem

of data skewness. Scarlett is an off-line system that improves data

replicas using a proactive approach but, many changes can occur

in a Hadoop storage system including recurrent as well as nonre-

current changes. 

While Scarlett uses a proactive approach, Abad et al.

(2011) present the Distributed Adaptive Data REplication ( DARE ) al-

gorithm, which is a reactive approach to adapt the data popularity

changes at smaller time scales. The DARE algorithm aims at deter-

mining how many replicas to allocate; and at controlling where to

place them using a probabilistic sampling and competitive ageing
lgorithm. As a result, the data locality factor in DARE is improved

y 7 times when compared to the FIFO scheduler and by 85% in

omparison to the Fair scheduler. However, both Scarlett and DARE

o not take into account data with low replica factors. 

.3. Fairness-aware Scheduling 

In big data platforms’ clusters, data locality and fairness rep-

esent two conflicting challenges. Indeed, to achieve a good data

ocality, a maximum number of tasks should be submitted close

o their computation data. However, to achieve fairness, resources

hould be allocated to the tasks after being requested in order to

educe tasks delays ( Zaharia et al., 2010a ). Many research work in-

luding Jiayin et al. (2014) ; Isard et al. (2009) ; Yin et al. (2013) ;

ui et al. (2012c ); Phuong et al. (2012) ; Cho et al. (2013) are pro-

osed in the available literature to solve the above issues. 

Jiayin et al. (2014) present FaiR and Efficient slot configuration

nd Scheduling algorithm for Hadoop ( FRESH ), to find the match-

ng between the submitted tasks and the available slots. FRESH

an help not only minimize the makespan but, also fairly assign

vailable resources across the scheduled tasks. In Hadoop, each

ode has a specific number of slots. However, the Hadoop sched-

ler continuously receives concurrent jobs that require different

lots configurations. Therefore, Jiayin et al. (2014) extend FRESH

y adding a new management plan to dynamically find the best

lot setting. In other words, FRESH allows to dynamically change

he assignment of slots between the map and reduce tasks accord-

ng to the availability of slots and the requirement of the tasks.

fter a slot finishes its assigned task, FRESH can assign it to an-

ther task. While FRESH can improve the assignment of slots and

he fairness of the distribution of resources among the scheduled

asks, it does not ensure a better memory usage. 

Isard et al. (2009) propose Quincy, which is a flexible and ef-

cient scheduling algorithm to compute the scheduling distribu-

ion among the different nodes with a min-cost flow while improv-

ng data locality, fairness and starvation freedom factors. However,

uincy is only formulated based on the number of computers in

 cluster and there is no effort to dynamically reduce its cost in

erms of data transfer. 

Yin et al. (2013) show that processor-based schedulers like the

air scheduler can lead to a degradation of performance in terms

f execution time, in a multi-user environment. Therefore, they

ropose the Hybrid Parallel pessimistic Fair Schedule Protocol ( H-

FSP ), which is able to finish jobs later than the Fair Scheduler and

mprove the mean flow time of jobs while improving the fairness

etween the tasks and jobs. The H-PFSP use information about the

nished tasks over time to estimate the remaining execution time

f the scheduled jobs at predefined intervals and make incremen-

al estimations updates. The H-PFSP can reduce the total execution

ime but, it cannot guarantee an efficient resources utilisation in

he cluster. 

Hui et al. (2012c ) describe a scheduling algorithm based on a

ulti-queue task planning to adjust the maximum number of tasks

ssigned to each node by defining the value of fairness threshold

K% ”. The K%-Fairness scheduling algorithm can be suitable for dif-

erent types of workloads in MapReduce to achieve maximum of

ata locality under this constraint. However, this approach can-

ot support much continuous/dependent jobs in the queue since

t cannot decide how to fairly distribute them (due to tight depen-

encies between them) and reduce the associated overhead while

rocessing them. 

Phuong et al. (2012) propose a HyBrid-Scheduling ( HyBS ) al-

orithm for Hadoop. It is dedicated for processing data-intensive

orkloads based on the dynamic priority and data locality of the

cheduled tasks. In other words, it uses dynamic priorities infor-

ation, estimated map running times, and service level values
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efined by the user to minimize the delays for concurrent run-

ing tasks which may have different lengths. HyBS can guarantee

 fair distribution between the map and reduce tasks. Also, it de-

reases the waiting time between the map and reduce tasks by

esolving data dependencies for data intensive MapReduce work-

oads. This is by assigning a dynamic priority, obtained from his-

orical Hadoop log files, to the different tasks received in order to

educe the latency for different length (in terms of execution time)

oncurrent jobs. HyBS is using a greedy fractional Knapsack algo-

ithm ( Phuong et al., 2012 ) to assign jobs to the appropriate pro-

essing nodes. 

The authors of Cho et al. (2013) propose Natjam to evaluate the

mart eviction policies for jobs and tasks, the priorities for real

ime job scheduling and the resources availability and usage. Nat-

am is based on two main priorities policies. These policies are

ased on the remaining time of each task: Shortest Remaining

ime (SRT) in which tasks characterized by the shortest remaining

ime are the candidate to be suspended; and Longest Remaining

ime (LRT) in which tasks characterized by the longest remaining

ime will be suspended. The two proposed policies that are based

n priorities aim to reduce the execution time of each task. Next,

hey propose Natjam-R , a generalization of Natjam , which speci-

es hard and fix deadlines for jobs and tasks Cho et al. (2013) . So,

he deadline of Hadoop jobs can automatically define the priority

f the jobs and their composing tasks for accessing the resources

lots. This approach was found to have a negative impact ( i.e. , de-

ay) on short running tasks that have low priorities, since they can

et evicted several times. 

Guo et al. (2016b ) present FlexSlot a task slot management

cheme for Hadoop schedulers that can identify the straggling map

asks and adjust their assigned slots accordingly. This approach

an accelerate the execution of these straggling tasks and avoid

xtra delays. FlexSlot changes the number of slots on each node

n Hadoop according to the collected information about resource

tilisation and the straggling map tasks. Hence, the available re-

ources in Hadoop cluster are efficiently utilised and the problem

f data skew can be mitigated with an adaptive speculative exe-

ution strategy. The obtained results show that FlexSlot could re-

uce the total job completion times by up to 47.2% compared to

he Hadoop scheduler. However, FlexSlot generates a delay that can

mpact the processing of the Hadoop job since it is using the task-

illing-based approach in the slot memory resizing. In addition,

lexSlot allows to kill tasks multiple times, which may generate

ot only extra delays but also may cause the failure of the whole

ob. 

.4. Workload Balancing-aware Scheduling 

Distributing the received loads across computing nodes repre-

ents a crucial problem in big data platforms’ systems. An efficient

istribution can help improve the resources utilisation and guaran-

ee a fair distribution of tasks to be processed, resulting in a better

erformance for their schedulers. 

For instance, Chao et al. (2009) report that the First Come First

erved (FCFS) strategy works well only for jobs belonging to the

ame class ( e.g. , having the same size, the same resources re-

uirements). Thus, they propose a Triple-Queue Scheduler , which

ynamically classifies the received Hadoop jobs into three differ-

nt categories based on their expected CPU and I/O utilisation.

lso, they integrate a workload prediction mechanism called MR-

redict , which determines the type of the workloads on the fly and

istributes them fairly (based on their type) across the different

ueues. MR-Predict can increase the map tasks throughput by up

o 30% and reduce the total makespan by 20% over the Triple-

ueue scheduler. However, it still faces other issues to efficiently
anage the resources utilisation; to reduce the resources waste

nd to improve the data locality. 

Mao et al. (2011) propose a load-driven Dynamic Slot Controller

 DSC ) algorithm that can adjust the slots of map and reduce tasks

ccording to the workload of the slave nodes. Hence, DSC can im-

rove the CPU utilisation by 34% and the response time by 17%

hen processing 10 GB of data. But, the DSC algorithm does not

ake into account the issue of data locality while balancing the

oad between the nodes. 

Fei et al. (2013) propose Shortest Period Scheduler ( SPS ) to en-

ure that most of the jobs are finished before their specified dead-

ines. SPS supports preemption and can make dynamic decisions

hen new workflow plans are received periodically in the sched-

ler. SPS is limited to scheduling the independent tasks within the

eceived workflow. However, it should cover dependent tasks and

nalyse the impact of the communication between the scheduled

asks on their expected deadline and the resources utilisation. 

Peng et al. (2012) propose a Workload Characteristic Oriented

 WCO ) scheduler to consider the characteristics of the running

orkloads and make smart decisions that can improve the re-

ource utilisation. The WCO scheduler is able to dynamically de-

ect the difference between the received and the running work-

oads. Consequently, it can help balance the CPU and I/O usage

mong Hadoop nodes which could improve the system through-

ut by 17%. WCO can be improved by enhancing its static analysis

ethod used for the workload characteristics. 

Cheng et al. (2014) proposed to use the configuration of large

apReduce workloads to design a self-adaptive task scheduling

pproach. Their proposed solution consists of an Ant-based algo-

ithm that allows for an efficient workload distribution across the

vailable resources, based on the tasks characteristics. As a result,

heir approach can improve the average completion time of the

cheduled tasks by 11%. Also, they find that their proposed Ant-

ased algorithm is more suitable for large jobs that have multi-

le rounds of map task execution. However, this proposed algo-

ithm cannot cover multi-tenant scenarios in MapReduce. In addi-

ion, Cheng et al. Cheng et al. (2014) do not provide details about

he optimization of the Ant-algorithm to reduce its execution over-

ead. 

Tang et al. (2016b ) propose a scheduling algorithm (to opti-

ize the workflow scheduling) in which jobs are represented as

irected Acyclic Graph (DAG) and classified into I/O intensive or

omputations intensive jobs. Then, the scheduler can assign prior-

ties to the jobs based on their types and assign the available slots

ith respect to data locality and load balancing. But, this proposed

pproach was found to work well only for large jobs. It can nega-

ively impact the performance of small jobs. 

Li et al. (2014) propose WOrkflow over HAdoop ( WOHA ) to

mprove workflow deadline satisfaction rates in Hadoop clusters.

OHA relies on the job ordering and progress requirements to se-

ect the worklflow that falls furthest from its progress based on

he Longest Path First and Highest Level First algorithms. As a re-

ult, WOHA can improve workflow deadline satisfaction rates in

adoop clusters by 10% compared to the existing scheduling so-

utions (FIFO, Fair and Capacity schedulers). WOHA uses the work-

oads received over time to estimate the deadline of each task that

re not known by the scheduler ahead of time. In addition, the dy-

amic nature of Hadoop workloads may affect the performance of

he scheduler. But, developers of WOHA do not include these two

riteria while implementing it. 

Rasooli and Down (2012) propose a hybrid solution to select

he appropriate scheduling approach to use based on the number

f the incoming jobs and the available resources. This proposed

olution is a combination of three different schedulers: FIFO, Fair

haring and Classification, and Optimization based Scheduler for

eterogeneous Hadoop ( COSHH ). The COSHH scheduler uses Linear
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Programming (LP) to classify the incoming workloads and find an

efficient resources allocation using job classes requirements. The

aim of this hybrid scheduler is to improve the average completion

time, fairness, locality and scheduling times in order to improve

Hadoop’s scheduling performance. The FIFO algorithm is used for

under-loaded systems, the Fair Sharing algorithm is used when the

system is balanced and the COSHH is used when the system is

overloaded ( i.e. , peak hours). Rasooli et al. define three different

usage scenarios and specify when to use each of them, however,

they do not provide thresholds that can be used to decide about

which scheduler to follow. 

Sidhanta et al. (2016) propose OptEx, which is a closed-form

model that analytically analyses and estimates the job comple-

tion time on Spark. OptEx model uses the size of input dataset,

the number of nodes within the cluster and the number of oper-

ations in the job to be scheduled, to estimate the total comple-

tion time of the given job. The results show that it can estimate

the job completion time in Spark with a mean relative error of 6%

when integrated with the scheduler of Spark. Furthermore, OptEx

can estimate the optimal cost for running a Spark job under a spe-

cific deadline in the Service Level Objective (SLO) with an accuracy

of 98%. Although OptEx is the first model in the open literature

to analytically estimate the job completion time on Spark, it only

considers the job profiles of PageRank and WordCount as parame-

ters along with the size of the cluster and the dataset. This model

cannot be representative for real cluster where different workload

having different profiles are running. 

Sparrow ( Ousterhout et al., 2013 ) is a distributed scheduler that

allows the machines to operate autonomously and support more

requests from different applications running Hadoop or Spark. In

other words, Sparrow is a decentralized scheduler across a set of

machines that operate together to accommodate additional work-

load from users. When a scheduler in a machine fails, other ma-

chines may accept its received requests and process it accord-

ing to their availability. The challenge in Sparrow consists in bal-

ancing the load between the machines’ schedulers and providing

shorter response times, especially when the distributed schedulers

make conflicting scheduling decisions. Sparrow uses three main

techniques to improve the performance of its schedulers: Batch

Sampling, Late Binding , and Policies and Constraints. Batch Sampling

schedules m tasks in a job on the lightly loaded machines, rather

than scheduling them one by one. Late Binding places the m tasks

on the machine queue only when it is ready to accept new tasks

to reduce the waiting time in the queue that is based on FCFS. The

Policies and Constraints are to control the scheduling decisions and

avoid the conflicts on the scheduling decisions. Sparrow allows to

distribute the received workload and balance it across the available

workers in a shorter time. While Sparrow can reduce the execution

time of the jobs by up to 40%, it lacks mechanisms to take into ac-

count the requirements of the received workload while distribut-

ing them across the nodes. Also, it does not consider the resources

availability on each node, the schedulers accept the new requests

if the queue is not yet empty, which can overload the machines.

Moreover in case of a scheduler failure, the meta-data scheduling

of the tasks running on that machine will not be shared with the

other machines. 

5.5. Fault-Tolerance-aware Scheduling 

Although, Hadoop, Spark, Storm, and Mesos are equipped with

some built-in fault-tolerance mechanisms, they still experience

several tasks failures due to unforeseen events in the Cloud. For ex-

ample, the HDFS in Hadoop keeps multiple replicas of data blocks

on different machines to ensure an effective data restoration in

case of a node failure. The failed map and reduce tasks will be

rescheduled on other nodes and re-executed from scratch. This
ault-tolerant solution is associated with a high cost because of the

ask re-execution events, which can significantly affect the perfor-

ance of the Hadoop scheduler. To address the aforementioned

imitations, researchers have proposed new mechanisms to im-

rove the fault-tolerance of Hadoop ( e.g. , Quiane-Ruiz et al. (2011) ;

uan and Wang (2013) ). 

Quiane-Ruiz et al. (2011) proposed Recovery Algorithm for Fast-

racking ( RAFT ) for Hadoop to dynamically save the states of tasks

t regular intervals and at different stages. This approach allows

he JobTracker to restart the tasks from the last checkpoint in the

vent of a failure. Indeed, RAFT enables the Hadoop scheduler to

ot re-execute the finished tasks of the failed jobs since their in-

ermediate data are saved. So, the scheduler will only re-execute

he failed tasks. As a result of this strategy, RAFT can reduce the

otal execution time of tasks by 23% under different failure scenar-

os. 

Yuan and Wang (2013) propose an approach that dynamically

etects the failures of scheduled tasks and makes backups of the

asks. In case of a failure, the scheduler would launch the failed

asks on other nodes without losing their intermediate data. Al-

hough the two works presented in Quiane-Ruiz et al. (2011) ;

uan and Wang (2013) can improve the fault-tolerance of the sys-

em, they do not provide a mechanism to improve the availability

f the checkpoints and the used backups. 

Xu et al. (2012) claim that the long delays of jobs are

ue to the straggling tasks and that the LATE scheduler

aharia et al. (2008) can make inaccurate estimations of the re-

aining time of tasks, which may lead to resource waste. Thus,

hey propose a dynamic tuning algorithm that uses historical in-

ormation about tasks progresses to tune the weights of each map

nd reduce tasks. In addition, they design an evaluation approach

hat decides whether to launch a straggling task on another node

hen there are free slots in order to reduce the execution time and

esources waste. However, they do not propose a mechanism to

istinguish between different types of straggling tasks, i.e. , whether

t is a map or a reduce task. This is particularly important since it

an affect the speculative executions. 

Dinu and Ng (2012) analyse the behavior of the Hadoop frame-

ork under different types of failures and report that the recov-

ry time of the failed components in Hadoop can be long and can

ause important delays, which may affect the overall performance

f a cluster. They claim that sharing information about straggling

nd failed tasks between JobTrackers and TaskTrackers, can signifi-

antly improve the success rate of task executions. 

To quickly detect Hadoop nodes failures, Hao and

aopeng (2011) develop an adaptive heartbeat interval mod-

le for the JobTracker. Using this module, the JobTracker can

ynamically estimate its expiry interval for various job sizes. They

how that when the expiry interval decreases (which means that

he average number of heartbeats sent to the JobTracker increases),

he total execution time of small jobs decreases. In addition, they

ropose a reputation-based detector to evaluate the reputation of

he workers. A worker will be marked as failed when its reputa-

ion is lower than a threshold. They claim that if equipped with

heir proposed tools, Hadoop can detect node failures in shorter

imes and balance the load received by the JobTracker to reduce

ob execution times. However, they only consider the job size

hen deciding to adjust the heartbeat interval and they do not

nclude other parameters related to the nodes environment ( e.g. ,

unning load, availability of resources, failure occurrence). 

In addition to the above work, Astro ( Gupta et al., 2014 ) is de-

igned to predict anomalies in Hadoop clusters and identify the

ost important metrics contributing towards the failure of the

cheduled tasks using different machine learning algorithms. The

redictive model in Astro can detect anomalies in systems early

nd send a feedback to the scheduler. These early notifications
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an improve resources usage by 64.23% compared to existing im-

lementations of Hadoop schedulers. Astro can be improved by

dding mechanisms that enable a better distribution of workloads

etween the nodes of the cluster. This would reduce the execu-

ion time of the scheduled tasks by 26.68% during the time of an

nomaly. 

The execution of MapReduce jobs in Hadoop clusters can un-

ergo many failures or other issues, which may affect the response

ime and delay submitted jobs. Preemtion is proposed as an effec-

ive solution to identify straggling jobs and tasks in advance and

ake quick scheduling decisions to prevent a waste of resources.

ifferent approaches based on speculative executions have been

roposed to address this issue in distributed Hadoop clusters: 

Qi et al. (2014) , develop an algorithm called Maximum Cost Per-

ormance ( MCP ), to improve existing speculative execution strate-

ies. However, MCP was found to negatively impact the scheduling

ime of some jobs (batch jobs in particular) Shanjiang et al. (2014) .

The Combination Re-Execution Scheduling Technology 

 CREST ) Lei et al. (2011) algorithm is proposed to improve MCP,

y considering data locality during the speculative scheduling of

low running tasks. The authors propose to optimally re-execute

ap tasks having local data instead of launching speculative

asks without considering data locality. However, there is a cost

ssociated with the replication of executed map tasks. 

Self-Adaptive MapReduce scheduling ( SAMR ) uses hardware sys-

em information over time to estimate the progress of the tasks

nd adjust the weights of the map and reduce tasks, in order to

inimize the total completion time ( Quan et al., 2010 ). However,

AMR does not consider jobs characteristics in terms of size, exe-

ution time, weights, etc. 

Enhanced Self-Adaptive MapReduce scheduling ( ESAMR ) is de-

igned to overcome the drawbacks of SAMR and consider sys-

em information about straggling tasks, jobs length, etc. ESAMR

ses the K-means clustering algorithm to estimate tasks execution

imes and identify slow tasks. It is more accurate than SAMR and

ATE ( Zaharia et al., 2008 ). Although ESAMR can identify straggling

ap and reduce tasks and improve the execution time of jobs,

t does not provide rescheduling mechanisms for these straggling

asks and does not improve the number of the finished tasks. 

AdapTive faiLure-Aware Scheduler ( ATLAS ) Soualhia et al.

2015) is proposed as a new scheduler for Hadoop that adapts its

cheduling decisions to events occurring in the cloud environment.

TLAS can identify task failures in advance and adjust its schedul-

ng decisions on the fly based on statistical models. It can reduce

ask failure rates, resources utilisation and total execution time.

owever, it requires training its predictive model at fixed time in-

ervals, which may negatively impact the scheduling time. Also, it

ay face problems to find the appropriate scheduling rule or it can

ive wrong predictions that can cause the failure of tasks. 

Yildiz et al. (2015, 2017) propose Chronos , a failure-aware

cheduling strategy that enables early actions to recover the failed

asks in Hadoop. Chronos is characterized by a pre-emption tech-

ique to carefully allocate resources to the recovered tasks. It can

educe the job completion times by up to 55%. However, it is

till relying on wait and kill pre-emptive strategies, which can

ead to resource waste and degrade the performance of Hadoop

lusters. 

.6. Energy Efficiency-aware Scheduling 

The total energy consumption of the applications running on

ig data platforms depends on many factors including the num-

er of the low-load nodes and the processed load on each node.

everal studies addressed the issue of finding good task assign-

ents while saving the energy, e.g. , Mashayekhy et al. (2015) ; Wen

2016) ; Paraskevopoulos and Gounaris (2011) ; Chen et al. (2012) . 
Mashayekhy et al. (2015) propose to model the problem of sav-

ng energy on MapReduce jobs as an integer programming prob-

em and design two heuristics Energy-MapReduce Scheduling Algo-

ithm I and II (EMRSA-I and EMRSA-II). The proposed model con-

iders the dependencies between the reduce tasks and the map

asks such that all tasks are finished before their expected dead-

ines, while the main goal of the proposed approach is to mini-

ize the amount of energy consumed by these map and reduce

asks. EMRSA-I and EMRSA-II are evaluated using TeraSort, PageR-

nk, and K-means clustering applications and are able to reduce

he energy consumption by up to 40% on average, when compared

o the default scheduler of Hadoop. In addition, they can reduce

he makespan between the processed MapReduce jobs. However,

n the proposed model, the authors assume that map tasks be-

onging to the same job should all receive resources slots (same

ssumption for the reduce tasks), before the execution of the job.

owever, this is not generally the case in Hadoop and such restric-

ion can delay the execution of a MapReduce job if even a single

ap or reduce task fail to obtain a slot. 

Wen (2016) propose a dynamic task assignment approach to re-

uce the overall system energy consumption for dynamic Cloud

osts (CHs). The idea of the approach is to have a set of power-

n/suspending thresholds to satisfy the constant and variable traf-

c loads, migration overhead, and the processing power between

he CHs. Based on the proposed thresholds, the Hadoop sched-

ler can dynamically assign tasks to satisfy those constraints and

chieve better energy efficiency. The evaluation of these schemes

hows that setting the thresholds between the CHs can help obtain

he lowest energy consumption and acceptable execution times for

adoop jobs. However, there is an overhead that comes when sus-

ending or powering on the CHs, which can affect the network

raffic in Hadoop, especially when the frequency of these two op-

rations is high. 

Paraskevopoulos and Gounaris (2011) propose a strategy to

chedule the tasks for Hadoop, while balancing between energy

onsumption and response time. Their proposed strategy can help

dentify the nodes in a cluster that can satisfy the constraint of

ess energy in a reasonable response time. Next, it can determine

hich nodes should be turned on–or–off, and when that should be

one, based on the derived nodes and the received workload in the

luster. The experimental results show a significant improvement

n energy consumption without sacrificing the scheduler perfor-

ance. In this work, the authors only consider the response times

f the jobs when deciding about the best task scheduling policies

hat can minimize energy consumption. They do not consider bal-

ncing the workload between the nodes that have the highest im-

act on the energy consumption of a Hadoop cluster. 

Chen et al. (2012) introduce a scheduling approach for Hadoop

o minimize the energy consumption of MapReduce jobs. The pro-

osed approach consists in dividing the jobs into time-sensitive

obs and less time-sensitive ones. The former group of jobs

re run on dedicated nodes where there are enough resources,

hile the later ones run on the remaining nodes in the cluster.

hen et al. (2012) introduce a management framework for Hadoop

amed Berkeley Energy Efficient MapReduce (BEEMR). BEEMR is

ble to reduce the energy consumption in Hadoop clusters by 40–

0% under tight design constraints. However, although BEEMR can

chieve energy savings for workloads with significant interactive

nalysis, BEEMR cannot reduce the processing times of long run-

ing jobs that have inherently low levels of parallelism, even when

ll resources in the cluster were available Chen et al. (2012) . 

.7. Discussion 

In the previous subsections, we describe the different types of

cheduling approaches available in the open literature to solve the
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issues presented in Section 4 . Table 3 presents a classification of

these approaches and the addressed issues. The main addressed

issues in the studied papers are: improve the resources utilisa-

tion, reduce tasks delays, tasks dependency consideration, reduce

the execution times of tasks and jobs, improve the deadline sat-

isfaction of tasks, reduce network traffic, improve the data local-

ity/placement/replication strategies, reduce the data skew, balance

the workload, reduce failures rates (tasks, workers, etc), and re-

duce the amount of energy consumed in big data platforms. The

proposed approaches can be classified into three main categories:

dynamic, constrained , and adaptive . We observe that most of the

existing solutions propose to collect and use data about the envi-

ronment where the computations are processed ( e.g. , clusters, ma-

chines, workers). This can be explained by the dynamic behavior

and structure of the cloud computing environment where Hadoop,

Spark, Storm, and Mesos platforms are deployed. This requires to

adapt the scheduling decisions of these platforms according to the

continuous changes across the clusters. 

In general, we observe the lack of formal description of the

addressed issues and the proposed solutions in the papers anal-

ysed in this SLR. Indeed, we notice that most papers conduct em-

pirical studies ( e.g. , Wolf et al. (2010) ; Shanjiang et al. (2013) ;

Liu et al. (2014) ) and very few work propose analytical models

( e.g. , Convolbo et al. (2016) ; Guo et al. (2014) ; Cheng et al. (2015a ))

to solve the scheduling issues. So, an interesting direction could be

to improve the empirical studies by developing formal models in

order to improve the performance of the Hadoop, Spark, Storm,

and Mesos’ schedulers. Another concern is the benchmarks ( e.g. ,

WordCount, TeraSort) used to implement and build the proposed

solutions. The use of these benchmarks is highly dependent on the

objective of the study ( e.g. , resources optimization, failures recov-

ery). The absence of dataset to configure and define the parameters

of these benchmarks may lead to biased results. Furthermore, we

find that several studies conducted by the academics do not be-

come commercialized and part of Apache projects (Hadoop, Spark,

and Storm) or Mesos. Finally, we can conclude that applying and

adapting the proposed solutions for Hadoop to Spark, Storm, and

Mesos could be an interesting direction since we notice that only

a few work are done to improve the performance of Spark, Storm,

and Mesos compared to Hadoop. 

6. Research Directions on Task Scheduling in Big Data 

Infrastructures 

In this section, we present some suggestions for potential re-

search directions using the results from the above paragraphs.

These suggestions can help build a roadmap for future work re-

lated to task scheduling in the studied platforms, i.e. , Hadoop,

Spark, Storm, and Mesos. 

6.1. Resources Utilisation-aware Scheduling 

During our study, we observe that existing work in the litera-

ture propose different approaches to assign the map and reduce

slots and evaluate the performance of the scheduler. Moreover,

most of the studies randomly select the map tasks that satisfy the

slots requirements. But, it is very important to include the data lo-

cality issue while scheduling the map tasks in order to improve

their execution and hence, avoid the data skewness problem and

reduce the execution times of the reduce tasks (as mentioned in

Section 5 ). Besides, we notice that the task preemption while oc-

cupying or waiting for a slot can cause unpredictable delays. So,

an efficient approach is required to manage task preemption in

a way that do not generate an overhead and avoid task starva-

tion. Furthermore, analysing several factors ( e.g. , queue state, avail-

able slots, received workload, number of nodes) on the resources
tilisation can be helpful to guide the scheduler to change its

cheduling decisions based on the events occurring in its environ-

ent. The scheduler may consider different constraints-objectives

long with a fair distribution of load constraint while scheduling

he tasks. Examples of these constraints can be the Service Level

greement (SLA), the number of tasks having local data, the trans-

erred data in the network, etc. Finally, more studies need to be

one in order to improve the performance of Spark, Mesos, and

torm schedulers in terms of resources utilisation since we find

ery few work done in this aspect. For instance, considering the

haracteristics of workload running on Spark, Mesos, and Storm

an guide the scheduler to make better scheduling decisions while

ssigning the available resources to the tasks. Also, we believe that

ome of the existing solutions proposed to improve the perfor-

ance of Hadoop-Mapreduce can be reused and adapted for the

ther platforms. To do that, one should consider the data struc-

ure/format and the way these data are processed within these

latforms. For example, new approaches should consider the char-

cteristics of the in-memory operations performed in Spark us-

ng the Resilient Distributed Dataset (RDD). The allocation of re-

ources to tasks in Spark should be done, taking into account the

mount of memory required to store the intermediate data be-

ween the tasks, since a Spark job does the whole computation

nd then stores the final output to the disk. In the case of Storm, it

s important to consider the structure of the applications process-

ng the spouts and the bolts, and the dependency between these

asks, especially the bolts that process the data read from input

treams or the generated output of other bolt tasks. This is be-

ause there might be some bolt tasks running in sequential or/and

arallel. Therefore, one should consider the parallel and the se-

uential aspects while scheduling the tasks in Storm. For Mesos,

he type of frameworks should be considered ( e.g. CPU-intensive,

emory-intensive or network-intensive frameworks), when adapt-

ng existing solutions to improve the resources utilisation. This is

ecause the type of the framework can affect the performance of

he assigned resources by Mesos. So, Mesos should consider not

nly the amount of the assigned resources to each framework but

lso the type of resources to offer them. In addition, the two lev-

ls of the scheduling process of Mesos require synchronization be-

ween them. 

.2. Data Management-aware Schedulin g 

While reviewing the data-management aware scheduling so-

utions in the literature, we notice that the proposed schemes

hat place or duplicate the data across the cluster nodes are not

ade based on a workload analysis. Therefore, analysing the im-

act of different workloads, data placements and replication mech-

nisms are needed to improve the data locality of the scheduled

asks. Moreover, having a large number of local tasks may cause

n unbalanced workload across the processing nodes. Hierarchical

cheduling can be a solution for this issue; this approach consists

n having one scheduling layer to consider the data locality and

nother scheduling layer to handle workload balancing. These two

ayers should communicate their global and local information to

ooperate together. In addition, we observe that most of the so-

utions that try to achieve data locality are characterized by an

verhead due to the cost of finding the optimal distribution of file

ragments. This would significantly affect the performance of the

cheduler. So, better solutions need to be developed to reduce this

verhead. On the other hand, existing scheduling solutions cannot

uarantee high data locality for large jobs since there is a lot of

ata to be transferred. Therefore, efficient approaches should be

eveloped in this direction in order to handle different job scales.

oreover, we notice that the majority of the studies we find are

elated to Hadoop schedulers. So, more work should be done to
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Table 3 

An overview of task scheduling issues and solutions in big data pla tforms. 

Issue/ Map/Reduce Slot Assignment Data Collecting Load profiling Prefetchning & Recovery Failure 

Solution Dependency Assignment Shuffling Techniques Techniques Prediction 

Resources 

Variability 

Zhang et al. (2015) 

Jian et al. (2013c ) 

Liang et al. (2014) 

PASTORELLI et al. (2015) 

Wolf et al. (2010) 

Shanjiang et al. (2013) 

Liu et al. (2014) 

Jiayin et al. (2014) 

Yao et al. (2015) Tang et al. 

(2016a ) Isard et al. (2009) 

Jiang et al. (2016) Hindman et al. (2011a ) 

Task Delays Wolf et al. (2010) 

Shanjiang et al. (2013) 

Liu et al. (2014) 

Jiayin et al. (2014) 

Yao et al. (2015) Tang et al. 

(2016a ) Isard et al. (2009) 

Isard et al. (2009) Hui et al. (2012c ) 

Phuong et al. (2012) Cho et al. (2013) 

Dependency Tasks Yao et al. (2014) 

Peng et al. (2015b ) 

Yao et al. (2014) Peng et al. (2015b ) 

Execution Time Sidhanta et al. (2016) Rasooli and Down (2012) 

Zhang et al. (2015) Yao et al. (2014) 

Rasooli and Down (2011) 

Deadline 

Satisfaction 

Cheng et al. (2015c ) Wei et al. (2014) 

Ullah et al. (2014) Bin et al. (2013) 

Pletea et al. (2012) Khan et al. (2016) 

Peng et al. (2015b ) 

Data Locality/ 

Network Traffic 

Zaharia et al. (2008) 

Zaharia et al. (2010a ) 

Liying et al. (2011) 

Peng et al. (2015b ) Hindman et al. (2011a ) 

Cairong et al. (2012) 

Tseng-Yi et al. (2013) Kao and 

Chen (2016) Zaharia et al. (2008) 

Zaharia et al. (2010a ) 

Liying et al. (2011) Xu et al. (2014b ) 

Zaharia et al. (2008) 

Hui et al. (2012b ) 

Guo et al. (2012) 

Xue et al. (2015) 

Data Skew Liu et al. (2014) Liroz- 

Gistau et al. (2016) 

Coppa and 

Finocchi (2015) 

Zheng et al. (2014) 

Guo et al. (2016b ) Xiaohong et al. (2011b ) Polo et al. (2013) Asahara et al. (2012) Sangwon et al. (2009) 

Chunguang et al. (2013) 

Wang et al. (2013) 

Hammoud and 

Sakr (2011) Jian et al. 

(2013b ) 

Data Placement Jiong et al. (2010) Xiaohong et al. (2011a ) 

Sharma et al. (2013) 

Data Replication Hui et al. (2012a ) 

Ananthanarayanan et al. (2011) 

Abad et al. (2011) 

Unbalanced 

Workload 

Fei et al. (2013) Cheng et al. (2014) 

Li et al. (2014) Ousterhout et al. (2013) 

Chao et al. (2009) 

Mao et al. (2011) 

Peng et al. (2012) 

Tang et al. (2016b ) 

Rasooli and 

Down (2012) 

Failures Rates Quiane-Ruiz et al. (2011) Yuan and 

Wang (2013) Lei et al. (2011) 

Xu et al. (2012) Dinu and Ng (2012) 

Hao and Haopeng (2011) 

Qi et al. (2014) Quan et al. (2010) 

Quiane- 

Ruiz et al. (2011) 

Yuan and 

Wang (2013) 

Lei et al. (2011) 

Xu et al. (2012) 

Dinu and 

Ng (2012) 

Hao and 

Haopeng (2011) 

Qi et al. (2014) 

Quan et al. (2010) 

Gupta et al. (2014) 

Soualhia et al. (2015) 

Yildiz et al. (2015) 

Yildiz et al. (2017) 

Energy 

Consumption 

Mashayekhy et al. (2015) 

Wen (2016) 

Mashayekhy et al. (2015) 

Wen (2016) 

Paraskevopoulos and Gounaris (2011) Chen et al. (2012) 
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analyse the performance of Spark, Mesos and Storm in terms of

data locality, replication and duplication. 

6.3. Fairness-aware Scheduling 

Distributing the available resources slots among the scheduled

tasks is important in order to avoid the starvation problem. How-

ever, to the best of our knowledge, the research studies that ad-

dress this issue do not consider the difference between the map

and reduce tasks during slots assignments. Indeed, while esti-

mating the remaining execution time, the proposed solutions do

not distinguish between them; which may affect the slots as-

signment since the map and reduce tasks have different slot re-

quirements. In addition, developing a constraint-solver that com-

bines several objectives including data locality, resources utilisation

and fairness can significantly improve the performance of sched-

ulers on these platforms. Implementing heuristics can solve this

constrained-problem, however, it may cause an overhead. More-

over, we notice that most of the studies in this research direc-

tion do not handle fairness for continuous jobs that can occupy

the available slots for longer time than the small ones. Therefore,

proposing an efficient approach that can estimate the amount of

slots required to guarantee successful processing for both contin-

uous and non-continuous jobs while having a fair distribution for

the available slots would be useful. Also, it is very important to

reduce the amount of data communication for dependent jobs, in

order to mitigate the overhead due to the transfer of intermediate

data. 

6.4. Workload Balancing-aware Scheduling 

To improve the performance of schedulers of the studied plat-

forms, one can develop efficient solutions that estimate the re-

maining execution time of the scheduled tasks based on their

progress rate in order to redistribute the loads across the nodes.

Indeed, existing schedulers use a simple approach to estimate the

remaining execution time and hence the resulting average execu-

tion time cannot be used in heterogeneous clusters and may lead

to unbalanced workloads. Besides, the performance of the predic-

tion models used to estimate the type of received workloads can

significantly affect the load distribution. Hence, it is required to

build robust models with high accuracy, to predict the characteris-

tics of the upcoming loads. Based on these predictions, the sched-

uler can make better decisions when assigning the slots and guar-

antee data locality for the scheduled tasks. Moreover, it is very

important to propose a model to adjust the scheduling decisions

considering dependencies between the tasks within the workload.

This can help reduce the overhead to communicate the intermedi-

ate results and allow for faster processing. Also, it can reduce the

amount of data transferred in the network. The analysis of the im-

pact of virtual machines placements on the processing of the load

could enable a better workload distribution. 

6.5. Fault-Tolerance-aware Scheduling 

Reducing the occurrence of failures in big data platforms is

very important in order to improve the resources utilisation and

the performance of the scheduled tasks. However, existing sched-

ulers only make use of a limited amount of information when

re-executing failed tasks. This is due to the lack of information

sharing between the different com ponents of these frameworks.

Adaptive solutions that collect data about the events occurring

in the cloud environment and adjust the decisions of the sched-

uler accordingly could help avoid decisions leading to task fail-

ures. Moreover, the speculative execution still experiences many

failures and waste of resources due to inaccurate estimations of
he scheduled tasks progresses or the availability of resources. This

an affect their starting time and the number of speculatively ex-

cuted tasks. Therefore, it is very important to analyse the impact

f different factors on the start time and the number of specula-

ive executions required for the straggling tasks. Finally, it is very

mportant to distinguish between the failure of a map and a re-

uce task since they have different impacts on the processing of

asks. 

.6. Energy-Efficiency-aware Scheduling 

Determining the configuration for big data platforms like

adoop or Spark can be very helpful to achieve energy savings and

ake efficient scheduling decisions. Also, analysing the correlation

etween the number of nodes in a cluster and the amount of en-

rgy consumed can be relevant in order to specify the nodes to

urn on–or–off, so that the number of active nodes satisfy the re-

uirements of the received tasks. Moreover, analysing the level of

arallelism in a cluster when the number of active nodes increases

an be an important direction to guide the scheduler to scale up–

r–down the level of parallelism for the scheduled tasks especially

or the long jobs. In addition, most of the studies proposed to im-

rove the performance of Hadoop schedulers does not consider the

mpact of delaying the execution of tasks on the overall perfor-

ance of the scheduler in terms of users’ requirements. Another

spect that can be interesting for future studies is to analyse the

mpact of frequencies at which machines are turned on or off in a

luster, especially large ones, on the amount of energy consumed.

lthough turning off some nodes in a cluster can help reduce en-

rgy consumption, this can generate more traffic on the network

ince the scheduled tasks may not find their data on the nodes

here they will be executed; which could increase the number of

ata transfer in the cluster. 

. Conclusion 

In recent years, task scheduling has evolved to become a crit-

cal factor that can significantly affect the performance of cloud

rameworks such as Hadoop, Spark, Storm and Mesos. This cru-

ial issue is addressed by many researchers. However, to the best

f our knowledge, there is no extensive study on the literature

f task scheduling for these frameworks that classifies and dis-

usses the proposed approaches. Hence, we perform a SLR to re-

iew existing literature related to this topic. In this work, we re-

iew 586 papers and identify the most important factors affecting

he performance of the proposed schedulers. We discuss these fac-

ors in general with their associated challenges and issues namely,

esources utilisation, total execution time, energy efficiency etc.

oreover, we categorize the existing scheduling approaches from

he literature ( e.g. , adaptive, constrained, dynamic, multi-objective)

nd summarise their benefits and limitations. Our mapping study

llows us to classify the scheduling issues in different categories

ncluding resources management, data management (data locality,

ata placement and data replication), fairness, workload balanc-

ng, fault-tolerance, and energy efficiency. We describe and dis-

uss the approaches proposed to address these issues, classify-

ng them into four main groups; dynamic scheduling approaches,

onstrained scheduling approaches, and adaptive scheduling ap-

roaches. Finally, we outline some directions for future research

hat can be included in a roadmap for research on task and jobs

cheduling in Hadoop, Spark, Storm and Mesos frameworks. 
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