
ATLAS: An Adaptive Failure-Aware Scheduler for Hadoop

Mbarka Soualhia1 Foutse Khomh2 Sofiène Tahar1

1Concordia University, 2Polytechnique Montréal, Montréal, Québec, Canada

{soualhia, tahar}@ece.concordia.ca, foutse.khomh@polymtl.ca

Abstract—Hadoop has become the de facto standard for pro-
cessing large data in today’s cloud environment. The performance
of Hadoop in the cloud has a direct impact on many important
applications ranging from web analytic, web indexing, image and
document processing to high-performance scientific computing.
However, because of the scale, complexity and dynamic nature of
the cloud, failures are common and these failures often impact
the performance of jobs running in Hadoop. Although Hadoop
possesses built-in failure detection and recovery mechanisms,
several scheduled jobs still fail because of unforeseen events in
the cloud environment. A single task failure can cause the failure
of the whole job and unpredictable job running times. In this
paper, we propose ATLAS (AdapTive faiLure-Aware Scheduler),
a new scheduler for Hadoop that can adapt its scheduling
decisions to events occurring in the cloud environment. Using
statistical models, ATLAS predicts task failures and adjusts its
scheduling decisions on the fly to reduce task failure occurrences.
We implement ATLAS in the Hadoop framework of Amazon
Elastic MapReduce (EMR) and perform a case study to compare
its performance with those of the FIFO, Fair and Capacity
schedulers. Results show that ATLAS can reduce the percentage
of failed jobs by up to 28% and the percentage of failed tasks by
up to 39%, and the total execution time of jobs by 10 minutes
on average. ATLAS also reduces CPU and memory usages.

Keywords-Failure Prediction, Scheduler, Cloud, Hadoop, Ama-
zon Elastic MapReduce

I. INTRODUCTION

MapReduce [1] has emerged as the leading programming

model for large-scale distributed data processing. Hadoop [2],

the open-source implementation of MapReduce has become

the framework of choice on many off-the-shelf clusters in the

cloud. It is extensively used in many applications ranging from

web analytic, web indexing, image and document processing

to high-performance scientific computing and social network

analysis. Major large companies like Google, Facebook, Yahoo

or Amazon rely daily on Hadoop to perform important data-

intensive operations in their data centers. However, because

of the scale, complexity and the dynamic nature of cloud

environments, failures are common in data centers powering

the cloud. Studies [3] show that more than one thousand in-

dividual machine failures and thousands of hard-drive failures

can occur in a cluster during its first year of service. Several

power problems can also happen bringing down between 500

and 1000 machines for up to 6 hours. The recovery time of

these failed machines being as high as 2 days. These frequent

failures in data centers have a significant impact on the

performance of applications running Hadoop [3]. Dinu et al.

[3] who examined the performance of Hadoop under failures

reported that many task failures occur because of a lack of

sharing of failure information between the different compo-

nents of the Hadoop framework. The Hadoop scheduler is a

centrepiece of the Hadoop framework. An effective Hadoop

scheduler can avoid submitting tasks on fault-prone machines;

which would reduce the impact of machine failures on the

performance of the applications running Hadoop. However,

basic Hadoop scheduling algorithms like the FIFO algorithm,

the Fair-sharing algorithm, and the Capacity algorithm only

rely on a small amount of system information to make their

scheduling decisions. They are not equipped with pro-active

failure handling mechanisms. Yet, a single task failure can

cause the failure of a whole job and unpredictable job running

times. In our previous work [4] we have shown that it is

possible to predict task and job scheduling failures in a

cloud environment and that such predictions can reduce the

percentage of failed jobs by up to 45%. But, we did not

propose an efficient strategy to reschedule tasks predicted as

failed. In this paper, we build on that previous work and

propose ATLAS (AdapTive faiLure-Aware Scheduler), a new

scheduler for Hadoop that adapts its scheduling decisions to

events occurring in the cloud environment. Using informa-

tion about events occurring in the cloud environment (e.g.,

resource depletion on a node of the cluster or failure of a

scheduled task) and statistical models, ATLAS predicts the

potential outcome of new tasks and adjusts its scheduling

decisions accordingly to prevent them from failing. In addition,

ATLAS scheduler introduces novel strategies to reschedule

tasks predicted as failed like multiple speculative executions

and penalty mechanism. We implement ATLAS in the Hadoop

framework of Amazon Elastic MapReduce (EMR). To the best

of our knowledge, ATLAS is the first scheduler for Hadoop

that adapts its scheduling decisions based on predicted fail-

ures information. We perform a case study using multiple

single and chained Hadoop jobs (these jobs are composed

of WordCount, TeraGen and TeraSort job units, to compare

the performance of ATLAS with those of the FIFO, Fair

and Capacity schedulers. To assess the performance of each

scheduler, we compute the total execution times of jobs, the

amount of resources used (CPU, memory, HDFS Read/Write),

the numbers of finished and failed tasks and the numbers of

finished and failed jobs. Using these information, we answer

the following research question.

RQ: Does ATLAS outperforms FIFO, Fair, and Capacity

schedulers in terms of execution time, number of finished

and failed tasks, number of finished and failed jobs, and

resource usage? Results show that ATLAS can reduce the

percentage of failed jobs by up to 28%, the percentage of

failed tasks by up to 39%. Although ATLAS requires training

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

a predictive model, we found that the reduction in the number

of failures largely compensates for the model training time. In

fact, ATLAS even reduces the total execution time of jobs by

10 minutes on average. ATLAS also reduces CPU and memory

usages, as well as the number of HDFS Reads and writes.

The remainder of this paper is organized as follows: Section

II presents background information about Hadoop. Section III

presents the motivation for this work. Section IV describes

our proposed scheduler (i.e., ATLAS). Section V describes

our case study and discusses the obtained results. Section

VI discusses threats to the validity of our work. Section VII

summarizes the related literature, and Section VIII concludes

the paper and outlines some avenues for future works.

II. BACKGROUND

A. MapReduce-Hadoop

MapReduce is a programming model designed to perform

parallel processing of large datasets using a large number of

computers (nodes) [1]. It splits jobs into parallel sub-jobs to

be executed on different processing nodes where the data

are located instead of sending the data to where the jobs

will be executed. A MapReduce job is composed of map

and reduce functions and the input data. The map function

subdivides the input record into a set of intermediate <key,

value> pairs. The input data which are called splits represent

a set of distributed files that will be assigned to the mappers.

The reduce function takes a set of values to process for a

same key and generates the output for this key. MapReduce

requires a master (known as “JobTracker”) that controls the

execution procedure across the mappers (i.e., worker running

a map function) and the reducers (i.e., worker running a

reduce function), using “TaskTrackers”, to ensure that all the

functions are executed and have their input data.

Hadoop [2] is a Java-based open source implementation of

MapReduce proposed by Cutting and Cafarella in 2005. It

has become the de facto standard for processing large data

in today’s cloud environment. Hadoop is composed of two

main units: a storage unit (Hadoop Distributed File System

(HDFS)) and a processing unit (MapReduce). It has a Master-

Slave architecture: the master node consists of a JobTracker

and NameNode. A slave (or worker) node can act as both

a DataNode and TaskTracker. Hadoop hides all system-level

details related to the processing of parallel jobs (such as the

distribution to HDFS file store or error handling), allowing

developers to write and enhance their parallel programs while

focusing only on the computations issues rather than the

parallelism ones.

B. Hadoop Schedulers

The default scheduling algorithm of Hadoop is based on

the First In First Out (FIFO) principle. Facebook and Ya-

hoo! have developed two new schedulers for Hadoop: Fair

Scheduler and Capacity scheduler, respectively. The default

scheduler of Hadoop uses a FIFO queue [5]. The received jobs

are partitioned into sub-tasks which will be loaded into the

queue and executed in the order in which they are submitted,

regardless of the type and size of the jobs. Although, the FIFO

algorithm is easy to implement and grants a full access to

resources to the scheduled jobs, starvation is possible as a

scheduled job can use the entire resource of the cluster for a

long time, while others wait in the queue until they time out.

The Fair Scheduler [5] was developed by Facebook to ensure

that resources are assigned fairly among different jobs so that

all users get on average the required resources available in the

cluster over the time. It supports multi-user execution in one

cluster unlike the default FIFO scheduler of Hadoop. More-

over, it can use the priorities assigned to users applications as

a factor to determine the required resources. Therefore, it can

guarantee that long jobs will not be starving, by optimizing

their waiting time in the queue. The Capacity scheduler [5]

was originally implemented by Yahoo!. It supports multi-user

execution within one cluster and allows large number of users

to execute their jobs fairly over time. In fact, it divides the

cluster into multiple queues with configurable capacity (i.e.,

CPU, memory, disk, etc.). The queues support jobs priorities

and guarantee that there is a limit on the allocated resources to

all users in order to prevent some jobs from using all available

resources in the queue where they are assigned.

III. MOTIVATION

A. Limitation of Current Hadoop’s Implementation

Dinu et al. analysed the behavior of the Hadoop framework

under different types of failure and found that TaskTracker

and DataNode failures are very important since they affect

the availability of jobs input and output data [3]. In addition,

these failures can cause important delays during the execution

of HDFS read and write procedures. Their experiments showed

that a single failure can lead to unpredictable execution time;

for example the average execution time of a job, which is

220s, can reach 1000s under a TaskTracker failure and 700s

under a DataNode failure. Moreover, they claimed that the

recovery time of the failed components (such as TaskTracker

or DataNode) in Hadoop can be long and can cause jobs delays

which may affect the overall performance of a cluster. As an

illustration, let’s consider a TaskTracker that sends heartbeats

to the JobTracker every 10 minutes (this is the default value), if

a failure occurs in the TaskTarcker within the first minute after

a communication with the JobTracker, all the tasks assigned

to this TaskTracker will fail and the JobTracker will notice

these failures only after about 9 minutes, resulting in a delay

in the rescheduling of the failed tasks and an increase of

the execution time of the job. Even if tasks are speculatively

executed to prevent their full rescheduling in the event of a

failure, there is still a cost associated with this replication (the

resource spent on the speculative executions) [3].

In addition, DataNode failures have a large impact on the

start up time of speculative task executions. This is because

of the statistical nature of the speculative execution algorithm

which is based on data about task progress. In fact, if a task

was making good progress and suddenly fails because of a

DataNode failure, its speculative execution will start with a

delay (i.e., later than speculative executions of straggler tasks),

since Hadoop expected a normal behavior from that task. Also,

many map and reduce tasks may fail because they exceeded

the number of failed attempts allowed by the TaskTracker. For

simplicity and scalability, each computing node in Hadoop

manages failure detection and recovery on its own and hence

the launched tasks can not share failure information between

them. Therefore, multiple tasks, including the speculative

tasks, may fail because of an error already encountered by

a previous task [3].

B. Problem Formulation

Let’s consider N jobs submitted to Hadoop, where each job

is composed of X map tasks and Y reduce tasks. Let’s assume

that each job is using R(CPU, Memory, HDFS Read/Write)

resources from M machines in an Hadoop cluster. Each

map/reduce task is allowed a maximum number of scheduling

attempts: each new task is assigned to a node and if it fails it

can be rescheduled multiple times either on the same node or

on another available node. When a task exceeds its maximum

number of scheduling attempts allowed by the TaskTracker,

the task is considered to be failed, otherwise it is finished

successfully. Because of the dependency between map and

reduce tasks, if either a map or a reduce task fails, the whole

job to which the task belongs will fail as well, even if all

the other tasks in the job were completed successfully. For

example, in Figure 1, Job3 failed because one of its map tasks

failed (because it exceeded its maximum number of scheduling

attempts). As a consequence of the failure of this map task,

all reduce tasks were failed automatically.

����

�������� ����

������
�	A�

B	�C��DD
�	A�DE

B	�C��DD
�	A�DF

�	�E

�	���	���	���	��

�	�F

�E

�F

��

��

�E

�F

��

���DE B	�C��DD
�	A�D��	��

�	�D�D�������	�

 ��!���"������ �D#D��$D���C%DD�D#D��A���D���C%DDD���DD#D�����$�D

&�A		$D"�'�A�!��D(����

���DF ���D�

Fig. 1: Example of Hadoop Job Failure

More formally, if S(job) is the outcome of an executed

job; S(MapAttip) the status of a mapi after the pth attempt

(we give a value of 1 when an attempt is successful and 0

otherwise) and S(ReduceAttjq) the status of reducej after

the qth attempt. If K and L are the maximum numbers

of scheduling attempts allowed for map and reduce tasks

respectively:

S(job) = [
X∏

i=1

(
K∑

p=1

S(MapAttip))] ∗ [
Y∏

j=1

(
L∑

q=1

S(ReduceAttjq))] (1)

Given that the execution time of a task is the sum of

execution times of all its launched attempts (both the finished

and the failed attempts), the more a task experience failed

attempts, the longer its execution time will be. This delay

in the execution of the tasks will also translate into longer

execution times for the job (to which the tasks belong) and

larger resources usages. More specifically, if T(job) is the total

execution time of a job composed of a set of A = {mapi}i∈X

map tasks and a set of B = {reducej}j∈Y reduce tasks.

If T (MapAttip) and T (ReduceAttjq) are respectively the

execution times of the mapi and reducej tasks during the

attempts p, q respectively:

T (job) = MaxA(
K∑

p=1

T (MapAttip)) + MaxB(
L∑

q=1

T (ReduceAttjq)) (2)

Therefore, we believe that it is very important to reduce

the number of tasks failed attempts if we want to improve the

overall performance of an Hadoop cluster. By reducing the

number of tasks failed attempts, one will reduce the turnaround

time of jobs running in the cluster. If one can predict task fail-

ure occurrences and adjust scheduling decisions accordingly

to prevent failures from occurring, one may be able to reduce

the number of tasks failed attempts. In our previous work [4]

we have shown that it is possible to achieve such predictions.

In the following Section IV, we build on our previous work

and propose ATLAS, a scheduling algorithm that adapts its

scheduling decisions based on predicted failures information.

IV. ATLAS: AN ADAPTIVE FAILURE-AWARE SCHEDULER

A. Proposed Methodology

In this section, we present our scheduler ATLAS, which

can reduce the number of tasks failed attempts by predicting

task scheduling outcomes and adjusting scheduling decisions

to prevent failure occurrences. We describe the approach

followed to analyse Hadoop’s log files and build task failure

predictive models. Figure 2 presents an overview of this

approach. First, we run different jobs on Hadoop cluster in

order to get trace of data about previously executed tasks and

jobs. Next, we analyse log files obtained from Amazon EMR

Hadoop Clusters and extract jobs and tasks main attributes.

Next, we analyse correlations between tasks attributes and

tasks scheduling outcomes. Finally we apply statistical pre-

dictive learning techniques to build task failures prediction

models. The remainder of this section elaborates more on each

of these steps.

���
�����
���
�����

	AB�CD��E

F�C����
�����E���C�

F�C���
������C�F�C���

������C�F�C���
	�������C���

��D���E
���
�����

���E�A�
�������E��D���

���E�A�
��� ����E��D���

�!��"������#���
����!C�!A����

F�C������D���E

$E�%���!�����#���
����DE�

	�������A���
$E�C�A��������E!�!�
&��AB�!�����E!�!�'

����	(�
�!���C�������
����DE�)�*�E��
	AB�CD��E

���E�A�
��� ����E��D���

Fig. 2: Overview of Our Proposed Methodology

1) Extraction of Tasks/Jobs Attributes: First, we run dif-

ferent workload in parallel including single and chained jobs

on Amazon EMR Hadoop clusters. We run different single

jobs in parallel such as WordCount, TeraGen, TeraSort to get

different workload on several machines. In addition, we run

chained jobs (sequential, parallel and mix chains) composed

of WordCount, TeraGen, TeraSort jobs to get different types

of job running on the cluster. Also, we vary the size of the

used jobs (number of map and reduce tasks, number of jobs

in a chained job). These jobs represent different job pattern

similar to the ones running in real world applications. We

implemented a bash script to extract job/task attributes. So, for

each job we extracted: job ID, priority, execution time, number

of map/reduce, number of local map/reduce tasks, number of

finished/failed map/reduce tasks and the final status of the job.

For each task we extracted the following information: job ID,

task ID, priority, type, execution time, locality, execution type,

number of previous finished/failed attempts of the task, num-

ber of reschedule events, number of previous finished/failed

tasks, number of running/finished/failed tasks running on the

TaskTracker, the amount of used resources (CPU, Memory

and HDFS Read/Write) and the final status of the task. More

details about the job and task attributes can be found in [6].

2) Profiling of Tasks/Jobs Failure: To identify the correla-

tion between job/task scheduling outcome and their attributes,

we analyse the dependencies between the jobs and tasks and

perform a mapping between the failed ones and their attributes.

Second, we checked the obtained data to identify the most

relevant attributes that impact the final scheduling outcome of

task/job by removing the ones having unchanged value or null

value. This step is preliminary to the following one.

3) Statistical Predictive Learning: We aim to explore the

possibility to predict a potential task failure in advance based

on its collected attributes and machine learning techniques.

We believe that if we can share the failure information

between tasks in advance, we can prevent the occurrence of the

predicted failure and reschedule them on appropriate clusters

to ensure their timely and successful completion. To do so,

we choose several regression and classification algorithms in

R [7] to build models: GLM (General Linear Model), Random

Forest, Neural Network, Boost, Tree and CTree (Conditional

Tree). More details about these algorithms can be found in [6].

We use different training and testing data set for both jobs and

tasks. We collected data related to 70,000 jobs and 180,000

tasks from the Hadoop cluster we used in our experiments as

described in Section IV-A1. The log data were collected over a

fixed period of time of 10 minutes. The training time is related

to the steps of training process and not to the complexity of

the running jobs. We apply 10-fold random cross validation to

measure the accuracy, the precision, the recall and the error

of the prediction models [7]. In the cross validation, each data

set is randomly split into ten folds. Nine folds are used as the

training set, and the remaining fold is used as the testing set.

B. The ATLAS Scheduling Algorithm

ATLAS aims to provide better scheduling decisions for

predicted failed tasks, in order to ensure their successful exe-

cution. A scheduling decision may require either assigning the

tasks to other TaskTrackers with enough resources or waiting

for some other tasks to be finished. We designed ATLAS using

the predictive model that provided the best results in terms of

precision and accuracy when predicting tasks scheduling out-

comes. ATLAS integrates with any Hadoop’s base scheduler

(like FIFO, Fair, Capacity, etc). In fact, when tasks are pre-

dicted to succeed, ATLAS relies on Hadoop’s base scheduler

to make its scheduling decision. Algorithm 1 presents ATLAS

in details. The main algorithm is composed of 3 main parts:

(1) a task failure prediction algorithm, (2) an algorithm to

check the availability of resources, and (3) a task reschedul-

ing algorithm (for potential failed tasks). We implemented a

procedure to collect the attributes of the tasks (map/reduce)

as described in [6]. The attributes of the tasks represent the

predictors of our models. Using the values of these attributes,

the failure prediction algorithm predicts whether a task will

be finished or failed if executed. The response of the trained

models is a binary variable taking “True” if a scheduled

task succeeds and “False” if it fails. We implemented two

different prediction algorithm for the mappers and the reducers

since they have different input parameters. Next, if a task is

predicted to succeed, our algorithm checks the availability of

the TaskTracker and DataNode to verify if they are activated or

not, since we noticed that the scheduler may assign tasks to a

dead TaskTracker, because of the predetermined frequency of

heartbeats between the JobTracker and TaskTracker (between

two heartbeats a JobTracker has no means to know that a

TaskTracker is dead).

Moreover, we implemented a procedure to modify the time

spent between two successive heartbeats based on collected

information about TaskTracker failures. This procedure is

running in parallel along with ATLAS. So, if there are very fre-

quent TaskTracker failures (i.e., more than 1/3 of TaskTrackers

were failed between two heartbeats), the time between two

heartbeats will be decreased in order to detect faster node

failures and reschedule tasks early on, on other alive nodes.

This time is decreased each time by half of the previous time

elapsed between two heartbeats (i.e., the value was 10 min,

then it will be decreased to 5 min) until reaching a minimum

value. The minimum value in our experiment is 2 min. If

there are less TaskTracker failures (i.e., less than 1/3 of the

workers), this time will be increased in order to reduce the

cost associated with communication between the JobTracker

and TaskTracker. The value of heartbeat is adjusted on the fly

according to events related to TaskTracker failures.

After checking the TaskTracker, ATLAS checks if there are

enough slots on the selected TaskTracker or not since some

tasks may fail because of a high number of concurrent tasks

on a TaskTracker. If an assigned task is predicted to fail but

there are enough available resources in the cluster, ATLAS

will launch the task speculatively on many nodes (specifically

the ones that are not very distant) that have enough resources,

in order to speed up the execution of the task and increase

the chances of success of the task. All the decisions made

by the ATLAS scheduler are controlled by a time-out metric

from Hadoop’s base scheduler. Hence, if a task reaches its

time-out, its associated attempt will be considered as failed

and the task will be rescheduled again but with a low priority.

We rely on a penalty mechanism to manage the priority of

the tasks. We assign a penalty to tasks causing delays to other

tasks and tasks that are predicted to fail multiple times. This

penalty reduces their execution priority, causing them to wait

in the queue until enough resources are available to enable

their speculative execution on multiple nodes. In Algorithm 1,

we denote JobTracker as JT, TaskTracker as TT and DataNode

as DN.

Algorithm 1 : The ATLAS Scheduling Algorithm

1: if (TypeofTask(Task) == ”Map”) then
2: /* Collect attributes of Task as described in [6] */

3: Attributes = Collect-Attributes-Map(Task)

4: /* Learning Algorithm will predict if Task will be finished/failed */

5: Predicted-Status = Predict-Map(Task, Attributes)

6: else
7: Attributes = Collect-Attributes-Reduce(Task)

8: Predicted-Status = Predict-Reduce(Task, Attributes)

9: end if
10: if (Predicted-Status == ”SUCCESS”) then
11: /* Check whether the TT and DN are dead or alive */

12: Check-Availability(TT,DN)

13: if (TT and DN are available) then
14: /* Test if the TT have enough slots to serve Task */

15: Check-Availability-Slots(Task,TT)

16: if (Slots are available in TT) then
17: Execute(Task,TT)

18: else
19: Wait Until Free Slots in TT and Time-Out Not Reached

20: if (Time-Out is Reached) then
21: /* Resubmit Task since it will fail in such conditions */

22: Send to Queue + Penalty

23: else
24: /* Execute Task in the TaskTracker TT */

25: Execute(Task,TT)

26: end if
27: end if
28: else
29: while (TT/DN not activated and Time-Out Not Reached) do
30: /* Send a HeartBeat to the JT to activate TT/DN */

31: Notify JT to Activate TT/DN

32: end while
33: if (Time-Out is reached) then
34: Send to Queue + Penalty

35: else
36: Execute(Task,TT)

37: end if
38: end if
39: else
40: if (There are Enough Resources on Nodes) then
41: /* Launch Many Speculative Instance of Task to increase the probability of

its success/

42: Execute-Speculatively(Task,N)

43: end if
44: end if

V. EVALUATION

In this section we presents the design of our case study

aimed at assessing the effectiveness of the ATLAS scheduler.

A. Setup of the Case Study

We instantiated 15 Hadoop machines in Amazon EMR. We

set one machine to the role of master, another one to the

role of secondary master (to replace the master in case of

failure) and 13 machines to the role of slaves. We selected 3

different types of machines to have heterogeneous environment

which represents a real world environment hosting real and

different machines. The three types of Amazon EMR machines

are m3.large, m4.xlarge and c4.xlarge [8]. Details about their

characteristics are listed in Table II. We choose these types of

machine since they can support different workloads and they

were widely used in the literature to test many systems in cloud

environment. In addition, different types of Amazon EMR

instance allow to have a real world cluster where different

types of machines are used. We used the AnarchyApe tool

described in [9] to create different failure scenarios in Hadoop

nodes such as TaskTarcker and DataNode failures, slowdown

or drop in the network, tasks/jobs failure etc. as described

in [6]. To specify the amount of failures to be injected in

the Hadoop clusters, we performed a quantitative analysis of

failures in the public Google Traces [4]. We found that more

than 40% of the tasks and jobs can be failed [4]. Therefore, in

our case study, we performed different simulations of varying

the injected failure rates, with a maximum failure rate of 40%.

Machine
Type

vCPU* Memory
(GiB)

Storage
(GB)

Network
Performance

m3.large 1 3.75 4 Moderate

m4.xlarge 2 8 EBS-Only+ High

c4.xlarge 4 7.5 EBS-Only+ High

* Each vCPU is a hyperthread of an Intel Xeon core [8].
+ Amazon EBS is a block-level storage volume for an EC2 instance [8].

TABLE II: Amazon EC2 Instance Specifications

To generate the jobs, we used the WordCount, TeraGen

and TeraSort examples provided by Apache, as job unit to

create single or chained jobs as described in Section IV-A1.

The generated jobs represent different job pattern from real

world applications. These jobs have different input files that

we downloaded to have large set of data to process. For each

single job, we decided on the number of map and reduce tasks

using information about the number of HDFS blocks in the

input files. For example, we had jobs with 10 map tasks and 15

reduce tasks. For each chained job, we decided on the number

of job unit within each chain (e.g., 3 jobs, 20 jobs), the type of

used job (e.g., WordCount, TeraSort) and the structure of the

jobs (e.g., sequential, parallel and mix chains). For each type

of Hadoop scheduler (i.e., FIFO, Fair, Capacity), we generated

several single and chained jobs and collected their execution

logs to build the task failure prediction model required by

ATLAS. We built prediction models using all the classification

algorithms described in Section IV-A3 and assessed their

performances following the 10-fold cross-validation approach

described in Section IV-A3. Also, we retrained the prediction

models in the instantiated Amazon EMR machines which

represent a cloud environment where drastic changes may

occur because of unreliable machines. This step was performed

each 10 min to make the proposed system more robust.

We implemented ATLAS using the prediction model that

achieved the best performance, and compared the performance

of Hadoop equipped respectively with the FIFO scheduler,

the Fair scheduler, the capacity scheduler, and our proposed

ATLAS scheduler integrated with these 3 existing schedulers.

All the comparisons were done using the exact same jobs and

data. We measured the performance each Hadoop’s scheduler

Task Scheduler FIFO Fair Capacity

Map Task

Algorithm Acc. Pre. Rec. Err. Time Acc. Pre. Rec. Err. Time Acc. Pre. Rec. Err. Time
Tree 68.6 85.3 74.3 31.4 12.34 92.6 85.2 62.1 7.4 9.14 68.7 85.7 73.4 31.3 58.18

Boost 75.9 86.7 78.5 24.1 180.51 65.9 85.6 73.5 34.1 199.80 72.5 85.3 71.3 27.5 280.56

Glm 63.5 87.2 72.4 36.5 9.43 67.4 88.6 65.8 32.6 13.34 62.1 83.6 61.8 37.9 16.01

CTree 65.9 87.5 65.2 34.1 15.61 62.6 85.2 69.3 37.4 16.38 61.8 79.5 61.2 38.2 17.53

Random Forest 83.7 86.4 94.3 16.3 23.53 79.8 83.9 94.0 20.2 25.91 78.3 85.2 89.2 21.7 25.97
Neural Network 65.8 85.8 79.4 34.2 61.81 68.7 86.3 74.1 31.3 63.61 72.1 83.6 72.3 27.9 59.71

Reduce Task

Algorithm Acc. Pre. Rec. Err. Time Acc. Pre. Rec. Err. Time Acc. Pre. Rec. Err. Time
Tree 72.4 95.3 69.3 27.6 13.51 72.8 92.2 73.0 27.8 10.23 63.2 83.4 68.7 36.8 13.25

Boost 83.5 93.4 85.1 16.5 297.29 93.1 98.7 92.3 6.9 269.37 66.8 91.7 54.7 33.2 198.37

Glm 61.9 92.6 65.1 38.1 17.32 77.2 91.3 75.3 22.8 17.39 68.7 91.9 71.9 31.3 19.83

CTree 79.3 92.6 81.4 20.7 16.85 81.4 91.1 81.3 18.6 16.52 61.7 91.5 65.1 38.3 17.13

Random Forest 95.3 98.1 95.9 4.7 35.65 92.5 97.6 92.4 7.5 28.54 83.4 91.5 95.6 16.6 27.93
Neural Network 74.5 91.5 75.3 25.5 89.74 81.5 97.3 71.6 18.5 78.61 74.9 94.1 83.7 25.1 85.37

TABLE I: Accuracy, Precision, Recall, Error (%) and Time(ms) for different Algorithms: (10-fold Cross-validation)

using the total execution times of jobs, the amount of resources

used (CPU, memory, HDFS Read/Write), the numbers of

finished and failed tasks, and the numbers of finished and

failed jobs.

B. Case Study Results

1) Prediction Algorithms: Table I summarises the perfor-

mance of the six prediction models applied on data collected

from the schedulers’ logs. This result shows that the Random

Forest algorithm achieves the best precision, recall, accuracy

and error when predicting the scheduling outcome of the Map

and Reduce tasks for the three studied schedulers (FIFO,

Fair and Capacity). This is because Random-Forest algorithm

uses the majority voting on decision trees to generate results

which makes it robust to noise, resulting usually in highly

accurate predictions. For map tasks, a Random Forest model

can achieve an accuracy up to 83.7%, a precision up to

86.4%, a recall up to 94.3% and an error up to 21.7%. The

total execution time of the 10-fold cross-validation was 25.97

ms. For reduce tasks, the Random Forest model achieved

an accuracy up to 95.3%, a precision up to 98.1%, a recall

up to 95.9% and an error up to 16.6%. The total execution

time of the evaluation of Random Forest for reduce tasks was

35.65 ms. Also, we noticed that Random Forest is achieving

these results in an acceptable time compared to the other

algorithms (for example, the Boost algorithm can take up to

297.29 ms which can affect the performance of the scheduler).

In addition, we also found a strong correlation between the

number of running/finished/failed tasks on a TaskTracker, the

locality of the tasks, the number of previous finished/failed

attempts of a task, and the scheduling outcome of the task.

More specifically, tasks characterized by multiple past failed

attempts, many concurrent tasks (running on the same Task-

Tracker) that experienced multiple failed attempts, have a high

probability to fail in the future.

2) Performance Evaluation of the Schedulers: As stated

in Section V-B1, we used the Random Forest algorithm (to

predict the scheduling outcome of tasks) when implementing

the proposed ATLAS scheduler. Figure 3, Figure 5 and Fig-

ure 7 present respectively the number of finished jobs, map and

reduce tasks for the three schedulers. Overall, we observe that

the number of finished jobs, map and reduce tasks in ATLAS

are higher in comparison to the results obtained for the FIFO,

FIFO Fair Capacity

0

100

200

300

N
u
m
b
er

o
f
F
in
is
h
ed

J
o
b
s

Basic Scheduler

ATLAS Scheduler

Fig. 3: Finished Jobs

FIFO Fair Capacity

0

50

100

150

200

N
u
m
b
er

o
f
F
a
il
ed

J
o
b
s

Basic Scheduler

ATLAS Scheduler

Fig. 4: Failed Jobs

FIFO Fair Capacity

0

1,000

2,000

3,000
N
u
m
b
er

o
f
F
in
is
h
ed

M
a
p
T
a
sk
s Basic Scheduler

ATLAS Scheduler

Fig. 5: Finished Map Tasks

FIFO Fair Capacity

0

500

1,000

1,500

N
u
m
b
er

o
f
F
a
il
ed

M
a
p
T
a
sk
s

Basic Scheduler

ATLAS Scheduler

Fig. 6: Failed Map Tasks

FIFO Fair Capacity

0

1,000

2,000

3,000

N
u
m
b
er

o
f
F
in
is
h
ed

R
ed

u
ce

T
a
sk
s Basic Scheduler

ATLAS Scheduler

Fig. 7: Finished Reduce Tasks

FIFO Fair Capacity

0

1,000

2,000

3,000

N
u
m
b
er

o
f
F
a
il
ed

R
ed

u
ce

T
a
sk
s Basic Scheduler

ATLAS Scheduler

Fig. 8: Failed Reduce Tasks

FIFO Fair Capacity

0

0.5

1

1.5

2

2.5
·105

E
x
ec
u
ti
on

T
im

e
of

M
ap

T
as
k
s
(m

s)

Basic Scheduler

ATLAS Scheduler

Fig. 9: Map Exec. Time

FIFO Fair Capacity

0

0.5

1

1.5

2
·105

E
x
ec
u
ti
on

T
im

e
of

R
ed

u
ce

T
as
k
s
(m

s)

Basic Scheduler

ATLAS Scheduler

Fig. 10: Reduce Exec. Time

Fair, and Capacity schedulers. This was expected since the

prediction model enables the quick rescheduling of tasks that

are predicted to fail. In addition, the improvement is larger for

FIFO and Fair schedulers compared to the capacity scheduler.

This happens because the capacity scheduler forces the killing

of any tasks consuming more memory than configured [10].

FIFO Fair Capacity

0

0.5

1

1.5

2

·106

E
x
ec
u
ti
on

T
im

e
of

J
ob

s
(m

s)
Basic Scheduler

ATLAS Scheduler

Fig. 11: Total Exec. Time of Jobs

Job/Task
Scheduler

FIFO Fair Capacity
Basic ATLAS Basic ATLAS Basic ATLAS

Resource Avg. Avg. Avg. Avg. Avg. Avg.

Job

CPU (ms) 11495 8415 12647 9538 14475 10784

Memory (105 bytes 7479 4530 7741 3647 9463 5486

HDFS Read (103 bytes) 9930 7431 10968 8762 12463 8360

HDFS Write (103 bytes) 8583 5985 9784 6202 10285 7420

Task

CPU (ms) 3855 2520 4033 2184 4170 2851

Memory (105 bytes 1412 1058 2496 1741 2638 2115

HDFS Read (105 bytes) 1638 1215 1894 1428 7426 4541

HDFS Write (105 bytes) 1774 1385 3643 2429 5052 3715

TABLE III: Resources Utilisation of the Different Hadoop Schedulers

The number of finished tasks is improved by up to 46% when

using ATLAS instead of the Fair scheduler (see ATLAS-Fair

in Figure 5), and the number of finished jobs increased by

27% when using ATLAS instead of the Fair scheduler (see

ATLAS-Fair in Figure 3). The improvement of the number of

finished jobs is lower than the improvement of the number of

finished tasks since a single task failure causes the whole job

to fail. We also noticed that the number of failed jobs and

tasks was decreased by up to 28% for the jobs (see ATLAS-

Fair in Figure 4) and up to 39% for the tasks (see ATLAS-

Capacity in Figure 6) respectively. Moreover, we also observed

that when the failure of one map task causes the failure of the

dependent reduce tasks belonging to the same job, ATLAS

is unable to propose a better scheduling decision (because

some data are lost, as explained in Figure 1). Moreover, we

noticed that the number of finished single and chained jobs

was improved. This was expected because ATLAS enables

the successful processing of the tasks composing these jobs

and because of the dependency between the jobs within the

chained jobs. In addition, the number of finished single jobs

was higher than the number of finished chained jobs. This

is due to the dependency between the jobs composing the

chained one (i.e., sequential ones). Also, a single job failure in

the composed chain can cause the failure of the whole chained

job. In general, we conclude that our proposed ATLAS

scheduler can reduce up to 39% of tasks failures and up

to 28% of jobs failures that are experienced by the 3 other

schedulers (i.e., FIFO, Fair, and Capacity).

Overall, the execution time of tasks and jobs is lower for

ATLAS. We attribute this outcome to the fact that ATLAS

reduces the number of launched attempts and the time spent

to execute the attempts. The total execution time of jobs was

decreased on average by 10 minutes (from 20 minute to 10

minute), representing a 30% of reduction of the total execution

time of these jobs (see the ATLAS-Capacity in Figure 11)

and the total execution time of tasks by about 1.33 minute

(from 2.33 minute to 1 minute) (see ATLAS-Capacity: reduce

task in Figure 10). For long running jobs (running for 40-50

minutes), the reduction was up to 25 minutes (representing a

54% reduction) over the Capacity scheduler. In this context,

we should mention that there was an overhead associated

with the training phase of the predictive algorithm and the

communication between the JobTracker and TaskTrackers.

However, this overhead was very small and is included in the

execution time of ATLAS presented on Figure 11, Figure 9,

and Figure 10. In fact, the reduction in the number of failures

largely compensated for this overhead.

ALTLAS successfully reduces the overall execution times

of tasks and jobs in Hadoop.

By enabling the rescheduling of potential failed tasks in ad-

vance, ATLAS reduces the total execution time of the tasks and

the number of tasks and jobs failure events. Consequently, it is

expected that it will reduce resource utilisations in the cluster,

since it should save the amount of resources that would have

been consumed by tasks failed attempts. The results presented

in Table III confirms this anticipated outcome. In fact, by

quickly rescheduling tasks predicted to be failed, ATLAS can

save the resources that would have been consumed by these

tasks. ATLAS speculatively executes the tasks predicted to be

failed on multiple nodes to increase their chance of success.

Whenever one of these tasks achieves a satisfactory progress,

the other speculative executions are stopped.

Overall, the jobs and tasks executed using ATLAS schedul-

ing policies consumed less resources than those executed

using the FIFO, Fair, or Capacity schedulers (in terms of

CPU, Memory, HDFS Read and Write).

VI. THREATS TO VALIDITY

This section discusses the threats to validity of our study:

Construct validity threats concern the relation between

theory and observation. When building the predictive models

used by ATLAS, we did not include information about the

requested resources by tasks, since this information was not

available in the collected logs. However, it is possible that

some tasks were failed because they did not receive their re-

quested resources. Our predictive models would hardly predict

such failures. Nevertheless, we used the number of available

slots in the machines to predict task failure in case of shortage

of resources. Hence, ATLAS can reschedule the task on a

different machine (with enough resources).

Internal validity threats concern the tools used to im-

plement ATLAS. In addition, we used AnarchyApe [9] to

inject different types of failures in Hadoop machines. We

relied on rate of failures observed in Google clusters [4]. It is

possible that the majority of Hadoop clusters do not experience

such high rate of failures. It is also very possible that our

simulations missed some types of failures occurring in Hadoop

clusters. Future works should be performed on a more diverse

set of Hadoop clusters and different failure rates.

Conclusion validity threats concern the relation between

the treatment and the outcome. We implemented a procedure

to check the time spent by ATLAS in a way to not exceed

the time-out value specified by the scheduler. In addition, we

carefully checked the time spent by the algorithm to check

the availability of the TaskTarckers and the DataNodes and

to activate them through the JobTracker in a way that do

not generate extra overhead times. We also verified that the

scheduling decisions generated by ATLAS did not violate any

property of the system.

Reliability validity threats concern the possibility to repli-

cate our study. We believe that our proposed approach can be

reused on other cloud platforms such as Microsoft Azure. To

do that, a developer only needs to record the log files of pro-

cessing nodes, build the predictive models, and implement the

ATLAS algorithm on top of a Hadoop scheduler (like FIFO,

Fair or Capacity) to adjust scheduling decisions according to

task failure predictions.

External validity threats concern the generalization of our

obtained results. Further validation on larger clusters using

diverse sets of tasks and jobs is desirable.

VII. RELATED WORK

Given the dynamic nature of Hadoop environment, its

scheduler can use information about the factors affecting their

behavior to make better scheduling decisions and improve

cluster performance. One scheduler that was proposed to do

that is LATE [11]. LATE collects data about running tasks

and assigns weights to tasks based on their progress. Using

historical information about the weights assigned to tasks in

the past, LATE prioritizes new tasks waiting to be executed.

LATE was able to improve the execution time of jobs by

a factor of 2 in large Hadoop cluster. Quan et al. proposed

SAMR (Self-Adaptive MapReduce scheduling), a scheduler

that uses hardware system information over time to estimate

the progress of tasks and adjust the weights of map and reduce

tasks, to minimize the total completion time of a job [12].

SAMR does not consider job characteristics such as size,

execution time, or weights. To improve on this limitation

of SAMR, Xiaoyu et al. proposed ESAMR(Enhanced Self-

Adaptive MapReduce scheduling) [13] which considers system

information about straggling tasks, jobs length, etc. ESAMR

uses the K-means clustering algorithm to estimate task execu-

tion times. In [14], Tang et al. proposed a scheduling algorithm

named SARS (Self-Adaptive Reduce Start time) which uses

job completion time, reduce completion time and the total

completion time information as well as system information

to decide on the starting time of reduce tasks. By improving

the decisions about when to start reduce tasks, SARS could

reduce the average response time of the tasks by 11%.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed ATLAS (AdapTive faiLure-

Aware Scheduler), a new scheduler for Hadoop. The primary

goal of ATLAS is to reduce the failure rates of jobs and

tasks and their running times in Hadoop clusters. Based on

information about events occurring in the cloud environment

and statistical models, ATLAS can adjust its scheduling de-

cisions accordingly, in order to avoid failure occurrences.

We implemented ATLAS in Hadoop deployed on Amazon

Elastic MapReduce (EMR) and performed a case study to

compare its performance with those of the FIFO, Fair and

Capacity schedulers. Results show that ATLAS can reduce the

percentage of failed jobs by up to 28% and the percentage of

failed tasks by up to 39%. Although ATLAS requires training

a predictive model, we found that the reduction in the number

of failures largely compensates for the model training time.

ATLAS could reduce the total execution time of jobs by 10

minutes on average, and by up to 25 minutes for long running

jobs. ATLAS also reduces CPU and memory usages, as well as

the number of HDFS Reads and writes. In the future, we plan

to extend ATLAS using unsupervised learning algorithms and

assess the performance of ATLAS when the prediction model

is retrained at fixed time intervals.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in ACM Communications, 51(1):107–113, 2008.

[2] A. Rasooli and D. G. Down, “A Hybrid Scheduling Approach for
Scalable Heterogeneous Hadoop Systems,” in International Conference

on SC Companion: High Performance Computing, Networking Storage

and Analysis, pp. 1284–1291, 2012.
[3] F. Dinu and N. Eugene, “Understanding the Effects and Implications of

Compute Node Related Failures in Hadoop,” in Symposium on High-

Performance Parallel and Distributed Computing, pp. 187–198, 2012.
[4] M. Soualhia, F. Khomh, and S. Tahar, “Predicting Scheduling Failures in

the Cloud: A Case Study with Google Clusters and Hadoop on Amazon
EMR,” in International Conference on High Performance Computing

and Communications, pp. 58–65, 2015.
[5] Y. Ji, L. Tong, T. He, J. Tan, K. won Lee, and L. Zhang, “Improving

Multi-job MapReduce Scheduling in an Opportunistic Environment,” in
International Conference on Cloud Computing, pp. 9–16, 2013.

[6] M. Soualhia, F. Khomh, and S. Tahar, “ATLAS: An Adaptive
Failure-Aware Scheduler for Hadoop,” Department of Electrical and
Computer Engineering, Concordia University, Montreal, QC, Canada,
Tech. Rep., 2015. [Online]. Available: http://arxiv.org/abs/1511.01446

[7] The R Project for Statistical Computing. [Online]. Available:
http://www.r-project.org/, Last Access October, 2015

[8] Amazon EC2 Instances. [Online]. Available: http://aws.amazon.com/
ec2/instance-types/, Last Access October, 2015

[9] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. Campbell, and
W. H. Sanders, “Failure Scenario As a Service (FSaaS) for Hadoop
Clusters,” in International Workshop on Secure and Dependable Mid-

dleware for Cloud Monitoring and Management, pp. 5:1–5:6, 2012.
[10] Hadoop capacity scheduler. [Online]. Available: http://hadoop.apache.

org/docs/current1/capacity scheduler.html, Last Access October, 2015
[11] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,

“Improving MapReduce Performance in Heterogeneous Environments,”
in International Conference on Operating Systems Design and Imple-

mentation, pp. 29–42, 2008.
[12] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, “SAMR: A Self-

adaptive MapReduce Scheduling Algorithm in Heterogeneous Envi-
ronment,” in International Conference on Computer and Information

Technology, pp. 2736–2743, 2010.
[13] X. Sun, C. He, and Y. Lu, “ESAMR: An Enhanced Self-Adaptive

MapReduce Scheduling Algorithm,” in International Conference on

Parallel and Distributed Systems, pp. 148–155, 2012.
[14] Z. Tang, L. Jiang, J. Zhou, K. Li, and K. Li, “A Self-Adaptive Schedul-

ing Algorithm for Reduce Start Time,” Future Generation Computer

Systems, 34-44(0):51-60, 2015.

