
Broadcast vs. Unicast Review Technology:
Does it Matter?

Armstrong Foundjem, Foutse Khomh, Bram Adams
SWAT–MCIS, École Polytechnique de Montréal, Québec, Canada

{a.foundjem, foutse.khomh, bram.adams}@polymtl.ca

Abstract—Code review is the process of having other team
members examine changes to a software system in order to
evaluate their technical content and quality. Over the years,
multiple tools have been proposed to help software developers
conduct and manage code reviews. Some software organizations
have been migrating from broadcast review technology to a more
advanced unicast review approach such as Jira, but it is unclear
if these unicast review technology leads to better code reviews.

This paper empirically studies review data of five Apache
projects that switched from broadcast based code review to
unicast based, to understand the impact of review technology
on review e�ectiveness and quality.

Results suggest that broadcast based review is twice faster
than review done with unicast based review technology. However,
unicast�s review quality seems to be better than that of the
broadcast based. Our findings suggest that the medium (i.e.,
broadcast or unicast) technology used for code reviews can relate
to the e�ectiveness and quality of reviews activities.

Index Terms—Code Review, Patches, Apache, Empirical Study,
Medium, Bug-inducing Changes , Quality Assurance

I. I�����������
Peer Code Review (PCR) also known as Code Review

(Review) is an integral part of the quality assurance process of
software projects [1] [2] [3]. The main objective of Review is
to systematically examine source code changes (SCC) written
by other programmers in order to verify their correctness and
quality before integration into the Version Control System
(VCS) (e.g., Git).

While the formal code inspection activities proposed by
Fagan [4] in 1976 were heavyweight, nowadays the software
industry has adopted lightweight variants of Review, supported
by modern tools and technologies [5] [6] [7]. In order to im-
prove quality assurance [2], recent research has even proposed
automatic Review tools [8] to reduce human e�orts [9].

Currently, there are two main categories of technologies for
Reviews. The first category uses a broadcasting technology
approach of communication whereas the second category uses
a unicast technology approach of communication.

• In the broadcast technology approach, when a patch is
submitted for review, all those who are subscribed to the
medium where the patch is submitted can see the patch
see Figure 4, and anyone can review the patch. Further-
more, any subsequent discussion concerning the patch
is visible to all the members who are subscribed to the
medium; hence broadcasting. An example of a broadcast
technology is the developer’s mailing-list [10] [11].

• In the unicast technology approach, when a patch is
submitted for review, it is visible only to a targeted (a set
of dedicated) group of individuals who are subscribed
to the communication medium and who have been
assigned to the patch for review see Figure 5. Only those
targeted individuals can review the patch and followup
discussions concerning the patch. An example of the
unicast approach is an issues tracker [12], such as Gerrit,
or JIRA etc. In this paper we focus on JIRA.

Many software development organizations such as the Apache
Software Foundation (ASF) are migrating from the broadcast
technology approach review environments [13] [14] [15] to the
unicast technology approach [5] [6] [16] [17] issues tracker
environments such as Gerrit, Jira and the like. However,
despite this keen interest in the unicast technology Review
platforms, there is no evidence that they make code review
activities better. Although there have been many studies on
code review [5] [18] this past decade, to the best of our
knowledge, none of these studies have performed a head-to-
head comparison based on the technology used for reviewing
code, in terms of e�ectiveness, e�ort, and e�ciency of Review
activities.

This paper aims to fill this gap. More specifically, we aim to
examine if the technology (i.e., broadcast vs. unicast) through
which patch reviews are performed relates to e�ort, e�ective-
ness and e�ciency of review activities. In order to achieve
this goal, we use data from five open source projects from the
Apache software foundation (i.e., Flex, HBase, Hive, PIG, and
SVN), that have switched from broadcast technology approach
to unicast technology approach (issues tracker), which in this
case is JIRA. We address the following research questions
(RQs):

RQ1 - Is review e�ort related to the review medium used?
Result: We measure the review e�ort for a patch using
information about the number of developers involved in the
review, the number of rounds necessary to review the patch,
and the number of review requests for the patch. Our results
show that in general, patches reviewed on unicast technology
undergo more revisions than patches reviewed on broadcasts.

RQ2 - Is the e�ectiveness of a patch reviewing process
related to the medium used?
Result: To capture the e�ectiveness of a review process, we
compute the proportion of reviewed patches that experienced a
post release bug, using the SZZ algorithm [19]. Results show

that patches reviewed through broadcast technology are more
likely to experience a post release bug than those reviewed
on unicast technology. We examined the e�ect of size on this
result and found no significant di�erence between the sizes of
patches reviewed respectively through broadcast and unicast
technology.

RQ3 - Is the e�ciency of a patch review process related to
the medium used?
Result: We measure the e�ciency of a patch review process
using two metrics: the response delay in days after a patch
review request is submitted and the period of time between the
submission of a patch review request and the integration of the
patch into the VCS. Results show statistically significant di�er-
ences between the response delay (RD) and the review length
(RL) respectively, of patches reviewed on broadcast technology
and those reviewed on unicast technology. However, we found
no correlation between the size of patches against the response
delay and the size of patches against the length of the review
period (RL).

The rest of this paper is organized as follows: Section V
reviews the related literature, Section II describes the approach
used to collect, filter, compute and analyze data. In section III,
we present and discuss the results of our research questions.
We discuss the threats to validity of our study in section VI.
Finally, we conclude the paper in section VII.

II. A�������
In this section, we present the steps of our approach.

First, we select stable Apache projects that were using the
broadcast technology approach for reviewing patches and at
some point in time, switched to a unicast technology approach
for reviewing patches. Then, we collect and analyze the data
required to answer our research questions. We also interviewed
reviewers of the Apache Software Foundation (ASF), using
a questionnaire [20] that we designed. Figure 1 shows an
overview of our approach and Figure 2 illustrates the time pe-
riods that are considered in this study. The middle gray region
indicates the window (threshold) period where the switched
from broadcast technology approach to unicast technology
approach occurred.

A. Projects Selection

The Apache ecosystem has projects that were using the
broadcast technology approach for reviewing patches and later
on switched to unicast technology approach, moreover, Rigby
et al. [21] [22] have studied the Apache’s broadcast based
reviews, and Bettenburg et al. [23] have also studied projects
in the Apache Ecosystem. Therefore, the Apache ecosystem
appeared to be the ideal choice for our study. To identify the
period during which the projects transitioned from broadcast
technology approach to unicast technology approach, we ex-
amined the volume of patches reviewed on both platforms
(broadcast and unicast technologies) over a given period of
time and observed that in the gray region shown in Figure 2,
there were a drastic decrease in the number of patches that
were processed using the broadcast technology approach and

Figure 1: Our Approach.

Figure 2: Our Approach: time-line.

a sharp increase of the number of patches processed using
the unicast technology approach. The intersection point where
broadcasts crosses over unicast forms the transition point for
the projects; an example is shown by the gray region in
Figure 2 and Figure 3 for the PIG project.

To identify the transition period of the PIG project for
example, we computed the proportion of patches reviewed on
broadcast platforms and the proportion of patches reviewed on
unicast platforms between January 2012 to December 2012.
We observed that initially, reviewers reviewed between 33 to
42 patches through the broadcasts each week, in the 25th week
we observed a sudden decrease of patches, that is, below
10 patches per week over a period of 6 months (July to
Dec), see Figure 3. At the same time unicast’s reviewers were
experiencing a drastic increased of patches reviewed from
about 10 to 35 patches weekly, see Figure 3.

Based on our observation, we defined a window period (the
rectangle in Figure 3), which also represents the rejection
window, i.e., we reject all the patches within this period
for this study. In the case of the PIG project for example,
we consider broadcast patches up-to the left boundary of
the window (25th week) and unicast patches from the right
boundary (30th week) onward to the limiting period and do the
same for other projects in this study. Within this window, that
is between the (25th and 30thweek), since there is an overlap
between patches using broadcast and patches using unicast,
we rejected all the patches within this window’s region so
as to have a clean dataset. This window takes into account
the period immediately before and immediately after switching
from broadcast to unicast.

To determine the window, considering the PIG project for
example, we computed the intersection point of the two curves
(i.e., the proportion of patches reviewed on broadcasts and the
proportion of patches reviewed on unicast), and uses it as a
reference point to know exactly when the project switched
from broadcast to unicast.

This reference point is based on the volume of previously
submitted patches that were reviewed using broadcasts (period
before switch) and patches reviewed using unicast (period
after the switched). For the PIG project, the reference point
is on the 27th and a half weeks, which corresponds to the
transition period between July and August. As can be seen
from Figure 3. Then, we observe the period when the patches
drastically decrease when using broadcast; the left boundary
of the window (25th week), and the period when patches
drastically increase when using unicast; the right boundary
of the window (30th week), this gives us the window size of
a project (PIG project), with a cuto� of less than 10 patches
per week (the intersection point where broadcast crosses over
unicast). Five projects of the Apache ecosystem had reference
points where reviewers did less than 10 patches per week
within this window that we defined. Therefore, we selected
these projects for our study: HBase, Hive, PIG, SVN and Flex.

Figure 3: PIG Transition from broadcast to unicast

B. Broadcast Technology vs. Unicast Technology Approach

After selecting the projects needed for this study, our next
step was to understand the structures of both the broadcast and
unicast approaches of reviewing patches.

1) Broadcast Technology Approach: broadcasts archives
are arranged as .mbox files [24], categorized per year, thread,
date and author, with the associated number of threads. This
structure is the same for the broadcast archives of all the five
projects. Also, the patches are attached to the emails. We use
a python script to download the .mbox files for all the five
projects within the given period of our study as shown in
Table III.

2) Unicast Technology Approach: Issue tracker [25] are
also areas where source code changes are reviewed before

committing to the code-base repository. Moreover, they are
enablers for the review process in the sense that, they capture
comments regarding the proposed changes of the source code
and enable ongoing discussions on the topic. Since all com-
mits have a specific identification number (ID), issue tracker
systems use this ID to link revisions to commits, in addition,
they keep track of each revision, the author, date, and history
of the code changes.
Most issue tracker environments, like unicast, provide web
portal to visualize the reviewing process and by default,
groups every revision on the same page. Figure 5 (courtesy
of Atlassian 1) shows the work flow and status of the code
review process using di�erent colors to indicate the status.

Figure 4: Work-flow and Status in broadcast environment.

Figure 5: Work-flow and Status in unicast environment.

C. Data Extraction

After identifying the data sources for both broadcasts and
unicast, we used the following tools to extract the data as
needed and created a database to store the data.

Broadcast Technology: We used MailboxMiner2 [26] (a
Java application) to create a relational postgreSQL database
with tables containing the email messages and their metadata.
We analyze email attachments, to extract information about
the patches.

Emails are grouped per thread, where each email is a reply
to an earlier email. Each thread contains one or more emails
with di�erent revisions (versions) of a code patch, hence, we
need to distinguish the emails with patch revisions from those
with review comments (the other emails).

Basically, since we need all revisions of a patch, we used
the identification number of patches to group all the thread of

1https://www.atlassian.com/software/jira

the same patch. For example, this attachment from an email:
789.patch has a key word in the message body HBASE-789,
we used this keyword to link patches to Git [27]. In the end, for
each patch sent to a broadcast, we can reconstruct all revisions
of the patch as well as their general comments. Of course,
since emails can contain any kind of text, we need to eliminate
noise, such as a reply that does not contribute anything to the
Review. However, emails automatically generated by unicast
have a consistent pattern attached to them, which allows to
identify a particular commit. For example, HBase-960, means
a commit from the HBASE project number 960. Same for
PIG-XXX, Flex-XXX, and SVN-XXX, and if there is a reply
from a reviewer, the message will contain “RE:". With the
help of this specific Identification, we were able to link email
contributions to the Git repositories [23] with the help of this
mirror site [27]. We used git commands such as git di�, git
blame, and git log to extract various information about the
patches reviewing process.

Unicast Technology: We could extract and export data from
unicast in Excel format. We wrote a Python script to process
the data.

D. Structure of the Questionnaire

We interviewed reviewers from the Apache Software Foun-
dation using a questionnaire2, containing both open-ended
(aims at asking the reviewers to formulate their own answer)
and closed-ended (aims at asking the reviewers to chose an
answer from a set of given options) questions. We arranged the
questions logically; connecting questions from one to the next,
from a general to a more specific perspective. In some of the
questions, we wanted to know what motivated the switch from
broadcast to unicast review technology, and the di�culties that
the reviewer faced in changing their review process. Moreover,
we go further to know details about the review process, based
on their individual experiences.

After designing the questions, we sent out the questionnaire
form [20] to selected Apache reviewers. The procedure to
select the Apache reviewers to participate in this survey is
as follow. First, for the five projects we used in this study, we
selected the top 10 active reviewers per project (participants
must have contributed in reviewing patches). These 10 active
reviewers per project gave us 50 reviewers in total. Then we
filtered 50 reviewers by selecting those who used the broadcast
to review patches and then continue reviewing using unicast
over the study period. One of the project (SVN) had seven (7)
of such reviewers in total, so we decided to normalized all the
projects to seven top reviewers per project. That is how we
ended up with 35 reviewers (7-reviewers x 5-projects) in total
for our questionnaire.

This selection ensures us that the surveyed reviewers can
give us meaningful feedback, which would represent the entire
period of our study.

2https://goo.gl/forms/AgQMasO7mne6G2jg1

Table I: Metrics used to captured review e�ort, e�ectiveness,
and e�ciency.

Type Metric Description

E�
or

t Number of Reviewers
(NR)

Number of developers who Par-
ticipated in the review of a
patch

Number of revisions
(NV)

Number of rounds necessary to
review a patch [1]

Review queue (RQu) Number of pending reviews re-
quest per reviewer; reviewer
workload [28]

E�
ec

tiv
en

es
s Post review bugs Proportion of reviewed patch

that experienced a post release
bug. To identify a bug intro-
duced after a patch review, we
use the SZZ algorithm [19]

Median review rate
(MRR)

This is the number of lines of
codes (KLOC/week) for each
review (also known as the Av-
erage review rate) [1] [30] [31].
Since we can’t claim that
the review rates are symmet-
rically distributed, we will use
the median review rate in-
stead. The median review rate
metric aims to examine if
reviewers are maintaining a
good code-reviewing cadence,
for example, not going above
400KLOC/hr or not performing
below 200LOC/hr [30] [32].

E�
ci

en
cy Review length (RL) Time (days) from submission

of a review request to the in-
tegration of the patch [1]

Response Delay (RD) Number of delay in days after
a patch review request is sub-
mitted [1]

Size Size of a patch [28]

E. Metrics Extraction

Based on our RQs and existing work [1] [28] [29], we
extracted the metrics presented in Table I. The metrics are
grouped according to the RQs.

RQ1 - We capture the e�ort required to review patches, see
Table I.

RQ2 - In this RQ, we defined e�ectiveness as the ability of
reviewers to detect bug-inducing commits during code reviews.
We use the SZZ-algorithm [19] [33] [34], that automatically
identifies fix-inducing commits by linking bugIDs found in
commit messages with bugs repository using keywords such as
“FIXED" and using regular expressions. This algorithm back
tracks lines changed through the revision history to the point
of its most recent change. After locating the keywords, we use
the di� tool to know what changed in bug-fix, and outputs
a hunk. In addition to tracking post review bugs, we also
computed the median review rate for each Review platform
(in KLOC/week) [31].

RQ3 - We capture the e�ciency of a review process using
the review length and the response delay metrics described
in Table I. To compute the response delay, we calculate the
di�erence from the reply date of the first revision. To capture

the review length, we compute the time period between the
submission of a review request and the integration of the
reviewed patch into the version control system.

F. Data Analysis

To address our research questions (RQs), we test the fol-
lowing null hypothesis for each metric m:
H0 : There is no significant di�erence between the value
of metric m for patches reviewed on broadcasts and those
reviewed on unicast.
We use the Mann-Whitney U test to test H0. The Mann-
Whitney U test is a nonparametric statistical test used for
assessing whether two independent distributions have equally
large values. Nonparametric statistical methods make no as-
sumptions about the distributions of the assessed variables.
We set ↵ to 0.05. Moreover, we consider a Mann-Whitney
test result to be statistically significant if and only if the p-
value is below ↵. Additionally, we compute the e�ect-size
of the di�erence using Cli�’s � (cohen 1998) [35], which is
also a non-parametric statistic test, e�ect size measure, which
measures how often values in one distribution are larger than
values in another distribution. Cli�’s � d values lies between
[-1,1] and is considered negligible (N) for |d| <0.147, small (S)
for 0.148 |d| < 0.33, medium (M) for 0.33 |d| <0.474, and
large (L) for |d| � 0.474. Our results are reported in Section III
below.

Furthermore, we used the Spearman’s rank correlation coef-
ficient (Spearman’s ⇢, �1 6 ⇢ 6 1) to compute the correlation
among the metrics (size, RD, and RL) used in this RQ, that
is, we computed the ⇢, between the size of patches and the
responds delay and found it to be 0.063 (negligible positive
correlation), between the size of patches and review length
and found it to be 0.091 (negligible positive correlation), also
between response delay and review length and found it to be
0.168 (negligible positive correlation).

Spearman’s rank correlation coe�cient is a nonparametric
measure of rank correlation that measures statistical depen-
dence between the ranking of two variables. It assesses how
well the relationship between two variables can be described
using a monotonic function. Mukaka et al. explain how to
interpret the values of ⇢ [36].

III. R������

In this section, we present and discuss the results of our
research questions. For all values of the studied metrics that
are statistically significant, unicast values on average are higher
than those of broadcast.
RQ1 - Is review e�ort related to the review medium used?
Motivation: Code review is a human activity that requires
e�ort [29][37] from reviewers. The more reviewers contribute
to a patch, the less likely it will be buggy. In fact, studies show
that less intensively scrutinize files turn out to be defective in
the future [1]. In this research question, we want to understand
if the e�ort put on reviewing a patch can be dependent of the
reviewing medium.

Approach: To answer this research question, we use the
following measurements of reviewers’ e�ort: number of re-
viewers, number of revisions, and size of the review queue. To
compute the number of revision for broadcast, we counted the
number of times each distinct email is involved in the revision
process of the patch. The Reviewers’ activities overtime is
shown on the survival curve, see Figures 6.
Findings: Patches reviewed on unicast undergo more it-
erations (revisions) than those reviewed on broadcasts, and
unicast’s reviewers are more active during code review.

The number of reviewers actively reviewing patches for
both system is shown in the survival curve on Figure 6. We
considered all the selected projects for both systems. Notice
that all the curves starts from 100% (percentage of active
reviewers) and decreases as time goes on. On the y-axis,
we have the reviewers and on the x-axis, number of reviews
that are surviving. Based on the distribution of the survival
curve on Figure 6, we considered reviewer’s survival rate at
100%, 50% and 20% of active reviewers as shown on Table
IV. 100% of reviewers is the initial point, we will like to
know how involved the reviewers are at this point and also
at half way down 50% and also at 20%. The Table IV
below gives a summary of our analysis of reviewers and
the number of patches reviewers are reviewing. We observed
that 20% of reviewers in unicast can handle a median of 11
patches whereas the same amount of reviewers for broadcast
can review a median of 9 patches. That means, reviewers on
unicast survive longer than those on broadcast, hence they put
in more e�orts on patch reviewing process.

There is a statistically significant di�erence between
the number of patch iterations and the size of the
review queue for broadcasts and unicast patches.

RQ2 - Is the e�ectiveness of a patch reviewing process
related to the medium used?
Motivation: The main purpose of code review is to identify
errors or mistakes that were made by the developers, there-
fore, a reviewer should assure that the code is reliable and
not error prone, unfortunately, reviewers some times fail to
properly examine codes written by developers. In this research
question we examine the e�ectiveness of reviews performed
on broadcast based platforms and unicast based platforms, to
understand if developers catch more errors on broadcast based
platforms or unicast based platforms.
Approach: We apply the SZZ algorithm to map reported bugs
to reviewed patches. We ran the SZZ algorithm on the dataset
of each project and identify all reviewed patches that induced a
future bug. Next, we computed the number of bugs found when
using broadcast and when using unicast technology. We also
computed the median review rate on broadcasts and unicast
respectively. To control for the e�ect of patch size on our
results, we also computed and compared the size of patches
(as shown on Figure 8), which are reviewed on broadcasts and
unicast.

Table II: p-value and Cli�’s-� results for our studied metrics referred in table I.

Projects NR NV RQu MRR RL RD Size SZZ
p-value Cli�’s � p-value Cli�’s � p-value Cli�’s � p-value Cli�’s � p-value Cli�’s � p-value Cli�’s � p-value Cli�’s� p-value Cli�’s�

Flex 0.843 N 0.016 L 0.012 L 0.021 L 0.015 L 0.019 L 0.924 N 0.015 M
HBase 0.891 N 0.021 L 0.017 L 0.017 L 0.013 L 0.016 L 0.831 N 0.039 M
Hive 0.902 N 0.011 L 0.031 L 0.014 L 0.021 L 0.011 L 0.913 N 0.031 M
PIG 0.931 N 0.017 L 0.021 L 0.011 L 0.015 L 0.012 L 0.917 N 0.017 M
SVN 0.915 N 0.013 L 0.019 L 0.031 L 0.017 L 0.022 L 0.821 N 0.008 M

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Reviews

%
 R

ev
ie

w
er

s Tech

JIRA

ML

(a) PIG Project

0.00

0.25

0.50

0.75

1.00

0 5 10
Reviews

%
 R

ev
ie

w
er

s Tech

JIRA

ML

(b) Flex Project

0.00

0.25

0.50

0.75

1.00

0 5 10
Reviews

%
 R

ev
ie

w
er

s Tech

JIRA

ML

(c) Hive Project

0.00

0.25

0.50

0.75

1.00

0 5 10
Reviews

%
 R

ev
ie

w
er

s Tech

JIRA

ML

(d) Hbase Project

0.00

0.25

0.50

0.75

1.00

0 5 10
Reviews

%
 R

ev
ie

w
er

s Tech

JIRA

ML

(e) SVN Project

Figure 6: Review survival curve for HBase and SVN projects.

Table III: Projects transitional periods and reviews.

Projects Study-Period Transition Reviews
unicast - broadcasts

Flex 2011-2015 11-2013 193 - 195
HBase 2011-2015 08-2013 212 - 222
Hive 2011-2015 05-2013 216 - 177
PIG 2011-2015 07-2013 280 - 291
SVN 2010-2014 10-2012 183 - 179

Table IV: X percent of reviewers did at least Y reviews.

Medium pct Projects (number of reviews)

Flex HBase Hive PIG SVN

broadcasts 100% 4 4 4 5 5
50% 7 8 7 10 8
20% 9 9 9 12 9

unicast 100% 5 5 5 7 9
50% 8 9 9 12 12
20% 9 11 11 20 13

Findings: The proportion of reviewed patches that experienced
a future bug is lower for unicast than broadcast.

To ensure a fair comparison between patches reviewed on
both technologies; broadcasts and unicast, we filtered the data
as mentioned in RQ1 to have the same time window before

and after, and observe post review bugs for each patch. After
that, we varied the size of this time window and computed on
each window the accepted patches that experienced a future
bug. Unicast technology Reviews are more e�ective in terms
of identifying buggy patches than reviews done on broadcast
technology. Figure 7 presents the distributions that we ob-
tained. The proportion of reviewed patches that experienced
a future bug is lower for unicast. We also report results of the
MRR in Table II, which is higher for broadcast than unicast.
Overall, there is a statistically significant di�erence between
the MRR on broadcasts and unicasts, hence, we reject our null
hypothesis for this metric indicating that unicast is better than
broadcast in terms of e�ectiveness.

Reviews performed on unicast technology are more ef-
fective in terms of catching bugs than those performed
on broadcast technology.

RQ3 - Is the e�ciency of a patch review process related to
the medium used?
Motivation: Early studies showed that patch review is time
consuming and slow [38]. Studies also show that participation
in code review influences quality [28]. This research question
analyzes whether the medium on which reviews are conducted
relates to the e�ciency of the patch review process.

Figure 7: Proportion of reviewed patches that experienced a future bug for di�erent time windows.

Approach: To answer this research question, we compute two
metrics: the review length (days) (RL), and the response delay
(RD), see Table I. To control for the e�ect of patch size on our
results, we also computed and compared the size of patches
reviewed on broadcast and unicast technologies.

Findings: There are statistically significant di�erences be-
tween the response delay and the review length respectively of
patches reviewed on broadcast and those reviewed on unicast.
Broadcast has a short response delay and a shorter review
length.

Results presented in Table II show that there is a statis-
tically significant di�erence between the review length (RL)
of patches on broadcast and unicast platforms, and also for
the response delay (RD). Moreover, the median value of the
review length is lower on broadcasts (i.e., 20 days, which is
less than half the value of the median for unicast).

Moreover, there is no statistically significant di�erence
between the size of patches reviewed on both broadcast and
unicast technologies, therefore, size is not the factor behind
the observed di�erences in response delay and review length.

We compared the sizes of patches reviewed on the two plat-
forms (i.e., broadcast and unicast) because the time required
to review patches could depend on the size of patches under
review.

Our results also show that patches are reviewed on broadcast
platforms faster than on unicast platforms (in terms of review
length and response delay). This is irrespective of the size of
the patches.

We found no di�erence between the size of patches re-
viewed on broadcast and unicast platforms. We also found
no correlation between the size of patches and the response
delay, or the size of patches and the review length. However,
we found a statistically significant di�erence between the
response delay (and the review length) of patches reviewed
on broadcast platforms in comparison to those reviewed on
unicast platforms.

Overall, we conclude that the medium on which code
review is performed can a�ect the e�ciency of the
review process.

A. Selected Results from Survey.
To analyze the response from the Apache reviewers who

answered our questionnaires, we grouped the response (A) of
each question (Q) in the questionnaire and then did a summary
per question. Then, we compared them with the results of our
analysis.

Among the 35 copies of the questionnaires we sent, we
received 20 complete responses, 5 incomplete responses, and
10 non-responses over the period of 45 days. Moreover, the
response proportion was equally distributed among broadcast
and unicast approach. There were 9 questions in all, including
both open-ended and closed-ended.

Let us highlight some key comments and observations from
some selected Apache reviewers on their experts’ opinions.

• Q: What motivated the switch from broadcast to unicast?
A: 12 of the reviewers said that the broadcast were
good for discussion (functional/design/customer related
announcements/release etc.). However, when it comes
to reviewing code, tracking tasks/issues – such as what
release of the product they are targeted for, whether an
issue has been fixed (and if so, which release or releases,
etc.), whom an issue is assigned to, who reported the
issue, etc.. – the unicast system is much convenient for
reviewers than broadcast, since it reports all (meta)data
about a particular patch on one web page.

Unicast makes it much easier for the reviewer to
leave comments on specific blocks or lines of
code, and to visualize the exact changes made
by a di� for example. Also, unicast has less
tra�c (volume of patches circulating) among the
reviewers.

Figure 8: Size of patches.

• Q: How hard was it for reviewers to change their review
process from broadcast to unicast?
A: The reviewers unanimously agreed on the switched.
Furthermore, they said it was pretty easy learning and
using unicast without any interruption to their task.

• Q: Based on their personal experiences with both re-
viewing technologies, what was their main advantages or
disadvantages?
A: The reviewers answered that, unicast technology
makes it easier to review patches, track progress on
bugs/issues, look up details on old issues, easier to make
release notes on what has been fixed, and easier to
organize releases.
However, since it has these many feature, sometimes it can
take longer to review patches as the reviewer might want
to explore the many options while reviewing patches.
Whereas with the broadcast, reviewing patches keeps you
focus on the patches and discussions around the patches.
On the other hand, due to the broadcasting nature of
broadcast technology, every reviewer see the patch, which
facilitates the learning process for new developers who
join a team (speeding them up quickly), as it animates
discussions around code structure, style, and architecture.

New developers learn about the code structure
faster with broadcast than using unicast. The
tra�c of patches circulating on broadcast is high,
because it circulates among all those who are
subscribed to the broadcast medium.

IV. D���������

In this section we discuss our results in more details.
We also comment on how our findings agree with Apache
reviewers experience using both the broadcast and unicast
technologies. First, we comment on the three categories, that
is: E�ort, E�ectiveness and E�ciency.

For RQ1, We address E�ort. We measure e�orts based on
the metrics mentioned in Table I for both the broadcasts and
unicast. The statistical test results for the number of reviewers
(NR) (see Table II) were a bit expected since we selected
projects that were first using broadcasts and then switched
to unicast; it is no surprise that the number of reviewers
remained almost the same after the transition from broadcasts
and unicast. This is also an interesting point to note for this
study, we fixed this metric (NR) as a constant and study the
e�ect of the number of revisions (NV) and the review queue
(RQu). These two metrics show significant di�erences between
the broadcast and unicast technologies. We did not considered
the learning curve for developers, that is the time to learn
the new tool during the switch from broadcasts to unicast.
We also didn’t considered the cultural change. Nevertheless,
we analyzed several comments but found none that expresses
any such di�culties or challenges. Therefore, we conclude that
based on e�ort, unicast seems to be a better tool for Review
than broadcasts.

For RQ2, we address E�ectiveness. From the results of
the proportion of reviewed patches, which experienced a future
bug and the median review rate (see Table II and Figure 7),
we observe that patches reviewed through broadcasts are more
likely to experience a post release bug than those reviewed on
unicast. This is probably due to the good traceability features
of unicast technologies such as JIRA. Therefore, Software or-

ganizations should consider adopting mature Review platforms
like JIRA, since they are likely to improve the e�ectiveness of
Review activities.

For RQ3, we address E�ciency. Even though the review
length seems shorter on broadcasts in comparison to unicast,
the di�erence is not statistically significant. In the case of
response delay, the only systems for which we found a sta-
tistically significant di�erence are PIG and HBase. However,
these two projects had the largest amount of patches among
our studied projects, see Figure 8, which may explain why
we observed a statistically significant di�erence. Typically, we
see that the only di�erence between the broadcast and unicast
technology is how reviewers get patches.

Going back to the selection of the projects for this study,
all five projects were at their maturity state, therefore we can’t
attribute any threat to validity to this aspect. Moreover, the size
of patches reviewed under the broadcast and the size of patches
reviewed using unicast are statistically the same. Therefore, we
can’t claim that the results were a�ected by either the project
state or any di�erence in size3.

Analyzing Table II, we observe that the p-values calculated
for the seven variables are statistically significant for five
metrics (RL, NV, RQs, MRR, and RD).

Moreover, this findings are useful for our analysis because,
just as we mentioned on size above, the number of reviewers is
another variable we should pay close attention to. For example,
if the number of reviewers on broadcast had a statistically
significant di�erence with those on unicast, then it could turn
out that, the result of our findings were influenced by the
numbers of reviewers. That is, we could have concluded that
maybe there were more reviewers on the broadcast that is
why it took less among of time to review codes than unicast.
Whereas, it is not the case in this study. However, since this
is not the case, the result of our findings are very likely solely
due to the medium on which code review is performed.

Furthermore, let us revisit the survival curve in Figure 6, we
notice large steps in the staircase, which suggest that the shape
of the survival curves are strongly a�ected by minor changes
in the data, i.e., one reviewer performing an additional review.

Notwithstanding, since the numbers of reviewers are not
(statistically) significantly di�erent, we observe large step in
the staircases in both the broadcast and unicast. Also, in Table
IV we see that unicast reviewers on average, survive more
than reviewers on broadcast. This confirms our finding that
review done on unicast undergo more rounds than those done
on broadcast.

Additionally, the more a patch undergo rounds of reviews,
the less likely it can be bug prone, this explains why applying
the SZZ algorithm on both medium shows unicast to be more
e�ective than broadcast.

Based on our findings and the Apache reviewers experts’
opinion, switching from broadcast to unicast was necessary,
because most of the reviewers found unicast easier to use and
more useful for code review.

3Size of patches for the projects comparing size using broadcast against
size using unicast, see Figure 8.

Also, changing from broadcast to unicast, we thought could
have caused delay for the reviewers (spending additional time
to learn unicast), because we were expecting that the learning
curve could have influenced the reviewing process.

Overall, our findings are consistent with the responses
given by Apache’s reviewers. In RQ3, our results suggest
that, unicast technology is more e�ective in catching bugs
than broadcast technology and reviewers advocate that, unicast
makes it easier for them to leave comments and visualize the
exact changes that have been performed. Two aspects that
are important during a bug fixing process. Reviewers also
mentioned that the tra�c on unicast technologies, which is
lower in comparison to the tra�c on broadcast technologies;
resulting in less distractions during the bug fixing process.

We captured a conversation on the broadcast technology
of HBase (among some reviewers) centered on the transition
from broadcast to unicast. In this particular conversation, the
reviewer was asking in the forum if the switch has already
taken place. At that point we could not tell if unicast would be
better than broadcast. However, after our analysis and feedback
from selected reviewers, we now conclude that it was a justified
anxiousness.

From the results of this study, we can comment that
Apache’s decision to switch to unicast for code review was
good and justified.

V. R������ W���
Several research works have been carried out in the past on

code review, in this section, we present the main contributions
that are relevant to this paper. We identify three main areas of
contribution that are closely related to our work.

Code review quality.
Kononenko et al. investigated the quality of code review on
Mozilla OSS project [28]. They argue that in practice, the
process of executing code review can still allow bugs in to
the code database or repository, their result confirms this fact
with a 54% of reviewed code that were found to be buggy [28].
This also agrees with our result on broadcasts as compared to
unicast. To investigate the quality of code review, they used two
metrics that we used in our study, the proportion of reviewed
patches that experienced a bug and reviewers participation.

Moreover, Morales et al. studied the impact of code review
on design quality [39]. Using three projects: Qt, VTKK
and ITK, they focused more on anti-pattern, and from their
findings, they also suggest that strong code review participation
positively impacts software design quality.

Code review practice.
Belli and Crisan [40], proposed an approach to improve the
e�ciency of code review activities. To evaluate their proposed
approach, the authors subdivided reviewers into two indepen-
dent groups. Each group analyzing the same block of code
using two di�erent techniques; one group using their proposed
approach and the other group using the traditional manual
approach. Reviewers using their proposed approach performed
shorter review sessions in comparison to those following the
traditional manual technique.

Bavota et al. show that there is a relationship between code
review quality and code review practice [29]. Their results
reveal that codes that are reviewed before committed reduces
the likelihood of inducing bug fixes by 50%. Moreover, they
also show that the readability of codes that are committed after
being reviewed is significantly higher than the readability of
unreviewed codes. They studied the usefulness of the numbers
of reviewers as a factor to improve the quality of a code review.
In our study, we also computed this metric and obtained similar
results that confirm their work. Moreover, their work is based
on three open source projects that use the Gerrit code review
platform, unlike our studied projects which uses unicast and
broadcast technologies. They also use the SZZ [33] algorithm
and their result confirms our findings on the role of review
media on e�ectiveness.

A more related work is the empirical study by Bettenburg et
al. [23] who studied developers contributions to two systems
Android (Profit) and Linux Kernel (non-profit) systems. This
work inspired our approach of using the broadcast and unicast
technologies to study tool-based code review [16].

Code review medium.
De Alwis et al. highlight the importance of changing version
control systems, in this context they show that more and
more open and closed source projects are switching from
centralized version control systems (CVCS) to decentralized
version control systems (DVCS) [41]. In their work, they
points out the main di�erences between CVCS and DVCS, and
explained the rationales behind the transition and some key
benefits for projects; giving reasons for the transition. They
also capture some interesting discussions among developers
discussing about the transition, in our work, we also captured
some reviewers discussion on the transition from broadcast
to unicast. Moreover, they points out major weaknesses of
the CVCS and show how DVCS will benefit non-committers.
Also, they identify the following projects, which are switching
to DVCS: (Perl, OpenO�ce, NetBSD, Python. However, their
work was limited to what projects team members believe to
be the impact of switching to a DVCS.

VI. T������ �� V�������
In this section, we discuss the limitations of our work

following common guidelines for empirical studies [42].

A. Construct validity threats
Relate to the meaningfulness of our measurement results,

in other words, this threat is solely due to errors in the
measurement of metrics. To compute our metrics, we used
Mailminer2 [26] that converts the .mbox files into postgressql
relational Database records, email threads reconstruction can
be problematic, for example some emails may contain special
characters that causes some of the threads not to be converted
to the database record; the risk for data loss is much larger
in broadcast than unicast. Furthermore, unicast dataset is more
recent than the broadcast dataset, as a consequence, any di�er-
ences observed could be due to cultural changes in the projects
rather than the Review infrastructure used. Additionally, since

di�erent kinds of projects may have di�erent complexity, it
may be a better idea to use di�erent kinds of projects with
varying complexity to compare these two review technologies.

B. Threats to internal validity
Relate to alternative explanations to describe our findings.

The implementation of the SZZ used can be a threat to this
study, moreover, our design window can also be a potential
threat because not all the projects switched at the same time.
That is, inappropriate choice of the time window sizes might
have lead to ecological inference fallacy [43]. The choice of
metrics can be a threat as well to this study. However, we
selected well known metrics from the code review literature
to mitigate this threat. Also, for a trade-o� between either
comparing broadcast and unicast in di�erent systems at the
same time (no pre/post issue, but so many other confounding
factors and noise), or comparing in the same system before and
after (closest to have minimal confounding factors, although
not perfect.) We selected old projects, which used the broad-
cast for reviewing patches and then switched from broadcast
to unicast.

C. Conclusion validity threats
Concerns the relation between the treatment and its out-

come. To address this, we were attentive not to violate the
assumptions of our null hypothesis. We claim correlation and
not causality.

D. Reliability validity threats
Replication is important in science, this treat addresses how

this work can be replicated. To this e�ect, we attempt to pro-
vide necessary details to replicate our study. The repositories
and tools we used in this study are open source.

VII. C���������
In this paper, we empirically studied review data of five

Apache projects that switched from broadcasts code review
to unicast code review environment; a web-based tool. Our
objective was to understand the impact of review technol-
ogy on review e�ectiveness and quality. Our results suggest
that broadcasts reviews are twice faster than unicast reviews.
However, unicast’s review quality outperforms that of broad-
cast. Additionally, using the SZZ algorithm to track reviewed
patches that experienced future bugs, we observed that patches
reviewed through broadcasts are more likely to experience a
post release bug than those reviewed on unicast.

Our findings suggest that the medium used for code review
can a�ect the e�ectiveness and hence the quality of review
activities. Software organizations should consider adopting
mature Review platforms like unicast platforms, since they are
likely to improve the e�ectiveness of Review activities.

R���������
[1] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Investigating

code review practices in defective files: An empirical study of the qt
system,” in Mining Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on, May 2015, pp. 168–179.

[2] Y. Wang, X. Zhang, L. Yu, and H. Huang, “Quality assurance of peer
code review process: A web-based mis,” in Computer Science and
Software Engineering, 2008 International Conference on, vol. 2, Dec
2008, pp. 631–634.

[3] Y. Tymchuk, “Treating software quality as a first-class entity,” in
Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on, Sept 2015, pp. 594–597.

[4] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.

[5] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014, 2014, pp. 202–211.

[6] B. Meyer, “Design and code reviews in the age of the internet,” Commun.
ACM, vol. 51, no. 9, pp. 66–71, Sep. 2008.

[7] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in Proceedings of the 12th
Working Conference on Mining Software Repositories, ser. MSR ’15,
2015, pp. 146–156.

[8] V. Balachandran, “Fix-it: An extensible code auto-fix component in
review bot,” in Source Code Analysis and Manipulation (SCAM), 2013
IEEE 13th International Working Conference on, Sept 2013, pp. 167–
172.

[9] V. Balachandran, “Reducing human e�ort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13, 2013, pp. 931–940.

[10] Y. Jiang, B. Adams, F. Khomh, and D. M. German, “Tracing back the
history of commits in low-tech reviewing environments: A case study
of the linux kernel,” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’14. New York, NY, USA: ACM, 2014, pp. 51:1–51:10.
[Online]. Available: http://doi.acm.org/10.1145/2652524.2652542

[11] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on the
risks of using o�-the-shelf techniques for processing mailing list data,”
in ICSM’09: Proceedings of the 25th IEEE International Conference on
Software Maintenance. IEEE Computer Society, 2009, pp. 539–542.

[12] P. Thongtanunam, X. Yang, N. Yoshida, R. G. Kula, A. E. C. Cruz,
K. Fujiwara, and H. Iida, “Reda: A web-based visualization tool for
analyzing modern code review dataset,” in Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on, Sept 2014,
pp. 605–608.

[13] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen,
“Communication in open source software development mailing lists,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR ’13, 2013, pp. 277–286.

[14] P. C. Rigby and A. E. Hassan, “What can oss mailing lists tell
us? a preliminary psychometric text analysis of the apache developer
mailing list,” in Proceedings of the Fourth International Workshop on
Mining Software Repositories, ser. MSR ’07, 2007, pp. 23–. [Online].
Available: http://dx.doi.org/10.1109/MSR.2007.35

[15] P. Rigby, B. Cleary, F. Painchaud, M. A. Storey, and D. German,
“Contemporary peer review in action: Lessons from open source de-
velopment,” IEEE Software, vol. 29, no. 6, pp. 56–61, Nov 2012.

[16] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 712–721.

[17] M. Squire, “Should we move to stack overflow? measuring the utility
of social media for developer support,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 2, May 2015,
pp. 219–228.

[18] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, “Will they like this?:
Evaluating code contributions with language models,” in Proceedings of
the 12th Working Conference on Mining Software Repositories, ser. MSR
’15, 2015, pp. 157–167.

[19] C. Williams and J. Spacco, “Szz revisited: verifying when changes
induce fixes,” in Proceedings of the 2008 workshop on Defects in large
software systems. ACM, 2008, pp. 32–36.

[20] “Replication:guide to our tools and dataset,” https://bitbucket.org/
foundjem/ml-issuetk/src, accessed: 2016-03-17.

[21] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2013, 2013, pp. 202–212.

[22] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th international conference on Software engineering. ACM,
2008, pp. 541–550.

[23] N. Bettenburg, A. E. Hassan, B. Adams, and D. M. German,
“Management of community contributions,” Empirical Software
Engineering, vol. 20, no. 1, pp. 252–289, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9284-6

[24] “Apache-Software-Foundation developer mailing list,” http://mail-
archives.apache.org/mod_mbox/hbase-dev/, accessed: 2016-03-17.

[25] “Apache-Software-Foundation jira issue tracking system,” https://issues.
apache.org/jira/secure/BrowseProjects.jspa#all, accessed: 2016-03-17.

[26] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on
the risks of using o�-the-shelf techniques for processing mailing list
data,” in Software Maintenance, 2009. ICSM 2009. IEEE International
Conference on, Sept 2009, pp. 539–542.

[27] “Apache-Software-Foundation github mirrior site,” https://github.com/
apache, accessed: 2016-03-17.

[28] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey, “In-
vestigating code review quality: Do people and participation matter?” in
Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on, Sept 2015, pp. 111–120.

[29] G. Bavota and B. Russo, “Four eyes are better than two: On the impact
of code reviews on software quality,” in Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference on, Sept 2015,
pp. 81–90.

[30] C. F. Kemerer and M. C. Paulk, “The impact of design and code reviews
on software quality: An empirical study based on psp data,” IEEE Trans.
Softw. Eng., vol. 35, no. 4, pp. 534–550, Jul. 2009.

[31] “Apache-Software-Foundation developer mailing list,” https://smartbear.
com/learn/code-review/best-practices-for-peer-code-review/, accessed:
2016-03-17.

[32] D. B. Bisant and J. R. Lyle, “A two-person inspection method to
improve prog ramming productivity,” IEEE Transactions on Software
Engineering, vol. 15, no. 10, pp. 1294–1304, Oct 1989.

[33] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting
structural information from bug reports,” in Proceedings of the 2008 in-
ternational working conference on Mining software repositories. ACM,
2008, pp. 27–30.

[34] A. Meneely, H. Srinivasan, A. Musa, A. Rodriguez Tejeda, M. Mokary,
and B. Spates, “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits,” in Empirical Software Engineering
and Measurement, 2013 ACM/IEEE International Symposium on. IEEE,
2013, pp. 65–74.

[35] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cli�’s delta
calculator: A non-parametric e�ect size program for two groups of
observations,” Universitas Psychologica, vol. 10, no. 2, pp. 545–555,
2011.

[36] M. Mukaka, “A guide to appropriate use of correlation coe�cient in
medical research,” Malawi Medical Journal, vol. 24, no. 3, pp. 69–71,
2012.

[37] O. Baysal, O. Kononen, R. Holmes, and M. W. Godfrey, “The influence
of non-technical factors on code review,” in 2013 20th Working Confer-
ence on Reverse Engineering (WCRE). IEEE, 2013, pp. 122–131.

[38] B. D. Sethanandha, “Improving open source software patch contribution
process: methods and tools,” in Software Engineering (ICSE), 2011 33rd
International Conference on, May 2011, pp. 1134–1135.

[39] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,” in
Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on, March 2015, pp. 171–180.

[40] F. Belli and R. Crisan, “Empirical performance analysis of computer-
supported code-reviews,” in Proceedings The Eighth International Sym-
posium on Software Reliability Engineering, Nov 1997, pp. 245–255.

[41] B. de Alwis and J. Sillito, “Why are software projects moving from
centralized to decentralized version control systems?” in Cooperative
and Human Aspects on Software Engineering, 2009. CHASE ’09. ICSE
Workshop on, May 2009, pp. 36–39.

[42] R. K. Yin, Case study research: Design and methods. Sage publications,
2013.

[43] D. Posnett, V. Filkov, and P. Devanbu, “Ecological inference in empirical
software engineering,” in Automated Software Engineering (ASE), 2011
26th IEEE/ACM International Conference on, Nov 2011, pp. 362–371.

