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ABSTRACT

Developers might follow different file editing patterns when handling change requests. Existing research has
warned the community about the potential negative impacts of some file editing patterns on software quality.
However, very few studies have provided quantitative evidence to support these claims. In this paper, we pro-
pose four metrics to identify four file editing patterns: concurrent editing pattern, parallel editing pattern,
extended editing pattern, and interrupted editing pattern. Our empirical study on three open source projects
shows that 90% (i.e. 1935 out of 2140) of files exhibit at least one file editing pattern. More specifically
(1) files that are edited concurrently by many developers are 1.8 times more likely to experience future bugs
than files that are not concurrently edited; (2) files edited in parallel with too many other files by the same
developer are 2.9 times more likely to exhibit future bugs than files individually edited; (3) files edited over
an extended period of time are 1.9 times more likely to experience future bugs than other files; and (4) files
edited with long interruptions have 2.0 times more future bugs than other files. We also observe that the
likelihood of future bugs in files experiencing all the four file editing patterns is 3.9 times higher than in
files that are never involved in any of the four patterns. We further investigate factors impacting the
occurrence of these file editing patterns along three dimensions: the ownership of files, the type of change
requests in which the files were involved, and the initial code quality of the files. Results show that a
file with a major owner is 0.6 times less likely to exhibit the concurrent editing pattern than files without
major owners. Files with bad code quality (e.g. high McCabe’s complexity, high coupling between objects,
and lack of cohesion) are more likely to experience the four editing patterns. By ensuring a clear ownership
and improving code quality, the negative impact of the four patterns could be reduced. Overall, our findings
could be used by software development teams to warn developers about risky file editing patterns.
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1. INTRODUCTION

A software bug is a defect that causes software to behave in unintended ways or to produce incorrect or
unexpected results. It is estimated that 80% of software development costs are spent on bug fixings [1].
Bugs are generally introduced inadvertently by developers when performing source code changes. During
the implementation of a change request, a developer might change one or many files. File changes are
done through editing each involved file one or several times. As developers might work concurrently on
several change requests in parallel, several file editing patterns emerge. For example, one developer might
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edit multiple files simultaneously; another developer might edit files one by one; and some others may
follow both editing patterns. Developers often follow the editing pattern that best suits their personal
skills, schedule constraints, and programming experiences. Understanding how file editing patterns
impact software quality is of significant interest for software organizations. It is important to raise the
awareness of development teams about the risky editing patterns followed by developers. There has been
a large body of work on awareness tools for software development [2–6]. For example, Codebook [4]
and Crystal [5] can warn developers about potential file editing conflicts. However, very few studies
empirically investigated the risks posed by lack of developers’ awareness about file editing patterns of
fellow teammembers. The relationship between file editing patterns and bugs has yet to be studied in details.

To examine the effect of file editing patterns on software quality, one needs detailed information about
file editing activities occurring in developers’ workspaces. A tool such as Mylyn [7] that records and
monitors developer’s programming activities, like the selection and the editing of files, provides the
opportunity for such a study. Mylyn is an Eclipse plug-in that records a developer’s interactions with
the integrated development environment (IDE). The interactions include the selection and editing of
files. Based on Mylyn logs, we propose four metrics to identify four file editing patterns: concurrent
editing, parallel editing, extended editing, and interrupted editing. Concurrent editing pattern occurs
when several developers edit the same file concurrently. Parallel editing pattern occurs when multiple
files are edited in parallel by the same developer. Extended editing pattern occurs when developers
spend longer time editing a file, for example, the duration of editing periods longer than 123 h in our
data set. Interrupted editing pattern occurs when developers observe long idle time during editing of a
file, for example, the duration of idle periods longer than 816 h in our data set.

We perform an empirical study to analyze the relations between these patterns and the occurrences
of bugs. Because of the availability of Mylyn logs, we choose three Eclipse projects: Mylyn,§ Eclipse
Platform,¶ and Eclipse Plug-in Development Environment (PDE).∥ We collect the Mylyn logs for a
period of 2 years (i.e. from January 1, 2009 to December 31, 2010) to identify file editing patterns
and extract the commit logs of 6months (i.e. from January 1, 2011 to June 30, 2011) to mine future
bugs (i.e. bugs reported after developers’ changes). We briefly summarize our findings as follows:

• Concurrent editing: On average, files that are edited concurrently by many developers have 1.2
times more future bugs than files that are not involved in any concurrent editing.

• Parallel editing: On average, files edited in parallel with too many other files (i.e. more than 14.33
files, the third quartile in our data set) by the same developer are 2.9 times more likely to experience
bugs in the future than files edited individually.

• Extended editing: On average, files edited over a period of time greater than the third quartile
(i.e. 123 h in our data set) are 1.9 more likely to experience future bugs than other files.

• Interrupted editing: On average, files edited with interruption time greater than the third quar-
tile (i.e. 816 h in our data set) are 2.0 more likely to exhibit future bugs than the files with short
interruptions (i.e. below or at the median).

When more than one editing pattern is followed by one or many developers during the editing of a
file, the risk of future bugs in the file increases further. For example, files edited following concurrent,
extended and interrupted patterns together are 3.9 times more likely to experience future bugs than files
that are never edited following any of the four patterns.

Because the four file editing patterns impact software quality negatively, it is necessary to
understand factors that are related to their occurrence. The factors are selected along three
dimensions: the ownership of files, the types of change requests in which the files were involved,
and the initial code quality of the files. We further investigate the joint effect of different factors and
file editing patterns on the likelihood of future bugs. We obtained the following results:

• Concurrent editing: Files with a major owner are 0.6 times less likely to exhibit the concurrent
editing pattern than files without a major owner. Files without a major owner are 2.4 times more

§http://www.eclipse.org/mylyn.
¶http://www.eclipse.org/platform.
∥http://www.eclipse.org/pde.
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likely to experience future bugs if they are edited following the concurrent editing pattern, compared
with files without a major owner and not involved in the concurrent editing pattern. The concurrent
editing pattern further increases the risk for bugs in files with bad quality (i.e. high McCabe’s
complexity, high coupling between objects, and lack of cohesion in methods).

• Parallel editing: Files with a major owner are 0.7 times less likely to exhibit the parallel editing
pattern than files without a major owner. However, regarding the ownership of files and the type
of change requests, the risk of files edited following parallel editing pattern does not increase
significantly. But when the quality of a file is poor, the risk for future bugs significantly
increases when the file is edited following the parallel editing pattern.

• Extended editing: Files with a major owner are 0.5 times less likely to exhibit the extended
editing pattern than files without a major owner. Files without a major owner but involved in ex-
tended editing are 2.1 times more likely to experience future bugs than files without a major owner
and not involved in an extended editing. The risk for bugs in files with bad quality significantly
increases when edited following the extended editing pattern.

• Interrupted editing: Files with a major owner are 0.5 times less likely to exhibit the interrupted
editing pattern than files without a major owner. Moreover, when a file edited following the
interrupted editing pattern does not have a major owner, the risk for future bugs is 2.2 times higher
than when there is a major owner for the file. When the quality of a file is poor, the risk for future
bugs significantly increases if the file is edited following the interrupted editing pattern.

This paper extends our previous work [8] that was published in the proceedings of the 19th Working
Conference on Reverse Engineering (WCRE) in the following ways:

• Our earlier paper examines the effect of file editing patterns on software quality. In this paper, we
further investigate the factors that impact the occurrence of each of the four file editing patterns. We
investigate the ownership of files, the types of change requests, and the initial code quality of the files.

• The earlier work controlled only the confounding effect of size and the number of changes. In this
paper, we control for more factors, such as the ownership of files, the type of change requests, and
the code metrics. We investigate the joint effect of aforementioned factors and file editing patterns
on the occurrence of future bugs.

The remainder of this paper is structured as follows. We describe the four file editing patterns in
Section 2. Section 3 provides some background on the task and application life cycle management
framework Mylyn. Section 4 introduces the setup of our case study and describes our analysis
approach. Section 5 presents the results of our study. Section 6 discusses threats to the validity of
our study. Section 7 relates our study with previous work. Finally, Section 8 summarizes our
findings and outlines some avenues for future work.

2. FILE EDITING PATTERNS

This section introduces the four file editing patterns of our study.

2.1. Concurrent editing pattern

During the development and maintenance activities, developers are sometimes assigned inter-dependant
change requests. As illustrated in Figure 1, this situation can result in some file (i.e. File #1) being
edited concurrently by different developers (i.e. Developer #1 and Developer #2) at the same time. We
refer to this phenomenon as the concurrent editing pattern. An example of file edited following the
concurrent editing pattern is the file BugzillaTaskEditorPage.java of the Mylyn project which was
modified concurrently by three developers named Frank, Steffen Pingel, and David Green. The
concurrent editing pattern poses the risk of one developer overriding changes from another developer or
introducing a bug because of some unnoticed changes in the file because each developer is performing
his or her edits independently in his or her own working space, before all the changes are merged
together eventually.
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2.2. Parallel editing pattern

Developers sometimes edit a number of files in parallel when performing a change request. As
illustrated in Figure 2, some files (i.e., File #1, File #2, File #3, …, and File #n) can be edited in
parallel by a single developer (i.e. Developer #1). We refer to this phenomenon as the parallel
editing pattern. An example of parallel editing occurred in the Mylyn project among the files
PlanningPerspectiveFactory.java, AbstractTaskEditorPage.java, and TasksUiPlugin.java, which
were changed simultaneously by a developer named tFrank. With the parallel editing pattern, a
developer has a higher chance to become distracted because of frequent switches between files.

2.3. Extended editing pattern

When changing a file as part of a change request, a developer might end up performing several edits on
the file. As illustrated in Figure 3, these edits might be done over a short period of time (i.e. for files
File #1 and File #3) or might be done over an extended period of time (i.e. for file File #2). We
refer to the second scenario as the extended editing pattern. An example of extended editing
occurred in the Mylyn project. The maximum editing time of DiscoveryViewer.java is 54 h, which is
35 times the median (i.e. 1.53 h) of the maximum editing times of all files in the Mylyn project. We
conjecture that extended edits are possibly risky because developers might be distracted and forget
what they have done since the last edit. The extended edits might also be a sign of a complex
change that requires the developer to spend several editing sessions on the file.

Figure 1. An illustrative example of the concurrent editing pattern. The file File #1 is edited concurrently by two
developers Developer #1 andDeveloper #2, and the file File #2 is edited solely by the developer Developer #3.

Figure 2. An illustrative example of the parallel editing pattern. The developer Developer #1 edits files File
#1, File #2, File #3, …, and File #n in parallel, and the developer Developer #2 only edits the file File #m.
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2.4. Interrupted editing pattern

During development activities, developers are often interrupted by email alerts, meetings, or other duties.
As illustrated in Figure 4, theymight also simply take a breakwhichmay last for a fewminutes (i.e.File #1
and File# n) or longer (i.e. File #2). We refer to this phenomenon as the interrupted editing pattern. An
example of interrupted editing occurred in the Mylyn project. The maximum interruption time of
TaskCompareDialog.java is 3723 h, which is 965 times the median (i.e. 3.86 h) of the maximum
interrupted durations of all files in the Mylyn project. The interrupted editing pattern poses the risk of
developers introducing bugs because of a failure to recall some previous changes.

3. BACKGROUND OF MYLYN

3.1. Mylyn

Mylyn is an Eclipse plug-in for task management. A developer can create a Mylyn task to track the code
changes when handling a change request. The developer’s programming activities are monitored by
Mylyn to create a ‘task context’ to predict relevant artifacts of the task. The programming activities
include selection and editing of files. We use such activities to detect file editing patterns. In Mylyn,
each activity is recorded as an interaction event between a developer and the IDE. There are eight types

Figure 3. An illustrative example of the extended editing pattern. The file File #2 is edited extensively than
the files File #1 and File #3.

Figure 4. An illustrative example of the interrupted editing pattern. The edit of the file File #2 is interrupted
for a longer time than the edits of the files File #1 and File #n.
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of interaction events in Mylyn, as described in Table I. Three types of interaction events are triggered by a
developer, that is, Command, Edit and Selection events. In this study, we use Edit events to detect file
editing patterns.

3.2. Mylyn log format

Each Mylyn log has a task identifier, which often contains the change request ID. A Mylyn log is
stored in an XML format. Its basic element is InteractionEvent that describes the event. The
descriptions include the following: a starting date (i.e. StartDate), an end date (i.e. EndDate), an
event type (i.e. Kind), the identifier of the UI affordance that tracks the event (i.e. OriginId), and the
names of the files involved in the event (i.e. StructureHandle). Figure 5 presents an example of
InteractionEvent that was recorded during the implementation of the bug #311966**).

4. CASE STUDY SETUP

This section presents the design of our case study, which aims to address the following research questions:

(1) Do file editing patterns lead to more bugs?
(2) Which factors contribute to the occurrence of file editing patterns?

Table I. Event types in Mylyn logs.

Event type Description Developer initiated?

Command Click buttons, menus, and type in keyboard shortcuts Yes
Edit Select any text in an editor Yes
Selection Select a file in the explorer Yes
Attention Update the meta-context of a task activity No
Manipulation Directly manipulate the degree of interest

(DOI) value through Mylyn’ user interface
No

Prediction Predict relevant files based on search results No
Preference Change workbench preferences No
Propagation Predict relevant files based on structural

relationships (e.g. the parent chain in a containment hierarchy)
No

Figure 5. Structure of the Mylyn log of bug #311966.

**https://bugs.eclipse.org/bugs/show_bug.cgi?id=311966.
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(3) Which factors affect the bug proneness of files edited following the patterns?
(4) Do interactions among file editing patterns lead to more bugs?

4.1. Approach

The overview of our approach is presented in Figure 6. There are two types of data sources: Eclipse
Bugzilla†† that stores the property and the corresponding Mylyn logs of each change request; and
Concurrent Versions System (CVS) repositories that store the source code and code change history.
Change request metrics are computed from the properties of change requests. From Mylyn logs, four
pattern metrics are computed to identify the four file editing patterns: concurrent editing, parallel
editing, extended editing, and interrupted editing. We mine the CVS commits that contain change
request IDs. With a change request ID, we retrieve the properties of the change request and determine
whether a commit was for a bug fixing or a feature enhancement. From the CVS repositories, we
further dump source code snapshots to compute code metrics and examine code change history to
compute the ownership of files at file level.

To study the effect of file editing patterns on software quality, we statistically compare the proportion of
buggy files (and the number of bugs in files) edited following the patterns.We investigate if the ownership
of files, the type of a change request (e.g. a bug fix or feature enhancement), and the initial code quality (i.e.
complexity, coupling, cohesion, abstraction, encapsulation, and documentation measured by static
metrics) play a role in the occurrence of editing patterns. We further investigate if the ownership of
files, the type of change requests, and the initial code quality affect the risk of experiencing future bugs
in the files edited following certain patterns.

The remainder of this section elaborates on the details of the steps.

4.2. Subject projects

This study uses Mylyn interaction logs to identify file editing patterns. Hence, the subject systems are
chosen based on the number of Mylyn logs. Mylyn is frequently used in Eclipse projects. We search all
Eclipse projects and sort them by the number of change request reports with Mylyn logs. Mylyn logs
are compressed and attached in a change request report. The attachment is always named as ‘mylyn-
context.zip’. We use the ‘Advanced Search’ tool on Eclipse Bugzilla webpage. In the ‘Custom Search’
section, we choose the field ‘Attachment filename’, select the condition ‘is equal to’, and type the query

Figure 6. Overview of our approach to analyze the effect of file editing patterns on software quality.

††https://bugs.eclipse.org.
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string ‘mylyn-context.zip’. In the result page, the Eclipse Bugzilla shows a limited list of change request
reports. After clicking the ‘See all search results for this query’ link, the Eclipse Bugzilla shows the full list
of change request reports containing Mylyn logs. We choose three projects having most change request
reports with Mylyn logs. The three projects are: Mylyn, Eclipse Platform, and Eclipse PDE. Table II
briefly describes the three subject projects. The descriptive statistics of the files that were recorded in
Mylyn logs are described in Table III.

4.3. Mining future bugs

In our case study, software quality is measured by the occurrence and the number of future bugs (i.e. bugs
reported after developers’ changes) in files. The bug fixing change information for each file is mined from
the version control system. The three subject projects use CVS tomanage source code changes. The whole
history of revisions to the source code can be extracted from CVS repositories. We downloaded the CVS
repositories of our three subject projects from Eclipse Archives‡‡ on October 20, 2011. To separate the
pattern analysis period from the period for counting future bugs, we selected the date of January 1,
2011 as our split date. A 6-month period is often used to count the future bugs in the studies on bug
prediction, for example, the widely cited work by Zimmerman et al. [9]. Lee et al. [10] apply a 8:2
time split to separate the period for computing Mylyn metrics from the period for counting the future
bugs. This paper complies the two rules. That is, we chose to use the 6-month period (20%) after the
split date (i.e., January 1, 2011) as the future bug counting period and the 2-year period (80%) before
the split date as the pattern analysis period.

To mine future bugs, we first extracted the change logs of all commits performed during the future bug
counting period (i.e. from January 1, 2011 to June 30, 2011 in this study). During this period, the
developers might implement enhancements or fix bugs. Moreover, the fixed bugs might be reported
before and after January 1, 2011. It is necessary to check the corresponding type (i.e. enhancement or
bug) and report date for each bugID. We manually inspected the change logs and found that the bug ID
is often contained in the change logs. The bug IDs in Eclipse projects are integers. We observed that
the bug IDs monotonically increase along the report date. The last bug reported on December 31, 2010

Table II. List of subject projects.

Name Description Date of creation Number of files Total lines of code

Mylyn Task and application lifecycle
management framework

2005-06-17 1989 198 785

Platform Core frameworks, services, and
runtime provider for Eclipse

2001-04-28 61 366 2 284 564

PDE A comprehensive tool set for developing
Eclipse plug-ins

2001-06-05 320 78 864

The date of creations are determined by the first commit made in each project. The descriptions are obtained using
all java files in the snapshot of 2010-12-31.

Table III. The descriptive statistics of the subject projects.

Name
Number of change
request reports

Number of
Mylyn logs

Number
of files Total lines of code

Number
of developers

Mylyn 2722 3883 1177 143 164 72
Platform 606 793 738 142 674 22
PDE 524 638 225 46 530 39

The statistics are obtained only using the java files involved in editing activities that were recorded in Mylyn logs.

‡‡http://archive.eclipse.org/arch.
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is #333371, and the first bug reported on July 1, 2011 is #350890. Hence, this study automatically
extracted integers greater than 333 371 and less than 350 890 from the change logs as bug IDs. To
determine the type for each bug ID, we downloaded the corresponding change request report from
Bugzilla. All enhancements were filtered out. In total, we obtained 104 future bugs from the 2140 files
in the three projects. The number of future bugs of Mylyn, Platform, and PDE are 48, 39, and 17,
respectively. We further calculate the density of future bugs by dividing the number of future bugs of a
file by the size of the file. The density of future bugs of each project is presented in Figure 7. Similar to
[10, 11], we combined data from the three projects because of their small sizes.

4.4. Recovering file edit history

To collect the information of our file editing patterns, we analyzed Mylyn logs recorded during the
pattern analysis period (i.e. from January 1, 2009 to December 31, 2010 in this study). Mylyn logs
are compressed, encoded under the Base64 format, and attached to the change request reports. We
downloaded the change request reports and extracted the properties of the reports, such as
reporting date, reporter’s name, change request type (i.e. bug fix or feature enhancement), project
and module names, comments, Mylyn attachments, and attachers’ names. We decoded the Mylyn
attachments from the Base64 format, and unzipped them to extract Mylyn logs. We parsed each
Mylyn log to extract the Edit events. This study relies on the Edit events to track developers’
accesses to files and compute the duration of developers’ file editing periods. As mentioned in
Section 3.1, the Edit events are issued when a developer selects the content (i.e. the text) of a file
in the Eclipse IDE. For each Edit event, we extract the start date, the end date, and the names of
the files concerned by the event. There is no explicit ownership information stored in Mylyn logs.
Hence, we considered the attacher of a Mylyn log as the developer whose activities were recorded
in the the Mylyn log.

4.5. Identifying file editing patterns

This section describes how we detect editing patterns followed by developers during code changes. We
propose a set of metrics based on the information of the Edit events collected from Mylyn logs. In the
following subsections, we discuss the detection of each editing pattern in details.

4.5.1. Concurrent editing pattern. For each file, we identify all edits involving the file using the
Mylyn logs; for each edit, we track concurrent edits involving the file. We compute the number of
concurrent edits for each file and the number of developers involved in the edits. The number of
changes made to a file is known to be related to the number of future bugs in the file [12]. We
control for that by dividing the number of concurrent edits and the number of developers by the
number of changes, following respectively Eqns. (1) and (2). We obtain the average number of
concurrent edits per change (NConcurrentEdits) and the average number of developers editing the file
concurrently during a change (NConcurrentDevs).

Figure 7. Box plot of the density of the future bugs in each individual project (i.e. Mylyn, Platform, and
PDE) and the combined data set of the three projects.
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NConcurrentEdits ¼ 1
N

XN
i¼1

XN
j≠i

OverlapCE Editi;Editj
� �� �

(1)

NConcurrentDevs ¼ 1
N

XN
i¼1

XN
j≠i

OverlapCD Editi;Editj
� �� �

(2)

where Editi represents the i
th Edit on the file and N is the total number of changes in the history of the file.

OverlapCE (Editi,Editj) equals to 1 when there is an overlap between the time windows of Editi and
Editj; otherwise, it is equal to 0. A time window of an event is the interval starting from its first
timestamp to its last timestamp.

OverlapCD(Editi,Editj) equals to 1 when Editi and Editj are edited by different developers, and there is
an overlap between the time windows of Editi and Editj. In other cases,OverlapCD(Editi,Editj) equals to 0.

For example, given a file F involved in three edits Edit1, Edit2, Edit3. If (Edit1, Edit2) and (Edit2, Edit3)
have overlapping time windows, the number of concurrent edits for Edit1, Edit2, and Edit3 are 1, 2, and 1,
respectively. The average number of concurrent edits per change of F is NConcurrentEdits ¼ 1

3 1þ 2þ 1ð Þ ¼
1:33. If Edit1 was performed by developer d1, while Edit2 and Edit3 by developer d2, then Edit1 and Edit2
were edited concurrently by d1 and d2; Edit2 and Edit3 were edited solely by d2. The average number of
developers involved in edits Edit1, Edit2, and Edit3 are 2

1 ¼ 2, 2
2 ¼ 1 and 1

1 = 1. The average number of
developers involved in concurrent edits in F is NConcurrentDevs ¼ 1

3 2þ 1þ 1ð Þ ¼ 1:33.
We compute the NConcurrentDevs value for each file from our studied projects. A file was edited

following the concurrent editing pattern, if and only if its NConcurrentDevs is greater than 0.

4.5.2. Parallel editing pattern. We compute the number of parallel editing files of an edit i
(nParallelEdits(i)) using Eqn. (3). For each file File, we sum the nParallelEdits(i) values of all edits i in
the history of the file File. In order to control for the confounding effect of the number of changes
made to the file, we divide the sum of nParallelEdits(i) by the number of changes and obtain the
average number of files in a parallel edit (NParallelEdits) of File, following Eqn. (4).

nParallelEdits ið Þ ¼
XM
j¼1

OverlapPE File;Filej
� �

(3)

where Filej represents the j
th file in the Edit. M is the total number of files in the Edit.

OverlapPE(File,Filej) equals to 1 when there is an overlap between the time windows of File and
Filej; otherwise, it is equal to 0.

NParallelEdits ¼ 1
N

XN
i¼1

nParallelEdits ið Þ (4)

where nParallelEdits(i) represents the number of parallel editing files of the ith Edit of the file and N is the
total number of Edits in the history of the file.

For example, given a file F involved in three edits Edit1, Edit2 and Edit3. In Edit1, F was modified in
parallel with five other files; in Edit2, F was modified in parallel with nine other files; in Edit3, F was
modified solely. The number of parallel editing files of the three edits are the following: nParallelEdits
(1) = 5, nParallelEdits(2) = 9, nParallelEdits(3) = 1. The average number of parallel editing files of F is
NParallelEdits ¼ 1

3 5þ 9þ 1ð Þ ¼ 5.
For each file from our studied projects, we compute the NParallelEdits value. We conclude that a file

was modified following the parallel editing pattern, if and only if its NParallelEdits is greater than 0.

4.5.3. Extended editing pattern. For each file, we identify all edits involving the file and compute the
time span of each edit i of the file (editTime(i)) using Eqn. (5). We compute the editTime(i) values of
each edit in the history of the file and find the maximum value as EditTime to measure the editing time.
The EditTime is calculated following Eqn. (6).

EFFECT OF FILE EDITING PATTERNS ON SOFTWARE QUALITY 1005

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:996–1029



editTime ið Þ ¼
XM
j¼1

EndTimej � StartTimej
� �

(5)

where StartTimej and EndTimej represent the starting and ending time of the jth edit event involving the
file and M is the total number of Edit events in the ith edit in the history of the file.

EditTime ¼ maximum editTime ið Þð Þ; ∀i∈ 1;N½ � (6)

where editTime(i) represents the time span of the ith edit of the file and N is the total number of edits in
the history of the file.

For example, given a file F involved in two edits Edit1 and Edit2, with the time spans of the two edits
being respectively, editTime(1) = 1 h and editTime(2) = 2 h. The maximum editing time of F is
EditTime =maximum(1, 2) = 2.

For each file from our studied systems, we compute the EditTime value. We conclude that a file was
modified following the extended editing pattern, if and only if its EditTime is greater than the third
quartile of all EditTime values.

4.5.4. Interrupted editing pattern. For each file, we identify all changes involving the file and
compute the idle time of each change i (idleTime(i)) using Eqn. (7). We compute the idleTime(i)
values of each change in the history of the file and find the maximum value as IdleTime to measure
the interruption time. The IdleTime is calculated following Eqn. (8).

idleTime ið Þ ¼
XM
j¼2

StartTimej � EndTimej�1
� �

(7)

where StartTimej and EndTimej represent the starting and ending time of the jth edit event changing the
file and M is the total number of Edit events in the ith edit.

IdleTime ¼ maximum idleTime ið Þð Þ∀i∈ 1;N½ � (8)

where idleTime(i) represents the idle time of the ith edit on the file and N is the total number of changes
in the history of the file.

For example, given a file F involved in two edits Edit1 and Edit2, with the interruption time of F in
the two edits being: idleTime(1) = 2 h and idletime(2) = 16 h. The maximum interruption time of F is
IdleTime =maximum(2, 16) = 16.

For each file from our studied systems, we compute the IdleTime value. We conclude that a file was
modified following the interrupted editing pattern, if and only if its IdleTime is greater than the third
quartile of all IdleTime values.

4.6. Determining the ownership of files

We investigate two aspects of the ownership of files: the level of the ownership and the presence of a major
owner. Bird et al. [13] propose a metric to measure the proportion of the ownership of a developer for a
particular component (i.e. a compiled binary). Their metric is the ratio of the number of commits by the
developer relative to the total number of commits for a component. However, it is likely that different
commits involve different numbers of lines. To obtain more precise ownership, this study weights each
commit by its size as Bachmann et al. [14]. The size of a commit is described by the sum of the
number of added lines, the number of deleted lines, and the number of modified lines.

The ownership of each file is computed using Eqn. (9).

Ownership Filei;Developerj
� � ¼

XNij

n¼1
Aijn þ Dijn þMijn

� �
XDi

m¼1

XNim

n¼1
Aimn þ Dimn þMimnð Þ

(9)

where Filei is the ith file and Developerj is the jth developer of the file Filei. Di is the number of
developers of the file Filei, and Nij is the number of commits made by the developer Developerj to
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the file Filei. Aijn, Dijn,Mijn are, respectively, the number of added, deleted, and modified lines of the nth

commit made by the developer Developerj to the file Filei.
We compute the ownership of files using the pattern analysis period (i.e. from January 1, 2009 to

December 31, 2010). The number of added, deleted, and modified lines of each file are calculated from
all pairs of consecutive revisions made during that period. We investigate the impact of the level of the
ownership of files on the occurrence of file editing patterns. In our data set, the median of the
proportion of ownership of all developers for all the files is 0.9633. We further examine the impact of
the presence of a major owner. Whether a file has a major owner is determined by the Eqn. (10).

hasMajorOwner Fileið Þ ¼ true if max Ownership Fileið Þð Þ≥0:9633

false if max Ownership Fileið Þð Þ < 0:9633

�
(10)

where Filei is the ith file and max(Ownership(Filei)) is the maximum of Ownership(Filei,Developerj)
values for all Developerj that edited Filei.

4.7. Identifying the type of change requests

We chose to investigate the type of change requests because previous study by Ying et al. [15] has
reported a relation between the type of change requests (i.e. an enhancement or a bug fix) and the
editing style of developers. We identify the type of the change requests that were addressed by
developers using the severity of these change requests, extracted from Bugzilla reports (refer to
Section 4.4). The severities used in Eclipse Bugzilla are the following: trivial, minor, normal, major,
critical, blocker, and enhancement.

However, the severity field is imprecise [15] because it is usually set either by default (i.e. normal)
or manually by developers. Similar as Ying et al. [15], we group the seven severities into three coarser
ones: enhancement, minor, and major and define the following three metrics:

• ENHANCEMENT—the number of enhancements implemented on a particular file
• MINORBUG—the number of minor bugs (i.e. trivial, minor, and normal) fixed on a particular file
• MAJORBUG—the number of major bugs (i.e. major, critical, and blocker) fixed on a particular file

For each file, we compute the three aforementioned metrics using the pattern analysis period (i.e.
from January 1, 2009 to December 31, 2010).

4.8. Measuring the initial code quality

Files with a certain code quality (e.g. high or less complexity) might be more likely to exhibit certain
file editing patterns. For example, files with high complexity may be more likely to exhibit the
extended file editing pattern. Therefore, it is interesting to study whether the initial code quality of a
file affects the occurrence of file editing patterns.

In our case study, we select 14 metrics commonly used to measure software maintainability. The 14
metrics are further classified into six categories (i.e. complexity, coupling, cohesion, abstraction,
encapsulation, and documentation) in our previous work [19]. Table IV presents the name and the
category of the 14 metrics. For the metrics at class or method level, we aggregate them to the file
level by three statistics, that is, average, maximum, and sum of the metric values. In this study, we
refer to the code quality of the snapshot just before the pattern analysis period as the initial code
quality. The snapshot is dumped on the date of December 31, 2008.

The metrics are computed using a commercial tool named Understand.§§ The mapping between the
aforementioned metric names and the metric names used by the tool Understand is presented in
Appendix A.

§§http://www.scitools.com.
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4.9. Analysis method

We study if bugs in files are related to file editing patterns. To understand the file editing patterns, we
further examine if the occurrences of file editing patterns are impacted by the ownership of files, the
type of change requests in which the files were involved, and the initial code quality of the files.
The joint effect of the three aforementioned aspects, and file editing patterns on bug proneness is
also investigated.

4.9.1. Fisher’s exact test and odds ratio (OR). The Fisher’s exact test [20] is applied to determine if
there are non-random associations between a particular file editing pattern and the occurrence of future
bugs. If there are non-random associations, we further compute the odds ratio (OR) [20] which
indicates the likelihood of an event to occur (i.e. a future bug). OR is defined as the ratio of the
odds p of an event occurring in one sample, for example, the set of files edited following a specific
editing pattern (experimental group), to the odds q of it occurring in the other sample, e.g. the set of
files edited but not following the pattern (control group): OR ¼ p= 1�pð Þ

q= 1�qð Þ. An OR of 1 indicates that the
event (i.e. a future bug) is equally likely in both samples. OR > 1 indicates that the event is more
likely in the first sample (i.e. the experimental group of files edited following the editing pattern).
An OR < 1 indicates the opposite (i.e. the control group of files edited not following the pattern).

The Fisher’s exact test [20] is also used to determine if there are non-random associations between
the occurrence of a particular file editing pattern and the ownership of files, the types of change
requests, and the initial code quality of files. To control the family-wise error rate of multiple
comparisons, we apply the Holm–Bonferroni method [21] to correct the threshold of P-values. If
there are non-random associations, we further compute the OR to quantify the impact of the
aforementioned three aspects on the occurrence of file editing patterns.

Moreover, we apply the Fisher’s exact test [20] to determine if there are non-random associations
between the occurrence of future bugs and the presence of a particular file editing pattern together
with the ownership of files, the types of change requests, and the initial code quality of files. As we
conduct multiple tests, we apply the Holm–Bonferroni method [21] to correct the threshold of P-
values. If there are non-random associations, we further compute the OR to investigate how much
the ownership of files, the types of change requests, and the initial code quality affect the bug
proneness of files edited following a particular pattern.

4.9.2. Wilcoxon and Kruskal–Wallis rank sum test. We split the full set of files into two groups: (1)
the files edited following a particular pattern; and (2) the files that were edited without following the
pattern. We apply the Wilcoxon rank sum test [20] to determine whether the density of future bugs
of the two groups are significantly different. The Wilcoxon rank sum test is a non-parametric
statistical test to assess whether two independent distributions have equally large values. Non-
parametric statistical methods make no assumptions about the distributions of assessed variables. In

Table IV. List of source code metrics.

Category Metric name Description Metric level File level

Complexity CLOC Class lines of code File Value
NIM [16] Number of instance methods Class Avg, Max, Sum
NIV [16] Number of instance variables Class Avg, Max, Sum
WMC [17] Weighted methods per class Class Avg, Max, Sum
CC [18] McCabe cyclomatic complexity Method Avg, Max, Sum

Couping CBO [17] Coupling between objects Class Avg, Max, Sum
RFC [17] Response for a class Class Avg, Max, Sum

Cohesion LCOM [17] Lack of cohesion in methods Class Avg, Max, Sum
Abstraction DIT [17] Depth of inheritance tree Class Avg, Max, Sum

IFANIN [16] Number of immediate base classes Class Avg, Max, Sum
NOC [17] Number of immediate subclasses Class Avg, Max, Sum

Encapsulation RPM Ratio of public methods Class Avg, Max, Sum
Documentation CL comment of lines File Value

RCC [16] Ratio comments to codes File Value
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cases of comparisons among more than two groups of files, we apply the Kruskal–Wallis rank sum test
[20] that is an extension of the Wilcoxon rank sum test to more than two groups.

5. CASE STUDY RESULTS

This section presents and discusses the results of our four research questions.
Prior to answer our research questions, it is important to determine if all four editing patterns are

followed by developers during code changes and are therefore worth investigating individually. We
propose the following exploratory question.

5.1. Are there different file editing patterns?

This question aims to provide the quantitative data on the number of files edited by developers following
the four editing patterns and determine the existence of interactions between the editing patterns, for
example, if a file can be edited concurrently by different developers, over an extended period of time.

To answer this question, we identify the editing pattern(s) of a file using the metrics described in
Section 4.5. The distribution of the metrics values is presented in Figure 8. We classify the files of
our subject projects using the patterns followed by developers during file editing.

Table V summarizes the number of files that were edited following each pattern or combination of
patterns. As shown in Table V, only 205 files in our systems were edited following none of the four
patterns under investigation. The most frequent editing pattern followed by developers is the parallel
editing pattern, which exists in 90% (i.e. 1922 out of 2140) of files. Moreover, 44% (i.e. 945 out of
2140) of files from our systems were edited following more than one editing pattern.
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Figure 8. Distribution of metric values for the file editing patterns.
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Overall, we conclude that developers follow the four file editing patterns during development and
maintenance activities.

In the following research questions, we examine the patterns (and their interactions) in more
detail to understand factors contributing to their occurrence and determine if some file editing
patterns (and interaction among patterns) are more risky than others.

5.2. RQ1: Do file editing patterns lead to more bugs?

Motivation
In Section 5.1, we found that very frequently, developers follow one of the four file editing patterns
under investigation in this study. However, following these patterns is likely to be risky. For example,
during a parallel editing, a developer might become distracted because of the frequent switches
between files and inadvertently introduce an error into the system. In this research question, we investigate
the relation between each file editing pattern and the occurrence of bugs. Understanding the risks posed by
each file editing pattern is important to raise the awareness of developers about the potential risk of their
working style. Managers can use the knowledge of these patterns to decide on the acquisition of awareness
tools that can assist developers during development and maintenance activities.

Approach
We classify the files based on the patterns followed by developers during file editing. Two groups will
be created for each pattern Pi: (1) the group GPi containing files that were edited by developers follow-
ing Pi; and (2) the other group NGPi containing files that were edited by developers not following Pi.
We also calculate the density other than the number of future bugs of each file because previous studies
(e.g. [9, 22]) have found size to be related to the number of bugs in a file. The density is computed by
dividing the number of future bugs of each file by the size of the file.

For each pattern Pi, we test the two following null hypotheses:

H1
01 : The proportion of files exhibiting at least one future bug does not differ between the groups GPi

(of files edited by developers following Pi) andNGPi (of files edited by developers not following Pi).
H2

01: There is no difference between the density of future bugs of files from groups GPi and NGPi.

Hypothesis H1
01 (respectively H2

01 ) is about the probability of bugs (respectively the density of
future bugs) in files edited following the pattern Pi. H1

01 and H2
01 are two-tailed because they

Table V. Occurrences of file editing patterns and their interactions.

List of patterns or
combination of patterns

Number and percentage of files

Mylyn Platform PDE All

No patterns 90 8% 74 10% 41 18% 205 10%
<Con> 437 37% 42 6% 18 8% 497 23%
<Parl> 1083 92% 655 89% 184 82% 1922 90%
<Ext> 352 30% 163 22% 20 9% 535 25%
<Int> 271 23% 224 30% 40 18% 535 25%
<Con, Parl> 434 37% 42 6% 18 8% 494 23%
<Con, Ext> 252 21% 13 2% 8 4% 273 13%
<Con, Int> 189 16% 21 3% 9 4% 219 10%
<Parl, Ext> 351 30% 158 21% 20 9% 529 25%
<Parl, Int> 270 23% 220 30% 40 18% 530 25%
<Ext, Int> 209 18% 118 16% 13 6% 340 16%
<Con, Parl, Ext> 252 21% 13 2% 8 4% 273 13%
<Con, Parl, Int> 189 16% 21 3% 9 4% 219 10%
<Con, Ext, Int> 160 14% 12 2% 6 3% 178 8%
<Parl, Ext, Int> 208 18% 118 16% 13 6% 339 16%
<Con, Parl, Ext, Int> 160 14% 12 2% 6 3% 178 8%

Con, concurrent; Parl, parallel; Ext, extended; Int, interrupted editing patterns

1010 F. ZHANG ET AL.

Copyright © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/smr

J. Softw. Evol. and Proc. 2014; 26:996–1029



investigate whether the file editing pattern Pi is related to a higher or a lower risk of bug. We use the
Fisher’s exact test and compute the OR to test H1

01. We perform a Wilcoxon rank sum test for H2
01.

The files in our data set do not have the same level of involvement in the patterns. For example, some
files are edited concurrently by five developers, while others are edited concurrently by only two
developers. Because the file edited concurrently by more developers is more at risk for conflicting
changes, we believe that the level of involvement of a file in a pattern is likely to impact the risk of
bugs in the file. Therefore, for each pattern, we further analyze the relation between the level of
involvement in the pattern and the occurrence of bugs. The level of involvement of a file f in the:

• Concurrent editing pattern: is the average number of developers involved in a concurrent editing
of f (i.e. NConDevs).

• Parallel editing pattern: is the average number of files edited in parallel with f (i.e. NParallelEdits).
• Extended editing pattern: is the average editing time of f (i.e. EditTime).
• Interrupted editing pattern: is the average interruption time of f (i.e. IdleTime).

For a concurrent or parallel (respectively an extended or interrupted) editing pattern Pi, we use the third
quartile (respectively median) of all the level values of files that were involved in Pi, to split the groupGPi
of files edited following Pi, into two groupsGP1

i andGP
2
i .GP

1
i contains files with a level of involvement

lower than the third quartile (respectively median) of all the level values of files involved in Pi. GP2
i

contains files with level values greater than the third quartile (respectively median) of all the level
values of files involved in Pi. For the extended editing pattern and the interrupted editing patterns, we
use the median instead of the third quartile because these patterns were defined based on the third
quartile. For each pattern Pi, we test following null hypotheses:

H3
01: The proportion of files exhibiting at least one bug is the same for NGPi, GP1

i , and GP2
i .

H4
01: There is no difference between the density of future bugs of files from groups NGPi,GP1

i , andGP
2
i .

Hypothesis H3
01 is about the probability of bugs in files. We apply the Fisher’s exact test and

compute the OR to test H3
01. Hypothesis H

4
01 is about the density of future bugs in files; we perform

the Kruskal–Wallis rank sum test for H4
01.

All the tests are performed using the 95% confidence level (i.e. P-value< 0.05).

Findings
(1) Concurrent editing pattern. As shown in Figure 9, the concurrent editing pattern is the most risky

pattern among the four patterns. The likelihood of bugs in a file edited following the concurrent
editing pattern is higher compared with files edited following one of the other three patterns.
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The Fisher’s exact test was statistically significant (P-value = 2.03e� 03), therefore we reject
H1

01 for the concurrent editing pattern. A file with concurrent edits is 1.8 times more likely to
experience a future bug than a file that was never involved in a concurrent edit (Figure 9 (1)).
We observed a statistically significant difference between the density of future bugs of files
edited concurrently and others. The P-value of Wilcoxon rank sum test is 1.58e� 03; therefore,
we reject H2

01 for the concurrent editing pattern. The density of future bugs of files involved in
concurrent edits is 1.2 times greater than files that were never edited concurrently.The results of
the impact of different levels of involvement in concurrent editing pattern are shown in Table VI.
We could not reject eitherH3

01 orH
4
01 for the concurrent editing pattern. The results from Table VI

suggest that a low level of involvement in concurrent editing pattern is risky, while a high
level of involvement is not risky. This is contrary to what we had hypothesized, the risk
for bug is decreased when the number of developers involved in a concurrent editing is very
high (i.e. above the third quartile). Nevertheless, this result is in line with Linus’s law that
“given enough eyeballs, all bugs are shallow.” [23] Development teams can monitor only
files that were edited concurrently by a small number of developers.

(2) Parallel editing pattern. Results from Table VI show that when developers follow the parallel
editing pattern, the risk for bugs is not necessary increased. The P-values of the Fisher’s exact
test and the Wilcoxon rank sum test are respectively 2.15e� 01 and 1.97e� 01 when the
number of files edited in parallel (i.e. the level) is below the third quartile (i.e. 14.33 files).
Therefore, we cannot reject H1

01 and H2
01 for the parallel editing pattern in general. We attribute

this result to the experience of the developers (of our studied projects) with parallel editing, as it
is a common practice that developers change more than one file at the same time (e.g. [24]).
In fact, Table V shows that 90% of files were involved in a parallel editing pattern in all the
three studied projects. Because of such high frequency of the parallel editing pattern, the
developers of these projects are probably used to parallel editing and likely more cautious.
Therefore, the parallel editing pattern might be not enough by itself to measure the risk of
introducing bugs.

However, from Table VI, it appears that the level of involvement of a file in a parallel editing
plays a significant role in increasing the risk for bugs. The risk for bug and the density of future
bugs is increased significantly when the number of files edited in parallel is above the third
quartile (i.e. 14.33 files). We conclude that although developers can manage to edit a certain
number of files at the same time, editing a large number of files in parallel is still risky. Therefore,
we suggest that development teams pay more attention to files that are edited in parallel with too
many other files. Quality assurance teams should advise developers against editing too many files
in parallel.

(3) Extended editing pattern. The extended editing pattern increases the risk of bugs in files. Indeed,
files with edit time spanning greater than the third quartile (i.e. 123 h) are 1.9 times more likely
to experience a future bug than other files, as illustrated in Figure 9 (3). The Fisher’s exact test
was statistically significant (P-value = 6.63e� 04). We reject H1

01 for the extended editing
pattern. TheWilcoxon rank sum test was also statistically significant forH2

01 (P-value = 5.18e� 04);
therefore, we reject H2

01 for the extended editing pattern. Files edited following the extended
editing pattern have on average 1.2 times greater density of future bugs than files that were never

Table VI. Relation between the level of involvement in a pattern, the risk of bugs, and the corresponding
P-value.

Pattern

Level≤ third quartile Level> third quartile

OR Average bug density OR Average bug density

Concurrent 2.0* (1.07e� 03) 1.4* (6.41e� 04) 1.4 (3.07e� 01) 0.8 (3.47e� 01)
Parallel 1.1 (8.74e� 01) 1.2 (7.88e� 01) 2.9* (8.73e� 04) 2.1* (1.27e� 03)
Extended 1.0 (8.31e� 01) 0.9 (8.40e� 01) 1.9* (1.55e� 03) 1.1* (1.36e� 03)
Interrupted 0.9 (6.53e� 01) 0.6 (5.65e� 01) 2.0* (4.95e� 04) 0.9* (5.64e� 04)

*indicates that the test was statistically significant, i.e. P-value< 0.05.
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involved in an extended editing. Although files edited following the extended editing pattern are at
risk for bugs in general, all extended editings are not equally risky. Results from Table VI suggest
that only files edited for a long time (i.e. above the third quartile) are very likely to exhibit a future
bug. Extended editings might be the fact of complex tasks or change requests that are not clearly
described. Developers should investigate the root cause of long editings that occur on files involved
in extended editing patterns.

(4) Interrupted editing pattern. The occurrence of interrupted editing patterns does not necessarily
increase the risk of bugs in files. Indeed, the P-value of the Fisher’s exact test is statistically
significant (i.e. 6.73e� 05) only when the interruption time (i.e. the level) is above the third
quartile (i.e. 816 h). Therefore, we reject H1

01 for the interrupted editing pattern where the level
of involvement of the file is above the third quartile. One possible explanation for this result is that
it might becomemore difficult for developers to recall part of the code changes that were performed
over 1month ago (816 h are approximately 34 days). We also rejectH2

01 for the interrupted editing
pattern because theWilcoxon rank sum test was statistically significant (P-value = 6.12e� 05). The
files that were edited with interruption time greater than the third quartile have 1.1 times higher
density of future bugs than other files that were not involved in an interrupted editing. The results
for different levels of involvement in the interrupted editing pattern are shown in Table VI.
Managers should consider reassigning change requests to other developers quickly, if the
developers in charge of these change requests stop working on them or pause for a long time.

5.3. RQ2: Which factors contribute to the occurrence of file editing patterns?

Motivation
In Section 5.1, we observed that 90% (i.e. 1935 out of 2140) of files in our data set were edited follow-
ing at least one of the four file editing patterns. However, we also observed that the four file editing
patterns were not followed with the same frequency. For example, 90% (i.e. 1922 out of 2140) of files
were edited in parallel with other files while only 23% (i.e. 497 out of 2140) of files were edited con-
currently by multiple developers. Because the risks of bugs of files edited following different editing
patterns are not equal, it is important to understand the factors contributing to the occurrence of a file
editing pattern, so that development teams can act to monitor some file editing patterns. This research
question aims to examine if the occurrences of file editing patterns are impacted by the following three
factors: (1) the ownership of files; (2) the type of change requests; and (3) the initial code quality of the
files. We describe our approaches and findings for each factor as follows.

(1) The ownership of files

Approach
We use the two metrics Ownership and hasMajorOwner that are defined in Section 4.6 to measure
the ownership of a particular file. First, we investigate whether the level of the highest ownership
of each file impacts the occurrence of file editing patterns. The quartiles of the highest Ownership
of files in our data set are the following: 0 (0%), 0.89 (25%), 1.00 (50%), 1.00 (75%), and 1.00
(100%). Therefore, we divide files into two groups using the second quartile (i.e. 0.89). We also in-
vestigate whether files with a major owner are more or less likely to exhibit the file editing patterns.
We divide files into two groups:

(1) GnoneMO containing files without major owners (i.e. hasMajorOwner equals to false); and
(2) GhasMO containing files with major owners (i.e. hasMajorOwner equals to true).

For each file editing pattern Pi, we test the following null hypothesis:

H1
02: The proportion of files exhibiting file editing pattern Pi does not differ between the groups divided

by the metric Ownership.
H2

02 : The proportion of files exhibiting file editing pattern Pi does not differ between the groups
GnoneMO and GhasMO.
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HypothesisH1
02 is about the probability of exhibiting a file editing pattern when considering the level

of highest ownership of files. H2
02 is about the probability of exhibiting file editing patterns for files

without or with major owners.
We use the Fisher’s exact test to accept or reject the hypothesis. If there is a statistically significant

difference, we reject the hypothesis and further compute ORs to determine how much the ownership of
files affects the occurrence of file editing patterns.

Findings
The ORs and corresponding P-values are presented in Table VII. Four Fisher’s exact tests were performed
to test hypothesisH1

02 andH
2
02, respectively. We apply the Holm–Bonferroni method to correct the thresh-

old P-value to 0.05 and 0.05, respectively. The results show that files with strong ownership are less likely
to exhibit concurrent, extended, and interrupted editing patterns. Files with a major owner are less likely to
experience all four editing patterns. One possible reason is that change request tasks related to a particular
file are often assigned to the major owner of the file. For instance, in our pattern analysis period, the file
AbstractRepositoryQueryPage.java of Mylyn project is modified to address ten change requests. Six of
them are assigned to the major owner (i.e. Steffen Pingel) of the file. Also, the major owner is involved
in addressing three other change requests, and he opens the remaining one. As a summary, this result sug-
gests that quality assurance teams should pay attention to files with weaker ownership (i.e. the highest
ownership value is below 0.89, the second quartile) and files without a major owner.

(2) The type of change requests

Approach
As described in Section 4.7, we have three types of change requests: enhancements, minor bug, and
major bug. We use the three metrics ENHANCEMENT, MINORBUG, and MAJORBUG to measure the
involvement of files in different types of change requests. We first investigate whether file editing
patterns are more likely to occur in files involved in more enhancement implementations or bug fixes.
We categorize files into two groups:

(1) Genhancement containing files with more enhancement implementations than bug fixes; and
(2) Gbug containing files implementing more bug fixes than enhancement implementations.

We also examine whether file editing patterns are more likely to occur in files involved in more
minor bug fixes or in more major bug fixes. We split files into two groups:

(1) GminorBug containing files with more minor bugs fixes than major bugs fixes; and
(2) GmajorBug containing files with more major bugs fixes than minor bugs fixes.

For each file editing pattern Pi, we test the following null hypothesis:

H3
02: The proportion of files exhibiting the file editing pattern Pi does not differ between the groups

Genhancement and Gbug.
H4

02: The proportion of files exhibiting the file editing pattern Pi does not differ between the groups
GminorBug and GmajorBug.

Hypothesis H3
02 is about the probability of exhibiting file editing patterns for files edited more for

feature enhancements or more for fixing bugs. H4
02 is about the probability of exhibiting file editing

patterns for files edited mainly to fix minor or major bugs.

Table VII. Odds ratios obtained when examining the impact of the ownership of files on the probability of
the occurrences of file editing patterns and the corresponding P-value of the Fisher’s exact tests.

Ownership of files Concurrent Parallel Extended Interrupted

Highest Ownership 0.5* (6.86e� 08) 0.8 (2.85e� 01) 0.5* (2.79e� 10) 0.6* (2.96e� 06)
hasMajorOwner 0.6* (4.06e� 08) 0.7* (1.92e� 02) 0.5* (6.91e� 11) 0.5* (2.09e� 09)

*indicates that the test was statistically significant, i.e. P-value< 0.05.
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We apply the Fisher’s exact test to examine the two hypotheses. If there is a statistically significant
difference, we further compute ORs to determine how much the type of change requests and the level
of severity of bugs affect the occurrence of file editing patterns.

Findings
The ORs and the corresponding P-values are presented in Table VIII. Four Fisher’s exact tests were
performed to test hypothesis H3

02 and H4
02 , respectively. The threshold P-values are corrected to 0.05,

and 1.67e� 02, respectively.
Results show that files with more bug fixes than enhancement implementations are more likely to

exhibit the four file editing patterns. This might be because developers are more cautious when solving
complicated problems. In the three subject projects, the median (i.e. 4) of the number of files involved
in implementing enhancements is twice the median (i.e. 2) of the number of files involved in fixing
bugs, indicating that the enhancement implementions are often more complicated than bug fixings. For
example, seven files were edited when implementing the enhancement #300078 of Mylyn project. Five
files were modified when fixing the bug #300229 of Eclipse Platform project.

The results also show that files with more fixes for minor bugs than major bugs are more likely to
exhibit concurrent pattern. One possible explanation is that developers might be more cautious when
fixing bugs with higher severity than lower severity.

(3) The initial code quality of files

Approach
We use the metrics described in Section 4.8 to measure the initial code quality of files. The files are
divided into two groups based on each metric, separately:

(1) files with the metric value below or at the median; and
(2) files with the metric value above the median.

For each file editing pattern Pi, we test the following null hypothesis:

H5
02: The proportion of files exhibiting file editing pattern Pi does not differ between the groups divided
by each of the aforementioned metrics.

Hypothesis H5
02 is about the probability of exhibiting file editing patterns in files with smaller or

larger metric values (on the initial snapshot just before the period of identification of the file editing
patterns). The hypothesis is two-tailed because it investigates whether the initial code quality of a
file can increase or decrease the likelihood of a file editing pattern occurring.

We apply the Fisher’s exact test to test the hypothesis. If there is a statistically significant difference,
we reject the hypothesis and further compute ORs to determine how much the initial code quality of
files affects the occurrence of file editing patterns.

Findings
The ORs and the corresponding P-values are presented in Table IX. In total, we perform
140 (i.e. 35 × 4) Fisher’s exact tests. We apply the Holm–Bonferroni method to correct the
threshold of P-value to 6.33e� 04. The results show that the extended and interrupted editing
patterns are more highly impacted by the initial code quality in general. The detailed impacts

Table VIII. Odds ratios obtained when examining the impact of the type of change requests on the
probability of the occurrences of file editing patterns and the corresponding P-value of Fisher’s exact tests.

Type of change requests Concurrent Parallel Extended Interrupted

Bug versus enhancement 2.6* (1.08e� 06) 2.0* (9.71e� 04) 2.0* (2.93e� 04) 1.5* (1.46e� 02)
Minor versus major bug 4.8* (3.53e� 04) 1.7 (1.59e� 01) 1.1 (1.00e + 00) 1.1 (1.00e + 00)

*indicates that the test was statistically significant.
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of each category of metrics are described as follows. Higher complexity (e.g. greater values in
CLOC, maxNIM, maxWMC, and CC) increases the likelihood of files to experience extended and
interrupted editing patterns. In addition, the metric maxCC has a relationship with the occurrence
of concurrent editing pattern. Stronger coupling between objects (i.e. greater values in maxCBO

and sumCBO) contributes significantly to the occurrence of all the four file editing patterns.
The coupling metric RFC only impacts the occurrence of the interrupted editing pattern. A weak
cohesion (i.e. high values in maxLCOM and sumLCOM) increases the likelihood of concurrent,
extended, and interrupted editing patterns. The abstraction mainly affects the occurrence of
the interrupted editing pattern. The metrics avgRPM and sumRPM have a relationship with the
occurrence of concurrent and interrupted editing patterns, respectively. Increasing the ratio of
comments to code (i.e. RCC) can significantly reduce the likelihood of files to exhibit all the
four file editing patterns. There are six metrics playing a significant role in the occurrence of
at least three file editing patterns. These six metrics are the following: maxCC, maxCBO,
sumCBO, maxLCOM, sumLCOM, and RCC. Among these metrics, the metric RCC is the easiest
one to control. Developers should add more comments to help reduce the likelihood of
experiencing the four file editing patterns in the future. Moreover, we suggest that development
teams monitor and control the aforementioned six quality indicators investigated in this work, in
order to reduce the occurrence of the editing patterns and hence the risk that they may induce.

Table IX. Odds ratios obtained when examining the impact of the initial code quality on the probability of
the occurrences of file editing patterns and corresponding P-value of Fisher’s exact tests.

Category Code metric Concurrent Parallel Extended Interrupted

CLOC 1.3 (2.26e� 02) 1.5 (2.16e� 02) 2.5* (1.2e� 13) 3.6* (1.30e� 24)
avgNIM 1.1 (4.36e� 01) 1.2 (3.78e� 01) 1.2 (1.37e� 01) 1.4 (7.40e� 03)
maxNIM 1.1 (2.88e� 01) 1.5 (2.67e� 02) 1.9* (4.65e� 08) 2.9* (3.27e� 18)
sumNIM 1.0 (8.67e� 01) 1.4 (9.42e� 02) 1.8* (5.50e� 07) 3.1* (1.06e� 19)
avgNIV 1.1 (2.35e� 01) 1.2 (4.21e� 01) 1.4 (4.50e� 03) 1.9* (1.39e� 07)

Complexity maxNIV 1.1 (4.99e� 01) 1.3 (1.29e� 01) 1.7* (1.06e� 05) 2.5* (5.40e� 14)
sumNIV 1.1 (5.38e� 01) 1.4 (7.63e� 02) 1.7* (2.69e� 05) 2.5* (1.20e� 13)
avgWMC 1.1 (6.17e� 01) 1.2 (2.19e� 01) 1.2 (1.54e� 01) 1.4 (4.30e� 03)
maxWMC 1.1 (3.44e� 01) 1.6 (8.12e� 03) 2.0* (1.43e� 08) 3.1* (5.91e� 20)
sumWMC 1.0 (7.81e� 01) 1.5 (4.23e� 02) 1.8* (1.38e� 06) 3.3* (1.19e� 21)
avgCC 1.3 (4.56e� 03) 0.9 (4.29e� 01) 2.1* (5.28e� 10) 1.9* (1.54e� 07)
maxCC 1.5* (2.73e� 04) 1.1 (7.91e� 01) 3.0* (2.22e� 19) 2.6* (2.85e� 15)
sumCC 1.2 (1.48e� 01) 1.5 (3.40e� 02) 2.4* (1.55e� 12) 3.4* (1.34e� 23)

Coupling

avgCBO 2.4* (2.85e� 15) 1.7 (3.54e� 03) 1.8* (7.36e� 07) 1.3 (2.02e� 02)
maxCBO 2.3* (6.21e� 14) 2.5* (6.14e� 07) 2.5* (4.08e� 14) 2.1* (1.62e� 09)
sumCBO 2.0* (2.67e� 10) 2.8* (7.77e� 08) 2.5* (4.17e� 14) 2.6* (6.26e� 15)
avgRFC 1.3 (2.61e� 02) 1.7 (2.65e� 03) 1.2 (6.53e� 02) 1.8* (2.50e� 06)
maxRFC 1.2 (5.13e� 02) 1.7 (6.05e� 03) 1.6* (6.53e� 05) 2.9* (4.78e� 18)
sumRFC 1.0 (7.38e� 01) 1.6 (6.25e� 03) 1.6* (3.03e� 05) 3.0* (9.54e� 19)

Cohesion
avgLCOM 1.3 (1.67e� 02) 1.0 (1.00e + 00) 1.146 (2.59e� 01) 0.9 (5.52e� 01)
maxLCOM 1.6* (2.32e� 05) 1.3 (1.34e� 01) 2.4* (6.69e� 13) 2.5* (4.35e� 14)
sumLCOM 1.5* (1.23e� 04) 1.3 (1.12e� 01) 2.2* (4.94e� 11) 2.4* (2.89e� 13)

Abstraction

avgDIT 1.2 (1.79e� 01) 1.2 (2.49e� 01) 0.6* (1.23e� 04) 0.8 (1.51e� 01)
maxDIT 1.4 (2.84e� 02) 2.0 (9.95e� 03) 1.0 (9.40e� 01) 1.9* (1.52e� 05)
sumDIT 0.9 (5.04e� 01) 1.7 (4.59e� 03) 1.4 (1.24e� 02) 2.2* (2.94e� 11)
avgIFANIN 1.2 (1.33e� 01) 1.1 (7.25e� 01) 1.7* (3.06e� 05) 2.3* (9.46e� 12)
maxIFANIN 0.7 (2.51e� 01) 0.9 (7.14e� 01) 1.5 (8.43e� 02) 2.1 (7.90e� 04)
sumIFANIN 1.0 (8.21e� 01) 1.3 (1.52e� 01) 1.6* (8.31e� 05) 2.6* (1.35e� 15)
avgNOC 1.4 (1.75e� 02) 1.8 (5.14e� 02) 1.7 (1.35e� 03) 2.2* (4.53e� 07)
maxNOC 1.4 (1.75e� 02) 1.8 (5.14e� 02) 1.7 (1.35e� 03) 2.2* (4.53e� 07)
sumNOC 1.4 (1.75e� 02) 1.8 (5.14e� 02) 1.7 (1.35e� 03) 2.2* (4.53e� 07)

Encapsulation
avgRPM 1.5* (4.53e� 04) 1.2 (3.32e� 01) 1.1 (5.93e� 01) 1.0 (7.21e� 01)
sumRPM 0.9 (3.66e� 01) 1.4 (8.88e� 02) 1.5 (1.37e� 03) 2.4* (4.60e� 13)

Documentation
CL 0.9 (4.36e� 01) 1.0 (9.30e� 01) 2.1* (2.27e� 09) 2.5* (1.09e� 13)
RCC 0.5* (8.72e� 08) 0.4* (1.48e� 06) 0.5* (3.94e� 08) 0.5* (9.78e� 09)

*indicates that the test was statistically significant, i.e. P-value< 6.33e – 04.
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Overall, we observe that the ownership of files and the severity of bug fix change requests affect
the occurrence of the four editing patterns investigated in this work. The initial code quality of files, in
particular the aspects of quality measured by maxCC, maxCBO, sumCBO, maxLCOM, sumLCOM, and
RCC, contribute significantly to the occurrence of at least three out of the four file editing patterns.

5.4. RQ3: Which factors affect the bug proneness of files edited following the patterns?

Motivation
In Section 5.2, we observe that all four file editing patterns increase the likelihood of future bugs. In
Section 5.3, we observe that there exists a relationship between the occurrence of file editing patterns
and the ownership of files, the type of change requests, and the initial code quality. Hence, it is interesting
to investigate the combined effect that these three factors (i.e. ownership of files, the type of change
requests, and the initial code quality) and the file editing patterns have on the likelihood of future bugs.
This research question aims to examine such combined effects. In particular, we want to understand if
the ownership of a file impacts the risk for future bugs in this file when it is edited following a certain
editing pattern. We also want to examine whether the types of the change requests in which a file was
involved do impact the risk for future bugs in the file when it is edited following a certain editing pattern.
For the initial code quality, we only investigate the aforementioned six metrics (i.e. maxCC, maxCBO,
sumCBO, maxLCOM, sumLCOM, and RCC) that play a significant role in the occurrence of at least three
file editing patterns, individually.

Approach
In the approach of RQ2 (refer to Section 5.3), files are split into two groups using each metric defined
in Section 4.6, Section 4.7, and Section 4.8. To address this research question, we further divide the
two groups into four subgroups by considering whether a particular file editing pattern had occurred
or not. The first group is always selected as the control group, and the other three groups are experi-
mental groups. We test the following hypothesis for each pattern Pi:

H1
03: The proportion of files exhibiting at least one future bug does not differ between the control group

and experimental groups.

Hypothesis H1
03 is about the probability of bugs in files with different values of the corresponding

metric and edited following the pattern Pi. H1
03 is two-tailed because it investigates whether the

combined effect of file editing pattern Pi and the corresponding metric is related to a higher or a
lower risk for bug. We use the Fisher’s exact test and compute the OR to test H1

03. We describe our
detailed groups and findings for each factor as follows.

(1) The ownership of files

Groups
For each pattern Pi, the files are divided by the proportion of the highest ownership as follows.

• Gow1: files not exhibiting the pattern Pi and where the value of the highest Ownership is below or
at the second quartile;

• Gow2: files not exhibiting the pattern Pi and where the value of the highest Ownership is above the
second quartile;

• Gow3: files exhibiting the pattern Pi and where the value of the highest Ownership is below or at
the second quartile;

• Gow4: files exhibiting the pattern Pi and where the value of the highest Ownership is above the
second quartile.

For each pattern Pi, the files are divided by the presence of major owners as follows.

• Gmo1: files not exhibiting pattern Pi and without major owners;
• Gmo2: files not exhibiting pattern Pi but with major owners;
• Gmo3: files exhibiting pattern Pi and without major owners;
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• Gmo4: files exhibiting pattern Pi and with major owners.

Findings
We present ORs and the corresponding P-values in Table X. When testing hypothesis H1

03 for metric
Ownership (respectively hasMajorOwner), we perform 12 (respectively 12) Fisher’s exact tests.We apply
Holm–Bonferroni method to correct the threshold of P-value to 6.25e� 03 (respectively 0.01). The
results show that files with stronger ownership are less likely to experience future bugs when edited
following concurrent, extended, and interrupted editing patterns. A strong ownership on a file can alleviate
the impact of risky editing patterns, in particular the concurrent editing pattern. When developers edit files
with weak ownership (i.e. without major owners) concurrently, the likelihood of future bugs in the files
significantly increases to 2.2 times the amount of bugs in files with strong ownership and edited without
following the concurrent editing pattern. The results also show that files without a major owner are more
likely to experience a future bug if they are edited following concurrent and extended editing patterns.
However, the presence of major owners can significantly reduce the risk posed by concurrent, extended,
and interrupted editing patterns. We suggest that development teams organize their tasks in a way that
favors the owning of files by developers; hence, the risk incurred by file editing patterns can be reduced.

(2) The type of change requests

Groups
For each pattern Pi, the files are divided by the type of change requests as follows.

• Gct1: files not exhibiting the pattern Pi and having more enhancements implemented than bugs
fixed;

• Gct2: files not exhibiting the pattern Pi and implementing more bug fixes than enhancements;
• Gct3: files exhibiting the pattern Pi and having more enhancements implemented than bugs fixed;
• Gct4: files exhibiting the pattern Pi and implementing more bug fixes than enhancements.

For each pattern Pi, the files are divided by the level of severity of change requests as follows.

• Gsl1: files not exhibiting the pattern Pi and having more major bugs fixed than minor bugs;
• Gsl2: files not exhibiting the pattern Pi and having more minor bugs fixed than major bugs;
• Gsl3: files exhibiting the pattern Pi and having more major bugs fixed than minor bugs;
• Gsl4: files exhibiting the pattern Pi and having more minor bugs fixed than major bugs.

Findings
We present ORs and the corresponding P-values in Table XI. When testing hypothesisH1

03 for the type
of change requests (respectively the level of severity of bugs), we perform 12 (respectively 12) Fisher’s
exact tests. We apply Holm–Bonferroni method to correct the threshold P-value to 5.56e� 03
(respectively 4.17e� 03). The results show that files with more bug fixes (compared with enhancement
implementations) in their history and edited following the concurrent editing pattern are 3.9 times more

Table X. Odds ratios obtained when examining the combined impact of file editing patterns and ownership
of files on the probability of future bugs and P-value of Fisher’s exact tests.

Ownership of files Group Concurrent Parallel Extended Interrupted

Ownership Gow1 Control group
Gow2 0.5* (4.39e� 03) 0.3 (6.73e� 02) 0.5* (2.01e� 03) 0.4* (4.96e� 04)
Gow3 2.2* (3.19e� 03) 1.3 (8.20e� 01) 2.0 (9.74e� 03) 2.0 (8.58e� 03)
Gow4 0.6 (8.77e� 02) 0.5 (1.92e� 01) 0.7 (1.67e� 01) 0.8 (3.60e� 01)

hasMajorOwner Gmo1 Control group
Gmo2 0.5* (3.67e� 03) 0.3 (7.18e� 02) 0.5* (8.33e� 04) 0.5* (4.57e� 04)
Gmo3 2.4* (1.78e� 04) 1.2 (8.34e� 01) 2.1* (1.53e� 03) 2.2* (9.26e� 04)
Gmo4 0.4* (5.13e� 03) 0.4 (1.17e� 01) 0.5 (2.46e� 02) 0.6 (9.96e� 02)

Gmo1 and Gow1 are the control groups.
*indicates that the test was statistically significant.
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likely to experience future bugs than files with more enhancement implementations (compared with
bug fixes) in their history and edited without following the concurrent editing pattern. For the files
edited following the extended (respectively interrupted) editing pattern, files with more bug fixes
(compared with enhancement implementations) in their history are 5.5 (respectively 4.7) times more
likely to experience future bugs than other files with more enhancement implementations (compared
with bug fixes) in their history. This finding is in line with previous work from the literature (e.g.
[25]) that reported that files with past bugs are likely to experience future bugs. The level of severity
of the fixed bugs has no impact on the occurrence of future bugs. Developers should be cautious when
modifying files with more bug fixes than enhancement implementations, following concurrent,
extended, or interrupted editing patterns.

(3) The initial code quality

Groups
For each pattern Pi, we divide the files using maxCC metric values as follows.

• Gccq1m: files not exhibiting the pattern Pi and having a value of maxCC below or at the median of
all maxCC values;

• Gccq2m: files not exhibiting the pattern Pi and having a value of maxCC above the median of all
maxCC values;

• Gccq3m: files exhibiting the pattern Pi and having a value of maxCC below or at the median of all
maxCC values;

• Gccq4m: files exhibiting the pattern Pi and having a value of maxCC above the median of all
maxCC values.

Similarly, we obtain the groups Gcboq1m, Gcboq2m, Gcboq3m, and Gcboq4m for the metric maxCBO, the
groups Gcboq1s, Gcboq2s, Gcboq3s, and Gcboq4s for the metric sumCBO, the groups Glcomq1m, Glcomq2m,
Glcomq3m, and Glcomq4m for the metric maxLCOM, the groups Glcomq1s, Glcomq2s, Glcomq3s, and Glcomq4s

for the metric sumLCOM, and the groups Grccq1, Grccq2, Grccq3, and Grccq4 for the metric RCC.

Findings
We present ORs and the corresponding P-values in Table XII. When testing hypothesis H1

03 , we
perform 60 Fisher’s exact tests in total. We apply Holm–Bonferroni method to correct the threshold
of P-value to 1.43e�03. The findings on metrics maxCC, maxCBO, sumCBO, maxLCOM, and
sumLCOM are very similar. That is, higher values of these metrics significantly increase the likeli-
hood of the files to exhibit a bug in the future. In addition, when files are edited following the four
file editing patterns, the risk for future bugs increases. For example, when a file with a high complex-
ity (i.e. maxCC value above the median) is edited following the concurrent editing pattern, its like-
lihood to exhibit a bug increases from 2.7 to 5.8 times the likelihood of bugs for files that are
edited without following the concurrent editing pattern. The findings for the RCC metric indicate that

Table XI. Odds ratios obtained when examining the combined impact of file editing patterns and the type of
change requests on the probability of future bugs and p -value of Fisher’s exact tests.

Type of change requests Group Concurrent Parallel Extended Interrupted

Bug versus enhancement Gct1 Control group
Gct2 2.3 (5.45e� 02) 2.0 (6.90e� 01) 3.3 (1.30e� 02) 2.3 (6.14e� 02)
Gct3 4.2 (7.36e� 02) 1.6 (1.00e + 00) 7.7 (5.72e� 03) 3.6 (7.23e� 02)
Gct4 3.9* (5.72e� 04) 3.0 (3.57e� 01) 5.5* (1.70e� 04) 4.7* (1.93e� 04)

Minor bug versus major bug Gsl1 Control group
Gsl2 0.9 (7.79e� 01) Inf (1.00e + 00) 1.5 (1.00e + 00) 1.4 (1.00e + 00)
Gsl3 0.0 (1.00e + 00) Inf (1.00e + 00) 3.2 (2.73e� 01) 3.2 (2.73e� 01)
Gsl4 1.6 (4.93e� 01) Inf (1.00e + 00) 2.6 (2.97e� 01) 2.8 (2.08e� 01)

Gct1 and Gsl1 are the control groups.
*indicates that the test was statistically significant.
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higher ratio of comments to code can alleviate the risk incurred by the concurrent editing pattern. The
aforementioned finding reinforces our recommendation that development teams should monitor and con-
trol for quality indicators such as size, complexity, and coupling, and developers should add more com-
ments to their code.

Overall, we find that a strong ownership of files can reduce the negative impact of the four
file editing patterns. In the presence of concurrent, extended, or interrupted editing patterns, the
likelihood of future bugs in a file that underwent more bug fixes than enhancement
implementations is increased. In the presence of any of the four editing patterns, the likelihood of
future bugs in a file with high complexity, strong coupling between objects, or less cohesion
is increased.

5.5. RQ4: Do interactions among file editing patterns lead to more bugs?

Motivation
In Section 5.1, we find that 44% of files (i.e., 945 out of 2140 files) from our subject projects are edited
following more than one editing pattern. When multiple editing patterns are followed by developers
during the modification of a file, the risk of introducing a bug can be increased. For example, if a developer
editing multiple files simultaneously (i.e. the parallel editing pattern) is interrupted frequently
(the interrupted editing pattern), the developer might become confused and cause errors in the files. In this
research question, we investigate the interaction between the four file editing patterns. We want to under-
stand if the risk of bugs in a file is increased when multiple editing patterns are followed by developers
during the modifications of the file. Similar to RQ1 (refer to Section 5.2), developers and managers can
use the knowledge of pattern interactions to decide on the acquisition of awareness tools that can warn
developers about pattern interactions during development and maintenance activities.

Table XII. Odds ratios obtained when examining the combined impact of file editing patterns and the initial
code quality on the probability of future bugs and P-value of Fisher’s exact tests.

Code metric Group Concurrent Parallel Extended Interrupted

maxCC Gccq1m Control group
Gccq2m 3.6* (3.54e� 09) 4.1 (5.45e� 02) 4.9* (1.92e� 12) 4.1* (5.96e� 10)
Gccq3m 1.2 (6.58e� 01) 1.4 (7.89e� 01) 2.7 (8.99e� 03) 2.0 (1.07e� 01)
Gccq4m 5.8* (2.06e� 12) 5.6* (3.60e� 04) 6.1* (3.54e� 12) 6.4* (7.23e� 14)

maxCBO Gcboq1m Control group
Gcboq2m 2.2* (1.69e� 04) 3.0 (8.91e� 02) 2.6* (1.04e� 05) 2.3* (8.52e� 05)
Gcboq3m 0.6 (3.19e� 01) 1.2 (8.24e� 01) 1.1 (6.95e� 01) 1.0 (1.00e + 00)
Gcboq4m 4.3* (1.96e� 10) 3.7* (1.27e� 03) 4.3* (4.04e� 10) 4.6* (1.64e� 11)

sumCBO Gcboq1s Control group
Gcboq2s 2.8* (1.38e� 06) 4.2 (3.83e� 02) 3.4* (1.73e� 08) 2.8* (2.33e� 06)
Gcboq3s 0.8 (8.34e� 01) 1.4 (8.11e� 01) 1.7 (1.52e� 01) 1.0 (1.00e + 00)
Gcboq4s 5.0* (1.97e� 11) 4.7* (3.93e� 04) 5.2* (1.94e� 11) 5.1* (2.33e� 12)

maxLCOM Glcomq1m Control group
Glcomq2m 2.6* (4.87e� 06) 3.9 (5.65e� 02) 3.5* (1.09e� 08) 2.8* (4.77e� 06)
Glcomq3m 1.2 (6.73e� 01) 1.7 (6.17e� 01) 2.7 (5.01e� 03) 1.7 (1.91e� 01)
Glcomq4m 4.3* (2.90e� 09) 5.0* (1.25e� 03) 4.5* (3.74e� 09) 4.5* (1.37e� 10)

sumLCOM Glcomq1s Control group
Glcomq2s 2.3* (8.03e� 05) 4.0 (5.54e� 02) 3.0* (2.60e� 07) 2.3* (1.01e� 04)
Glcomq3s 1.1 (8.41e� 01) 1.8 (4.70e� 01) 2.4 (1.24e� 02) 1.3 (4.07e� 01)
Glcomq4s 4.0* (6.02e� 09) 4.9* (1.24e� 03) 4.1* (1.98e� 08) 4.1* (5.25e� 10)

RCC Grccq1 Control group
Grccq2 1.0 (9.19e� 01) 0.6 (5.18e� 01) 0.8 (2.09e� 01) 0.8 (3.95e� 01)
Grccq3 2.7* (1.12e� 05) 1.4 (6.72e� 01) 2.0 (1.62e� 03) 2.4* (1.04e� 04)
Grccq4 0.5 (1.16e� 01) 0.9 (7.96e� 01) 1.0 (1.00e + 00) 1.0 (1.00e + 00)

*indicates that the test was statistically significant. i.e. P-value< 1.43� 03.
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Approach
For each file, we use the metrics described in Section 4.5 to identify the editing patterns of the file. We
classify the files based on the pattern(s) followed by developers during the modifications of the files.
For each pattern Pi, we create a group GPi containing files that were edited by developers following
Pi. For each combination of pattern(s) PInteracti listed in Table V, we create a group GPInteracti
containing files that were edited by developers following the patterns in PInteracti. We also create a
group GNoP containing files that were edited by developers following none of the four patterns. We
compute the density of future bugs in each file and test the two following null hypothesis.

H1
04: The proportion of files exhibiting at least one future bug does not differ between the groups GPi,

GPInteracti, and GNoP.
H2

04: There is no difference between the density of future bugs of files from groups GPi, GPInteracti,
and GNoP.

Similar to RQ1, hypothesis H1
04 (respectively H

2
04) is about the probability of bugs (respectively the

density of future bugs). The two hypothesis are two-tailed. We use the Fisher’s exact test and compute
the OR to testH1

04. We perform a Kruskal–Wallis rank sum test forH2
04. We testH1

04 andH
2
04 using the

95% confidence level (i.e. P-value<0.05).

Findings
The Fisher’s exact test was statistically significant; therefore, we reject H1

04. The Kruskal–Wallis rank
sum test for H2

04 was also statistically significant. We also reject H2
04. The risk of future bugs in a file

edited following more than one editing pattern is higher than the risk of future bugs in a file edited
following a single editing pattern. As illustrated in Figure 10, whenever a file displayed the concurrent,
extended, and interrupted editing patterns all together, the likelihood of future bugs becomes the
highest (i.e. 3.9). The density of future bugs of these files is also the highest (i.e. 2.1 times greater than
files edited but never following any of the four patterns). Moreover, when either the concurrent editing
pattern or the extended editing pattern are used with other patterns during the modification of a file, the
risk of future bugs in the file is often increased (i.e. the OR is increased). Developers should pay more
attention to files edited following multiple editing patterns.
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Figure 10. Odds ratios of future bugs in files from the 16 groups listed in Table V. The abbreviation NP
stands for no file editing pattern. The abbreviations Con, Parl, Ext, Int denote concurrent, parallel, extended,

and interrupted editing patterns, respectively.
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6. DISCUSSION

In this section, we discuss the impact that some of our design decisions can have on our results. We
also discuss confounding factors.

6.1. Design decisions

This section discusses the design decisions that were made when performing the study presented in
this paper.

6.1.1. Combination of data set. In this study, because of the small sizes of the data extracted from the
three studied Eclipse projects, we made the decision to combine the data set of these three projects. To
understand the impact of this decision on our results, we replicate the study on each project separately.
The results of the replication are presented in Appendix B. The findings for the Mylyn project are
consistent with those obtained using the combined data set. This result was kind of expected
because 55% (i.e. 1177 out of 2140) of files in the combined data set belong to the Mylyn project.
For the Eclipse Platform project, there are no significant relationships between the editing patterns
and the occurrence of future bugs.

We attribute this result to the different degrees of the involvement of Mylyn tool among Mylyn,
PDE, and Eclipse Platform projects. In fact, out of the 61 366 files in the Eclipse Platform project,
only 738 (i.e. 1% ) files were recorded in Mylyn logs. Mylyn logs captured only a small amount of
developers’ activities in the Eclipse Platform project. The ratios of recorded files for the Mylyn and
the PDE project are respectively 59% and 70%. The extensive usages of Mylyn tools in these two
projects resulted in more developers’ activities being captured in Mylyn logs. Therefore, it is no
surprise that the findings for the PDE project are also consistent with those of the combined data set,
except for the relationship between the concurrent editing pattern and the occurrence of future bugs
that is not statistically significant. One possible explanation is that only 8% of files are edited
following the concurrent editing pattern in the PDE project (which is too small to achieve statistical
significance), compared with 37% of files in the Mylyn project. In summary, the results of the
replication show that our findings obtained using the combined data set are consistent with those
obtained on projects where Mylyn tool was extensively used.

6.1.2. Strategy of grouping. In Section 5.2, we split the full set of files into two groups for each file
editing pattern. The first group includes files edited without following pattern Pi, and the other group
includes files edited following pattern Pi. The first group could contain files edited following the other
three editing patterns. To examine whether this strategy of grouping impacts our findings, we divide
the first group into two subgroups: (1) GNoneP which contains files not exhibiting any of the four
editing patterns; and (2) GNonePiOnly which contains files not exhibiting pattern Pi but which were
modified following some of the other remaining editing patterns. We obtained slightly different OR
values but which are consistent with those from Section 5.2. Detailed results are presented in
Appendix C. This result provides an extra validation of the conclusions reported in this paper.

6.1.3. Statistical method. Analysis of variance (ANOVA) can compare three or more groups for
statistical significance; therefore, multiple factors can be compared together. However, one of the
assumptions of ANOVA is that the variances are equal among different groups. We applied
Levene’s test [26] to assess the equality of variances. In general, we found that the P-values for
most Levene’s test are less than 0.05. There are significant differences between the variances of the
different groups that are investigated in this study, making ANOVA unsuitable for our research
questions. For these reasons, we chose to conduct Fisher’s exact tests, ORs, and Wilcox rank sum
tests to investigate the effect of the file editing patterns.

6.2. Confounding factors

Relative code churn
Nagappan and Ball [27] have found that the proportion of LOC changed in a file (i.e. relative code
churn) also correlates highly with the density of future bugs. We investigate the potential confounding
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effect of relative code churns (RCHURN) on our findings by applying the similar approach as
Section 5.4. We divide the files into two groups by the median of relative code churns. We compare
the likelihood of future bugs between files with high relative code churn and files edited following
any of the four file editing patterns and find that there is no significant difference. This might be
because there are high correlations between files with high code churn and files involved in any of
the four patterns. Hence, for each pattern Pi, we further divide the files into four non-overlapping
groups: (1) files not exhibiting the pattern Pi with low relative code churn (i.e. less than or equal to
the median); (2) files not exhibiting the pattern Pi with high relative code churn (i.e. above the median);
(3) files exhibiting the pattern Pi with low relative code churn; and (4) files exhibiting the pattern Pi

with high relative code churn. By comparing the likelihood of future bugs between the first two groups,
we find that the relative code churn does increase the likelihood of future bugs (i.e., ORs are greater
than 1), which is consistent with previous findings by Nagappan and Ball [27]. By comparing the like-
lihood of future bugs between the second and the fourth groups, we find that the likelihood of future
bugs increases further (i.e. ORs are greater than 1), if files with high relative code churn experience
any of concurrent, extended, or interrupted editing patterns. Detailed results are presented in Appendix
D. Therefore, we can conclude that the relative code churn alone cannot explain the bug proneness of
files that were edited following the four editing patterns.

7. THREATS TO VALIDITY

We now discuss the threats to validity of our study following common guidelines provided in [28].
Construct validity threats concern the relation between theory and observation. Our construct

validity threats are mainly because of measurement errors. We rely on Mylyn logs to collect
information about file editing patterns. Because some files may be edited without using Mylyn,
our file editing information might be biased. Another potential source of bias is the computation
of the numbers of future bugs. We automatically mined bug IDs from the bug fixing change logs
and used the bug ID to link the bug fixing change logs to the change request reports. We
manually sampled a number of change logs. Although we confirmed that bug ID always existed in
the change logs for bug fixing or enhancement implementation (other than fixing style issue or
configuration errors), it is possible that some future bugs were missed. However, we found that
the bug data of Mylyn project of our study was consistent with the study of Lee et al. [10], which
are publicly available.

Threats to internal validity concern our selection of subject systems and analysis methods. Although
we study three software systems, some of the findings might still be specific to the development and
maintenance processess of the three software systems that are Eclipse projects. In fact, the usage of
Mylyn in the projects is likely to have affected the editing patterns of developers. Future studies
should consider using a different tool to collect file editing data. The 14 metrics used in this study to
measure code quality are commonly used in the literature to measure software maintainability [19],
yet they might not be enough to measure the initial code quality of files. Moreover, the computation
of the metrics using a different tool (i.e. other than the Understand tool) may yield different values.
Future studies should consider investigating more metrics and using other tools. We apply pairwise
comparison to understand the effect of file editing patterns on software quality. Pairwise comparison
is suitable to investigate the impact of a single factor (e.g. the presence of a particular file editing
pattern) but becomes difficult if analyzing many confounding factors together. Hence, we only
controlled some important confounding factors (e.g. size and relative code churn). Future studies
could apply ANOVA or other techniques to investigate more confounding factors.

Conclusion validity threats concern the relation between the treatment and the outcome. We paid
attention not to violate assumptions of the constructed statistical models. We have used non-
parametric tests that do not require making assumptions about the distribution of data sets.

We have controlled several important confounding factors (including the ownership of files, the type
of change requests, the code quality, and the relative code churn) and found that the presence of file
editing patterns provides additional explanatory power in explaining the bug proneness.
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Reliability validity threats concern the possibility of replicating this study. We attempt to provide all
the necessary details to replicate our study. Eclipse CVS and Bugzilla are publicly available to obtain
the same data. All the data used in this study are also publicly available online.¶¶

Threats to external validity concern the possibility to generalize our results. We only analyzed three
Eclipse projects, because of the limited adoption of Mylyn in open source projects. Further studies on
different open and closed source systems are desirable to verify our findings.

8. RELATED WORK

The work presented in this paper relates to the analysis of file editing patterns and bug prediction. In the
following subsections, we summarize the related research.

8.1. Analysis of file editing patterns

To the best of our knowledge, our earlier work [8] is the first attempt to empirically quantify the impact
of concurrent, parallel, extended, and interrupted file editing patterns on software bug proneness. This
paper extends the earlier work [8] by investigating the factors that impact the occurrence of file editing
patterns and by examining joint effect of file editing patterns and several factors (e.g. the ownership of
files, the type of change requests, and the code quality) on software quality.

A large body of research has been conducted on development activities; especially, many tools have
been proposed to improve developers’ awareness about project activities such as source code changes
or development task creation. For example, the tools Codebook [4] and Crystal [5] have been proposed
to warn developers about potential file editing conflicts. Treude and Storey [6], who investigate the usage
of dashboards and feeds by development teams using data collected from the IBM Jazz development
platform, reported on the need for better awareness tools that could provide both high-level awareness
(e.g. about project team members, upcoming deadlines) and low-level awareness (e.g. about source
code changes). Despite all research on developing better awareness tools, there are very few studies that
empirically investigated the consequences of a lack of awareness of developers about the file editing
patterns followed by team members.

Perry et al. [29] investigate file editing patterns in a large telecommunication software system and
find that about 50% of the files are modified consecutively by more than one developer in the period
between two releases of the software. They do not study the concurrent editing of files but
nevertheless report that files edited by multiple developers were at a higher risk for bugs. One
possible reason is that concurrent changes could introduce conflicts. This is observed by
Staudenmayer et al. [30] in the study of concurrent changes at module level in another
telecommunication software system.

In our study, we not only propose a metric to identify the concurrent editing pattern but also report
that the concurrent editing pattern can increase the likelihood of future bugs to 1.8 times.

D’Ambros et al. [24] investigate the relation between change coupling and bugs through an
analysis of files frequently committed together. They conclude that change coupling information
can improve the performance of bug prediction models. However, relying on commit logs to
identify files that are changed together is not very accurate. The fact that two files are submitted
together into a software repository does not necessarily mean that the files are modified in parallel
by one or many developers. Developers often edit multiple files (at different times) and commit
the files all together. Moreover, in some systems, many developers editing files are not permitted
to commit their changes to the code repository directly. In these systems, file modifications are
validated by a review team prior to their submission into the software repository. The developer
submitting the files is often one of the reviewers.

In this work, we precisely identify file edits that happened at the same time from the rich developers’
interaction logs collected by the development teams of the three Eclipse projects, using the Mylyn tool.

¶¶https://bitbucket.org/serap/fileeditingpatternstudy.
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Lee et al. [10] propose to use the time spent by developers on tasks to predict future bugs in the files
involved in the tasks. This study proposes to measure the maximum editing time and find that extended
editing can increase the likelihood of future bugs by 1.9 times. Parnin and Rugaber [31] investigate
developers’ interruptions during software development tasks and report on the strategies adopted by
developers to successfully resume a task after an interruption. However, they do not assess the
relationship between the likelihood that a bug would be introduced and the length of interruptions.
We propose to measure the maximum editing time and find that interrupted editing can increase the
likelihood of future bugs by 2.0 times.

As a summary, this work proposes four metrics to identify the concurrent, parallel, extended and
interrupted editing patterns, respectively. We further empirically quantify the likelihood of having
bugs in files edited following the four file editing patterns.

8.2. Bug prediction

A large number of studies have investigated the use of metrics to predict the location of future bugs in
software systems. For instance, Khoshgoftaar et al. [32] report that combining code metrics and
knowledge from problem reporting databases can yield good results in bug predictions. Moser et al.
[33] however show that process metrics outperform source code metrics as predictors of future bugs.
Other researchers focus on using temporal information for bug prediction. Bernstein et al. [34] use
temporal aspects of data (i.e. the number of revisions and corrections recorded in a given amount of
time) to predict the location of bugs. The resulting model can predict whether a source file has a bug
with 99% accuracy. Arisholm and Briand [35] propose a model based on code quality, class
structure, changes in class structure metrics, and also measures of the history of class-level changes
and bugs, to predict future bugs in classes. They perform a cost-effectiveness analysis and show that
the estimated potential savings in verification effort of their model are about 29%. Nagappan and
Ball [36] show that relative code churn metrics are good predictors of bug density in systems.
Askari and Holt [37] provide a list of mathematical models to predict where the next bugs are likely
to occur. Different from aforementioned prior work, the goal of this study is not to improve the
performance of bug prediction models. We propose four metrics to identify four file editing patterns
and aim to analyze the relation among the occurrence of our file editing patterns and future bugs.
We also analyze the interaction among the editing patterns. Moreover, we examine the joint
effect of file editing patterns and several factors (e.g. code quality) that are often used in bug
prediction models.

9. CONCLUSION

In this paper, we analyzed the developers’ interaction logs of three open source software projects,
Mylyn, Eclipse Platform, and Eclipse PDE, and proposed metrics to identify four file editing
patterns. We investigated the potential impact of the file editing patterns on software quality and
factors impacting the occurrence of the file editing patterns. We also investigated if the ownership of
files, the type of change requests, and the initial code quality affect the likelihood of future bugs in
files edited following one of the four file editing patterns. During development and maintenance
activities, 23% to 90% of files were edited following at least one of the concurrent, parallel,
extended, and interrupted file editing patterns. The ownership of files and the severity of bug fix
change requests affect the occurrence of the four editing patterns. The initial code quality of files, in
particular the size, complexity, coupling, and the ratio of comments to code, also affects the
occurrence of the file editing patterns.

Whenever concurrent or extended editing pattern is followed during the modifications of a file, the
risk of future bugs in the file increases. Files edited following concurrent pattern are 1.8 times more
likely to experience future bugs. Developers and managers should also be cautious when one file is
edited in parallel with too many other files. If a developer is spending too much time (i.e. longer
than 123 h) editing one file for a change request, development teams should consider inspecting the
root cause of this delay and propose appropriate solutions (e.g. split the change request or refactor
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the file). Also, development teams should avoid having developers spending too long time editing one
file. They should also avoid interrupting their developers frequently. One possible solution could be to
decompose each large change request into a set of small change requests.

Our empirical study showed that there exists a relationship between the occurrence of the four file
editing patterns and the following three factors: the ownership of files, the type of change requests,
and the initial code quality. In the presence of concurrent, extended, and interrupted editing pattern,
the likelihood of future bugs in a file that underwent more bug fixes than enhancement
implementations increased 3.9, 5.5, and 4.7 times, respectively. Moreover, we observed that a strong
ownership on files and good code quality can alleviate the negative impact of the four file editing
patterns on software quality. We recommend that development teams monitor and control the
following five metrics: maxCC, maxCBO, sumCBO, maxLCOM, and sumLCOM, and add more
comments to their code (i.e. measured by RCC).

We also observed that when more than one editing patterns are followed by one or multiple
developers during the editing of a file, the risk for future bugs in the file increases further. For
instance, files edited following concurrent, extended, and interrupted patterns together are 3.9 times
more likely to experience future bugs than files edited but never following any of the four patterns.
In addition, the density of future bugs in files edited following more than one editing patterns is 2.1
times higher than in files edited but never following any of the four patterns. More attention should
be paid to files edited following more than one editing patterns.

This work provides empirical evidence of the negative impact of concurrent, parallel, extended, and
interrupted file editing patterns on software quality. Designers of awareness tools should consider
integrating new features to track the four file editing patterns analyzed in this study, so that a
developer working on a file can remain aware of the editing patterns of other developers working on
related files. In future work, we plan to do that. We will propose an Eclipse plug-in to automatically
identify our four editing patterns from collected Mylyn logs and inform developers about the pattern
occurrences and interactions.

The authors would like to thank the anonymous reviewers of the 19th Working Conference on
Reverse Engineering (WCRE) and the Journal of Software: Evolution and Process (JSEP) for their
insightful comments, and Mrs. Quan Zheng and Nicolas Bettenburg from Queen’s University for
their help on data processing and analysis during the initial stage of this work.

APPENDIX A: Source code metrics

Appendix A1. List of source code metrics and the corresponding metric name used by the Understand
tool.

Category Metric Description Metric name in Understand

Complexity CLOC Class lines of code CountLineCode
NIM Number of instance methods CountDeclInstanceMethod
NIV Number of instance variables CountDeclInstanceVariable
WMC Weighted methods per class CountDeclMethod
CC McCabe cyclomatic complexity Cyclomatic

Couping CBO Coupling between objects CountClassCoupled
RFC Response for a class CountDeclMethodAll

Cohesion LCOM Lack of cohesion in methods PercentLackOfCohesion
Abstraction DIT Depth of inheritance tree MaxInheritanceTree

IFANIN Number of immediate base classes CountClassBase
NOC Number of immediate subclasses CountClassDerived

Encapsulation RPM Ratio of public methods CountDeclMethodPublic
CountDeclMethod

Documentation CL Comment of lines CountLineComment
RCC Ratio comments to codes RatioCommentToCode
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APPENDIX C: Results for different strategies on group split

Appendix C1. Relation between the occurrence of patterns and the risk of bugs, and the corresponding
P-value.

Pattern No any pattern No oattern Pi but other patterns

Concurrent 2.1* (4.10e� 02) 1.8* (1.90e� 03)
Parallel 1.4 (3.22e� 01) 1.4 (3.90e� 01)
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Interrupted 2.2* (1.71e� 02) 2.0* (1.40e� 04)

*indicates that the test was statistically significant, i.e. P-value< 0.05

APPENDIX D: Results for investigating relative code churn

Appendix D1. Relation between the occurrence of patterns and the risk of bugs, and the corresponding
P-value.

<No pattern Pi, high code churn>
versus <no pattern Pi, low code churn>

<Pattern Pi, high code churn>
versus <no pattern Pi, high code churn>
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Interrupted 1.9* (2.85e� 03) 1.8* (1.11e� 02)

*indicates that the test was statistically significant, i.e. P-value< 0.05

APPENDIX B: Results for separate projects

Appendix B1. Relation between the occurrence of patterns and the risk of bugs and the corresponding
P-value.

Pattern Mylyn Platform PDE All
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Interrupted 2.4* (6.95e� 05) 0.9 (8.35e� 01) 4.7* (1.10e� 03) 2.0* (6.73e� 05)

*indicates that the test was statistically significant, i.e. P-value< 0.05
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