
Mining API Aspects in API Reviews

Gias Uddin
School of Computer Science

McGill University, Montréal, QC, Canada
gias@cs.mcgill.ca

Foutse Khomh
SWAT lab

Polytechnique Montréal, QC, Canada
foutse.khomh@polymtl.ca

ABSTRACT
With the proliferation of online developer forums as infor-
mal documentation, developers share their opinions about
the APIs they use. While many developers refer to and
rely on opinion-rich information about APIs, we found lit-
tle research that investigates the use and benefits of public
opinions as well as the feasibility of automatically harness-
ing such valuable knowledge into quick and digestable in-
sights. To understand the potential benefits of API reviews,
we conducted a case study of opinions in Stack Overflow.
We observed that opinions about diverse API aspects (e.g.,
usability) are prevalent and offer insights that can shape de-
veloper perception and decisions related to software devel-
opment. Motivated by the finding, we built a suite of tech-
niques to automatically mine opinionated sentences about
APIs from forum posts. First, we detected API mentions
in the forum posts with up to 95% precision. Second, we
associated each opinionated sentence in a forum post to the
API mention about which the opinion was provided with 72-
95% precision. Third, we build a suite of machine learning
classifiers that can detect the presence of an API aspect in
a sentence with up to 80% precision.

1. INTRODUCTION
APIs (Application Programming Interfaces) offer inter-

faces to reusable software components. Modern-day rapid
software development is often facilitated by the plethora of
open-source APIs available for any given development task.
The online development portal GitHub [19] now hosts more
than 38 million public repositories, a radical increase from
the 2.2 million active repositories hosted in GitHub in 2014.
Developers share their projects and APIs via other portals
as well (e.g., Ohloh [34], Sourceforge [44], Freecode [17]).

With a myriad of APIs being available, developers now
face a new challenge — how to choose the right API. To over-
come this challenge, many developers seek help and insights
from other developers. Figure 1 presents the screenshot of
one Stack Overflow conversation containing one answer and
two comments. These posts express developers’ opinions
about two Java APIs (Jackson [16] and Gson [20]) offering
JSON parsing features for Java. None of the posts contain
any code snippet. The answer contains discussion about
Gson with negative opinions on its usability (hard to use)
and positive opinions on the performance (faster) of Jack-
son. The first comment as a reply to the answer contains
another positive opinion about Jackson, but this time it is
about the usability of the API (easy to use). Later, the de-
veloper ‘Daniel Winterstein’ develops a new version of Gson
fixing existing issues and shares his API (C2). This exam-
ple illustrates how developers share their experiences and
insights about different aspects of an API, as well as how

A

C1

C2

Figure 1: Example of opinions about two APIs in StackOverflow

they influence and are influenced by the opinions of oth-
ers. A developer looking for only code examples for Gson
would have missed the important insights about the API’s
limitations, which may have affected her development ac-
tivities. Indeed, the choice of an API or how to reuse the
functionality the API offers, to a considerable degree, can
be conditioned upon what other developers think about the
API.

However, there is very little research that focuses on the
analysis of developers’ perception about API opinions and
how such opinions affect their decisions related to the APIs.
As illustrated in Figure 1, while developer forums serve as
communication channels for discussing the implementation
of the API features, they also enable the exchange of opin-
ions or sentiments expressed on numerous APIs, their fea-
tures and aspects. In fact, we observed that more than 66%
of Stack Overflow posts that are tagged “Java” and “Json”
contain at least one positive or negative sentiment. Most of
these (46%) posts also do not contain any code examples.

The sheer volume of such opinions about any given API
scattered across many different posts though pose a signifi-
cant challenge to produce quick and digestible insights. For
example, we are aware of no tool that can help a developer
who wants to learn about the most reviewed API for JSON
parsing in Java in terms of performance or usability. As a
first step towards facilitating such analyses, we sought to
answer the following three research questions:

RQ1: How do the opinions in the forum post relate
to the developers?

To understand the potential value of the opinions and API
aspects in the opinions, we conducted a case study of opin-
ions about APIs in Stack Overflow posts. First, we created
a benchmark based on labeling from two participants. The
benchmark contains 4594 sentences each labeled based on
the aspects that are discussed in the sentence. An aspect
can be an attribute (e.g., usability) or a contributing factors

towards the usage or development of an API (e.g., licens-
ing or community support). We analyzed the labels and
the opinions about APIs in the benchmark and report the
findings by answering the following research questions:

• Do developers display emotions while discussing
about APIs?

We observed that more than 53% of the posts in the
benchmark contained opinions and such opinions are ob-
served consistently across different API domains (e.g., Database,
Security, Framework, etc.). While most of the domains con-
tained more positivity than negativity, the posts in some
domains (e.g., Framework) contained negativity more than
the positivity.

• How do the API aspects relate to the opinions
provided by the developers?

We observed that developers expressed varying degrees of
emotions towards different API aspects. The most positively
reviewed API aspects were ‘Security’ and ‘Legal’, while Per-
formance of APIs was among the least positively reviewed.

• How do the various stakeholders of an API relate
to the provided opinions?

We observed that both API authors and users leverage
forum posts to promote and suggest their API of interest
and that such promotions/suggestions were reviewed both
favorably and unfavorably across different API aspects.

RQ2: Can we automatically detect API aspects dis-
cussed in the opinions?

Motivated by the findings of the case study, we sought to
automate the detection of API aspects in forum posts. We
present a suite of unsupervised and supervised machine learn-
ing classifiers that can detect the presence of an API aspect
in a sentence with up to 80% precision.

RQ3: Can we automatically mine opinions about
APIs from forum posts?

To leverage opinion-rich information about APIs to support
software development activities, we present techniques to au-
tomatically detect API mentions in forum posts and trace
the mentions to an actual API in our database with almost
95% precision and 70% recall. We detect opinionated sen-
tences. A sentence was considered as opinionated if it had
positive or negative sentiments. When such an opinion was
provided towards an API, we heuristically associated the
opinionated sentence to the API with 72-95% precision.

We make the following contributions: (1) A case Study
to demonstrate the potential cause and impact of the API
aspects in the opinions, (2) A benchmark dataset with
the labeling of API aspects in 4594 sentences from Stack
Overflow posts. (3) Development and evaluation of a suite of
API aspect detection and opinion mining techniques.

Paper Organization. The rest of the paper is organized
as follows. We describe the benchmark in Section 2 and
then then report the results of our case study in Section 3.
We leverage the benchmark to investigate the feasibility of
automatic detection of aspects in sentences in Section 4. We
explain the overall opinion mining process for APIs in Sec-
tion 5. We discuss the potential impact of our findings and
the threats to validity in Sections 6 and 7. We summarize
the related work in Section 8 and conclude in Section 9.

2. A BENCHMARK FOR API ASPECTS
In a previous study, Uddin et al [49] surveyed software

developers and found that developers prefer to see opin-
ions about the following API aspects in the forum posts:
(1) Performance: How well does the API perform? (2) Us-
ability: How usable is the API? (3) Security: How secure
is the API? (4) Documentation: How good is the docu-
mentation? (5) Compatibility: Does the usage depends
on other API? (6) Portability: Can the API be used in
different platforms? (7) Community: How is the support
around the community? (8) Legal: What are licensing
requirements? (9) Bug: Is the API buggy? (10) Only
Sentiment: Opinions without specifying any aspect. To
investigate the potential values of opinions about an API
and its aspects, we needed opinionated sentences from fo-
rum posts with information about the API aspects that are
are discussed in the opinions. In the absence of any such
dataset available, we created a benchmark with sentences
from Stack Overflow posts, each manually labeled based on
the presence of the above aspects in the sentence.

The benchmark consisted of 4,594 manually labeled sen-
tences from 1,338 Stack Overflow posts (question/answer/-
comment) (see Table 1). The threads were selected from 18
tags representing nine distinct domains (two tags for each
domain). We selected the tags from domains as diverse as
possible, by adopting a purposeful maximal sampling ap-
proach (discussed below) [54]. In Table 1, the second col-
umn shows the tags for each domain. Overall, the tags came
from nine domains. For each domain, we selected the most
popular two tags. Popularity was determined based on the
total number of threads under each tag. Each tag was also
accompanied by another tag ‘java’.

Sampling strategy. For each tag, we selected four threads
based on a stratified random sampling process as follows:
(1) Each thread has a score (= #upvotes - #downvotes).
We collect the scores, remove the duplicates, then sort the
distinct scores. For example, there were 30 distinct scores
(min -7, max 141) in the 778 threads for the tag ‘cryptogra-
phy’. (2) We divide the distinct scores into four quartiles.
In Table 1, we show the total number of threads under each
tag for each quartile, e.g., the first quartile had a range
[−7, 1] for the above tag. (3) For each quartile, we ran-
domly select one thread (4) Thus, for each tag, we have four
threads. One thread was overlapped between two tags. In
Table 1, the ‘Tags’ column lists the tags under each domain,
the posts column shows the total number of posts (ques-
tion+answer+comment) from the eight threads under each
domain. The columns A and C break down the number of
posts into answers and comments. The S column shows the
total number of sentences under each domain. The domain
‘utility’ had the maximum number of sentences followed by
domains ‘widgets’ and ‘serialize’. The domain ‘text’ had
the minimum number of sentences, followed by the domains
‘database’ and ‘framework’. The last column S/T shows the
average number of sentences per thread for each domain.

Thread Preprocessing. We preprocessed the contents in
each thread as follows. We formatted a hyperlink by remov-
ing the HTML formats and then prepending the hyperlink
with a placeholder URL_. We kept the hyperlinks because
they are often used to refer to an API or its resources. We re-
placed code examples by placeholders (CODESNIPPET) and
the code terms by placeholders (CODETERM).1 We did this

1
A code snippet was detected if there were more than one code line

inside the <code> tag or there was at least one assignment operator.

Table 1: The Benchmark (P = post, A = answer, C = comment)

Domain Tags P A C S S/T

serialize xml, json 189 68 113 539 67.38
security auth, crypto 105 34 63 407 50.88
utility io, file 297 85 204 1008 126
protocol http, rest 126 49 69 434 54.25
debug log, debug 138 41 89 479 59.88
database sql, nosql 128 38 82 370 46.25
widgets awt, swing 179 67 104 682 85.25
text nlp, string 83 40 36 273 34.13
framework spring, eclipse 93 36 49 402 50.25

Total/Average 1338 458 809 4594 64.70

S = sentences, S/T = sentences/thread

Table 2: Progression of agreements between the two coders

Iteration 1 2 3 4 5

Sentence 83 117 52 24 116
Kappa κ 0.28 0.34 0.62 0.71 0.72

% Final 35/59/6? 52/48 50/50 20/80 19/77

to ensure that the labeling was focused only on the textual
contents of a sentence. We then detected individual sen-
tences in the thread.2 We arranged the posts in a thread in
a chronological order. For each thread, we created a flat list
of sentences by preserving the order of the posts.

Labeling Process
The benchmark was created based on inputs from two coders.
The first author coded all of the threads. A post-doc from
Ecole polytechnique coded 14 threads. The coding approach
is closely adapted from [27]. The approach was as follows:

1. The first two coders jointly labeled one thread by dis-
cussing each sentence. The purpose was to develop a
shared understanding of the underlying problem and to
remove individual bias as much as possible. To assist in
the labeling process in the most seamless way possible, we
created a web-based survey application. In Figure 2, we
show screen shots of the user interface of the application.

2. The two coders separately labeled a number of threads. A
cohen kappa value was calculated and the two coders dis-
cussed the sentences where disagreements occurred over
Skype and numerous emails. The purpose was to find
any problems in the labels and to be able to converge to
a common ground, if possible.

3. The second coder stopped the labeling once the agreement
between the two coders reached the substantial level of
Cohen Kappa value (0.61 – 0.80) [51] and the change in
agreements between subsequent iterations were below 5%,
i.e., further improvements might not be possible.

4. The first coder then labeled all of the remaining threads.

We repeated step 2 above five times. In Table 2 we show
the number of sentences labeled in each iteration by the two
coders and the level of agreement (Cohen Kappa value) for
the iteration. The last row in Table 2 shows how the two
coders finally agreed on the initially disagreed labels. For
example, for iteration 1, the value 35/59/6? is interpreted
as follows: 35% of the total disagreed (46) sentences were
finally labeled based on the labels of the first coder, 59%
from the second coder, and for the remaining 6% the two
coders mutually agreed to come up with a different label.

2
We used the OpenNLP sentence detector [13].

Table 3: Distribution of labels per coder per aspect

S B D T U C M P N O

Coder1 1 1 15 4 42 3 4 15 6 60
Coder2 9 5 4 3 43 6 10 13 11 45

Final 1 4 4 5 41 4 8 19 11 51

S = Security, B = Bug, D = Document, P = Perform-
ance, U = Usability, T = Portability, C = Community
M = Compatibility, N = OnlySentiment O = Others

The agreement reached the substantial level at iteration 3
and remained there in subsequent iterations.

Analysis of the Disagreements. In Table 3, we show the
number of total labels for per coder each aspect. The two
coders labeled each aspect at least once. Other than ‘Others’
both coders labeled sentences as ‘Usability’ the most, and
‘Portability’ as the least.

The major source of disagreement occurred for three as-
pects: security, documentation, and compatibility. For ex-
ample, the second coder labeled the following sentence as
‘Security’ initially: “The J2ME version is not thread safe”. How-
ever, he agreed with the first coder that it should be la-
beled as ‘Performance’, because ‘thread safety’ is normally
associated with the performance-based features of an API.
The first coder initially labeled the following sentence as
‘Documentation’, assuming that the URLs referred to API
documentation: “URL[Atmosphere] and URL[DWR] are both open
source frameworks that can make Comet easy in Java”. The first
coder agreed with the second coder that it should be la-
beled as ‘Usability’, because it shows how the frameworks
can make the usage the API Comet easy in Java.

The manual labels and the discussions were extremely
helpful to understand the diverse ways API aspects can be
interpreted even when a clear guideline was provided in the
coding guide. One clear message was that a sentence can
be labeled as an aspect if it contains clear indicators (e.g.,
specific vocabularies) of the aspects and the focus of the mes-
sage contain in the sentence is indeed on the aspect. Both of
these two constraints are solvable, but clearly can be chal-
lenging for any automated machine learning classifier that
aim to classify the sentences automatically.

Benchmark overview. Figure 3 shows the overall distri-
bution of the aspects in the benchmark. The ‘Others’ cate-
gory is not an aspect, so we exclude that in the chart. Al-
most half of the labels were ‘Usability’. This aspect captured
themes both from the usage and design attributes of an API.
In our future work, we will investigate of ways to divide this
label into the more focused sub-aspects, e.g., design, usage,
etc. In total, 95.2% of the sentences were labeled as only
one aspect. Among the rest of the sentences, 4.6% were la-
beled as two aspects and around 0.2% were labeled as three
aspects. One major reason was that some of the sentences
were not properly formatted and were convoluted with mul-
tiple potential sentences. For example, the following sen-
tence was labeled as three aspects (performance, usability,
bug): “HTML parsers . . . Fast .. Safe .. bug-free . . . Relatively sim-
ple ”. 37% of the sentences were labeled as others. The
investigation of the sentences labeled as ‘Others’ to deter-
mine additional aspects is our future work.

3. OPINION VALUE ANALYSIS (RQ1)
To investigate the potential values of opinions about APIs,

we analyzed the opinionated sentences and their relationship
with API aspects in our benchmark. We report the findings

Figure 2: Screenshots of the benchmarking app. The circled numbers show the progression of actions in sequential order. The leading
page (1) shows the coding guide. Upon clicking the ‘Take the Survey’, the user is taken to the ‘todos’ page (2), where the list of threads
is provided. By clicking on a given thread in the ‘todos’ page, the user is taken to the corresponding page of the thread in the app (3),
where he can label each sentence in the thread (4). Once the user labels all the sentences of a given thread, he needs to hit a ‘Submit’
button (not shown) to store his labels. After that, he will be returned to the ‘todos’ page (i.e., 2).

Legal
2%Portability 2%

Performance
11%

OnlySentiment

11%

Compatibility

3%

Security

5%

Document

8% Bug

6% Community
3%

Usability

47%

Figure 3: The distribution of aspects in the benchmark.

by answering three questions:

1. Do developers show emotions while discussing about APIs?
2. How do the API aspects relate to the opinions provided

by the developers?
3. How do the various stakeholders of an API relate to the

provided opinions?

RQ1.1: Do developers show emotions while dis-
cussing about APIs?
Motivation. Previous studies showed the presence of emo-
tions in the issue tracking system [32] and their correlation
to the various development activities (e.g., time of fixing a
bug, productivity, etc.) [31,35]. We believe that the positive
or negative experience of developers while using an API can
be related to the opinions they provide in the forum posts
while discussing their usage experience of APIs. Within the
context of API and the opinions, We sought the answer to
two questions: (1) How significant is the presence of opinions
in the forum posts? (2) How frequently developers provide
opinions within and without the presence of code examples?

Approach. We detected the polarity (positive, negative,
neutral) of each sentence in the benchmark. To detect sen-
timents in the sentences, we used an implementation of the
Sentiment Orientation algorithm [24]. The algorithm was
used to mine and summarize customer opinions about com-
puter products, such as cameras, cd players, etc., and by
Google researchers to detect sentiments in reviews from di-
verse services (e.g., restaurants) [8]. One of the advantages
of this algorithm is its ability to easily use domain-specific
sentiment words, which we leveraged by adding selected
sentiment words that can be specific to API reviews (e.g.,

Figure 4: Opinion distribution across domains in benchmark
(red and green bars denote negative and positive opinions, rep.

Table 4: Distribution of opinions and code in forum posts

Code Terms Code Snippets Opinions

Percent 5.53 10.99 53.14
Average 0.13 0.18 1.03

thread-safety). The implementation of the algorithm and
the domain specific sentiment words are available in our on-
line appendix. We grouped the sentences per post as well as
per the nine domains in our benchmark. We investigated the
overall volume and relative proportion of opinions provided
per domain. We linked each opinionated sentences to the
corresponding forum post where it was provided, and deter-
mined the average volume of opinions provided per post.

Findings. In Figure 4, we show the overall presence of opin-
ions per domain. The percentages beside each domain show
the overall distribution of opinions (positive and negative)
sentences in the domain. The bar for each domain further
shows the relative proportion of positivity versus negativity
in those opinions. Except two domains (Debug and Frame-
work), developers expressed more positivity than negativity
in all domains except two (Framework and Debug). Each
domain had at least 26.5% opinionated sentences, i.e., at
least one in four sentences contained emotion. In Table 4,
we show the distribution of opinions, code terms and code
snippets in the forum posts. The first row (Percent) shows
the percentage of distinct forum posts that contain at least
one code terms or snippets or opinions. The second row
(Average) shows the average number of code terms, code
snippets and opinionated sentences across the forum posts.
More than half of the forum posts (53%) contained at least
one opinion, while only 11% contained at least one code ex-
ample. Therefore, developers while only looking for code
examples to learn the usage of APIs may miss important
insights shared by other developers in those opinions.

Developers offer significant volume of opinions in the fo-
rum posts, much more than they share code examples or
discuss code terms. Analysis of such opinions can provide
interesting insights into the learning of the APIs discussed.

RQ1.2: How do the API aspects relate to the
opinions provided by the developers?
Motivation. Given that the usage of an API can be in-
fluenced by factors related to the specific attributes of an
API, we believe that by tracing the positive and negative
opinions to specific API aspects discussed in the opinions,
we can gain deeper insight into the contextual nature of the
provided opinions. Tools can be developed to automatically
detect those aspects in the opinions to provide actionable in-
sights about the overall usage and improvement of the API.

Approach. We associated the aspects in the benchmark
to the opinionated sentences and analyzed the correlation
between those based on two distributions: (a) The overall
number of positive and negative opinionated sentences asso-
ciated with each aspect, and (b) For each aspect with opin-
ions, the distribution of those opinions across the different
domains. We answer the following questions: (1) What as-
pects are more dominant in the opinions? (2) What aspects
are more disputed across the domains?

Findings. In Table 5, we breakdown the opinions for each
aspect into the domains. For each aspect and each domain,
we show the overall presence of positive and negative opin-
ions. The percentage beside each aspect name in Table 5
shows how much of the percentage of sentences labeled as
that aspect contained opinions with positive or negative sen-
timent. The bar for each aspect shows the relative pro-
portion of positive and negative opinionated sentences in
those opinions. The distribution of opinions across aspects
is greater the distribution of opinions across the domains
(in Figure 4), i.e., developers are more opinionated while
discussing about API aspects. For example, 72% of the sen-
tences labeled as the ‘Legal’ aspect contained opinions, while
62% of the sentences containing discussion related to API
performance contained opinions. Therefore, the analysis of
the opinions towards specific aspects can help us understand
more about the advantages and problems of using an API
based on that aspect (e.g., what are most positively or neg-
atively reviewed performance-based features of an API?).

The two aspects, Performance and Usability, both have
much more negative opinions than positive opinions for do-
mains ‘Protocol’ and ‘Debug’. Intuitively, developers can
complain about the performance of a program while debug-
ging. However, it is non-trivial any such causes for the do-
main ‘Protocol’. Major theme emerged from the Performance-
based negative opinions was related to analysis and deploy-
ment of the multi-threaded applications based on the pro-
tocols. By cross-linking the opinions both from aspect and
domain, we also find that developers did not have any com-
plaints about the Legal aspects of the APIs from the Text
domain, although they were not happy with their buggy
nature. Such analyses that can help streamline the overall
decision making process towards the usage of an API.

Developers are more vocal while discussing specific API as-
pects (e.g., usability). Correlating the different dimensions
(opinions, aspects, and domain) can offer insights into how
well reviewed an API aspect is across domains.

RQ1.3: How do the various stakeholders of an
API relate to the provided opinions?
Motivation. An API can be associated with different stake-
holders. Depending on the usage needs, the interaction be-
tween the stakeholders and the analysis of the opinions they
provide can offer useful insights into how positively or nega-
tively the suggestions are received among the stakeholders.

Approach. We labeled all the sentences in the benchmark
based on three dimensions: (1) Stakeholder: Who is pro-
viding the opinion? (2) Signal: What has caused the stake-
holder to provide the opinion? (3) Intent/Action: What is
the intention and/or action of the stakeholder? We identify
the dimensions in the benchmark as follows.

• Stakeholder: We manually examined each sentence in
the benchmark and labeled it based on the type of person
who originally wrote the sentence. For example, we labeled
the sentence as came from the author of an API, if the sen-
tence contained a disclosure (“I am the author”).

• Signal: We identified the following signals in the opin-
ions: (1) Suggestion about an API, e.g., “check out gson”.
We used the following keywords as cues: ‘check out’, ‘rec-
ommend’, ‘suggest’, ‘look for’. (2) Promotion: a form of
suggestion but from the author/developer of an API. To
qualify as an authors, the opinion-provider had to disclose
himself as an author in the same sentence or same post.

• Intent/Action: We identified the following intents in the
opinions: (1) Liked: the opinion showed support towards a
provided suggestion or promotion but the opinion provider
was different from the suggestion or promotion provider. For
cues, we considered all of the positive comments to an an-
swer (when the suggestion/promotion was provided in an
answer), or all the positive comments following a comment
where the suggestion/promotion was given. (2) Unliked:
the opinion-provider did agree with the provided sugges-
tion or promotion. For cues, we considered all of the neg-
ative comments to an answer (when the suggestion/promo-
tion was provided in an answer), or all the negative com-
ments following a comment where the suggestion/promo-
tion was given. (3) Used: the opinion was from a user
who explicitly mentioned that he had used the API as sug-
gested. We report the findings using the following metrics:

Suggestion Rate =
#Suggestions (S)

#Posts (T)
, Liked Rate =

#Liked

#S + #P

Promotion Rate =
#Promotion (P)

#Posts (T)
, Unliked Rate =

#Unliked

#S + #P

Findings. We discuss the findings across the dimensions:
• Stakeholders: We observed three types of stakeholders:

(1) User (1327): who planned to use the features offered by
an already available API or who responded to queries asked
by another user in the post. (2) Author (6): who developed
or authored an API. (3) User turned author (5): who devel-
oped a wrapper around one or more already available APIs
and offered the wrapper to others in the post.

• Signals: We observed 11 distinct promotions (.8%) from
the authors,e.g.,“Terracotta might be a good fit here (disclosure: I
am a developer for Terracotta).”. We observed 122 distinct sug-
gestions (9.1%),e.g., “Give boon a try. It is wicked fast”. Besides

Table 5: Distribution of opinions across aspects and domains (Red and Green bars represent negative and positive opinions, resp.)

↓Aspect|Domain→ Security Database Serialize Widget Text Utility Protocol Debug Framework

Performance - 62.1%

Usability - 41.8%

Security

Bug - 49.7%

Community - 46.2%

Compatibility - 43%

Documentation - 37.9%

Legal - 72%

Portability - 42.9%

Others - 9.6%

promotion, we observed the following types of interactions
between users and authors that did not provide any specific
promotions and were not included in the signals:(a) Bug fix:
from an author, “DarkSquid’s method is vulnerable to password
attacks and also doesn’t work”. From a user, “erickson I’m new
here, not sure how this works but would you be interested in bounty
points to fix up Dougs code?” (b) Support: authors responded
to claims that their API was superior to another competing
API, e.g., “Performant? . . . While GSON has reasonable feature
set, I thought performance was sort of weak spot . . . ”

• Intents/Actions: We observed 2887 distinct likes and
1285 unlikes around the provided suggestions and promo-
tions. On average each suggestion or promotion was liked
21.5 times and unliked 9.7 times. Therefore, users were more
than two times positive towards the provided suggestions.
Two of the users explicitly mentioned that they used the API
in the provided suggestions. We believe the usage rate per
suggestion can be much more higher, if we considered more
subtle notions of usage (e.g., “I will have a try on it”). There
are also some other signals in the post that highlight the
preference of users towards the selection of an API based on
author reputation. Consider the following comment:“Jackson
sounds promising. The main reason I mention it is that the author,
Tatu Saloranta, has done some really great stuff (including Wood-
stox, the StAX implementation that I use).”

API authors and users provide opinions to promote and
suggest APIs. Users show more positivity than negativity
towards an API suggestion in the forum post.

4. API ASPECT DETECTION (RQ2)
While the labeling of aspects in the benchmark offers in-

sights into the various API aspects developers discuss, such
a manual approach is not suitable if we want to explore large
amount of developer discussions. In this section, we discuss
aspect detection classifiers that we developed by leveraging
the benchmark described in Section 2. These classifiers take
as input a sentence forum post and automatically detect the
presence of aspects (e.g., performance, documentation) in
the sentence. Due to the absence of any guidelines on how
API aspects can be detected in the sentences, we investi-
gated two types of classifiers:

• Topic-based: We produced topics representing each as-
pect and labeled a sentence as an aspect if it contained

Table 6: Performance of the aspect detectors (N = Ngram)

Aspect Topic-Based Supervised

P R F1 N P R F1

Performance 0.27 0.63 0.38 U 0.72 0.49 0.57
Usability 0.52 0.41 0.46 B 0.58 0.58 0.58
Security 0.17 0.73 0.27 U 0.80 0.55 0.59
Bug 0.20 0.57 0.3 U 0.64 0.42 0.45
Community 0.10 0.69 0.18 B 0.19 0.29 0.19
Compatibility 0.08 0.60 0.14 T 0.16 0.23 0.17
Documentation 0.13 0.55 0.22 U 0.53 0.49 0.51
Legal 0.09 0.83 0.17 U 0.72 0.34 0.41
Portability 0.05 0.86 0.10 B 0.68 0.31 0.40
OnlySentiment 0.22 0.42 0.29 B 0.35 0.49 0.41
Others 0.39 0.24 0.3 B 0.48 0.88 0.62

keywords from its corresponding aspect.

• Supervised: We developed one supervised classifier for
each aspect based on the bag of word feature model.

We used three performance measures to assess the classifiers:
precision (P), recall(R), F-measure (F1) (Equations 1 - 3).

P =
TP

TP + FP
(1) R =

TP

TP + FN
(2) F1 = 2∗

P ∗ R
P + R

(3)

TP = Nb. of true positives, and FN = Nb. false negatives.
In Table 6, we show the performance of the two detectors.
The supervised classifiers outperformed the topic-based de-
tectors for each aspect. We discuss the algorithms below.

4.1 Supervised Aspect Detection
Because more than one aspect can be discussed in a sen-

tence, we developed a classifier for each aspect. In total, we
have developed 11 supervised classifiers (10 for the 10 as-
pects and one to detect others). To train and test the per-
formance of the classifiers, we used 10-fold cross-validation.

Candidate Supervised Classifiers. Because the detec-
tion of the aspects require the analysis of textual contents,
we selected two supervised algorithm that have shown bet-
ter performance for text labeling in both software engineer-
ing and other domains: SVM and Logistic Regression. We
used the Stochastic Gradient Descent (SGD) discriminative
learner approach for the two algorithms, which is better
suited for large-scale learning3. We trained the algorithms
using the bag of words model. An advantage of SGD is
that it offers more hyper parameters to tune the perfor-

3
We used the SGDClassifier of Scikit [42]

mance of the classifier for a given domain. To achieve an
optimal performance with a supervised classifer, for a given
domain, it is recommended to tune the parameters of the
classifier for this domain [6]. Intuitively, the opinions about
API performance issues can be very different from the opin-
ions about legal aspects (e.g., licensing) of APIs. Due to
the diversity in such representation of the aspects, we hy-
pothesized each as denoting a sub-domain within the general
domain of API usage and tuned the hyper parameters for
the SGD classifier for each aspect. We computed the hy-
per parameters using the exhaustive grid search algorithm4.
As recommended by Chawla [12], to train and test classi-
fiers on imbalanced dataset, we set lower weight to classes
with over-representation. In our SGD classifier, we set the
class weight for each aspect depending on the relative size of
the target values - we used the setting as ‘balanced’ which
automatically adjusts the weights of each class as inversely
proportional to class frequencies. Our online appendix con-
tains details of the optimal hyper-parameters.

Picking The Best Classifiers. For each aspect we trained
and tested the classifiers on the dataset using 10-fold cross
validation as follows: (1) We tokenized and vectorized the
dataset into ngrams. We used n = 1,2,3 for ngrams, i.e.,
unigrams (one word as a feature), bigrams (two consecutive
words as a feature) and n = 3 (three consecutive words).
(2) We applied the TF-IDF algorithm on the ngrams to nor-
malize the impact of frequent and as well as specific ngrams
across the sentences. (3) For each ngram-vectorized dataset,
we then did a 10-fold cross-validation of the classifier using
the optimal parameter. (4) We took the average of the pre-
cision, recall, and F1-score of the 10-folds. (5) Thus for each
aspect, we ran our cross-validation three times (one each of
the ngrams) (6) We picked the best performing classifier as
the one with the best F1-score among the three runs.

While each classifier was tested using three types of ngrams
(1,2,3), five aspects in the imbalaned dataset were better
suited for unigram-based features (Security, Performance,
Bug, Legal, OnlySentiment), five for bigram-based features
(Usability, Portability, Community, Documentation, Bug,
Others) and only one for trigram-based features (Compati-
bility). The diversity in ngram selection can be attributed
to the underlying composition of words that denote the pres-
ence of the corresponding aspect. For example, Performance-
based aspects can be recognized through the use of keywords
like thread safe, memory footprint, etc. Similarity, Legal as-
pects can also be recognized through singular words, e.g.,
free, commercial, etc. In contrast, usability-based features
require sequences of words or phrases, e.g., used easily, etc.

4.2 Topic-Based Aspect Detection
For each aspect, we produced the topics using the fol-

lowing steps:(1) We tokenized each sentence labeled as the
aspect and removed the stopwords (2) We applied LDA (La-
tent Dirichlet Allocation) [9] on the sentences labeled as the
aspect repeatedly until the coherence value5 of the LDA
model no longer increased. The coherence measure of a given
model quantifies how well the topics represent the underly-
ing theme in the data. In Table 7, we show the topic key-
words for each aspect. The third column (C) shows the final
coherence value. The higher the value is, the more coherent

4
We used the GridSearchCV algorithm of Scikit-Learn

5
We used gensim [39] with c v coherence to produce topics.

Table 7: Examples topic for aspects (C = Coherence, JT, JF =
Jaccard index, T for positives, F negatives.)

Aspect Topic C JT JF

Performance fast, memory,thread 0.52 0.045 0.007
Usability easy, works, uses 0.33 0.026 0.011
Security encrypted,crypto,security 0.54 0.054 0.007
Bug exception,throw,getters 0.55 0.038 0.005
Community downvote,community 0.61 0.045 0.005
Compatibility equivalent, compatible 0.53 0.04 0.008
Documentation article, tutorial,post 0.53 0.044 0.012
Legal free, commercial,license 0.5 0.08 0.004
Portability windows,platform,unix 0.53 0.09 0.007
OnlySentiment thanks,good,correct 0.61 0.028 0.005
Others array, write, server 0.49 0.014 0.012

Table 8: Statistics of API database used in the study

API Java Python Javascript Total

Name 62,549 32,156 56,225 150,930
Hyperlink 74,635 32,156 56,225 163,016

the topics in the model are. For each aspect, we produced
two topics and took the top 10 words from each topic as
a representation of the aspect. Therefore, for each aspect,
we had 20 words describing the aspect. For a given topic,
the words at the bottom are typically more generic and less
indicative of the topic in general. Even with 10 words, we
experienced noises in the topics. For example, for the aspect
Bug, one of the words was ‘getters’ which does not indicate
anything related to the buggy nature of an API.

We detected the aspects in a given sentence using the top-
ics as follows: (1) We computed the Jaccard index [30] be-
tween the topic-words (T) of a given aspect and the words in
the sentence (S) using the following equation:J =

Common(T ,S)
All(T ,S)

(2) If the Jaccard index is greater than 0, i.e., there is at
least one topic word present in the sentence for the aspect
and we label the sentence as the aspect. If not, we do not
label the sentence as the aspect. In Table 7, the last three
columns show the performance in aspect detection for each
aspect. The supervised classifiers for each aspect outper-
formed the topic-based algorithm for two primary reasons:
(a) the topics were based on words (unigrams) and as we
observed bigrams and trigrams are necessary to detect six
of the aspects. (b) The topics between aspects have one
or more overlapping words, which then labeled a sentence
erroneously as corresponding to both aspects while it may
be representing only one of them. For example, the word
‘example’ is both in Usability and Documentation and thus
can label the following sentence as both aspects: “Look at
the example in the documentation”, whereas it should only
have been about documentation. Determining the labeling
based on a custom threshold from the Jaccard index values
can be a non-trivial task. For example, in Table 7, the two
columns JT and JF show the average Jaccard index for all
the sentences labeled as the aspect (T) and not (F) in the
benchmark. While for most of the aspects, the values of JF
are smaller than the values of JT, it is higher for Others.
Moreover, the values of JT are diverse (range [0.014− .09]),
i.e., finding a common threshold may not be possible.

5. API OPINION MINING (RQ3)
We mine opinions about APIs using the following steps:

1. Loading and Preprocessing. We load Stack Overflow
posts and preprocess the contents of the posts as follows:
(1) We identify the stopwords. (2) We categorize the post
content into four types: a) code terms; b) code snippets;

c) hyperlinks6; and d) natural language text representing
the rest of the content. (3) We tokenize the text and
tag each token with its part of speech.7 (4) We detect
individual sentences in the natural language text.

2. Opinionated Sentence Detection. We detect senti-
ments (positive and negative) for each the sentence of a
given Stack Overflow thread. An opinionated sentence
contains at least one positive or negative sentiment.

3. API Mention Detection and Resolution. We detect
API mentions (name and url) in the textual contents of
the forum posts. We link each API mention to an API in
our API database. Our API database consists of all of the
Java, Python and Javascript APIs listed in two software
portals Ohloh [34] and Maven central [43] (see Table 8).

4. API Mention to Opinion Association. We associate
each opinionated sentence to its corresponding API.

5. API Aspect Detection. We then apply the best as-
pect detection classifier from Section 4 to detect the API
aspects in such an opinionated sentence.

In this section, we explain the detection and resolution of
API mentions and the association of opinions to the APIs.

5.1 API Mention Detection
We detect potential API mentions in the textual contents

of the forum posts. First, we identify API names and urls
in the posts. Second, we trace each name and url to the
API listed in our API database. The detection process is
composed of four major steps:(1) Portal operation, (2) Name
and url preprocessing, (3) API name detection, and (4) API
hyperlink detection. We describe the steps below.

• Step 1. Portal Operation. We crawled the the official
Javadocs 1.6 SE and EE to get a list of all Java packages and
the hyperlink to the package. Each package is considered as
an API. We crawled Ohloh to collect all of the Python, Java
and Javascript APIs. A Java API is considered if it has the
main programming language listed as Java in the portal. We
applied similar filters for Python and JavaScript APIs.8

• Step 2. Name and url preprocessing. We preprocess
each API name to collect representative token as follows:
(a) Domain names. For an API name, we take notes
of all the domain names, e.g., for org.apache.lucene,
we identify that org is the internet domain and thus de-
velopers just mention it as apache.lucene in the post.
(b) Provider names: we identify the provider names, e.g.,
for apache.lucene above, we identify that apache is the
provider and that developers may simply refer to it as lucene
in the posts. (c) Fuzzy combinations: We create fuzzy
combinations for a name multiple tokens. For example for
org.apache.lucene, we create the following combina-
tions: apache lucene, apache.lucene, lucene apache, and apache-
lucene. (d) Stopwords: we consider the following tokens as
stopwords and remove those from the name, if any: test,
sample, example, demo, and code. (e) Country codes: we
remove all two and three digit country codes from the name,
e.g., cn, ca, etc. For each such API name, we create two
representative tokens for the name, one the full name, and
another the name without the code. We preprocess each url
as follows: (a) Generic links: We remove hyperlinks that are

6
We detect hyperlinks using regular expressions.

7
We used the Stanford POS tagger [48].

8
We crawled Maven in March 2014 and Ohloh in Dec 2013. Ohloh

was renamed to Black Duck Open Hub in July 2014.

most likely not pointing to the repository of the API. For
example, we removed this hyperlinks http://code.google.com/

p, because it just points to the code hosting repository of
Google code instead of specifying which project it refers to.
(b) Protocol: For an API with hyperlink using the ‘HTTP’
protocol, we also created another hyperlink for the API us-
ing the ‘HTTPS’ protocol. This is because the API can be
mentioned using any of the hyperlink in the post. (c) Base
url: For a given hyperlink, we automatically created a base
hyperlink by removing the irrelevant parts, e.g., we created
a base as http://code.google.com/p/gson/ from this hyperlink
http://code.google.com/p/gson/downloads/list.

• Step 3. API name detection. We match each token
in the textual contents of a forum post against each API
name in our database. We do two types of matching: exact
and fuzzy. If we find a match using exact matching, we do
not proceed with the fuzzing matching. We only consider
a token in a forum post eligible for matching if its length
is more than three characters long. For an API name, we
start with its longest token (e.g., between code.gson.com and
gson, code.gson.com is the longest token, between ‘google
gson’ and ‘gson’, ‘google gson’ is the longest), and see if
we can match that. If we can, we do not proceed with the
shorter token entities of the API. If for a given mention in the
post with more than one exact matches from our database,
we randomly pick the one of them. Using contextual in-
formation to improve resolution in such cases is our future
work. If we don’t have any exact match, we do fuzzy match
for the token in forum post against all the API names in
our database. We do this as follows: (1) we remove all of
the non-alpha characters from the forum token (2) we then
make it lowercase and do a levenshtein distance. (3) we pick
the matches that are above 90% threshold between the to-
ken and an API and whose first character match (i.e., both
token and API name starts with the same character) (4) If
there are more than one match, we pick the one with the
highest confidence. If there is a tie, we sort the matches
alphabetically and pick the top one.

• Step 4. API hyperlink detection. We do not consider
a hyperlink in a forum post if the url contains the following
keywords: stackoverflow, wikipedia, blog, localhost, paste-
bin, and blogspot. Intuitively, such urls should not match
to any API hyperlink in our database. For other urls, we
only consider urls that start with http or https. This also
means that if a hyperlink in the post is not properly pro-
vided (i.e., broken link), we are unable to process it. For
all other hyperlinks in the forum post, we match each of
them against the list of hyperlinks in our database. Similar
to name matching, we first do an exact match. If no exact
match is found, we do a fuzzy match as follows. (a) We
match how many of the hyperlinks in our database start
with the exact same substring as the hyperlink in the post.
We collect all of those. For example, for a hyperlink in fo-
rum post http://abc.d.com/p/d, if we have two hyperlinks in
our database http://abc.com and http.abc.d.com, we pick both
as the fuzzy match. From these matches, we pick the one
with the longest length, i.e., http.abc.d.com.

Accuracy analysis. We analyzed the performance of our
mention resolution in a benchmark of 18 Java threads. Each
thread was selected randomly from each tag we used in as-
pect creation benchmark (see Table 1). We created the
benchmark as follows: 1. For each thread, we tokenized

http://code.google.com/p
http://code.google.com/p
http://code.google.com/p/gson/
http://code.google.com/p/gson/downloads/list
http://abc.d.com/p/d
http://abc.com
http.abc.d.com
http.abc.d.com

Table 9: Accuracy analysis of the API mention resolver

TP FP TN FN P R F1

Name 39 2 472 17 0.95 0.70 0.80
Link 15 0 32 1 1.00 0.94 0.97

the textual contents of the thread and matched each token
against the API names in our Java database and the urls in
the texts against the Java hyperlinks in our database. This
process detected 530 distinct named mentions and 48 dis-
tinct linked mentions from all of the threads. 2. The first
author manually analyzed each mention and labeled those as
‘FALSE’ (if it does not refer to an API) or identified the cor-
rect API in the database that it referred to. The first author
used four sources of information to in the manual validation:
(a) Our API database (b) The Stack Overflow thread where
the mention was detected, (c) The Google search engine, and
(d) The homepages of the candidate APIs for a given men-
tion. 3. If an API was not present in our database, but was
mentioned in the forum post, we should considered that to
be a missed mention and added that in the benchmark. All
such missed mentions were considered as false negatives in
the accuracy analysis. 4. A second coder (a graduated PhD
student at McGill) was then provided the list, who manu-
ally checked each mention. The second coder found three
additional mentions missed by the first coder. The second
coder disagreed with the resolution of the first coder for 12
mentions. Out of the 12, The final benchmark contained 11
resolutions of the second coder. The other mention ‘tomcat’
which was denoting a server and not an API.

We ran our API name and link resolver on all of the
threads in the benchmark and compared the results of the
tool against the benchmark. In Table 9, we present the per-
formance of the mention resolution. The name mention re-
solver failed to resolve the mention ch.qos.logback.core.recovery
to the correct API logback, because our database did not
have the class names of the API and exact match had very
low confidence between the API name and the mention.
Similarity, the mention ‘lang’ in thread 837703 was erro-
neously considered as ‘FALSE’ because the word ‘lang’ is
a common English word and thus was considered as noise.
While the performance of the resolver is promising, we note
that the tool currently does not take into account the con-
text surrounding a mention and thus may not work well for
false mentions, such as ‘Jackson’ as an API name versus as a
person name, etc. We have been investigating the feasibility
of incorporating contextual information into the resolution
process as our immediate future work.

5.2 API Mention to Opinion Association
We associate an opinionated sentence in a post to an

API about which the opinion is provided using three fil-
ters: (1) API mentioned in the same sentence. (2) API
in same post. (3) API in same conversation. We apply
the filters in the same order they are discussed.

• F1. Same sentence association. If the API was men-

tioned in the same sentence, we associate the opinion to
the API. If more than one API is mentioned in the same
sentence, we associate the closest opinion to an API as fol-
lows. Consider the example, ‘I like the object conversation
in Gson, but I like the performance of Jackson’. In this sen-
tence, we associate Gson to the opinion ‘I like the object
conversion in Gson’ and Jackson to ‘but I like the perfor-
mance of Jackson’. We do this by splitting the sentence into

Table 10: Accuracy analysis of the API to opinion association

Filter TP FP TN FN P R F1

Sentence 19 1 0 0 0.95 1 0.98
Post 16 2 0 1 0.89 0.95 0.91
Conversation 8 3 0 1 0.72 0.89 0.8

parts based on the presence of sentiment words (e.g., like)
and then associating it to its nearest API that was men-
tioned after the sentiment word.

• F2. Same post association. If an API was not men-
tioned in the same opinionated sentence, we attempted to
associate the sentence to an API mentioned in the same
post. First, we look for an API mention in the following
sentence of a given opinionated sentence. If one mention is
found there, we associate the opinion to the API. If not, we
associate it to an API mentioned in the previous post (if
any). If not, we further attempt to associate it to an API
mentioned in the following two sentences. If none of the
above attempts are successful, we apply the next filter.

• F3. Same conversation association. We define a con-
versation as an answer/question post and the collection of
all comments in reply to the answer/question post. First,
we arrange all the posts in a conversation based on the time
they were provided. Thus, the answer/question is the old-
est in a conversation. If an opinionated sentence is found
in a comment post, we associate it to its nearest API men-
tion in the same conversation as follows: an API mentioned
in the immediately preceding comment or the nearest API
mentioned in the answer/question.

Accuracy. In Table 10, we show the performance of the
association filters on the 18 threads that we used to analyze
the performance of the mention resolver. The SameSen-
tence filter performed the best, followed by the SamePost
filter. The SameConversation filter suffered from the ambi-
guity in the conversation when the users did not refer to the
immediately preceding API mention in their opinion.

6. DISCUSSIONS
Motivated by our findings in the case study on the impact

of opinions towards software developers, we developed a pro-
totype opinion search engine where developers can search
for an API by its name to explore the positive and negative
opinions provided for the API by the developers in the fo-
rum posts (see Figure 5 for screenshots). We are currently
designing experiments to evaluate its usefulness for software
developers. The tool has two components:

• Offline processor that crawls Stack Overflow posts to
mine opinions using the techniques discussed in Section 5.

• Online search engine where users can search for an
API for opinion (1 in Figure 5). Upon clicking on a search
result, the tool will provide the following info based on the
mined opinion about the API:

− A sentiment aggregator that provides a visual overview
of the overall sentiments towards the API (2 in Figure 5)
and an overview of sentiment trend changes (month by month)
towards the API (3 in Figure 5).

− An opinion viewer to show each of the positive and
negative opinions ranked based on time. The most recent
opinion is placed at the top.

− An opinion summarizer that groups opinions by as-
pects (4 in Figure 5). Cicking on each aspect shows each of

Figure 5: Screenshots of our API opinion search engine. The circled numbers show major components of the search engine.

the opinionated sentences labeled as the aspect for the API.
− A comentioned viewer that shows for each API men-

tion which other APIs were positively or negative reviewed
in the same forum post (see 6 in Figure 5). This analysis
can reveal other similar APIs to developers if they are not
satisfied with their initially selected API.

7. THREATS TO VALIDITY
The accuracy of the evaluation of API aspects and men-

tions is subject to our ability to correctly detect and label
each such entities in the forum posts we investigated. The
inherent ambiguity in such entities introduces a threat to
investigator bias. To mitigate the bias, we conducted relia-
bility analysis on both the evaluation corpus and during the
creation of the benchmark.

Due to the diversity of the domains where APIs can be
used and developed, the generalizability of the approach re-
quires careful assessment. While the current implementa-
tion of the approach was only evaluated for Java APIs and
Stack Overflow posts discussing Java APIs, the benchmark
was purposely sampled to include different Java APIs from
domains as diverse as possible (18 different tags from 9 do-
mains). The domains themselves can be generally under-
stood for APIs from any given programming languages. In
particular, the detection of API aspects is an ambitious goal.
While our assessment of the techniques show promising signs
in this new research direction, the results will not carry the
automatic implication that the same results can be expected
in general. Transposing the results to other domains requires
an in-depth analysis of the diverse nature of ambiguities each
domain can present, namely reasoning about the similarities
and contrasts between the ambiguities.

8. RELATED WORK
Related work can be categorized into the analysis of (1) De-

veloper forums; (2) Sentiment in software engineering; and
(3) APIs in informal documentation.

Analysis of Developer Forums. Online developer forums
have been studied to find dominant discussion topics [4,41],
to analyze the quality of posts and their roles in the Q&A
process [3,10,14,26,28,50], to analyze developer profiles (e.g.,
personality traits of the most and low reputed users) [5,18],
or to determine the influence of badges in Stack Overflow [1].
Several tools have been developed utilizing the knowledge
from the forums, such as autocomment assistance [53], col-
laborative problem solving [11,47], and tag prediction [45].

Sentiment Analysis in Software Artifacts. Ortu et
al. [35] observed that bullies are not more productive than
others in a software development team. Mika et al. [31]
correlated VAD (Valence, Arousal, Dominance) scores [52]
in Jira issues with the loss of productivity and burn-out
in software engineering teams. Pletea et al. [38] observed
that security-related discussions in GitHub contained more
negative comments. Guzman et al. [22] found that GitHub
projects written in Java have more negative comments as
well as the comments posted on Monday, while the devel-
opers in a distributed team are more positive. Guzman and
Bruegge [23] summarized emotions expressed across collab-
oration artifacts in a software team (bug reports, etc.) using
LDA [9] and sentiment analysis. Murgia et al. [32] labelled
comments from Jira issues using Parrot’s framework [37].
Jongeling et al. [25] compared four sentiment tools on com-
ments posted in Jira while Novielli et al. [33] analyzed the
sentiment scores from the StentiStrength in Stack Overflow
posts. They observed that developers express emotions to-
wards the technology, not towards other developers. They
found that the tool was unable to detect domain-dependent
sentiment words (e.g., bug).

APIs in Informal Documentation. Parnin et al. [36]
have investigated API classes discussed in Stack Overflow
using heuristics based on exact matching of classes names
with words in posts (title, body, snippets, etc.). Using a
similar approach, Kavaler et al. [26] analyzed the relation-
ship between API usage and their related Stack Overflow
discussions. Both studies found a positive relationship be-
tween API class usage and the volume of Stack Overflow
discussions. More recent research [21,29] investigated the re-
lationship between API changes and developer discussions.
Our findings contribute to the existing body of knowledge
on the topic and suggest future extension of the existing re-
search on API traceability, such as, tracing API code terms
in documentation [7, 15,40,46], and in emails [2].

9. SUMMARY
With the proliferation of online developer forums as infor-

mal documentation, developers share their opinions about
the APIs they use. With the myriad of forum contents con-
taining opinions about thousands of APIs, it can be chal-
lenging for a developer to gain informed decision on what
API can be the right choice for his development task. We
conducted a case study of the values of opinions about APIs
and found that opinions about APIs are diverse and contain
topics from many different aspects. We further observed

that developer forums are important avenues for both API
users and authors to share and promote APIs. As a first step
towards providing actionable insights from opinions about
APIs, we presented suites of techniques to automatically
mine and summarize opinions by aspects. Our future work
involves the effectiveness analysis of our opinion search en-
gine and to identify improvement opportunities to the un-
derlying mining techniques across programming languages.

10. REFERENCES
[1] A. Anderson, D. Huttenlocher, J. Kleinberg, and

J. Leskovec. Steering user behavior with badges. In
Proceedings of the 22nd International Conference on World
Wide Web, pages 95–106, 2013.

[2] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails
and source code artifacts. In 32nd International Conference
on Software Engineering, pages 375–384, 2010.

[3] K. Bajaj, K. Pattabiraman, and A. Mesbah. Mining
questions asked by web developers. In In Proceedings of the
11th Working Conference on Mining Software Repositories,
pages 112–121, 2014.

[4] A. Barua, S. W. Thomas, and A. E. Hassan. What are
developers talking about? an analysis of topics and trends
in stack overflow. Empirical Software Engineering, pages
1–31, 2012.

[5] B. Bazelli, A. Hindle, and E. Stroulia. On the personality
traits of stackoverflow users. In In Proceedings of the 29th
IEEE International Conference on Software Maintenance
(ICSM), pages 460–463, 2013.

[6] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl.
Algorithms for hyper-parameter optimization. In
Proceedings of the 24th International Conference on Neural
Information Processing Systems, pages 2546–2554, 2011.

[7] N. Bettenburg, S. Thomas, and A. Hassan. Using fuzzy
code search to link code fragments in discussions to source
code. In European Conference on Software Maintenance
and Reengineering, pages 319–328, 2012.

[8] S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Neylon,
G. A. Reis, and J. Reyner. Building a sentiment
summarizer for local search reviews. In WWW Workshop
on NLP in the Information Explosion Era, page 10, 2008.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
3(4-5):993–1022, 2003.

[10] F. Calefato, F. Lanubile, M. C. Marasciulo, and N. Novielli.
Mining successful answers in stack overflow. In In
Proceedings of the 12th Working Conference on Mining
Software Repositories, page 4, 2014.

[11] S. Chang and A. Pal. Routing questions for collaborative
answering in community question answering. In In
Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and
Mining ACM, pages 494–501, 2013.

[12] N. V. Chawla. Data Mining for Imbalanced Datasets: An
Overview, pages 875–886. Springer US, Boston, MA, 2010.

[13] CoreNLP. The Stanford Natural Language Processing
Group. http://nlp.stanford.edu/software/corenlp.shtml,
1999.

[14] D. Correa and A. Sureka. Chaff from the wheat:
Characterization and modeling of deleted questions on
stack overflow. In In Proceedings of the 23rd international
conference on World wide web, pages 631–642, 2014.

[15] B. Dagenais and M. P. Robillard. Recovering traceability
links between an API and its learning resources. In Proc.
34th IEEE/ACM Intl. Conf. on Software Engineering,
pages 45–57, 2012.

[16] FasterXML. Jackson.
https://github.com/FasterXML/jackson, 2016.

[17] freecode.com. http://freecode.com/, 2013.

[18] A. L. Ginsca and A. Popescu. User profiling for answer

quality assessment in q&a communities. In In Proceedings
of the 2013 workshop on Data-driven user behavioral
modelling and mining from social media, pages 25–28, 2013.

[19] github.com. https://github.com/, 2013.

[20] Google. Gson. https://github.com/google/gson, 2016.
[21] L. Guerrouj, S. Azad, and P. C. Rigby. The influence of app

churn on app success and stackoverflow discussions. In
Proceedings of the 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering
(SANER), pages 321–330.

[22] E. Guzman, D. Azócar, and Y. Li. Sentiment analysis of
commit comments in github: an empirical study. In
Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 352–355, 2014.

[23] E. Guzman and B. Bruegge. Towards emotional awareness
in software development teams. In Proceedings of the 7th
Joint Meeting on Foundations of Software Engineering,
pages 671–674, 2013.

[24] M. Hu and B. Liu. Mining and summarizing customer
reviews. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 168–177,
2004.

[25] R. Jongeling, S. Datta, and A. Serebrenik. Choosing your
weapons: On sentiment analysis tools for software
engineering research. In Proceedings of the 31st
International Confernece on Software Maintenance and
Evolution, 2015.

[26] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu,
and V. Filkov. Using and asking: Apis used in the android
market and asked about in stackoverflow. In In Proceedings
of the INTERNATIONAL CONFERENCE ON SOCIAL
INFORMATICS, pages 405–418, 2013.

[27] O. Kononenko, O. Baysal, and M. W. Godfrey. Code review
quality: How developers see it. In Proc. 38th International
Conference on Software Engineering, pages 1028–1038,
2016.

[28] S. Lal, D. Correa, and A. Sureka. Miqs: Characterization
and prediction of migrated questions on stackexchange. In
In Proceedings of the 21st Asia-Pacific Software
Engineering Conference, page 9, 2014.

[29] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto,
and D. Poshyvanyk. How do api changes trigger stack
overflow discussions? a study on the android sdk. In
Proceedings of the 22Nd International Conference on
Program Comprehension, ICPC 2014, pages 83–94, New
York, NY, USA, 2014. ACM.

[30] C. D. Manning, P. Raghavan, and H. Schütze. An
Introduction to Information Retrieval. Cambridge Uni
Press, 2009.

[31] M. Mȧntylȧ, B. Adams, G. Destefanis, D. Graziotin, and
M. Ortu. Mining valence, arousal, and dominance –
possibilities for detecting burnout and productivity? In
Proceedings of the 13th Working Conference on Mining
Software Repositories, pages 247–258, 2016.

[32] A. Murgia, P. Tourani, B. Adams, and M. Ortu. Do
developers feel emotions? an exploratory analysis of
emotions in software artifacts. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
2014.

[33] N. Novielli, F. Calefato, and F. Lanubile. The challenges of
sentiment detection in the social programmer ecosystem. In
Proceedings of the 7th International Workshop on Social
Software Engineering, pages 33–40, 2015.

[34] Ohloh.net. www.ohloh.net, 2013.
[35] M. Ortu, B. Adams, G. Destefanis, P. Tourani,

M. Marchesi, and R. Tonelli. Are bullies more productive?
empirical study of affectiveness vs. issue fixing time. In
Proceedings of the 12th Working Conference on Mining
Software Repositories, 2015.

[36] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey.
Crowd documentation: Exploring the coverage and

http://nlp.stanford.edu/software/corenlp.shtml
https://github.com/FasterXML/jackson
http://freecode.com/
https://github.com/
https://github.com/google/gson
www.ohloh.net

dynamics of api discussions on stack overflow. Technical
report, Technical Report GIT-CS-12-05, Georgia Tech,
2012.

[37] W. G. Parrott. Emotions in Social Psychology. Psychology
Press, 2001.

[38] D. Pletea, B. Vasilescu, and A. Serebrenik. Security and
emotion: sentiment analysis of security discussions on
github. In Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 348–351, 2014.

[39] R. Řeh̊uřek and P. Sojka. Software framework for topic
modelling with large corpora. In Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks,
pages 45–50, 2010.

[40] P. C. Rigby and M. P. Robillard. Dicovering essential code
elements in informal documentation. In Proc. 35th
IEEE/ACM International Conference on Software
Engineering, pages 832–841, 2013.

[41] C. Rosen and E. Shihab. What are mobile developers
asking about? a large scale study using stack overflow.
Empirical Software Engineering, page 33, 2015.

[42] scikit learn. Machine Learning in Python.
http://scikit-learn.org/stable/index.html#, 2017.

[43] Sonatype. The Maven Central Repository.
http://central.sonatype.org/, 22 Sep 2014 (last accessed).

[44] Sourceforge.net. http://sourceforge.net/, 2013.

[45] C. Stanley and M. D. Byrne. Predicting tags for
stackoverflow posts. In In Proceedings of the 12th
International Conference on Cognitive Modelling, pages
414–419, 2013.

[46] S. Subramanian, L. Inozemtseva, and R. Holmes. Live api
documentation. In Proc. 36th International Conference on
Software Engineering, page 10, 2014.

[47] Y. Tausczik, A. Kittur, and R. Kraut. Collaborative

problem solving: A study of math overflow. In In
Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work and Social Computing, pages
355–367, 2014.

[48] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology - Volume 1, pages 173–180, 2013.

[49] G. Uddin, O. Baysal, and L. Guerrouj. Understanding how
and why developers seek and analyze api-related opinions.
IEEE Transactions on Software Engineering, page 13,
2017.

[50] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov.
How social q&a sites are changing knowledge sharing in
open source software communities. In Proceedings of the
17th ACM conference on Computer supported cooperative
work & social computing, pages 342–354, 2014.

[51] A. J. Viera and J. M. Garrett. Understanding interobserver
agreement: The kappa statistic. Family medicine,
37(4):360–363, 2005.

[52] A. B. Warriner, V. Kuperman, and M. Brysbaert. Norms of
valence, arousal, and dominance for 13,915 english lemmas.
Behavior Research Methods, 45(4):1191–1207, 2013.

[53] E. Wong, J. Yang, and L. Tan. Autocomment: Mining
question and answer sites for automatic comment
generation. In In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software
Engineering, pages 562–567, 2013.

[54] R. K. Yin. Case study Research: Design and Methods.
Sage, 4th edition, 2009.

http://scikit-learn.org/stable/index.html#
http://central.sonatype.org/
http://sourceforge.net/

	Introduction
	A Benchmark For API Aspects
	Opinion Value Analysis (RQ1)
	API Aspect Detection (RQ2)
	Supervised Aspect Detection
	Topic-Based Aspect Detection

	API Opinion Mining (RQ3)
	API Mention Detection
	API Mention to Opinion Association

	Discussions
	Threats to Validity
	Related Work
	Summary
	References

