Multi-language Design Smells:
Characteristics, Prevalence, and Impact

- Ph.D. Dissertation -

Mouna Abidi

Supervisor: Prof. Foutse Khomh

Computer Engineering and Software Engineering Department — Polytechnique Montreal

May 5%, 2021

POLYTECHNIQUE #5%.Y
5 3)

MONTREAL go\’;;

LE GENIE N& &
EN PREMIERE CLASSE SFEIRERD

What is a Multi-language System?

= o Groovy,__ =
5. B Clojure Erlang €3 O0Caml
o Sy 5y m——G B ASIC

“CD"
=1 AppleScript D

o)
s Cs:
 NDE, FEE “: E 72
Wb raon:

Multi-language Systems

Benefits of Multi-language Systems

Save Time

Save development time

B B
&

Ie Reuse of libraries

Reuse of code

Choose programming language

Limitations of Multi-language Systems

Complex interactions

Security issues Hard to understand

Additional bugs

I B H B

Issues Related to Multi-language Systems

JNI UnsatisfiedLinkError issue

Asked 5 years, 2 months ago Active 5years, 2 months ago Viewed 172 times

Apparent Facebook Widget
Snafu Brings Down Sites

Error O

An error occurred. Please try again later.

E THIS IS WHAT PEOPLE ACROSS THE WEE SAW ON THURSODAY WHEN TRYINE TO REACH MANY SITES TH
FACEBDOK WIDGETS

SEVERAL SITES AcRoOsSs the web could not be reached by so
visitors on Thursday afternoon, apparently because of a probler
with Facebook widgets embedded In the sites. Several sites —
including Business Insider. Huffington Post and Salon — were
reportedly affected, redirecting visitors to a Facebook error pag

Facebook did not immediately respond to a request for commel
the problem has apparently been fixed. The problem was first
reported by Marketing Land.

When trylng to visit a page that used Facebook Connect or Like
widgets, users were redirected to a page saying simply "An error
occurred. Please try again later” When they clicked the "Okay™”

button, they were taken to an error page. If they hit back. they would

get to the page they were trying to visit momentarily before being
automatically forwarded to the error page again.

Facebook provides code to embed widgets that display information
such as which of your friends like a site's Facebook page, or which

articles have recently been "liked” by a friend. These widgels execute

JavaScript code in the users web browser that originates at
Facebook. not the site that the user Is trying to view. The problem
only seems to affect users who are not logged into Facebook.

| am creating a Java program using JNI to gather data via a C program. | have gone through this JNI

1 ruby-talk

AANN] JRuby 1.7.0.preview1 released

=T ST IO T TUT G P ST LU TSI Y IO VST IS IS

- Java 5 support dropped (Java 6+ required)

tutorial

(https:/ithenewcircle com/static/bookshelfiava_fundamentals_tutorial/_java_native_interface_jnihtml) -~ 259 iSsues resolved
. and everything compiles correctly. However, when | try to run the Java program in Eclipse, | keep

getting this error:

Exception in thread "main” java.lang.UnsatisfiedLinkError- no TurtleTrackerimpl in java library.path at

Ji

[JRUBY-6248] - thread leak

- Update to Rubygems 1.8.24
- Update to Rake 0.9 2 2

*Mote on invokedynamic performance:

Invokedynamic is still a new feature for the JVIM, so we recommend
o 1ild of Java 7 as possible. Builds of

prior to “update 2" will show poor performance

[JRUBY-6250] - When executing an Ant buildxm file, the Ant executable should not be required to live on the environment's SPATH + -1 be disabled with

[JRUBY-6251] - NailGun and 1.9 seem not to be usable at the same time (--1.9 and -ng)

[JRUBY-6259] - ant test - fails in WinXP: (LoadError] no such file to load - jruby

[JRUBY-6265] - Setting load path on ScriptingContainer with LocalContextScope SINGLETON does not wark
[JRUBY-

-Unicode encoding problem in CSViforeach

[JRUBY- - JRuby 1.9 cannot load YAML output from JRuby --1.8

[JRUBY-6277] - Dependency to compiler package from org,jruby.Ruby breaks Ruboto

[JRUBY-6278] - [dev only] Double require bug in the handling of concurrent requires

[JRUBY-6279] - Invakedynamic support is missing 'float_op_equal

[JRUBY-6280] - Fails to open fifo for writing.

[JRUBY-6281] - [1.9] Applet does not work in the 1.9 mode

[JRUBY-6282] - Colon is not allowed in a file name on Windows

[JRUBY-6283] - Master crashes when calling an FFl-attached C library function

[JRUBY-6284] - Calls to Kernel#exit result in an exception printed on stderr

[JRUBY-6285] - JRuby 1.7 master on Java7u2 is *slower* running a benchmark than master on Javas
[JRUBY-6291] - Closing One Stream From 10.popend Results in Stream Closad Error When Reading Other Streams
[JRUBY-6202] - Massive perf degradation in pack after ByteList update

[JRUBY-6293] - jruby-dist-master does not build C extensions

[JRUBY-6295] - Dir.chdir, SHOME and SLOGDIR behavior

[JRUBY-6300] - TestMethodmissing testcase fails with Java 7

1] - scripting_langjruby:undefined method in test_loop_1_9.rb

5] - C Extension fails to build

mic=false (passed to JRuby) for investigating perf

ays don't inherit from java.lang.Object in

2rarchy

ting is slower in JRuby than MRI

should load relative path reference to AOT classes
recpen a class from an included module

work replacement char with russian charset

_class should be deprecated in favor of

iport)

“gethostbyname does reverse DNS lookup for IP
no DNS reverse lookup reply is received

onsistency handles file:/// URLs pointing to

wec: SimpleDelegator send spec fails due to bug in

b:24: superclass must be a Class (Module given) (TypeError)

rame(__ FILE_) doesn't return correct value when
classpath

reopen JRUBY-3894

erverfFaccept can't be interrupted by killraise

load with wrap=true does not protect the global
orogram

tracer doesn't trace

#select puts connectable sockets in the read set

w digest methods are missing (baseb4digest and

Design Smells

| Identification of
: good practices

1 and design

| patterns

https://refactoring.guru/design-patterns

Identification of
bad practices and

(=) = .
design smells

Literature

2012 28" IEEE International Conference on Software Matntenance (ICSM)

Piecemeal Migration of a Document Archive System with an Architectural

Pattern Language

Finding Bugs in Java Native Interface Programs
Tamiya Onodera

Goh Kondoh

An

Depa

Tokyo Research Laboratory
|EM Researct

1623-14, Shimotsuruma,
Kanagawa-ken, J;

+81-46-215-4584, +81-4
{gkondo tonodera}@j
ABSTRACT e
In this paper, we describe static analysis techniques for finding Lang
bugs in programs using the Java Native Interface (INI). The INI is
both tedious and error-prone because there are many JNI-specific
; Ke
mistakes that are not caught by a native compiler. This paper is .
focused on four kinds of common mistakes. First, explicit Javn
statements to handle a possible exception need to be inserted after
a statement calling a Java method. However, such statements tend 1.
to be forgotten. We present a typestate analysis to detect this A ft
exception-handling mistake. Second, while the native code can lang)
allocate resources in a Java VM, those resources must be prog
manually released, unlike Java. Mistakes in resource management vers|
cause leaks and other errors. To detect Java resource ermrors, we INI
used the typestate analysis also used for detecting general prog
memory errors. Third, if a reference to a Java resource lives Pitfa
across multiple native method invocations, it should be converted Toe
into a global reference. However, programmers sometimes forget erm
this rule and, for example, store a local reference in a global Also
variable for later uses. We provide a syntax checker that detects resul
this bad coding practice. Fourth, no JNI function should be called with
in a critical region. If called there, the current thread might block com)
and cause a deadlock. Misinterpreting the end of the critical whil
region, programmers occasionally break this rule. We present a [3].
simple typestate analysis to detect an improper JNI function call pars:
in a critical region. C++
We have implemented our analysis techniques in a bug-finding prob
tool called BEAM, and executed it on opensource software NI
including JNI code. In the experiment, our analysis techniques Tabl
found 86 INI-specific bugs without any overhead and increased praci
the total number of bug reports by 76%. beyc

JOURNMNAL OF S0FTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J Softve Mainr. Evel.: Res. Pracr. 2002; 14:1-30 (DOL: 10010025mr.243)

Research

Piecemeal legacy migrating with
an architectural pattern
language: a case study

™

M. Goedicke and U. Zdun*"

Specification of Software Systems, University of Essen, CGermany

SUMMARY

Numerous large applications that have evolved over many vears are well-functioning and reliable, but have
severe problems regarding fexibility and reuse. Due to the many fixes that were applied in a system’s
lifetime, it is often hard to costomize, change or exchange system parts. Therefore, it is problematic to
migrate such systems to a more fexible architecture or to new technologies. The document archive/retrieval
svstem, discussed in this article, is an example of a large C syvstem that had such problems. As a
solution, we will sketch an architectural pattern language that invelves patterns well-suited for a piecemeal
migration process. The patterns aim at building and composing highly fexible black-box component
architectures with an object-oriented glueing laver. We present a re-engineering case study for the
document archive/retrieval system based on these patterns. The patterns are used to wrap the existing
C implementations and integrate them with an object system. Moreover, the patterns introduce Hexibility
hooks into the hot spots of the architecture and let components define their required environment. This
enables an easier future evolution of the system. The case study demonstrates a pattern language as an
approach for piecemeal legacy migration apart from implementation details. Copyright © 2002 John Wiley
& Sons, Lid.

KEY WORDS: software pattern: pattern language; re-engineering; component architecture

Siliang Li
tment of Computer Science and
Engineering
Lehigh University
5il206 @ cse.lehigh.edu

tive methods may defeat Java's guaran-
aurity. One common kind of flaws in na-
from the discrepancy on how exceptions
and in native methods. Unlike excep-
tions raised in the native code through
erface (JNI) are not controlled by the
ne (JVM). Only after the native code
ill the JVM's mechanism for exceptions
repancy makes handling of JNI excep-
process and can cause serious security
itten using the JNL
rel static analysis framework to exam-
eport errors in JNI programs. We have
I consisting of exception analysis, static
warning recovery. Experimental results
pol allows finding of mishandling of ex-
accuracy (15.4% false-positive rate on
wle). Our framework can be easily ap-
ftware written in other foreign function
the Python/C interface and the OCam-

Subject Descriptors

oftware Engineering—Softweare /Progrem
[Software]: Software Engineering—/n-

Build System Issues in Multilanguage Software

Finding Bugs in Exceptional Situations of JNI Programs

Gang Tan
Department of Computer Science and
Engineering
Lehigh University
gtan@cse.lehigh.edu

much less vulnerable, As another example, Perl’s taint mode
prevents attacks based on malicious user input.
cases, managed environments provide a natural and exten-

In both

sible way of enforcing relevant security policies.

To interoperate with software components in other lan-
guages, most managed programming languages also support
foreign function interfaces (l'-l'-].‘i::l. The Java Native Interface
(JINI} allows Java components to interoperate with native
components developed in C, C4++4, or assembly languages.
Similarly, NET provides the P/Invoke interface for invoking
library functions.

Native components are usually the security dark corner
of software applications. They are outside of managed envi-
ronments and relevant security policies cannot be enforced
on them. In Sun’s JDK 1.6, there are over 800,000 lines of
C_,-"C } 4 eode. Any vulnerability in this trusted native code
can compromise the security of the JVM. Several vulnerabil-
ities have been discovered [24, 30, 29]. A recent empirical
security study [28] on Sun'’s JDK L6 found over 126 soft-
ware errors in a mere 38,000 lines of C code. 59 of them are
security critical.

One of the most revealing aspects of the security study is
that many of the discovered errors are due to a discrepancy
on how exceptions are handled between Java and the JNL
Managed environments such as the JVM provide runtime
support for exception handling, which native components
cannot rely on. 'We next explain why this discrepancy may
lead to security vulnerabilities and why it is common in fos-
eign function interfaces. 8

Developers’ Blogs

an developers > NDK

Best practices for
Interface(JNI)

Introduction
Getting Started
Concepts

. JNITips
Reference and JNI Functions ’

Building

HTML Goodies : HTMLS : HTMLS And JavaScript

[T

Best Practices for
Combining JavaScript with
HTML

By Octavia Anghel

Q000

HOME GUIDES

REFERENCE

@ Email Article

WEBINAR:
On-
Demand

Desktop-as-a-Service Designed for
Any Cloud ? Nutanix Frame

This article will help you discover some of the best practices for combining
JavaScript with HTML

Generate Dynamic HTML

=
e

Whenever a Web page is loaded, the browser creates a Document Object Model of the page;
the HTML documents can be easily viewed and managed using the HTML DOM which shows
the HTML document as a tree sfructure. We can use the Document object to access all HTML
elements (as node objects) in a page, so we can also add or remove element. JavaScript has
some very useful and often-used functions that we will utilize next. In the example below,
createElement() method creates an Element Node with the specified name and the

appendChild() meihod appends a node as the last child of the node.

In the example below, we will create a dynamic HTML coniact form using the method presented

above:

SAMPLES

DOWNLOADS

Q, Search

Learn web development » Accessibility » CSS and JavaScript accessibility best practices

Android Developers > NDK > Guides

JNI tips

JNIis the Java Nat
managed code (wr
(written in C/C++).
libraries, and while

Yy Note: Beca
programmir
programmir
Kotlin and A

If you're not alread
sense for how JNI
immediately obviol

To browse global J
the JNI heap view |

General tips

Try to minimize the
JNI solution shoulc
with the most impc

* Minimize ma

% Answer

Eﬁa Spaces

Qllora E Hc:omeo Q Notifications

Java (software platform) Learning Java +2 4

What are the best practices with JNI for using C/C++
native code libraries in Java?

Y7, Answer

D ‘C? Ii w ‘D ooo

3 Follow -5 +2 Request

Ad by JetBrains
Level up your Java code with Intelli) IDEA.
Discover instant and clever code completion, on-the-fly code analysis, and reliable

refactoring tools.

|—_|7' Free Trial soe
1 Answer
Andy Heilveil, programming since 1967. ®
Answered Jan 15

Since | have been AZ2A:

General advice on JNI: Avoid it. Look for some place where you can run data over a
socket to the C++ code with adequate perfermance. If java can’t do what you want
without a native code extension then it is probably the wrong language to be using
at even higher layers of your application.

The labor to create such a socket interface might be more than that of the INI
interface, but then the service you create will be web ready and available to other
languages with no further work.

52 views - Answer requested by Sylvain Saure

Q. Search Quora cessibility

CSS and JavaScript accessibility best practices

Next <

/e the potential to allow for accessible web
ssibility if misused. This article outlines some
considered to ensure even complex content

y, a basic understanding of HTML,
and understanding of what accessibility

using CSS and JavaScript
'eb documents to maximise
atract from it

'e accessible?

te importance for accessibility as HTML, but
lepending on how they are used. To put it

: best practice advice to make sure that your
sibility of your documents.

Developers’ Blogs

v

= stackoverflow

Home

PUBLIC

& Stack Overflow
Tags
Users

Jobs

TEAMS What's this?

ELFirst 25 Users Free

v

-~
Products Customers Use cases =, stackoverflow Products Customers Use cases

What is the best practice for using Android JNI and frac™™

Asked 4 years, 9 months ago Active 4 years, 8 months ago Viewed 328 times FUBLIC

& Stack Overflow

What is the best practice for using JNI to call into an application which uses fragments? Tags
0 For inetanra | wniild like tn nes the mastar datzail flow temnlata fecrnll dowm an thic nana Users I know the bgsicslon hOW to makec Ilbrary java Con'lpatlble usmg ‘JNI' bUt | ne_Ed this Sa_nl‘? |Ib‘rJa|\:¥ to
. Best Practices for Calling Scipy From C
Best practice for multiple native code library binding development? . o
sked 5years, 3 months age Viewed 95 times
Asked 5years, 6 months ago Viewed 85 times
Users Free I've written some C-code to call scipy functions. The body, including variable declarations and using
EXIT FAIL to denote messages and cleanup steps, is:
Closed. This question needs to be more focused. It is not currently accepting answers. Learn more. Blog PyObject *module_name, *module = NULL;
PyObject *funct = NULL;
2 D 5 PyObject *output = NULL;
int J;
@ Want to improve this question? Update the question so it focuses on one problem only by editing this a double dInval, doutval;
m Py_Initialize();
ow . s .
P mogu%e_name = PyStrlng_F;‘ijt;mg(s;lpy.stats JIF
. . . R . . module = PyImport Import(module name);
| am developing a native C library that needs bindings to Java (JNI) in both Oracle and Android NDK Py_DECREF(module_name);
1 if (!module)
seftings, Ruby, Python, and Perl. F=i v e
| have written bindings in all these environments individually. But is there any best practice wisdom for funct = PyObject_GetAttrString(module, "beta”);
setfing up such a project in Eclipse so that all the bindings compile automatically from a common C 0 rF{ b (E;;T:;\{IL
codebase? Py DECREF(module);
1Ans or (os .
. (j=0; j<=1@; j++)
If not Eclipse, then Netbeans? or
dInval = (double)j/1@.@;
| do realize that memory allocation within the library will need to be different for each language output = PyObject_Callfiethod(funct, "ppf", "(F.F,F)", dInval, 56.8, 56.0); twith.
platform, but this appears manageable with macros. SF if (loutput)
= . EXIT FAIL
3y have
java ruby eclipse perl netbeans doutVal = PyFloat AsDouble(output); ry and
1 | Py_DECREF (output); ur
L . . = printf(“%¥6.3f ¥6.3f\n", dInval, doutval);
span than activities do. Additionally, several instances of the same Fragment subclass can } brary to
H H 1 H o H 1
displayed at once. So b)r loading your library in the activity instead of the fragment, you're r e TrETER e
the load on the system in general. Py_Finalize();
v 10

If it's the activity, how do | then make the fragment update whenever a new item gets added?

Best practice for building shared-object (.s0) in C that will be used from
different FFI including JAVA (JNI) and NodeJs (node-ffi)

Asked 3 months ago Viewed 25 times

Blog

[0 Stack Ove
and Cons

0 My Most E
Programr

Featured on M

) Feedback
reinstaten

0 Postforel
pronouns

Feedback
section of

[tz

New Post
rolling out

[tz

3
S
FOR TEAMS

I B H B

Design patterns books

Z# DEsIGN PATTERME o

A Thsewis

Learning Design Design Modern C++ Software J2EE Design C# Design Head First

Python Patierns: Patterns in Design Architecture Pattemns: Patterns: A Diesign
Design Pafte. Elements of .. Modern C++... Design Patte__ Pattems int... Tutarial Patterns

Google

design patterns|

design patterns

design patterns java

design patterns book

design patterns c#

design patterns python

design patterns interview questions
design patterns programming
design patterns mve

design patterns list

L L L0 L0 L0 L0 L0 L0 O L 0

design patterns wiki

DESIGN PATTERN APPLYING UML
EXPLAINE AND PATTERNS
PRt i ..1..:...;“.-.._
Learning Patterns of Design Refactoring to Applying UML
JavaScript Enterprise patierns Patterns and patterns

Design Patte . Application ... explained

Google

O, design patterns for multi-language|

., design pattern multi language

O, database design pattern multi language

Google Search I'm Feeling Lucky

Head First
Object-
Oriented An...

{=

11

Gam
Prog
Paite

Thesis Statement

* Design smells exist in multi-language systems (H1)

* Multi-language design smells are prevalent in open source projects (H2)

* Multi-language design smells present negative impacts on the software
quality (H3)

12

Objectives

* Define and catalog design smells for multi-language systems

* Study the prevalence of multi-language design smells

* Study the impacts of multi-language design smells on software
quality

13

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
— literature review

(IST)

A technical
_— survey

(CASCON* & JSS)

* Accepted papers

Define and catalog
design smells for
multi-language
systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

A detection
- approach

(TOSEM)*

Study the prevalence
of multi-language
design smells

An empirical
study — open
source projects
(TOSEM)*

Study the impacts of
multi-language design
smells on software
quality

An empirical
study — open
source projects
(TOSEM*&TOSEM)

Categories of
- bugs
(TOSEM)

Risky activities
(TOSEM)*

Capture developers’
perception about
multi-language
design smells

A technical
survey

(MSR & EMSE)*

Thesis Overview

Investigate the usage of
multi-language systems

A systematic
— literature review

(IST)

* Accepted papers

Pilot 1 - Systematic Literature Review

Query 3:

"multi language’ OR 'multi langnages” OR mixed-language® OR "mixed language'
OR "mixed languages” OR "heterogeneous language” OR "heterogeneous langnages”
OR polylingual OR polyglot)wn KY AND (software® OR Program® OR Analys* OR

2015 OR 2014 OR 2013 OR 2012 OR 2011 OR 2010) wn YR)) AND (english wn LA))

Inclusion and Exclusion Criteria 3694 papers

138 papers

Data Extraction

Study Results

B rubysmaitalk
- PrologC
B reric
- Crcamlic
B Haskeiic
B uspcss
B rdaices
- Python/Fortran
B matiabrces
B svasmattalk
B oo
B sssembiyic
- Adalfava
. Prologava
. Javascript/C
. Fortran/C++
B e
B ironic
I Javallavascript
e et

siaded jo Jagquunp

2020

2014 2015 2016 2017 2018 2019
Year

2012 2013

2010 2011

5

L o
— —

o
™~

siaded Jo Jaquinp

Sets of Programming Languages

The Top 20 Combinations of Programming Languages Discussed in Literature

Multi-language Papers Over Time

17

Number of Papers

-

Study Results

=1
ol o e e e aaa]
Software dependencies
|
of ! esgr oo o R |
N S - - - - —
| Difeences in programming ule-
30 el :
) Exception managemen:
o
20 : = Software changes [
L h]
10 I W Maintenance and program comprehensmn—
=
| . . EEE - Data conversion [
0 |- 8- 8 B B B N N ¥ ¥ ¥ N)
ZIDRPI 2202z R0 E = 4rz0zDPIY Hidden foreign components | N
el B 3 C o o c w9 =
. P 227 %2a =0 ol B To ol Parsing multi-language code [
__1 833743 SR8 gge=
§ Em 2 ZoE S Code recognize [N
= g g:l" a 5 10 15 20 25 30
(P} [
G L Mumber of Papers
=]
Techniques

Techniques Used for the Integration of Programming Languages Major Challenges of Multi-language Systems

18

Thesis Overview

Investigate the usage of
multi-language systems

A technical
_— survey

(CASCON* & JSS)

* Accepted papers

19

Pilot 2 — Technical Survey

Study Design

j /
>
=5y /.|

Survey Participants collection

| |
}
Survey Administration

|

Data Analysis

133 participants (47.5%)

JParticipate!

o

20

Developers’ Perspectives on Multi-language Systems

Increasing popularity

Perceived benefits:
» Ease implementation of the initial code
»Reuse of code
» Benefits from each programming language
» Increase developers' motivation

“Good practices and tools for multiple language may help developers keep

) their code clean and maintainable” (rarticipant)
Perceived Challenges:

» Complex maintenance

» Diverse competences requirements
» Complex dependencies

» Lack of dedicated support

Current Solution:

» Mono-language patterns and solutions for multi-language systems

21

Implications from the Pilot Studies

NLOVL | stmas 5
REPRESENTATIoN L3 A p A NG
MNAI\CE e PG
NFol Rb’ ATloN

\IALIDATIoN

T Q@NTROL VVVVVV PRoVIDE
* SEcH

((((((ot et g CoST X

Information scattered Concrete relevance

Evaluation of impact

PERGEPTION

Developers’ perception

22

Thesis Overview

* Accepted papers

Define and catalog
design smells for
multi-language
systems

A catalog of
multi-language
design smells

(Europlop & Tplop)*

23

Multi-language Design Smells

* Multi-language design smells are defined as poor design and coding decisions when
bridging between different programming languages

* Design smells include anti-patterns and code smells

* They represent violations of best practices related to the combination of programming
languages that often indicate the presence of bigger problems

24

Study Design

Data Collection

Developer

Documentation

Literature Documentation Bug reports Source code

| |
I

Practices Collection

l

Coding Practices

T N B N B N N B B § B N B _§N § N N B B §B B _§N |
U
L------------

Validation Process

Validation Process

4
' I

Inclusion Criteria Exclusion Criteria

I

Documentation Process

Design Smells

25

Examples of Collection of Practices

Error handling

Using native methods in Java programs breaks the Java security modelin s
ways. Because Java programs run in a controlled runtime system (the JVM]
the Java platform decided to help the programmer by checking common ru
array indices, out-of-bounds errors, and null pointer errors. C and C++, on't
no such runtime error checking, so native method programmers must hand
conditions that would otherwise be caught in the JVM at runtime.

o

N I B B B B B B B B B B S B B S S N S S e -

I For example, it is common and correct practice in Java progran I— ——

Bad Practices

-
-
-

12. Performance pitfalls

|
: i
1 Not caching method IDs, field IDs, and Classes I Good Practices

- l
———_——
-

To access Java objects’ fields and invoke their r methods native code must make calls to FlndC,iass() GetFieldID(), GetMethodId(), and

GetStat:LcMethodID(

Ihe-le—re‘turned for a given class don’t change for the lifetime of the Jy’M process. But the call to get the field require

_mgnrﬁtanfwork in the JVM. Because the IDs are the same for a given class, you should Iooblthem up once and then reuse them.

| throwing an exception. C has no exceptions, so instead you mu I General UDS

I functions of INI.

'|Try 1o minimize the footprint of your JNI layer. There are several dimensions to consider here. Your JNI solution should
I try to follow these guidelines (listed below by order of importance, beginning with the most important):

INT’s exception handling funCtich = 7 = = m == == v == = == o = o o o o o e o o o o o o o o o e o e e

* Minimize marshalling of resources across the JNI layer. Marshalling across the JNI layer has non-trivial costs. Try

There are two ways to throw an exception in the native code: yt
or the ThrowNew() function. Befare calling Throw(), you first n
Throwable. By calling Throwhew() you can skip this step becal
object for you. In the example code snippet below, we throw ar

to design an interface that minimizes the amount of data you need to marshall and the frequency with which you
must marshall data.

* Avoid asynchronous communication between code written in a managed programming language and code written
in C++ when possible. This will keep your JNI interface easier to maintain. You can typically simplify asynchronous

functions:

Ul updates by keeping the async update in the same language as the Ul. For example, instead of invoking a C++
function from the Ul thread in the Java code via JNI, it's better to do a callback between two threads in the Java

:Lé /% freate_the Thrm\'?bi;uzg;ct. = e programming language, with one of them making a blocking C++ call and then notifying the Ul thread when the

. Jclass cls = (®env) - in ass{env, "javafio/ xceptia

3. jmethodID mid = (*env)->GetMethodID(env, cls, "<init>", blOCking call is COleete.

4. jthrowable e = (=xenv)->NewObject(env, cls, mid);

> e T = Minimize the number of threads that need to touch or be touched by JNI. If you do need to utilize thread pools in

;. (*env) ->Throw(env, e); both the Java and C++ languages, try to keep JNI communication between the pool owners rather than between

9. individual worker threads.

18. f* Here we do it all in one step and provide a messagex
11. (*env)->ThrowNewi(env,

1. T - e e e Al B] » Keep your interface code in a low number of easily identified C++ and Java source locations to facilitate future
refactors. Consider using a JNI auto-generation library as appropriate. -

13. "An IOException occurred!");

Study Design

Literature

I
: I I I
Data Collection I Validation Process I
[I
[[
I Validation Process I
Do?lfr;ﬂﬁt')a:{on I I
I ¥ I
I : | i
) -I—>
Documentation Bug reports Source code I Inclusion Criteria Exclusion Criteria :
| | : | |
l I l I
. : I :
Practices Collection I Documentation Process :
[[
l ')
[[
Coding Practices [I
0 Design Smells :
L
27 -
B

A Catalog of Multi-language Design Smells

[a—

Not Handling Exceptions

* A catalog of 15 types of Multi-language Design Smells Not Securing Libraries

Local Reference Abuse

Memory Management Mismatch

» Excessive Objects

‘ ‘ Too Much Clustering
<

Rounds of shepherding Writers’ Workshop Refine Design Smells
Process

Unused Method Implementation

Unused Parameters

O o0 9 N B~ W

Assuming Safe Return Values

—
(e)

Not Using Relative Path

p—
p—

Hard Coding Libraries

—_
\S)

Not Caching Objects

—
(8]

Too Much Scattering

—
~

Excessive Inter-language Communication

Unused Method Declaration

—
(9]

28

Too Much Scattering

ActiveSession Aclid
Eic... JavaClass Etc... x JavaClass
R BRECLL L - Etc... i —— - Etc...
I | +native getName{long) |} 1 * native getUser(!
I | String i Efc... : {) :Adiid ! Efc...
1
1 native setUser 1 1 . 1
1 } 1 1 | +native getOuterUser() |
| _|{fclid boclen):boalean || 1| Aclld :
Ete...
: + native fromMName() : L
Session | :Aclld 1o
Etc Etc.
i e
i + native getName{long) :String :
1 | + native setlser _:_
! | (Aclid boolean):boolean !
cpp
Relation CollectionChangeSet Schemalnfo
Ete... Ete... H Ete...
[--—-—-——========35 =51 . Pooo— oo oo =
1| + native getSchema(long) | : + native FinalizerPtr() {1 + native FinalizerPtr() 1
! Sitrin ! 1 1
: g :: + native getSchemal(long) : + native :
1| -gri ; g
i + native getName(long) i[;S_lrln_g ____________ ! modifyTuple(long) -Tuple 1
:String Etc + native I
1 1
i i GetObjectSchemalnfo{long) |
1| + native modifyTuple(long) | | ‘long i
: Tuple : ----------------- -
------------------ — “pp

Fareign Implementation

Memory Management Mismatch

AccessNative Java-AccessNative_sayHello

+ msg: String

+results: String

Etc... i const char *inCStr = (*env)-> i
e ——) | GetStringUTFChars(env,]
I | + native sayHello(string) i i inJNIStr, NULL); !
B = .
if [NULL == inC5tr) return NULL;
Etc.

Etc...

Foreign Implementation

Thesis Overview

* Accepted papers

Define and catalog
design smells for
multi-language
systems

A detection
- approach

(TOSEM)*

31

MLSInspect: A Detection Approach For Multi-language

FeeEEEEmm——————— f
I I
: 1- Parsing Source Code :
I I
I I
I I
I I
I I
I I
I I
| </> ‘ SrcML |
I I
I I
I I
I I
I I
I "
[Unified SrcML representation I
[S ———————— ™ |

Design Smells

2- Detection Process

SrcML Representation ~ Detection Rules

I

<xpath>

Design Smells Occurrences

3- Results Generation

Summary
Detection Results

Detailed
Detection Results

32

Memory Management Mismatch

AccessNative Java-AccessNative_sayHello

+ msg: String

+results: String
Etc... i const char *inCStr = (*env)-> i
| GetStringUTFChars(env, i
I in)NIStr, NULL); H

+ native sayHello(string)
:String

if [NULL == inC5tr) return NULL;
Etc...

Etc...

Foreign Implementation

Parsing Source Code

JHTEXPORT jstring JNICALL Java AccessNative sayHello (JNIEnv *env, jobject thisObj, jstring indNIStr)

[

I const char *inCStr = (%env)->GetStringUIFChars(env, indHIStr, HOLL) : 1

if (NULL — inCStr) return NULL:

printf{"In C, the receiwved string is: %3\n", inCS5tr);

char outCStxr[l23] !

printf{"Enter a String: ") ;
scanf("%s=", outCS5tr) ;!
return (*env) ->NewStringUIF (env, outl3tr) \

<functionr<typer<name>JNIEXPORT< /nams> <name>jstring</name> <name>JNICALL</ mams></type> {name}Java_ﬁﬂcessHative_gayHel1o{fnamebiparameter_list}
{<paramseter><declr<types<name>JHIEnv< /nams> <modifier>%</modifiers</types<namerenv</name></decl></parameter>, <parameter><decl><type>
<name>jobiects /mames</type> <name>thisObi</mames></decl></parameters>, <parameters<declsz<typer<namesistring</names></tyvpe> <nams>indNIStr</names>
<fdecl»</parameter>)</parameter list> <block>{ <decl stmtr<decl>r<type><specifier>const</specifier> <name>char</name> <modifier>*</modifierz</type>
<pamerinCStro/name> <init>s <exprrocall><names<operator> (</OpSIator><operator>*</operator><name enys/name><operator>)</operator <operator>-sgL;</OpSIator:
|{name}GetstringUTFChars{fnamebifnamebﬁargament_list}{iargament}{Expr}{name}env{fnamebﬁfexpr}{fargament}, Cargumentr<eXprr<namserindNIsStr</nams></expr> 1
L/ ETGUNENT S, CAIGOMSALSCeRprocnane ~NULLZ7RERE S/ SRpr </ SrguNent) =7 3T gans N B T N B T e e s N e L B e [T - e !
<ifxif <conditions(<exprr<name>NULL</mame> <operatorr=—</operators> <name>inCStr</names></expr>)</condition><then> <block tvpe="psendo"><return>retnrn <expr:>
sname>NULL< /fname></expr> </ /return></block></then></if> {expr_stmt}{exprbicall}{name}printf{fname}{argament_list}{{argament}{exprbﬁliteral type="string">
"In C, the received string is: %s\n"</literal»</expr></argument>, <argumentr<exprr<name>inCStr</name></exprr</argument>)</argument list></call></expr>;
</expr stmt> <decl stmtr<declr<typer<name>char</name></typer <name>r<namerontCStr</namer<index>[<expr><literal type="nomber">128</literal></expr>]</index:
{fnamebﬁfdecl};{fdecl_stmtbiexpr_stmt}{Expr}{call}ﬁnamebprintf{fnamebiargament_list}{{argamentbiexpr}{literal type="string">"Enter a String: "</literalz</expr>
{Hargament}}{Hargament_list}{fcall}{fexpr};{fExpr_stmt}{Expr_stmtbiexpr}{call}{name}scanf{fnamebﬁargument_list}{{argamenthiexpr}{literal type="string">"%s"
<fliteral></expr></argument>, <argument><exprr<name>ontCStr</names</expr></argument>)</argument listk</call></expr>;</expr stmt><return:return <exprr<call>:
Cnamer<operator: (</operator><operators> </ operator ><name>env< / name><0perators>) </ operator»><operator>—&0t «::fu:upeIatu:uI:>{:narr.e:>HewStringUTF{:;’nan‘.e}{;"narf.e:w:arg'm.ent_list I
(<argumentr<exprr<name>env</name></exprr</argument>, <argument><exprr<namerontCStr</name></exprr</argument>)</argument list></callx</exprs;</return:

}</block></function: -
<funit> 34 l

MLSInspect: A Detection Approach For Multi-language
Design Smells

r ---------------- I
I I
1- Parsing Source Code : 2- Detection Process : 3- Results Generation

[1
I I
I [Al
I RULES ! —
[i I = Q
I SrcML Representation ~ Detection Rules I

<> I I Summary Detailed

‘ SrcML | ¥ | Detection Results Detection Results
: <xpath> :
I I
I I
I I
1 I
Unified SrcML representation I Design Smells Occurrences |

35

Detection Process

(mem & f1(y) | f1 € {GetStringChars, GetStringUTFChars,...})

genericCallQuery = "descendant::call[name/name="'%s']"

AND (2 f2(mem) | f2 € {ReleaseGetStringChars, ReleaseGetStringUTFChars,...})

<functionr<types<name>JNIEXPORT</nams> <name>jstring</name> <name>JNICALL</names></typel <name>Java AccessNative sayEello{fﬁaHE>{paraneter list>
(sparameterz<declz<types<name=JNIEnv</nams> {Hudlfler>*{fﬂud1f1er>{Itype>{1ame>env¢f1ane>{fdeclx{fparaneter;, Tparameterr<declz<type>
<name>jobject</name></type> <name>thisObj</name></decls</parameter>, <parameter><declr<typer<name=jstring</name></type> <name>indNIStr</name>
{fdecl}quarameter}}{fparameter_list} <block>{ {dec1_5tmt}{decl}{type}{specifier}cunst{fspecifier} cname=chars/name> <modifierzv</modifiers</cypes
Sname>inCStre/name> <init>= <expro<call><name><operator>(</operator><operator>*</operator><namerenve/name><operator>)</operator><operator>-></operator>
</argument>, <argument><expr><name>NULL</name></expr></argument>)</argument list></call></expr></init></decl>;</decl stmt:)
<if>if <condition> (<exprr<name>NULL</name> <operator»=—</operator>

<name>NULL< /name></exprs> </ /return></block></then></if> <expr stmtr<exprr<call><name>printf</name><argument list:

»{<argument><exprr<literal type="string">
"In C, the received string is: %$s\n"</literal></expr></argument’, <argument><expr><name>inCStr</name></expr></arqument>)</argument list></call></exprs>;

</expr stmt> <decl stmtr<decl><typer<name>char</name></type> <name><namerontCstr</namer<index>[<exprr<literal tvpe="number":>128</literal=</expr>]</index:

{fnameb{fdecl};{fdecl_stmt}{expr_stmt}{exprb{call}{name}printf{fname}{argament_list}:{argament}{exprbiliteral type="string">"Enter a String:
</argument>)</argument list></call></expr:

<fliterals</enprs</arguments,

:{fExpI_stmt}{ExpI_stmt}{Expr}{call}{namehscanf{fnamebiargament_list}t{argamentbiexprhﬁliteral type="string">"%s"

cname><operators (< operators<operators%</operators<namerenv</names<operator:) </operators<operators-igt:</operators<nans>NewStringUTF: /name></name><argument

(Cargument><eXpr><nName>env</names><,/expr></argumsnts, {argament}{expr}{namehcutEStr{fname}{fexpr}{fargument}}{fargament_list}{fcall}{fexpr}:{fretarn}
}</blocks></functions

<funits

<name>inCStr</name></expr>)</condition><then> <block type="psendo"><return>return <expr>

Cargument><eNprr<namerontCstrs/names</exprs</argument>) < argument list></calls</exprs>!</expr stmtr<returnsreturn <exprr<calls>

"ofliterals</exprs

_li=zt:

-
36 II

MLSInspect: A Detection Approach For Multi-language

1- Parsing Source Code

<>

€

SrcML

Unified SrcML representation

Design Smells

r ---------------- I

I I

2- Detection Process : 3- Results Generation :
I I

I I

0 N 0

RULES I — I

i I -— Q I

SrcML Representation ~ Detection Rules [0
I Summary Detailed I

v 0 Detection Results Detection Results [
<xpath> : :

I I

I I

[[

i I

Design Smells Occurrences|l I

[S ———————— ™ |

37

Results Generation

The XML of the project was created.

AssumingSafeMultilanguageReturnValues: 12

MemoryManagementMismatch: 11
MNotHandlingExceptions: 7
LocalReferenceshbuse: @
NotCachingObjectsElements: 2
UnusedDeclaration: 16
UnusedImplementation: @
PassingExcessiveObjects: @
NotUsingRelativePath: 1
HardCodinglibraries: 2
UnusedParameters: 74
NotSecuringlibraries: 9

ExcessiveInterlLanguageCommunication: 81

TooMuchClustering: 21
TooMuchScattering: 33

File System
1 EnvQOptions.java rocksdb
2 WriteBatchWithIndex.java rocksdb

3 RocksDB.java rocksdb
4 SstFileWriter.java rocksdb
5 Options.java rocksdb
6 MativelibraryLoader.java rocksdb
7 internal_stats.cc rocksdb

8 db_compaction_filter_test. rocksdb

9 document_db.cc rocksdb
10 transaction_impl.cc rocksdb
11 full_filter_block.cc rocksdb
12 StatsCallbackMock.java rocksdb

Version Package
rocksdb-5 org.rocksdb
rocksdb-5 org.rocksdb
rocksdb-5 org.rocksdb
rocksdb-5 org.rocksdb
rocksdb-5 org.rocksdb
racksdb-5 org.rocksdb
rocksdb-5 rocksdb
rocksdb-5 rocksdb
rocksdb-5 rocksdb
rocksdb-5 rocksdb
rocksdb-5 rocksdb
rocksdb-5 org.rocksdb

Release Class
8/12/2017 EnvOptior
8/12/2017 WriteBatc
8/12/2017 RocksDB
8/12/2017 SstFileWri
8/12/2017 Options
8/12/2017 NativelLibi
8/12/2017

8/12/2017 KeepFilte
8/12/2017 Document
8/12/2017 Handler
8/12/2017

8/12/2017 StatsCallb

6

oo o 0 o0 0 0 O &M

Cs1
Ccs2
C53
Cs4
CS5
CS6
Cs7
Cs8
C59
C510
Cs11
Cs12
Cs513
C514
CS15
CS516
Cs517
C518
Cs19

1

D000 000 e

MName
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration
UnusedDeclaration

Variable Method

setUseQsBuffer

Class Package

EnvOptions org.rocksdb

getFromBatchAnd[WriteBatchWithinde org.rocksdb

getFromBatch
iteratorCF
multiGet
newsstFileWriter
getProperty0d
compactRange0
useOsBuffer
keyMayExist
deleteRange
openROnly
compactRange

setComparatorHan Options

getlongProperty
singleDelete

MotUsingRel rocksdbjn loadLibrary
HardCodingL sharedLib loadLibrary
HardCodinglL jniLibraryl loadLibrary

0 2

[N o R o N o Y o [o Y o o o R s |
[o R o R o N o B s R o R s

0 0

[=Jl = =R = = = = === =
LR S i B == I =T = =]

WriteBatchwithinde org.rocksdb

RocksDB org.rocksdb

RocksDB org.rocksdb
SstFileWriter org.rocksdb
RocksDB org.rocksdb
RocksDB org.rocksdb
EnvOptions org.rocksdb
RocksDB org.rocksdb

WriteBatchWithinde org.rocksdb
RocksDB org.rocksdb
RocksDB org.rocksdb
org.rocksdb

RocksDB org.rocksdb
RocksDB org.rocksdb
RocksDB org.rocksdb

MativelibraryLoader org.rocksdb
MativelibraryLoader org.rocksdb

0 0 0

=== e R e e = R = N == = =}
=== e R e e = R = N == = =}
=== e R e e = R = N == = =}

File File Name System
rocksdb-5.6.2/java/sr EnvOptions.jz raocksdb
rocksdb-5.6.2/java/sr WriteBatchWirocksdb
rocksdb-5.6.2/java/sr WriteBatchwiracksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr SstFileWriter. racksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr EnvOptions.jz rocksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr WriteBatchWi racksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr Options.java rocksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr RocksDB.java rocksdb
rocksdb-5.6.2/java/sr NativeLibrary rocksdb
rocksdb-5.6.2/java/sr NativeLibrary rocksdb

0 0 0 0 0
0 0 0 0 0
o 3] 2 0
o o]] 0
o o]] 0
o 4 2 o 0
o o o o 0
o o o o 0
o o o o 0
o o o o 0
o o o o 0
o o o o 0

Version
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017
rocksdb-5 8/12/2017

Release

Excessivel Too much Too much UnusedM:i UnusedM UnusedPa Assuming Excessivel NotHandli NotCachir MotSecuri HardCodir NotUsingf MemorylV LocalRefe FilePath

0 rocksdb-5.6.2/ja
0 rocksdb-5.6.2/ja
0 rocksdb-5.6.2/ja
0 rocksdb-5.6.2/ja
0 rocksdb-5.6.2/ja
0 rocksdb-5.6.2/]ja
0 rocksdb-5.6.2/d!
0 rocksdb-5.6.2/d!
0 rocksdb-5.6.2/ui
0 rocksdb-5.6.2/ui
0 rocksdb-5.6.2/ta
0 rocksdb-5.6.2/ja

38

MLSInspect Evaluation

i

MLS Inspect

Evaluated on 6 open source projects

C

filan

» Java

Openj9 93%
Rocksdb 87%
Conscrypt 80%

PlJava 90%
JNA 74%
JMonkey 92%

96%
95%
95%
99%
88%
94%

(H1) Design Smells Exist in Multi-language Systems

O© o0 9 N W B~ W=

o N = T S S S S =
wmw A WD = O

Catalog of Multi-language

Design smells

Not Handling Exceptions

Not Securing Libraries

Local Reference Abuse

Memory Management Mismatch
Excessive Objects

Too Much Clustering

Unused Method Implementation
Unused Parameters

Assuming Safe Return Values
Not Using Relative Path

Hard Coding Libraries

Not Caching Objects

Too Much Scattering

Excessive Inter-language Communication

Unused Method Declaration

/H1

Detection Approach

5

MLS Inspect

Evaluated on 6 open source projects

Thesis Overview

* Accepted papers

Study the prevalence
of multi-language

L

design smells

An empirical
study — open
source projects
(TOSEM)*

41

Prevalence of Multi-language Design Smells

Study Design

—
1=} Multi-language Design Smells Detection
T s \
O 9 Systems O —
= > —] {6;}, — — —— Data Analysis
B S
GitHub RL0 Clone Projects MLS Inspect Detection Results
|\
e N —
N \\ RN.0
98 Releases

42

Do Multi-language Design Smells Occur Frequently in Open

Conscrypt
Realm
Java-smt
Zstd-jni1
Rocksdb
Javacpp
JPype

PlJava
VLC-android

Source Projects?

1.0.0.RC2-2.3.0

0.90.0-5.15.0

1.0.1-3.0.0

0.4.4 - latest release

5.0.2 - latest release

09-1.5.1-1

0.5.4.5 - latest release
REL1 5 STABLE - latest release
3.0.0 — latest release

30.21%
11.67%
36.21%
61.36%
36.30%
58.97%
10.18%
30.13%
30.49%

Do Multi-language Design Smells Occur Frequently in
Open Source Projects?

—8— Conscrypt —a— Zstd —i— Javacpp —&— Pllava

r = -
Realm = Rocksdb JPype VLC-android
—d&— |ava-smt
70

— - = -

l\h

* Multi-language design smells are prevalent in open
source projects

a0

* Multi-language design smells persist and even increase
over the releases

=

Percentage (%) of Files with Multi-language Design Smells
S

1 2 3 4 5 6 7] o
Releases

Evolution of Design Smells in the Releases of the Studied Systems

44

Are Some Specific Multi-language Design Smells more

Frequent than Others in Open Source Projects?

Conscrypt 79.60%

Realm 67.68%
Java-smt 0%
Zstd 10.46%
Rocksdb 44.55%
Javacpp 2.53%
JPype 89.24%
PlJava 64.45%

VLC-android 63.67%

Acronyms: Up: UnusedParameters, UM: UnusedMethodDeclaration, TMS: ToomuchScattering, TMC: Toomuchclustring, UMI: UnusedMethodImplementation, ASR:

4.40%
3.066%
0%
0.95%
5.48%
31.70%
0%
35.62%
25.71%

0%
9.75%
0%
13.98%
34.48%
74.19%
0%
31.02%
24.74%

1.90%
14.86%
0%
12.36%
23.47%
19.49%
0%
8.42%
17.10%

0%
2.32%
0%
3.47%
0%
0%
0%
2.04%
7.34%

3.99% 0%
4.33% 0%

0% 0%
17.98% 0%
0.67% 0%

0% 0%
1.78% 0%
0% 0%

3.67% 0.82%

1.90%
12.58%
0%
23.55%
14.35%
69.14%
0.35%
4.36%

13.29%

3.99%
5.15%
0%
21.45%
0.67%
0%
1.78%
2.04%

3.67%

0%
0%
0%
0%

0.91%
0%
0%
0%
0%

5.71%
2.17%
94.06%
5.74%
2.85%
6.48%
0%

0%
3.92%

0%
0%
2.96%
3.47%
0.95%
2.51%
0%
0%
0%

3.80%
0%
2.96%
0%
0.95%
0%
0%
0%
6.01%

3.78%
0%
0%

2.25%

0.79%
0%

8.25%

2.04%

0%

3.78
0.79
0%
0%
0.10%
0%
1.07
0%
3.67%

AssumingSafeReturnValue, EO: ExcessiveObijects, EILC: excessivelnterlangCommunication, NHE: NotHandlingExceptions, NCO: NotCachingObjects NSL: NotSecuringLibraries, HCD:

HardCodingLibraries, NURP: NotUsingRelativePath, MMM: MemoryManagementMismatch, LRA: LocalReferencesAbuse

Number of Files with Multi-language Design Smells

ao4

&0

4014

204

Evolution of Multi-Language Design Smells Over the Releases

SSRRARARYSL

NEURusedParamater
WBEUnusedMethodDeclaration
WBToomuchScatbering
MNEToomuchclustring
MBAssumingSafeReturnivalue
NBexcessivelnterlangCommunication
NBMotHandlingExceptions
NBMNotSecuringLibraries
NBEHardCodingLibraries
NENotUsingRelativePath
NEMemoryManagemeantMismatch
NBLocalReferencesibuse

n u » »
¥ r
_ _ -_,..--""ﬂ \\
L
1 3 3 4 5 1 r B 4

Releases

Rocksdb

Mumber of Files with Multi-language Design Smells

== NBUnusedParameter ~#— MBexcessivelnterlangCommunication

164 . " g
=¥— NBEUnusedMethodDeclaration == NBNotSecuringLlibraries
=d— NEToomuchScattering —d— NBHardCodingLibraries
== MNETOOMUCH |l..|5|.'|'||‘|g
144
124
104 i L
5
. Iz ¥
51
41 o * ¥ B ‘//: + =
% . + + 4 + .|
4
L L = o] L = i a
09 L i & & e = =
1 2 3 1 5 & 7 a o 10
Releases

JavaCpp
46

(H2) Multi-language Design Smells are Prevalent

v/ H2

A Some Multi-language smells are more A While others are less prevalent:
prevalent than the others: - Excessive Objects
- Unused Parameters - Not Caching Objects
- Too Much Scattering
- Not Securing Library

- Excessive Inter-language Communication
- Unused Method Declaration

Most of those smells remain and mostly increase from one release to another

Thesis Overview

Study the impacts of
multi-language design
smells on software
quality

An empirical
|| study — open

source projects
(TOSEM*&TOSEM)

* Accepted papers

Impacts of Multi-language Design Smells on Software
Quality

Study Design

GitHub

\ 4

-
L
=

9 Systems T

R1.0

Mining Software Repositories

(- -
I N —_— .
N \'\ B —
< RNO 0 =—
|
98 Releases << Git Logs
7 "t
4 Clone Projects
=
— B = ¢O
=
8 Systems
MLS Inspect
l\Rl.U
N
N2 N
“ RN.O
270 Snapshots

v

2
L}
v
v
v

Bug-fixing Commits

PyDriller

Bug-inducing Commits

Multi-language Design Smells Detection

Detection Results

Data Mapping

Data
Analysis

=t Fisher’s
Exact Test

Logistic
Regression

Survival
Analysis

49

Are Files with Multi-language Design Smells more Fault-

prone than Files without?

Method: Fisher’s Exact Test

VAN Findings: Files with
occurrences of design smells
can often lead to bugs more
than files without these smells

rocksdb-5.0.2

rocksdb-5.6.2
pljava-1_5 0b3
pljava-1_5 1b2
pljava-1_5 2
realm-java-0.90.0

realm-java-1.2.0
realm-java-2.3.2

realm-java-3.7.2
zstd-jni-1.3.4-1
zstd-jni-latest
release
conscrypt-1.0.0.RC2

82

90

32
39
38
21

20
33

43
20

22
23

85

80

33
36
34
89

169
177

165

20

17

24

14
14
15

oo o0 (S I \O 2R \O)

108
107

83

76
78
365

285

269

271
12

12
90

6.13

5.01

575
5.88
5.81

43.06

16.86
16.72

8.82
30

TRl
17.25

<0.01

<0.01

<0.01
<0.01
<0.01
<0.01

<0.01
<0.01

<0.01
<0.01

<0.01
<0.01

(1.2184, 2.4076)

(1.0771, 2.1480)

(1.0026, 2.4954)
(1.0436, 2.4998)
(1.0392, 2.4806)
(2.2938, 5.2315)

(1.3592, 4.2912)
(1.6194, 4.0135)

1.3988, 2.9570)
(1.2025, 5.5998

(1.4198, 5.8403)
(1.8270, 3.8686)

Are Some Specific Multi-language Design Smells more

Method: Logistic Regression

A Findings: Some smells are more r
bugs than others:
- Unused Parameters
- Too Much Clustering
- Too Much Scattering
- Hard Coding Libraries
- Memory Management Mismatch

Fault-prone than Others?

Excessive Inter-language Communication
Too Much Clustering

Too Much Scattering

Unused Method Declaration
elated to

Unused Method Implementation

Unused Parameters
Not Handling Exceptions

Not Securing Libraries

Hard Coding Libraries

Memory Management Mismatch
Local References Abuse
Excessive Objects

Not Caching Objects

LO>0
25%(2/8)

62.5%(5/8)

100%(6/6)
37.5%(3/8)
25%(1/4)
66.6%(6/9)
42.8%(3/7)
28.5%(2/7)
75%(3/4)
50%(2/4)
0%(0/5)
NA

NA

LOinTop 5
2
5
6

NA
NA

(LO>0 and p<0.01)
0
4
3

NA
NA

LO = Log Odds (regression coefficient estimate) of the corresponding smell from the logistic regression model.
NA = Corresponding Log odds are not available from the LR models due to singularities

Method: Survival Analysis

1.000 4
0575 1
0,950
z
5 0,925
a
- 0.900 1
£ nE75
W
0.B50 4

0.B25 4

1.000 4

0,975 1

¥
=1
o]
wn
o

rvival Probakbiilit

Su

0850 4

0.B25 4

Is the Risk of Bugs Higher in Files With Multi-Language

Smells in Comparison With Those Without Smells?

AN

=

™\

N

— Smeily
Mon-smelly

]

20000

40006 GO0
Tirme {in Hours)

Conscrypt

T T
80000 10000

0.525 4

0.900 4

0.B75 4

— Smelly
Han-smelly

T
0

T T T L T LE r
25000 50000 75000 100000 125000 150000 175000

Tirne {in Hours)

INA

K irl B = amelly
]I\. Mion-smalhy
0.99 I.Il
-
E 0,98
2 nar
7 D.96 \L____
0,95
T v 4 T . T v .
@ 25000 50000 75000 100000 125000 150000 175000
Timea (in Hours)
Pllava
100049 = Smelly
- Il
0975 4 MNan-smelly
0.9504
0.025 4
0.900 4
0.B7S 4
0.B50 4
0.825 4 N ——
08004
o 10000 20000 30000 40000 50000 &DOOOC
tirmaline
Realm

Rocksdb
Frostwire
Realm
Conscrypt
Pljava
Javacpp
JNA

OpenDDS

1.64

3.123

2.747

2.598

1.805

2.237

5.033

0.229

6.162e-26

1.749e-52

7.487e-37

3.218e-23

6.425e-05

3.003e-08

9.526e-32

1.468e-09

1.258e-05

0.641

9.112e-05

0.0001

0.002

0.164

1.254e-14

0.992

CHM: Cox Hazard Model, PHA: Proportional Hazards Assumption
exp(coef): The exponentiated coefficients for the hazard ratios

Survival Frobability

(=3
=

o
=

2
&

=
5]

R

Is the Risk of Bugs Equal from One Multi-language Design
Smell Type to The Other?

S ey
Mor-sireelly

-.'Il .'-‘I,'.-\.'III:I'I A0 0000 0000 10Ca00

Time {im Howrs)

Conscrypt — Memory Management Mismatch

Siirvival Probabiliy

[=]

(=1
-1

=
o

a
o

=
-1

a
I

=1
i

1 I—L
g .
— Srmelly
Hon-smielly
a 2000 Slialia] L1l L] TOodoa

Tim {in Hoars)

Conscrypt — Not Handling Exceptions

Survival Probabibsy

=
[
[

=1
o
=

=
]
=

0,86 1

0.24 4

Sonely

Non-smelly

S

20000 Lideli] BOO00 100000

Tima {in Hasrs)

20000

Conscrypt — Unused Parameters

Sairvival Prababilitg

=]

=
=

(=]
£

L=
&

L=
o

=
1 1LL
g
Srnelly _H
Horn-smelly
a 2000 ADODO G000 B0ODO 100000

Tima (in Hours)

Conscrypt — Local Reference Abuse

53

Is the Risk of Bugs Equal from One Multi-language Design
Smell Type to The Other?

Unused Parameters 8 7 1 87.50% 12.50%

Unused Method Declaration 8 5 3 62.50% 37.50%

Method: Survival Analysis Too Much Scattering 6 3 3 500% 50.0%
Too Much Clustering 8 5 3 62.50% 37.50%

Unused Method Implementation 5 4 1 80.0% 20.0%

Assuming Safe Return Value 6 4 2 66.67% 33.33%

AFindings: Some smells lead faster to faults g,ccive objects 0 N/A N/A N/A N/A
than others: Excessive Interlanguage Communication 7 5 2 71.43% 28.57%

- Memory Management Mismatch Not Handling Exceptions 7 6 1 8571% 14.29%

- Hard Coding Libraries Not Caching Objects 0 N/A N/A N/A N/A

- Unused Parameters Not Securing Libraries 8 6 2 75.0% 25.0%

- Not Handling Exception Hard Coding Libraries 2 2 0 100.0% 0.0%

- Local Reference Abuse Not Using Relative Path 6 3 3 50.0% 50.0%

- Unused Implementation Memory Management Mismatch 5 5 0 100.0% 0.0%
Local References Abuse 6 5 1 - 83.33% 16.67%

SFB: %Systems where smelly files are more bug-prone than non-smelly files

NSFB: %Systems where files without (specific) smells are more bug-prone than smelly files
#System: No. of Systems where we have hazard ratios for the concerned smell (covariate)
* Colored percentage values indicate the top-6 bug-prone smell types

Thesis Overview

* Accepted papers

Study the impacts of
multi-language design
smells on software
quality

Categories of
- bugs
(TOSEM)

55

What are the Categories of Bugs that Exist in Multi-language
Smelly Files?

1- Mining Software Repositories 2. Topic Modeling 3. Manual Labelling
= =l MALLET .
O — EE > V: > @ — -_ mochine learming for longuoge tealkil . . .
GitHub - Y
Git Logs Bug-fixing Commits PyDriller Commit Messages

Categories of bugs:

* Programming errors
 Libraries and Features Support
* Memory

* Communication and Network
* Concurrency

* Plateform and Dependencies

Thesis Overview

* Accepted papers

Study the impacts of
multi-language design
smells on software

quality

Risky activities
(TOSEM)*

57

What are the Activities that are more Likely to Introduce Bugs
in Smelly Files?

1- Mining Software Repositories 2. Topic Modeling 3. Manual Labelling
. MALLET 4.’
o-B-E-& B8
GitHub M—

Git Logs Bug-fixing Commits PyDriller Bug-inducing Commits Commit Messages

Risky Activities:

» Data conversion

¢ Memory management

* Exception management

* Restructuring the code

* API usage

(H3) Multi-language Design Smells Present Negative
Impacts on the Software Quality

Relationship between Smells and /H 3

Survival Analysis

Bugs
/\ Some smells are more related to faults than A\ Some smells lead faster to faults than
others: others:
- Unused Parameters - Memory Management Mismatch
- Too Much Clustering - Hard Coding Libraries
- Too Much Scattering - Unused Parameters
- Hard Coding Libraries - Not Handling Exception

Local Reference Abuse
Unused Implementation

- Memory Management Mismatch

Thesis Overview

* Accepted papers

Capture developers’
perception about
multi-language
design smells

L A technical
survey

(MSR & EMSE)*

60

Developers’ Perception about Multi-language Design Smells

Study Design

Data Collection

<
R1.0
O _ I\ q e

o » ﬁ N—J
GitHub N \\. RNO Clone Projects

270 Snapshots of 8 systems

t ¥
|
0 m— —
o— —> :— O{é} —_— | =
Git Logs Comml.ts and Developers MLS Inspect Detection Results
Collection

!

Data Mappping

171 participants (23.2 %)

JParticipate!

Design Smells Relevance and Impacts

Surveys (Open and Closed) Participants collection

I

Survey Administration

l

Data Analysis

61

To What Extent Do Multi-language Design Smells Reflect

Developers’ Perception of Design Problems?

A° Most frequently identified design smells:

- Unused Method Implementation
- Unused Declaration

- Not Securing Libraries

- Memory Management Mismatch
- Not Caching Objects

A * Less frequently identified design smells:

- Hard Coding Libraries
- Excessive Objects
- Not Using Relative Path

Not Handling Exceptions

Not Securing Libraries

Local Reference Abuse

Memory Management Mismatch
Excessive Objects

Too Much Clustering

Unused Method Implementation
Unused Parameters

Assuming Safe Return Values
Not Using Relative Path

Hard Coding Libraries

Not Caching Objects

Too Much Scattering

Excessive Interlanguage Communication

Unused Method Declaration

74.95%

74.8%

38.6%
74.95%

75.95%
73.55%
49.65%
31.9%
34.8%
72%
66.75%

25.05%
17.5%
25.2%
18.1%
61.4%

25.05%

12.05%

24.05%

26.45%

50.35%
68.1%
65.2%

28%

33.25%

15.7%

62

What are the Design Smells that Developers Perceive as the
Most Harmful?

A\ - Most harmful design smells: Not Handling Exceptions 2261 12
Assuming Safe Return Value 2137 12
- Not Handling EXCGptiOI’l Local Reference Abuse 2063 11
- ASSllmiIlg Safe Return Values Memory Management Mismatch 2052 9
- LOC&I RCfCI'CIlCG Abuse Excessive Interlanguage Communication 2040 11
- Memory Management Mismatch Too Much Clustering 1876 10
- Excessive Inter-language Communication i SeauiE s 1358 7
- Too MUCh CllIStefing Too Much Scattering 1342 7
Excessive Objects 1211 6
Unused Method Implementation 964 5
A * Less harmful design smells: Not Caching Objects 812 6
Hard Coding Libraries 764 5
- Unused Parameters Not Using Relative Path 632 5
- Unused Method Declaration Unused Method Declaration 588 5
- Not Using Relative Path Unused Parameters 438 5
- Hard Coding Libraries

What are the Perceived Impacts of Multi-language Design
Smells on Software Quality?

Not Handling Exceptions = = = - 5 -
Not Securing Libraries = = = - = -
Local Reference Abuse - o - - s -
Memory Management Mismatch = = = o g -
Excessive Objects - - - - & -
Too Much Clustering = = = - = -
Unused Method Implementation = = = - = -
Unused Parameters - o - - B -
Assuming Safe Return Values = = - - L -
Not Using Relative Path NEU NEU - NEU s -
Hard Coding Libraries = = = - 2 -
Not Caching Objects = = = - 2 -
Too Much Scattering = = = - z -
Excessive Inter-language Communication - = = o x -

Unused Method Declaration - - - - g -

- : Negative impact NEU : Neutral Impact Most impacted

What are the Perceived Impacts of Multi-language Design
Smells on Software Quality?

* Main negatively impacted quality attributes:
- Understandability
- Reusability
- Expandability

. * Less negatively impacted quality attributes:

-~

- Learnability
- Modularity

Do Developers Plan to Refactor Multi-language Design

Smells?
Ve Design smells considered for refactoring: IS T e ——— 294 64.95% 5 65%
Not Securing Libraries 25.25 72.8% 1.95%
- Memory Management Mismatch Local Reference Abuse 29.65 60.35% 9.9%
- Too MllCh ClUStering Memory Management Mismatch 10.9 81.45% 7.65%
- ASSllming Safe Return Values Excessive Objects _ 31.4% 5.7%
- Not Securing Libraries Too Much Clustering 14.3 78.1% 7.6%
- Too Much Scattefing Unused Method Implementation 55.15 42% 2.85%
Unused Parameters 36.5 57.5% 5.95%
Assuming Safe Return Values 24.05 73.6% 2.35%
A° Design smells not considered for refactoring: e ey 35.9 14.75% 49 3%
Hard Coding Libraries 12.5 35.4% 52.1%
- Excessive Objects Not Caching Objects 39.6 52.1% 8.3%
- Unused Method Declaration Too Much Scattering 23.85 66.15% 9.95%
- UI’IU.S€d MethOd Implementation Excessive Interlanguage Communication 49.1 15.2% 35.65%
Unused Method Declaration 55.95 41.65% 2.4%

Developers’ Perception Versus Empirical Findings (Prevalence)

Empirical investigation Survey
* Most prevalent design smells: * Frequently identified design smells:
- Unused Parameters - Unused Parameters
- Too Much Scattering - Too Much Scattering
- Not Securing Libraries - Not Securing Libraries
- Excessive Inter-language Communication - Excessive Inter-language Communication
- Unused Method Declaration - Unused Method Declaration
- Not Caching Objects

* While others are less prevalent:
- Excessive Objects * Less frequently identified design smells:

- Not Caching Objects - Excessive Objects

Developers’ Perception Versus Empirical Findings (Impact)

Empirical investigation Developers’ Survey
Some smells lead faster to bugs than others: * Perceived as harmful design smells:
- Memory Management Mismatch - Memory Management Mismatch
- Not Handling Exception - Not Handling Exception
- Local Reference Abuse - Local Reference Abuse
- Unused Implementation - Unused Implementation
- Unused Parameters - Too Much Clustering
- Hard Coding Libraries - Too Much Scattering

Some smells are more related to bugs than others: « Perceived as less harmful design smells:

- Memory Management Mismatch . Unused Parameters

- Too Much Clustering . — .
- Hard Coding Lib
- Too Much Scattering ard Coding Librarics

- Unused Parameters
- Hard Coding Libraries

Recommendations for Researchers

Investigate design smells and design patterns for multi-language software development

Investigate why and how some specific types of smells are more frequent than others

Explore the causes and circumstances under which the studied smells may increase the risk of
bugs

Investigate the roots causes and recommend mitigation strategies related to the categories of
bugs

69

Recommendations for Practitioners

Developers should pay attention to the design smells studied in this thesis

Apply MLSInspect to detect occurrences of the studied design smells

Prioritize multi-language smells types for maintenance activities

They could also leverage our results to better prioritize their refactoring activities

70

What is Next?

* Expand our study to other combinations of programming languages

* Investigate and document design patterns for multi-language systems

* Consider refactoring strategies for multi-language design smells
* Study the co-occurrence of multi-language design smells with traditional smells
* Study the combination of programming languages in machine learning applications:

* Design smells and design patterns

* Categories of bugs and issues

71

Conclusion
Multi-language Design Smells

* Multi-language design smells are defined as poor design and coding decisions when
bridging between different programming languages

* Design smells include anti-patterns and code smells

* They represent violations of best practices related to the combination of programming
languages that often indicate the presence of bigger problems

(H2) Multi-language Design Smells are Prevalent

v H2

A ‘While others are less prevalent:
- Excessive Objects
- Not Caching Objects

A\ Some Multi-language smells are more
prevalent than the others:
- Unused Parameters
- Too Much Scattering
- Not Securing Library
- Excessive Inter-language Communication
- Unused Method Declaration

Most of those simells remain and mostly increase from one release to another

(H1) Design Smells Exist in Multi-language Systems

Catalog of Multi-language
Design smells

Not Handling Exceptions

Not Securing Libraries

Local Reference Abuse

Memory Management Mismatch
Excessive Objects

Too Much Clustering

Unused Method Implementation

Unused Parameters

- - R - N S e

Assuming Safe Return Values

o

Not Using Relative Path

—

Hard Coding Libraries

12 Not Caching Objects

13 Too Much Scattering

14 Excessive Inter-language Communication

15 Unused Method Declaration

v/ H1

Detection Approach

o

MLS Inspect

Evaluated on 6 open source projects

(H3) Multi-language Design Smells Present Negative
Impacts on the Software Quality

Relationship between Smells and

Bugs

A Some smells are more related to faults than

others:
- Unused Parameters
- Too Much Clustering
- Too Much Scattering
- Hard Coding Libraries
- Memory Management Mismatch

J/ H3

Survival Analysis

A Some smells lead faster to faults than
others:
- Memory Management Mismatch

Hard Coding Libraries

Unused Parameters

Not Handling Exception

Local Reference Abuse

Unused Implementation

72

	Multi-language Design Smells: Characteristics, Prevalence, and Impact��- Ph.D. Dissertation -
	What is a Multi-language System?
	Multi-language Systems
	Benefits of Multi-language Systems
	Limitations of Multi-language Systems
	Issues Related to Multi-language Systems
	Design Smells
	Literature
	Developers’ Blogs
	Developers’ Blogs
	Diapositive numéro 11
	Thesis Statement
	Objectives
	Thesis Overview
	Thesis Overview
	Pilot 1 - Systematic Literature Review
	Study Results
	Study Results
	Thesis Overview
	Pilot 2 – Technical Survey
	Developers’ Perspectives on Multi-language Systems
	Implications from the Pilot Studies
	Thesis Overview
	Multi-language Design Smells
	Study Design
	Examples of Collection of Practices
	Study Design
	A Catalog of Multi-language Design Smells
	Too Much Scattering
	Memory Management Mismatch
	Thesis Overview
	MLSInspect: A Detection Approach For Multi-language Design Smells
	Memory Management Mismatch
	Parsing Source Code
	MLSInspect: A Detection Approach For Multi-language Design Smells
	Detection Process
	MLSInspect: A Detection Approach For Multi-language Design Smells
	Results Generation
	MLSInspect Evaluation
	(H1) Design Smells Exist in Multi-language Systems
	Thesis Overview
	Prevalence of Multi-language Design Smells
	Do Multi-language Design Smells Occur Frequently in Open Source Projects?
	Do Multi-language Design Smells Occur Frequently in Open Source Projects?
	Are Some Specific Multi-language Design Smells more Frequent than Others in Open Source Projects?
	Evolution of Multi-Language Design Smells Over the Releases
	(H2) Multi-language Design Smells are Prevalent
	Thesis Overview
	Impacts of Multi-language Design Smells on Software Quality
	Are Files with Multi-language Design Smells more Fault-prone than Files without?
	Are Some Specific Multi-language Design Smells more Fault-prone than Others?
	Is the Risk of Bugs Higher in Files With Multi-Language Smells in Comparison With Those Without Smells?
	Is the Risk of Bugs Equal from One Multi-language Design Smell Type to The Other?
	Is the Risk of Bugs Equal from One Multi-language Design Smell Type to The Other?
	Thesis Overview
	Diapositive numéro 56
	Thesis Overview
	Diapositive numéro 58
	(H3) Multi-language Design Smells Present Negative Impacts on the Software Quality
	Thesis Overview
	Developers’ Perception about Multi-language Design Smells�
	To What Extent Do Multi-language Design Smells Reflect Developers’ Perception of Design Problems?
	What are the Design Smells that Developers Perceive as the Most Harmful?
	What are the Perceived Impacts of Multi-language Design Smells on Software Quality?
	What are the Perceived Impacts of Multi-language Design Smells on Software Quality?
	Do Developers Plan to Refactor Multi-language Design Smells?
	Developers’ Perception Versus Empirical Findings (Prevalence)�
	Developers’ Perception Versus Empirical Findings (Impact)�
	Recommendations for Researchers
	Recommendations for Practitioners
	What is Next?
	Conclusion

