
An Empirical Study of the Effect of File Editing Patterns on Software Quality

Feng Zhang1, Foutse Khomh2, Ying Zou2, and Ahmed E. Hassan1

1School of Computing, Queen’s University, Canada
{feng, ahmed}@cs.queensu.ca

2Department of Electrical and Computer Engineering, Queen’s University, Canada
{foutse.khomh, ying.zou}@queensu.ca

Abstract—While some developers like to work on multiple
code change requests, others might prefer to handle one change
request at a time. This juggling of change requests and the
large number of developers working in parallel often lead
to files being edited as part of different change requests by
one or several developers. Existing research has warned the
community about the potential negative impacts of some file
editing patterns on software quality. For example, when several
developers concurrently edit a file as part of different change
requests, they are likely to introduce bugs due to limited
awareness of other changes. However, very few studies have
provided quantitative evidence to support these claims. In
this paper, we identify four file editing patterns. We perform
an empirical study on three open source software systems to
investigate the individual and the combined impact of the four
patterns on software quality. We find that: (1) files that are
edited concurrently by many developers have on average 2.46
times more future bugs than files that are not concurrently
edited; (2) files edited in parallel with other files by the same
developer have on average 1.67 times more future bugs than
files individually edited; (3) files edited over an extended period
(i.e., above the third quartile) of time have 2.28 times more
future bugs than other files; and (4) files edited with long
interruptions (i.e., above the third quartile) have 2.1 times
more future bugs than other files. When more than one editing
patterns are followed by one or many developers during the
editing of a file, we observe that the number of future bugs
in the file can be as high as 1.6 times the average number of
future bugs in files edited following a single editing pattern.
These results can be used by software development teams to
warn developers about risky file editing patterns.

Keywords-file editing pattern; change request; bug; software
quality; empirical software engineering; mylyn.

I. INTRODUCTION

Bugs are generally introduced inadvertently by developers
when performing source code change requests. It is esti-
mated that 80% of software development costs are spent
on correcting bugs [1]. To implement a change request,
a developer must change one or many files. File changes
are done through editing each involved file one or several
times. As developers work concurrently on several changes
in parallel, several file editing patterns emerge. For example,
a developer might edit multiple files simultaneously. Another
developer might prefer to edit files one by one. Some
others may follow both editing patterns. Developers often
follow the editing pattern that best suits their personal
skills, schedule constraints, and programming experience.

However, we conjecture that some file editing patterns are
likely riskier than others, and that it is important to raise the
awareness of development teams about the editing patterns
followed by developers.

Despite the large body of work on awareness tools for
software development [2], [3], [4], there are very few studies
that empirically investigated the risks posed by a lack of de-
velopers’ awareness about file editing patterns of fellow team
members. The relationship between file editing patterns and
bugs has yet to be studied in details. To perform such a study,
one needs detailed information about file editing activities
occurring in developers’ workspaces. A tool such as Mylyn
[5] which records and monitors developer’s programming
activities, like the selection and the editing of files, provides
the opportunity for such a study.

In this paper, we analyze developers’ integrated develop-
ment environment (IDE) interaction logs (i.e., logs record-
ing developers’ selection and editing of files) from three
open source software systems, Mylyn1, Eclipse Platform2

and Eclipse Plug-in Development Environment (PDE)3. We
identify four file editing patterns and analyze the relations
between these patterns and the occurrences of bugs. We
briefly summarize our findings:

• Concurrent editing: several developers edit the same
file concurrently.
On average, files that are edited concurrently by many
developers have 2.46 times more future bugs than files
that are not involved in any concurrent editing.

• Parallel editing: multiple files are edited in parallel by
the same developer.
On average, files edited in parallel with other files by
the same developer are 1.67 times more buggier in the
future than files edited individually.

• Extended editing: developers spend longer time edit-
ing a file, e.g., duration of editing periods above the
third quartile of the editing times of all files.
On average, files edited over a period of time greater
than the third quartile have 2.28 times more future bugs
than other files.

1http://www.eclipse.org/mylyn/
2http://www.eclipse.org/platform/
3http://www.eclipse.org/pde/

• Interrupted editing: developers observe long idle
times during the editing of a file, e.g., duration of idle
periods above the third quartile of all the idle periods
observed by developers.
On average, files edited with interruption time greater
than the third quartile have 2.1 times more future bugs
than other files.

When more than one editing patterns are followed by one
or many developers during the editing of a file, the risk of
future bugs in the file increases further.
• Interactions between the patterns: the likelihood of

future bugs in a file edited following more than one
editing pattern is higher than the likelihood of future
bugs in a file edited following a single editing pattern.
The number of future bugs in a file edited by developers
following more than one editing patterns can be as high
as 1.6 times the average number of future bugs in files
edited following a single editing pattern.

The reminder of this paper is structured as follows. We
describe the four studied file editing patterns in Section II.
Section III provides some background on the task and ap-
plication lifecycle management framework Mylyn. Section
IV introduces the setup of our case study and describes
our analysis approach. Section V presents the results of our
study. Section VI discusses threats to the validity of our
study. Section VII relates our study with previous work.
Finally, Section VIII summarizes our findings and outlines
some avenues for future work.

II. FILE EDITING PATTERNS

This section introduces the four file editing patterns of
our study.

A. Concurrent Editing Pattern

During the development and maintenance activities, de-
velopers are sometimes assigned inter-dependant change
requests. This situation results in some files being edited
concurrently by different developers at the same time. We
refer to this phenomenon as the concurrent editing pattern.
An example of file edited following the concurrent editing
pattern is the file BugzillaTaskEditorPage.java of the Mylyn
project which was modified concurrently by three devel-
opers named Frank, Steffen Pingel and David Green. The
concurrent editing pattern poses the risk of one developer
overriding changes from another developer, or introducing
a bug because of some unnoticed changes in the file since
each developer is performing his or her edits independently
in his or her own working space, before all the changes are
merged together eventually.

B. Parallel Editing Pattern

Developers sometimes edit a number of files in parallel
when performing a change request. In this situation, some
files are edited in parallel. We refer to this phenomenon as

the parallel editing pattern. An example of parallel editing
occurred in the Mylyn project among the files Planning-
PerspectiveFactory.java, AbstractTaskEditorPage.java, and
TasksUiPlugin.java, which were changed simultaneously by
a developer named Frank. With the parallel editing pattern,
a developer has a higher chance to become distracted due
to frequent switches between files.

C. Extended Editing Pattern

When changing a file as part of a change request, a
developer might end up performing several edits on the file.
These edits might be done over a short span of time or
might be done over an extended span of time. We refer
to the second scenario as the extended editing pattern. An
example of extended editing occurred in the Mylyn project.
The average editing time of DiscoveryViewer.java is 4.5
hours, which is 3.6 times the median (i.e., 1.25 hours) of the
editing times of all files in the Mylyn project. We conjecture
that extended edits are possibly risky since developers might
be distracted and forget what they have done since the last
edit. The extended edits might also be a sign of a complex
change that requires the developer to spend several editing
sessions on the file.

D. Interrupted Editing Pattern

During development activities, developers are often inter-
rupted by email alerts, meetings, or other duties. They might
also simply take a break which may last for a few minutes
or longer. We refer to this phenomenon as the interrupted
editing pattern. An example of interrupted editing occurred
in the Mylyn project. The average interruptions time of
TaskCompareDialog.java is 338.0 hours, which is 164 times
the median (i.e., 2.06 hours) of the editing times of all files
in the Mylyn project. The interrupted editing pattern poses
the risk of developers introducing bugs because of a failure
to recall some previous changes.

III. BACKGROUND ON THE FRAMEWORK MYLYN

Mylyn is an Eclipse plug-in that monitors developer’s
programming activities, such as selection and editing of
files. In Mylyn, each developer’s activity is an event. There
are eight types of events in Mylyn: Attention, Command,
Edit, Manipulation, Prediction, Preference, Propagation,
and Selection [5]. Three of the eight events are triggered
by a developer, i.e., Command, Edit and Selection events. A
Mylyn log records a list of events triggered by developers
during programming activities, such as bug fixing or feature
enhancement. Mylyn logs are stored in an XML format.
Each Mylyn log is identified by a unique Id (i.e., the
task identifier) and contains descriptions of events (i.e.,
InteractionEvent) recorded by Mylyn. The description of
each event includes: a starting date (i.e., StartDate), an end
date (i.e., EndDate), a type (i.e., Kind), the identifier of the
UI affordance that tracks the event (i.e., OriginId), and the

Table I: The three subject systems.

System Description # of change
request reports

of
logs

Mylyn Task and application lifecycle
management framework. 2,722 3,883

Platform Core frameworks, services and
runtime provider of Eclipse. 606 793

PDE Eclipse plug-in development
environment. 524 638

names of the files involved in the event (i.e., StructureHan-
dle). Mylyn logs are compressed, encoded under the Base64
format, attached to change request reports, and stored in
change request tracking systems.

IV. CASE STUDY SETUP

This section presents the design of our case study, which
aims to address the following three research questions:

1) Are there different file editing patterns?
2) Do file editing patterns lead to more bugs?
3) Do interactions among file editing patterns lead to

more bugs?

A. Data Collection

In this study, we use Mylyn interaction logs to identify
file editing patterns. As an Eclipse project, Mylyn is fre-
quently used in other Eclipse projects. We choose three
Eclipse projects with the highest number of change request
reports containing Mylyn logs. Table I shows the descriptive
statistics of the subject systems. In total, we examine 2,140
files that have been modified by 119 developers working on
the subject systems.

B. Data Processing

Figure 1 shows an overview of our approach. First, we ex-
tract revision history data from the source code repositories
(i.e., CVS). We also extract Mylyn interaction logs from
change request repositories (i.e., Bugzilla). We compute
several metrics to identify file editing patterns. We then
statistically compare the proportion of buggy files (and the
number of bugs in files) edited following the patterns.

1) Recovering File Change History: In our case study,
we measure software quality using the number of bugs
in files. For each file changed by developers, we extract
bug fixing change information. The three subject systems
use CVS to track source code changes. CVS change logs
contain the whole history of revisions to the source code.
We downloaded the CVS repositories of our three subject
systems on October 20, 2011. We select the date of January
1, 2011 to separate the pattern analysis period from the
period for counting future bugs (i.e., bugs reported after
developers’ changes). We refer to the period after the split
date as the future bug counting period. A similar decision
is made in a study by Lee et al. [6]. Bugs extracted from
commit logs between January 1, 2011 and October 20,

Bugzilla

RQ1

RQ3

RQ2

CVS
Repositories

Extract
Mylyn
Logs

Analyze

Compute
Pattern
Metrics

Identify
Bug Fixes

Mylyn
Logs

Pattern
Metrics

Number of
Future Bugs

per File

Figure 1: Overview of our approach to analyze the effect of
file editing patterns on code quality

Mylyn Platform PDE All

0.
00
0

0.
01
5

0.
03
0

Fu
tu

re
 B

ug
 D

en
si

ty

Figure 2: Box plot of the density of future bugs in Mylyn,
Platform, and PDE.

2011 are considered to be future bugs. We use Mylyn logs
from January 1, 2009 to December, 31, 2010 to collect
information of file editing patterns.

We extracted the change logs of all commits performed
during the future bug counting period. In total, we obtained
4,492 logs from the Eclipse repository (i.e., PDE and Plat-
form), and 578 logs from the Mylyn repository (i.e., Mylyn).
We manually analyzed each log to identify bug fixing change
logs. We also extracted bug IDs from the obtained bug
fixing change logs. For each bug ID, we downloaded the
corresponding bug report from Bugzilla and extracted the
bug opening date. We compared the bug opening date with
the split date. We filtered out all the bugs opened before
the split date and all enhancements. In total, we obtained
98 future bugs from 2,140 files modified by 119 developers
from the subject systems. For each file, we calculate the
density of future bugs by dividing the number of future bugs
of the file by the size of the file. Figure 2 shows the box
plot of the density of future bugs in our studied systems.
Similar to [6], [7], we combined data from the three subject
systems because of their small sizes.

2) Recovering File Edit History: In a change request
report, an attachment containing a Mylyn log is named
“mylyn/context/zip”. We search Eclipse Bugzilla to generate
a list of change request reports with attachments of that
name. We download the change request reports in the list.
We parse the reports to extract information, such as reporting
date, reporter’s name, project and module names, comments,
Mylyn attachments, and attachers’ names. We decoded and
unzipped Mylyn attachments to extract Mylyn logs. We
consider the attacher of a Mylyn log to be its owner, since
there is no explicit ownership information in Mylyn logs.

We parse each Mylyn log to extract Edit and Selection
events. We rely on Edit and Selection events to track
developers’ accesses to files and compute the duration of
developers’ file editing periods. Edit events are issued when
a developer selects the content (i.e., the text) of a file in
the Eclipse IDE and Selection events are triggered when a
developer selects a file. For each Edit or Selection event, we
extract the start date, the end date, and the names of the files
concerned by the event.

3) Identifying File Editing Patterns: Using Edit event
information collected from Mylyn logs, we propose a set of
metrics for detecting editing patterns followed by developers
during the development/maintenance of the systems. In the
following subsections, we discuss the detection of each
editing pattern in details.

a) Concurrent Editing Pattern. For each file, we identify
all edits involving the file using the Mylyn logs; for each
edit, we track concurrent edits involving the file. We com-
pute the number of concurrent edits for each file and the
number of developers involved in the edits. The number of
changes made to a file is known to be related to the number
of future bugs in the file [8]. We control for that by dividing
the number of concurrent edits and the number of developers
by the number of changes, following respectively Equation
(1) and Equation (2). We obtain the average number of
concurrent edits per change (NConEdits) and the average
number of developers editing the file concurrently during a
change (NConDevs).

NConEdits =
1

N

N∑
i=1

(

N∑
j 6=i

OverlapCE(Editi, Editj)) (1)

NConDevs =
1

N

N∑
i=1

(

N∑
j 6=i

OverlapCD(Editi, Editj)) (2)

Where, Editi represents the ith Edit on the file, and N is
the total number of changes in the history of the file.
OverlapCE(Editi, Editj) equals to 1 when there is an
overlap between the time windows of Editi and Editj;
otherwise it is equal to 0.
OverlapCD(Editi, Editj) equals to 1 when Editi and
Editj are edited by different developers, and there is an
overlap between the time windows of Editi and Editj . In
other cases, OverlapCD(Editi, Editj) equals to 0.

For example, given a file F involved in three edits Edit1,
Edit2, Edit3. If (Edit1, Edit2) and (Edit2, Edit3) have
overlapping time windows, the average number of concur-
rent edits per change of F is NConEdits =

(1+2+1)
3 = 1.33.

If Edit1 was performed by developer d1, while Edit2 and
Edit3 by developers d2, then Edit1 and Edit2 were edited
concurrently by d1 and d2; Edit2 and Edit3 were edited
solely by d2. The average number of developers involved in
concurrent edits in F is NConDevs =

(2+1+1)
3 = 1.33.

For each file, we compute the NConDevs value. We
conclude that a file was modified following the concurrent

editing pattern, if and only if its NConDevs is greater than
0.

b) Parallel Editing Pattern. We compute the number
of parallel editing files of an edit i (nParallelEdits(i))
using Equation (3). For each file File, we sum the
nParallelEdits(i) values of all edits i in the history of the file
File. In order to control for the confounding effect of the
number of changes made to the file, we divide the sum of
nParallelEdits(i) by the number of changes and obtain the
average number of files in a parallel edit (NParallelEdits) of
File, following Equation (4).

nParallelEdits(i) =

M∑
j=1

OverlapPE(File, F ilej) (3)

Where, Filej represents the jth file in the Edit. M is the
total number of files in the Edit.
OverlapPE(File, F ilej) equals to 1 when there is an over-
lap between the time windows of File and Filej; otherwise
it is equal to 0.

NParallelEdits =
1

N

N∑
i=1

nParallelEdits(i) (4)

Where, nParallelEdits(i) represents the number of parallel
editing files of the ith Edit of the file, and N is the total
number of Edits in the history of the file.

For example, given a file F involved in three edits
Edit1, Edit2 and Edit3. In Edit1, F was modified in
parallel with 5 other files; in Edit2, F was modified
in parallel with 9 other files; in Edit3, F was modified
solely. The number of parallel editing files of the three
edits are: nParallelEdits(1) = 5, nParallelEdits(2) = 9,
nParallelEdits(3) = 1. The average number of parallel
editing files of F is NParallelEdits =

(5+9+1)
3 = 5.

For each file, we compute the NParallelEdits value. We
conclude that a file was modified following the parallel
editing pattern, if and only if its NParallelEdits is greater
than 0.

c) Extended Editing Pattern. For each file, we identify all
edits involving the file and compute the time span of each
edit i of the file (editT ime(i)) using Equation (5). We sum
the editT ime(i) values of all edits in the history of the
file. To control for the confounding effect of the number of
changes made to the file, we divide the sum of editT ime(i)
by the number of changes and obtain the average editing
time (EditT ime), following Equation (6).

editT ime(i) =

M∑
j=1

(EndTimej − StartT imej) (5)

Where, StartT imej and EndTimej represent the starting
and ending time of the jth edit event involving the file, and
M is the total number of Edit events in the ith edit in the
history of the file.

EditT ime =
1

N

N∑
i=1

editT ime(i) (6)

log(NConcurrentEdits+1)

of

 F
ile

s

0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

(1) Concurrent editing

log(NParallelEdits+1)

of

 F
ile

s

0 1 2 3 4 5 6

0
10
0

20
0

30
0

40
0

(2) Parallel editing

log(EditTime+1)

of

 F
ile

s

0 2 4 6 8

0
20
0

60
0

(3) Extended editing

log(IdleTime+1)

of

 F
ile

s

0 2 4 6 8 10

0
20
0

60
0

10
00

(4) Interrupted editing

Figure 3: Distribution of metric values for the file editing patterns

Where, editT ime(i) represents the time span of the ith edit
of the file, and N is the total number of edits in the history
of the file.

For example, given a file F involved in two edits Edit1
and Edit2; with the time spans of the two edits being
respectively, editT ime(1) = 1 hours and editT ime(2) = 2
hours. The average editing time of F is EditT ime =
1
2 (1 + 2) = 1.5.

For each file, we compute the EditT ime value. We
conclude that a file was modified following the extended
editing pattern, if and only if its EditT ime is greater than
the third quartile of all EditT ime values.

d) Interrupted Editing Pattern. For each file, we identify
all changes involving the file and compute the idle time of
each change i (idleT ime(i)) using Equation (7). We sum
the idleT ime(i) values of all changes in the history of the
file. To control for the confounding effect of the number of
changes made to the file, we divide the sum of idleT ime(i)
by the number of changes and obtain the average interruption
time (IdleT ime), following Equation (8).

idleT ime(i) =

M∑
j=2

(StartT imej − EndTimej−1) (7)

Where, StartT imej and EndTimej represent the starting
and ending time of the jth edit event changing the file, and
M is the total number of Edit events in the ith edit.

IdleT ime =
1

N

N∑
i=1

idleT ime(i) (8)

Where, idleT ime(i) represents the idle time of the ith edit
on the file, and N is the total number of changes in the
history of the file.

For example, given a file F involved in two edits Edit1
and Edit2; with the interruption time of F in the two edits
being: idleT ime(1) = 2 hours and idletime(2) = 16
hours. The average interruption time of F is IdleT ime =
1
2 (2 + 16) = 9.

For each file, we compute the IdleT ime value. We
conclude that a file was modified following the interrupted
editing pattern, if and only if its IdleT ime is greater than
the third quartile of all IdleT ime values.

C. Analysis Method
We study if bugs in files are related to file editing patterns.

1) Analyzing the relationship between a file editing pat-
tern and the probability of future bugs: We use the Fisher’s
exact test [9] to determine if there are non-random asso-
ciations between a particular file editing pattern and the
occurrence of future bugs. We also compute the odds ratio
(OR) [9] indicating the likelihood of an event to occur (i.e.,
a bug). OR is defined as the ratio of the odds p of an event
occurring in one sample, i.e., the set of files edited following
a specific editing pattern (experimental group), to the odds q
of it occurring in the other sample, i.e., the set of files edited
but not following the pattern (control group): OR = p/(1−p)

q/(1−q) .
An odds ratio of 1 indicates that the event (i.e., a bug) is
equally likely in both samples. OR > 1 indicates that the
event is more likely in the first sample (i.e., the experimental
group of files edited following the editing pattern). An OR
< 1 indicates the opposite (i.e., the control group of files
edited but not following the pattern).

2) Analyzing the relationship between a file editing pat-
tern and the number of future bugs: We use the Wilcoxon
rank sum test [9] to compare the number of future bugs of
files edited following a particular pattern and other files that
were edited but not following the pattern. The Wilcoxon rank
sum test is a non-parametric statistical test to assess whether
two independent distributions have equally large values.
Non-parametric statistical methods make no assumptions
about the distributions of assessed variables. In cases of
comparisons among more than two groups of files, we apply
the Kruskal-Wallis rank sum test [9] which is an extension
of the Wilcoxon rank sum test to more than two groups.

V. CASE STUDY RESULTS

This section presents and discusses the results of our three
research questions.

RQ1: Are there different file editing patterns?
Motivation. This question is preliminary to the other ques-
tions. It provides the quantitative data on the number of
files edited by developers following the four editing patterns.
In this research question, we determine if all four editing
patterns are followed by developers when working on change
requests, and are therefore worth investigating individually.
We also determine the existence of interactions between the
editing patterns, e.g., if a file can be edited concurrently by

Table II: Occurrences of file editing patterns and their
interactions

ID List of patterns or combination of patterns # Files.

(0) No patterns 201
(1) <Concurrent> 497
(2) <Parallel> 1922
(3) <Extended> 535
(4) <Interrupted> 535

(1, 2) <Concurrent, Parallel> 494
(1, 3) <Concurrent, Extended> 236
(1, 4) <Concurrent, Interrupted> 190
(2, 3) <Parallel, Extended> 525
(2, 4) <Parallel, Interrupted> 528
(3, 4) <Extended, Interrupted> 311

(1, 2, 3) <Concurrent, Parallel, Extended> 236
(1, 2, 4) <Concurrent, Parallel, Interrupted> 190
(1, 3, 4) <Concurrent, Extended, Interrupted> 133
(2, 3, 4) <Parallel, Extended, Interrupted> 308

(1, 2, 3, 4) <Concurrent,Parallel,Extended,Interrupted> 133

different developers, over an extended period of time.
Approach. We answer this research question by classifying
the files of our subject systems using the patterns followed
by developers during file editing. We identify the editing
pattern(s) of a file using the metrics described in Section
IV-B3. Figure 3 shows the distribution of the metrics values.
For each pattern (or combination of patterns), we report
the number of files edited following the pattern (or the
combination of patterns).
Findings. Table II summarizes the number of files that were
edited following each pattern or combination of patterns. As
shown in Table II, only 201 files in our systems were edited
following none of the four patterns under investigation. The
most frequent editing pattern followed by developers is the
parallel editing pattern (1,922 files). 949 files from our
systems were edited following more than one editing pattern.

Overall, we conclude that developers follow the four
file editing patterns during development and maintenance
activities. In the next two research questions we examine the
patterns (and their interactions) in more detail to determine if
some file editing patterns (and interaction between patterns)
are more risky than others.

RQ2: Do file editing patterns lead to more bugs?
Motivation. In RQ1, we found that very frequently, de-
velopers follow one of the four file editing patterns under
investigation in this study. However, following these patterns
is likely to be risky. For example, during a parallel editing, a
developer might become distracted because of the frequent
switches between files and inadvertently introduce an error
into the system. In this research question, we investigate the
relation between each file editing pattern and the occurrence
of bugs. Understanding the risks posed by each file editing
pattern is important to raise the awareness of developers
about the potential risk of their working style. Managers
can use the knowledge of these patterns to decide on the
acquisition of awareness tools that can assist developers

during development and maintenance activities.
Approach. Similarly to RQ1, we identify the editing pattern
of a file using the metrics described in Section IV-B3.
We classify the files based on the patterns followed by
developers during file editing. For each pattern Pi, we
create two groups: a group GPi containing files that were
edited by developers following Pi and another group NGPi

containing files that were edited by developers not following
Pi. We also compute the number of future bugs of each file.
Because previous studies (e.g., [10], [11]) have found size
to be related to the number of bugs in a file. We divide the
number of future bugs of each file by the size of the file
to control for the confounding effect of size. We obtain the
density of future bugs of each file.

For each pattern Pi, we test the two following null
hypothesis (there is no H01 because RQ1 is exploratory):
H1

02: the proportion of files exhibiting at least one future
bug does not differ between the groups GPi (of files edited
by developers following Pi) and NGPi (of files edited by
developers not following Pi).
H2

02: there is no difference between the density of future bugs
of files from groups GPi and NGPi.

Hypothesis H1
02 (respectively H2

02) is about the proba-
bility of bugs (respectively the density of future bugs) in
files edited following the pattern Pi. H1

02 and H2
02 are two-

tailed since they investigate whether the file editing pattern
Pi is related to a higher or a lower risk of bug. We use the
Fisher’s exact test and compute the odds ratio to test H1

02.
We perform a Wilcoxon rank sum test for H2

02.
The files in our data set do not have the same level of

involvement in the patterns. For example, some files are
edited concurrently by five developers, while others are
edited concurrently by only two developers. Because the file
edited concurrently by five developers is more at risk for
conflicting changes than the file edited by two developers,
we believe that the level of involvement of a file in a pattern
is likely to impact the risk of bugs in the file. Therefore, for
each pattern, we further analyze the relation between the
level of involvement in the pattern and the occurrence of
bugs. The level of involvement of a file f in the:
• Concurrent editing pattern: is the average number of

developers involved in a concurrent editing of f (i.e.,
NConDevs).

• Parallel editing pattern: is the average number of files
edited in parallel with f (i.e., NParallelEdits).

• Extended editing pattern: is the average editing time of
f (i.e., EditT ime).

• Interrupted editing pattern: is the average interruption
time of f (i.e., IdleT ime).

For a Concurrent or Parallel (respectively an Extended or
Interrupted) editing pattern Pi, we use the third quartile
(respectively median) of all the level values of files that
were involved in Pi, to split the group GPi of files edited
following Pi, into two groups GP 1

i and GP 2
i . GP 1

i contains

1

2.14

2.0

1.0

NC
0

C

O
d

d
s
 R

a
ti
o

Groups

(1) Concurrent

1

1.94
2.0

1.0

NP
0

P

O
d

d
s
 R

a
ti
o

Groups

(2) Parallel

1

1.86
2.0

1.0

NE
0

E

O
d

d
s
 R

a
ti
o

Groups

(3) Extended

1

1.62
2.0

1.0

NI
0

I

O
d

d
s
 R

a
ti
o

Groups

(4) Interrupted

Figure 4: Odds ratio between files that are not involved in patterns and files that are involved in editing patterns.

files with a level of involvement lower than the third quartile
(respectively median) of all the level values of files involved
in Pi. GP 2

i contains files with level values greater than the
third quartile (respectively median) of all the level values
of files involved in Pi. For the Extended editing pattern and
the Interrupted editing patterns, we use the median instead of
the third quartile because these patterns were defined based
on the third quartile.

For each pattern Pi, we test following null hypotheses:
H3

02: the proportion of files exhibiting at least one bug is
the same for NGPi, GP 1

i and GP 2
i .

H4
02: there is no difference between the density of future bugs

of files from groups NGPi, GP 1
i and GP 2

i .
Similar to H1

02, H3
02 is about the probability of bugs in

files. Hence, we use the Fisher’s exact test and compute the
odds ratio to test H3

02. H4
02 like H2

02 is about the density
of future bugs in files; we perform the Kruskal-Wallis rank
sum test for H4

02. All the tests are performed using the 5%
level (i.e., p-value < 0.05).
Findings. Among the four patterns, the concurrent
editing pattern is the most risky. The likelihood of
bugs in a file edited following the concurrent editing
pattern is higher compared to files edited following
one of the other three patterns. Figure 4 shows ORs
values for the four patterns. A file with concurrent edits
is 2.14 times more likely to experience a future bug than
a file that was never involved in a concurrent edit (Figure
4 (1)). The OR value is 2.14 and the Fisher’s exact test
was statistically significant. Therefore, we reject H1

02 for
the concurrent editing pattern. Files involved in concurrent
edits have on average 2.46 times more future bugs than files
that were never edited concurrently. The Wilcoxon rank sum
test was statistically significant. Hence, we also reject H2

02.
We could not reject either H3

02 or H4
02 for the concurrent

editing pattern. However, results from Table III suggests
that contrary to what we had hypothesized, the risk for
bug is decreased when the number of developers involved
in a concurrent editing is very high (i.e., above the third
quartile). Nevertheless, this result is in line with Linus’s law
that “given enough eyeballs, all bugs are shallow”.

Overall, a file edited in parallel with other files by
the same developer is 1.94 times (shown in Figure 4
(2)) more likely to experience a bug than a file that
was always edited individually throughout its revision

Table III: Relation between the level of involvement in a
pattern and the risk of bugs (* indicates that the test was
statistically significant, i.e., p-value < 0.01)

Pattern level ≤ third quartile level > third quartile
OR Average

bug density
OR Average

bug density

Concurrent 2.393* 1.417* 1.603 0.824
Parallel 1.343 1.446 3.857* 2.606*
Extended 1.033 0.660 1.877* 1.135*
Interrupted 1.244 0.815 1.752* 0.740*

history. The number of files involved in the parallel
edits plays a significant role in increasing the risk for
bugs (see Table III). We obtained an OR value of 1.94
for the parallel editing pattern and the Fisher’s exact test
was statistically significant for H1

02. The Wilcoxon rank sum
test was also statistically significant for H2

02. Files edited in
parallel have on average 1.67 times more future bugs than
files that were always edited individually. However, as shown
in Table III, the level of involvement of a file in a parallel
editing plays a significant role in increasing the risk for bugs;
the risk for bug and the density of future bugs is increased
significantly only when the number of files edited in parallel
(i.e., the level) is above the third quartile. We conclude that
although the parallel editing of files is risky in general, all
parallel editings are not equally risky. Development teams
can chose to monitor only files that were edited in parallel
with too many other files. Quality assurance teams should
advice developers against editing too many files in parallel.

The extended editing pattern increases the risk of bugs
in files. Indeed, files with edit time spans on average
greater than the third quartile are 1.86 times more likely
to experience a future bug than other files, as illustrated
in Figure 4 (3). The Fisher’s exact test was statistically
significant. We reject H1

02 for the extended editing pattern.
The Wilcoxon rank sum test was also statistically significant
for H2

02. We then reject H2
02 for the extended editing pattern.

Files edited following the extended editing pattern have on
average 2.28 times more future bugs than files that were
never involved in an extended editing. When the edit time
span of a file is on average lower than the third quartile,
Table III shows that the risk of bug is not significantly
different from those of files with edit time spans lower than
the median.

The interrupted editing pattern increases the risk of

bugs in files. In fact, files edited with interruption time
on average greater than the third quartile are 1.62 times
more likely to experience a future bug than other files,
as illustrated in Figure 4 (3). The Fisher’s exact test was
statistically significant. Therefore, we reject H1

02 for the
interrupted editing pattern. The Wilcoxon rank sum test was
also statistically significant for H2

02. We then reject H2
02

for the interrupted editing pattern. Files that were edited
following the interrupted editing pattern have on average
2.1 times more future bugs than files that were not involved
in an interrupted editing. When the interruption time of a
file is on average lower than the third quartile, Table III
shows that the risk for bugs in the file is not significantly
different from those of files with interruption times lower
than the median. Managers should consider taking measures
to avoid the frequent interruption of developers.

RQ3: Do interactions among file editing patterns lead to
more bugs?
Motivation. In RQ1, we found that a large number of files
from our systems (i.e., 949 files) were edited following more
than one editing pattern. When multiple editing patterns are
followed by developers during the modification of a file, the
risk of introducing a bug can be increased. For example,
if a developer editing multiple files simultaneously (i.e.,
the parallel editing pattern) is interrupted frequently (the
interrupted editing pattern), the developer might become
confused and cause errors in the files. In this research
question, we investigate the interaction between the four
file editing patterns. We want to understand if the risk of
bugs in a file is increased when multiple editing patterns are
followed by developers during the modifications of the file.
Similar to RQ2, developers and managers can use the knowl-
edge of pattern interactions to decide on the acquisition
of awareness tools that can warn developers about pattern
interactions during development and maintenance activities.
Approach. For each file, we use the metrics described in
Section IV-B3 to identify the editing patterns of the file.
We classify the files based on the pattern(s) followed by
developers during the modifications of the files. For each
pattern Pi, we create a group GPi containing files that were
edited by developers following Pi. For each combination
of pattern(s) PInteracti listed in Table II, we create a
group GPInteracti containing files that were edited by
developers following the patterns in PInteracti. We also
create a group GNoP containing files that were edited by
developers following none of the four patterns. We compute
the density of future bugs in each file and test the two
following null hypothesis.
H1

03: the proportion of files exhibiting at least one future
bug does not differ between the groups GPi, PInteracti,
and GNoP .
H2

03: there is no difference between the density of future bugs
of files from groups GPi, PInteracti, and GNoP .

1
.0

0

2
.8

8

1
.7

8

2.0

1.0

(0
)0

3.0

Pattern

Interactions

O
d

d
s
 R

a
ti
o

2
.6

0

5.0

4.0

6.0

(1
)

(2
)

(3
)

2
.3

8

2
.9

0

4
.4

9

(4
)

3
.8

3

(1
,2

)

(1
,3

)

(1
,4

)

2
.6

5

2
.4

1

2
.9

6

(2
,3

)

4
.4

9

(2
,4

)

(3
,4

)

(1
,2

,3
)

3
.8

3

5
.3

1

2
.9

9

(1
,2

,4
)

5
.3

1

(1
,3

,4
)

(2
,3

,4
)

(1
,2

,3
,4

)

Figure 5: Odds ratios of future bugs in files from the 16
groups listed in Table II

Similar to RQ2, hypothesis H1
03 (respectively H2

03) is
about the probability of bugs (respectively the density of
future bugs). The two hypothesis are two-tailed. We use the
Fisher’s exact test and compute the odds ratio to test H1

03.
We perform a Kruskal-Wallis rank sum test for H2

03. We test
H1

03 and H2
03 using the 5% level (i.e., p-value < 0.05).

Findings. The risk of future bugs in a file edited following
more than one editing pattern is higher than the risk of
future bugs in a file edited following a single editing
pattern. In fact, when the concurrent editing pattern, the
extended editing pattern, and the interrupted editing pattern
are followed all together during modifications of a file,
the OR value is the highest, as illustrated in Figure 5.
Also, whenever either the concurrent editing pattern or the
extended editing pattern are used with other patterns during
the modification of a file, the risk of future bugs in the file is
increased (i.e., the OR is increased). The Fisher’s exact test
was statistically significant. Therefore, we reject H1

03. The
Kruskal-Wallis rank sum test for H2

03 was also statistically
significant. We also reject H2

03.
For all pattern interactions but one, the density of future

bugs is increased when a file is edited following more
than one editing pattern. The only exception is when a file
is edited following both the Parallel and the Interrupted
editing patterns. We found that files edited following both the
Parallel and the Interrupted editing patterns have less future
bugs than files edited following only either the Parallel or
the Interrupted editing pattern. However, the difference was
not statistically significant. The number of future bugs in a
file edited by developers following more than one editing
patterns can go as high as 1.6 times the average number of
future bugs in files edited following a single editing pattern.

VI. THREATS TO VALIDITY

We now discuss the threats to validity of our study
following common guidelines provided in [12].

Construct validity threats concern the relation between

theory and observation. Our construct validity threats are
mainly due to measurement errors. We rely on Mylyn logs to
collect information about file editing patterns. Because some
files may be edited without using Mylyn, our file editing in-
formation might be biased. Another potential source of bias
is the computation of the numbers of future bugs. We rely
on the judgement of one of the authors during the manual
identification of bug fixing change logs. Therefore, because
of the subjective nature of the task, some change logs might
have been counted wrongly. However, we compared our bug
data with bug data from the study of Lee et al. [6], which
are publicly available. We found the two data sets to be
consistent.

Threats to internal validity concern our selection of
subject systems and analysis methods. Although we study
three software systems, some of the findings might still be
specific to the development and maintenance process of the
three software systems which are Eclipse projects. In fact,
the usage of Mylyn in the projects is likely to have affected
the editing patterns of developers. Future studies should
consider using a different tool to collect file editing data.

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the constructed statistical models. We
have used non-parametric tests that do not require making
assumptions about the distribution of data sets. We have
controlled for the potential confounding effect of size and
code churns.

Reliability validity threats concern the possibility of
replicating this study. We attempt to provide all the necessary
details to replicate our study. Eclipse CVS and Bugzilla are
publicly available to obtain the same data. All the data used
in this study are also available online4.

Threats to external validity concern the possibility to gen-
eralize our results. We only analyzed three Eclipse projects,
because of the limited adoption of Mylyn in open source
projects. Further studies on different open and closed source
systems are desirable to verify our findings.

VII. RELATED WORK

The work presented in this paper relates to the analysis
of file editing patterns and bug prediction. In the following
subsections, we summarize the related research.

A. Analysis of File editing patterns

To the best of our knowledge, this study is the first attempt
to empirically quantify the impact of concurrent, parallel,
extended, and interrupted file editing patterns on software
bug-proneness.

A large body of research has been conducted on develop-
ment activities, especially, many tools have been proposed
to improve developers’ awareness about project activities

4http://tinyurl.com/fileeditingpatternstudy-zip

such as source code changes or development task creation.
For example, the tools Codebook [2] and Crystal [3], have
been proposed to warn developers about potential file editing
conflicts. Treude and Storey [4], who investigated the usage
of dashboards and feeds by development teams using data
collected from the IBM Jazz development platform, reported
on the need for better awareness tools that could provide
both high-level awareness (e.g., about project team members,
upcoming deadlines) and low-level awareness (e.g., about
source code changes).

Despite all research on developing better awareness tools,
there are very few studies that empirically investigated
the consequences of a lack of awareness of developers
about the file editing patterns followed by team members.
Perry et al. [13] investigated file editing patterns in a large
telecommunication software system and found that about
50% of the files were modified consecutively by more
than one developer in the period between two releases of
the software. They did not study the concurrent editing of
files, but nevertheless reported that files edited by multiple
developers were at a higher risk for bugs. Staudenmayer
et al. [14] studied concurrent changes at module level in
another telecommunication software system and observed
that although a concurrent modification of modules can
shorten the development time of a software system, devel-
opers often experience conflicting changes. D’Ambros et
al. [15] investigated the relation between change coupling
and bugs through an analysis of files frequently committed
together. They concluded that change coupling information
can improve the performance of bug prediction models.
However, relying on commit logs to identify files that are
changed together is not very accurate. The fact that two files
are submitted together into a software repository does not
necessary mean that the files are modified in parallel by one
or many developers. Developers often edit multiple files (at
different times) and commit the files all together. Moreover,
in some systems, many developers editing files do not
have committing rights. In these systems, file modifications
are validated by a review team prior to their submission
into the software repository. The developer submitting the
files is often one of the reviewers. In this work, we are
able to identify file edits that happened at the same time
thanks to the rich developer’s interaction logs collected
by the development teams of the three Eclipse projects,
using the Mylyn tool. Parnin and Rugaber [16] investigated
developers’ interruptions during software development tasks
and reported on the strategies adopted by developers to
successfully resume a task after an interruption. They did
not assess the likelihood that a bug would be introduced
because of frequent interruptions. Lee et al. [6], propose to
use the time spent by developers on tasks to predict future
bugs in the files involved in the tasks. In this work, we
empirically quantify the likelihood of having bugs in files
edited by developers following respectively the concurrent,

parallel, extended and interrupted editing patterns.

B. Bug Prediction

Several studies have investigated the use of metrics to
predict the location of future bugs in software systems. For
example, Khoshgoftaar et al. [17] report good results from a
combination of code metrics and knowledge from problem
reporting databases for bug predictions. Moser et al. [18]
however show that process metrics outperform source code
metrics as predictors of future bugs. Other researchers focus
on using temporal information for bug prediction. Bernstein
et al. [19] use temporal aspects of data (i.e., the number
of revisions and corrections recorded in a given amount of
time) to predict the location of defects. The resulting model
can predict whether a source file has a defect with 99%
accuracy. Nagappan and Ball [20] show that relative code
churn metrics are good predictors of bug density in systems.
Askari and Holt [21] provide a list of mathematical models
to predict where the next bugs are likely to occur. In this
work we investigate the possibility of using four file editing
patterns to identify future location of bugs in systems. We
propose metrics to identify the patterns. Although we do not
build prediction models, we analyze the relation between the
occurrence of our file editing patterns and future bugs. We
also analyze the interaction between the editing patterns.

VIII. CONCLUSION

In this paper, we analyzed the developers’ interaction
logs of three open source software systems, Mylyn, Eclipse
Platform, and Eclipse PDE, and identified four file editing
patterns. We investigated the potential impact of the editing
patterns on software quality.

Our results show that concurrent, parallel, extended, and
interrupted file editing patterns are frequently followed by
developers during development and maintenance activities.
Whenever one of the four editing patterns is followed during
the modifications of a file, the risk of future bugs in the file
increases. Among the four patterns, the concurrent editing
pattern is most risky. Developers and managers should also
be cautious when one file is edited in parallel with too many
other files. Also, development teams should avoid having
developers spending too long time editing one file. They
should also avoid interrupting their developers frequently.

We also observed that when more than one editing pat-
terns are followed by one or many developers during the
editing of a file, the risk of future bugs in the file increases
further. The number of future bugs in a file edited by
developers following more than one editing patterns can go
as high as 1.6 times the average number of future bugs in
files edited following a single editing pattern.

This work provides empirical evidence of the negative
impact of concurrent, parallel, extended, and interrupted file
editing patterns on software quality. Designers of awareness
tools should consider integrating new features to track the

four file editing patterns analyzed in this study, so that a
developer working on a file can remain aware of the editing
patterns of other developers working on related files. In
future work, we plan to do that. We will propose an Eclipse
plug-in to automatically identify our four editing patterns
from collected Mylyn logs and inform developers about the
patterns occurrences and interactions.

REFERENCES

[1] N. I. of Standards & Technology, “The economic impacts of inadequate
infrastructure for software testing,” May 2002, uS Dept of Commerce.

[2] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: discovering and
exploiting relationships in software repositories,” in ACM/IEEE 32nd Inter-
national Conference on Software Engineering, ser. ICSE ’10. New York, NY,
USA: ACM, 2010, pp. 125–134.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of
collaboration conflicts,” in Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering,
ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 168–178.

[4] C. Treude and M. Storey, “Awareness 2.0: staying aware of projects, developers
and tasks using dashboards and feeds,” in ACM/IEEE 32nd International
Conference on Software Engineering, ser. ICSE’10, vol. 1, may 2010, pp. 365
–374.

[5] Mylyn, “http://wiki.eclipse.org/mylyn integrator reference.”
[6] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction metrics for

defect prediction,” in Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 311–321.

[7] F. Zhang, F. Khomh, Y. Zou, and A. Hassan, “An empirical study on factors
impacting bug fixing time,” in Reverse Engineering (WCRE), 2012 19th
Working Conference on, oct. 2012.

[8] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan,
“Understanding the impact of code and process metrics on post-release defects:
a case study on the eclipse project,” in Proceedings of the 2010 ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement,
ser. ESEM ’10. New York, NY, USA: ACM, 2010, pp. 4:1–4:10.

[9] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Proce-
dures, Fourth Edition. Chapman & Hall/CRC, Jan. 2007.

[10] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,”
in International Workshop on Predictor Models in Software Engineering, ser.
PROMISE’07, may 2007, p. 9.

[11] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component
failures,” in Proceedings of the 28th International Conference on Software
Engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 452–461.

[12] R. K. Yin, Case Study Research: Design and Methods - Third Edition, 3rd ed.
SAGE Publications, 2002.

[13] D. Perry, H. Siy, and L. Votta, “Parallel changes in large scale software devel-
opment: an observational case study,” in Proceedings of the 20th International
Conference on Software Engineering, ser. ICSE’98, apr 1998, pp. 251 –260.

[14] N. Staudenmayer, T. Graves, and D. Perry, “Adapting to a new environment:
how a legacy software organization copes with volatility and change,” in 5th
International Product Development Conference, ser. IPDC’98, 1998.

[15] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship between
change coupling and software defects,” in 16th Working Conference on Reverse
Engineering, ser. WCRE’09, oct. 2009, pp. 135 –144.

[16] C. Parnin and S. Rugaber, “Resumption strategies for interrupted programming
tasks,” in IEEE 17th International Conference on Program Comprehension, ser.
ICPC’09, may 2009, pp. 80 –89.

[17] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl, “Data
mining for predictors of software quality,” International Journal of Software
Engineering and Knowledge Engineering, vol. 9, no. 5, 1999.

[18] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency
of change metrics and static code attributes for defect prediction,” in Proceed-
ings of the International Conference on Software Engineering. New York,
NY, USA: ACM, 2008, pp. 181–190.

[19] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving defect prediction using
temporal features and non linear models,” in IWPSE ’07: Ninth international
workshop on Principles of software evolution. NY, USA: ACM, 2007, pp.
11–18.

[20] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in ICSE ’05: Proceedings of the 27th international
conference on Software engineering. NY, USA: ACM, 2005, pp. 284–292.

[21] M. Askari and R. Holt, “Information theoretic evaluation of change prediction
models for large-scale software,” in MSR ’06: Proceedings of the 2006
international workshop on Mining software repositories. NY, USA: ACM,
2006, pp. 126–132.

