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Abstract—Antipatterns are poor solutions to design and
implementation problems which are claimed to make object
oriented systems hard to maintain. Our recent studies showed
that classes with antipatterns change more frequently than
classes without antipatterns. In this paper, we detail these
analyses by taking into account fine-grained source code
changes (SCC) extracted from 16 Java open source systems. In
particular we investigate: whether classes with antipatterns are
more change-prone (in terms of SCC) than classes without; (2)
whether the type of antipattern impacts the change-proneness
of Java classes; and (3) whether certain types of changes are
performed more frequently in classes affected by a certain
antipattern.

Our results show that: 1) the number of SCC performed in
classes affected by antipatterns is statistically greater than the
number of SCC performed in classes with no antipattern; 2)
classes participating in the three antipatterns ComplexClass,
SpaghettiCode, and SwissArmyKnife are more change-prone
than classes affected by other antipatterns; and 3) certain
types of changes are more likely to be performed in classes
affected by certain antipatterns, such as API changes are
likely to be performed in classes affected by the ComplexClass,
SpaghettiCode, and SwissArmyKnife antipatterns.

Keywords-Antipatterns; change-proneness; fine-grained
source code changes; empirical software engineering

I. INTRODUCTION

Over the past two decades, maintenance costs have grown
to more than 50% and up to 90% of the overall costs of
software systems [1]. To help reduce the cost of main-
tenance, researchers have proposed several approaches to
ease program comprehension, and identify change- and bug-
prone parts of the source code of software systems. These
approaches include source code metrics (e.g., [2], [3]) and
heuristics to assess the design of a software system (e.g.,
[4], [5], [6]).

Recently, we have started on analyzing the impact of
antipatterns on the change-proneness of software units [5].
Antipatterns [7] are “poor” solutions to design and im-
plementation problems. In contrast to design patterns [8]
which are “good” solutions to recurring design problems.
Antipatterns are typically introduced in software systems by
developers lacking the adequate knowledge or experience
in solving a particular problem or having misapplied some
design patterns. Coplien [9] described an antipattern as
“something that looks like a good idea, but which back-

fires badly when applied”. Previous studies, such as ours [5],
support this description by showing that software units, i.e.,
classes, affected by antipatterns are more likely to undergo
changes than other units.

Existing literature proposes many different antipatterns,
such as the 40 antipatterns described by Brown et al. [7].
Furthermore, antipatterns occur in large numbers and affect
large portions of some software systems. For instance, we
found that more than 45% of the classes in the systems
studied in [5] contained at least one antipattern. Because of
the diversity and the large number of antipatterns, support
is needed, for instance by software engineers, to identify
the risky classes affected by antipatters that lead to errors
and increase development and maintenance costs. For this,
we need to obtain a deeper understanding of the change-
proneness of different antipatterns and the types of changes
occurring in classes affected by them. Providing this deeper
understanding is the main objective of this paper.

In this paper we investigate the extent to which antipat-
terns can be used as indicators of changes in Java classes.
The goal of this study is to investigate which antipattern is
more likely to lead to changes and which types of changes
are likely to appear in classes affected by certain antipatterns.
Differently to existing studies (i.e., [10], [5]), the approach of
our study is based on the analysis of fine-grained source code
changes (SCC) mined from version control systems [11],
[12]. This approach allows us to analyze the types of changes
performed in classes affected by a particular antipattern
which was not possible with our previous approach. More-
over, we take into account the significance of the change
types [13] and we filter out irrelevant change types (e.g.,
changes to comments and copyrights), that account for more
than 10% of all changes in our dataset.

Using the data of fine-grained source code changes and
antipatterns, we aim at providing answers to the following
three research questions:

• RQ1: Are Java classes affected by antipatterns more
change-prone than Java classes not affected by any
antipattern?
This research question is aimed at replicating our pre-
vious study [5] with fine-grained source code changes
(SCC).



• RQ2: Are Java classes affected by certain types of an-
tipatterns more change-prone than Java classes affected
by other antipatterns – i.e., does the type of antipattern
impact change-proneness?
The results from this research question can assist soft-
ware engineers in identifying the risky classes affected
by antipatterns.

• RQ3: Are particular types of changes more likely to
be performed in Java classes affected by certain types
of antipatterns?
The results of this question will assist software engi-
neers in prioritizing antipatterns that need to be resolved
to prevent certain types of changes in a system. For
example changes in the method declarations of a class
exposing a public API.

To answer our research questions, we perform an em-
pirical study with data extracted from 16 Java open-source
software systems. Our main outcomes are:

• The number of SCC performed in classes affected by
antipatterns is statistically greater than the number of
SCC performed in other classes.

• Classes affected by ComplexClass, SpaghettiCode, and
SwissArmyKnife are more change-prone than classes
affected by other antipatterns.

• Changes in APIs are more likely to appear in
classes affected by the ComplexClass, SpaghettiCode,
and SwissArmyKnife; methods are more likely to be
added/deleted in classes affected by ComplexClass and
SpaghettiCode; changes in executable statements are
likely in AntiSingleton, ComplexClass, SpaghettiCode,
and SwissArmyKnife; changes in conditional statements
and else-parts are more likely in classes affected by
SpaghettiCode.

These findings suggest that software engineers should
consider detecting and resolving instances of certain an-
tipatterns to prevent certain types of changes. For instance,
they should resolve instances of the ComplexClass, Spaghet-
tiCode, and SwissArmyKnife to prevent frequent changes in
the APIs.

The remainder of this paper is organized as follows.
Section II describes the approach used to mine fine-grained
source code changes and to detect Java classes participat-
ing in antipatterns. The study design and our findings are
presented in Section III. Section IV discusses threats to the
validity of the results of our study. Section V presents related
work. We draw our conclusions and outline directions for
future work in Section VI.

II. DATA COLLECTION

In this section, we describe the approach used to gather
the data needed to perform our study. The data consist of the
fine-grained source code changes (SCC), performed in each
Java class along the history of the systems under analysis,
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Figure 1: Overview of the approach to extract fine-grained
source code changes and antipatterns for Java classes.

and the type and number of antipatterns in which a class
participates during its evolution. Figure 1 shows an overview
of our approach consisting of 4 steps. In the following we
describe each step in details.

A. Importing Versioning Data

The first step concerns retrieving the versioning data for
the Java classes from the version control systems (e.g.,
CVS, SVN or GIT). To perform this step we use the
Evolizer Version Control Connector (EVCC) [12], belonging
to the Evolizer1 tool set. For each class EVCC fetches and
parses the log entries from the versioning repository. Per
log entry, EVCC extracts the revision numbers, the revision
timestamps, the name of the developers who checked-in the
revision, the commit messages, the total number of lines
modified, and the source code. This information plus the
source code of each revision of Java class is stored into the
Evolizer repository.

B. Fine-Grained Source Code Changes Extraction

In the second step, ChangeDistiller is used [11] to extract
the fine-grained source code changes (SCC) between the
subsequent versions of a Java class. ChangeDistiller first
parses the source code from the two subsequent versions of
a Java class and creates the corresponding Abstract Syntax
Trees (ASTs). Second, the two ASTs are compared using
a tree differencing algorithm that outputs the differences
in form of the tree-edit operations add, delete, update, and
move. Next, each edit operation for a given node in the AST
is annotated with the semantic information of the source
code entity it represents and is classified as a specific change
type based on a taxonomy of code changes [13]. For in-
stance, the insertion of a node representing an else-part
in the AST is classified as else-part insert change
type. The result is a list of change types between two

1http://www.evolizer.org/



subsequent versions of each Java class which is stored into
the Evolizer repository.

C. Antipatterns Detection

The third step of our approach is detecting the antipatterns
that occur in Java classes. This is achieved by DECOR
(Defect dEtection for CORrection) [14], [15], [16]. DECOR
provides a domain-specific language to describe antipatterns
through a set of rules (e.g., lexical, structural, internal, etc.)
and an algorithm to detect antipatterns’ in Java classes.

We use the predefined specifications of antipatterns and
run DECOR on the different source code releases of our
systems under analysis. Among the antipatterns detectable
with DECOR we select the following twelve antipatterns:

• AntiSingleton: A class that provides mutable class
variables, which consequently could be used as global
variables.

• Blob: A class that is too large and not cohesive enough,
that monopolises most of the processing, takes most of
the decisions, and is associated to data classes.

• ClassDataShouldBePrivate (CDSBP): A class that ex-
poses its fields, thus violating the principle of encapsu-
lation.

• ComplexClass (ComplexC): A class that has (at least)
one large and complex method, in terms of cyclomatic
complexity and LOCs.

• LazyClass (LazyC): A class that has few fields and
methods (with little complexity).

• LongMethod (LongM): A class that has a method that
is overly long, in term of LOCs.

• LongParameterList (LPL): A class that has (at least) one
method with a too long list of parameters with respect
to the average number of parameters per methods in
the system.

• MessageChain (MsgC): A class that uses a long chain
of method invocations to realise (at least) one of its
functionality.

• RefusedParentBequest (RPB): A class that redefines
inherited method using empty bodies, thus breaking
polymorphism.

• SpaghettiCode (Spaghetti): A class declaring long
methods with no parameters and using global vari-
ables. These methods interact too much using complex
decision algorithms. This class does not exploit and
prevents the use of polymorphism and inheritance.

• SpeculativeGenerality (SG): A class that is defined as
abstract but that has very few children, which do not
make use of its methods.

• SwissArmyKnife (Swiss): A class whose methods can
be divided in disjunct set of many methods, thus
providing many different unrelated functionalities.

Per release, we obtain a list of detected antipatterns
for each Java class. We choose this subset of antipatterns
because (1) they are well-described by Brown [7], (2) they

Table I: Categories of source code changes [17].

Category Description

API

Changes that involve the declaration of classes
(e.g., class renaming and class API changes) and
the signature of methods (e.g., modifier changes,
method renaming, return type changes, changes of
the parameter list).

oState Changes that affect object states of classes (e.g.,
fields addition and deletion).

func Changes that affect the functionality of a class
(e.g., methods addition and deletion)

stmt Changes that modify executable statements (e.g.,
statements insertion and deletion)

cond Changes that alter condition expressions in control
structures and the modification of else-parts

appear frequently in the different releases of the systems
under analysis and (3) they are representative of design and
implementation problems with data, complexity, size, and
the features provided by Java classes. Moreover they allow
us to compare our findings with those of our previous study
[5].

D. Data Preparation

In this step, the fine-grained source code changes are
grouped and linked with the antipatterns. ChangeDistiller
currently supports more than 40 types of source code
changes that cover the majority of modifications to entities
of object oriented programming languages [13]. We group
these change types into five categories. Grouping them
facilitates the analysis of the contingency between different
types of changes and the interpretation of the results. The
different categories are shown in Table I together with a short
description of each category. Per Java class revision we count
the number of changes for each category. Per Java class we
compute the sum for each change type category over the Java
class revisions between two subsequent releases k and k+1.
Finally, for each Java class we add the number of antipatterns
detected in the Java class at release k. We did not normalize
the number of changes in classes by the number of lines of
code, because we wanted our results to be comparable to
previous studies. Furthermore, one of our previous studies
[5] has shown that size alone is not the dominating factor
affecting the change proneness of classes with antipatterns.

The resulting list contains for each release k a list of Java
classes with the number of detected instances of the twelve
antipatterns at release k plus the number of fine-grained
changes per change type category that occurred between the
two subsequent releases k and k+1. The analyses performed
on these data will be described in the next section.

III. EMPIRICAL STUDY

The goal of this empirical study is to investigate the
association between antipatterns and the change proneness
of Java classes. We performed the empirical study with 16
open-source systems from different domains, implemented
in Java and widely used in academic and industrial com-
munities. Table II shows an overview of the dataset. #Files



denotes the number of Java files in the last release, #Releases
denotes the number of releases analyzed, #SCC denotes
the number of fine-grained source code changes in the
given time period (Time) and #SCC’ denotes the number of
fine-grained source code changes without counting changes
performed in the comments and copyrights. In total, changes
due to comments and copyrights modifications account for
approximately 11% of all the changes (i.e., 64021 out of
585614). This high percentage highlights the necessity to
filter out changes related to comments and copyrights, in
order to avoid biasing the results.

Table II: Dataset used in our empirical study.

System #Files #Releases #SCC #SCC’ Time [M,Y]
argo 1716 9 97767 79414 Oc02-Mar09
hibernate2 494 10 26099 23638 Jan03-Mar11
hibernate3 970 20 37271 34440 Jun04-Mar11
eclipse.debug.core 188 12 7600 6555 May01-Mar11
eclipse.debug.ui 793 22 40551 37306 May01-Mar11
eclipse.jface 381 17 14072 11789 Sep02-Mar11
eclipse.jdt.debug 469 16 14983 13647 Jun01-Mar11
eclipse.team.core 172 6 2318 1790 Nov01-Mar11
eclipse.team.cvs.core 189 11 13070 11544 Nov01-Mar11
eclipse.team.ui 293 13 9787 8948 Nov01- Mar11
jabref 1996 30 41665 37983 Dec03-Oct11
mylyn 1288 17 67050 63601 Dec06-Jun09
rhino 184 8 14795 13693 May99-Aug07
rapidminer 2061 4 9899 9277 Oct09-Aug10
vuze 3265 29 119138 113570 Dec06-Apr10
xerces 710 20 69549 54398 Dec00-Dec12

Table III shows the number of antipatterns detected by
DECOR in the first and last release of the analyzed systems.
Basically, all systems contain instances of most of the 12
antipatterns. In particular, rapid miner and vuze contain the
largest number of antipatterns which is not surprising since
they also are the largest systems in our sample set. Accord-
ing to our numbers, the antipatterns LongMethod (LongM),
MessageChain (MsgC), and RefusedParentBequest (RPB)
occur most frequently while SpaghettiCode (Spaghetti),
SpeculatigeGenerality (SG), and SwissAmryKnife (Swiss)
occur less frequently. Overall, the frequency of antipatterns
and changes allows us to investigate the three research
questions stated in the Section I.

The raw data used to perform our analysis are available
on our web site.2 In the following, we state the hypotheses,
explain the analysis methods, and report on the results for
each research question.

A. Investigation of RQ1

The goal of RQ1 is to analyze the change-proneness
of Java classes affected by antipatterns, compared to the
change-proneness of classes not affected by antipatterns. We
address RQ1 by testing the following two null hypotheses:

• H1a: The proportion of classes changed at least once
between two releases is not different between classes

2http://swerl.tudelft.nl/twiki/pub/DanieleRomano/WebHome/
WCRE12rawData.zip

that are affected by antipatterns and classes not affected
by antipatterns.

• H1b: The distribution of SCC performed in classes
between two releases is not different for classes affected
by antipatterns and classes not affected by antipatterns.

1) Analysis Method: For investigating H1a we classify
the Java classes of each system and release k into change-
prone if there was at least one change in between two sub-
sequent releases (k and k+1). Otherwise they are classified
as not change-prone. This binary variable (we refer to it
as change-proneness(k,k+1)) denotes the dependent variable.
As independent variable we also use a binary variable that
denotes whether a Java class is affected by at least one
antipattern in a given release k. We refer to this variable
as antipatterns(k).

Next, we use the Fisher’s exact test [18] to test for
each release k of each system whether there is an associ-
ation between antipatterns(k) and change-proneness(k,k+1)
of classes. We then use the odds ratio (ORs) [18] to measure
the probability that a Java class will be changed between
two releases (k and k+1) if it is affected by at least one
antipattern in the release k. OR is defined as OR = p/(1−p)

q/(1−q)
and it measures the ratio of the odds p of an event occurring
in one group (i.e., experimental group) to the odds q of it
occurring in another group (i.e., control group). In this case,
the event is a change in a Java class, the experimental group
is the set of classes affected by at least one antipattern and
the control group is the set of classes not affected by any
antipattern. ORs equal to 1 indicate that a change can appear
with the same probability in both groups. ORs greater than
1 indicate that the change is more likely to appear in a class
affected by at least one antipattern. ORs less than 1 indicate
that classes not affected by antipatterns are more likely to
be changed.

Concerning H1b we use the Mann-Whitney test to analyze
for each release k whether there is a significant difference in
the distributions of #SCC(k,k+1) performed in Java classes
affected by antipatterns and in Java classes not affected by
any antipattern. We apply the Cliff’s Delta d effect size
[19] to measure the magnitude of the difference. Cliff’s
Delta estimates the probability that a value selected from
one group is greater than a value selected from the other
group. Cliff’s Delta ranges between +1 if all selected values
from one group are higher than the selected values in
the other group and -1 if the reverse is true. 0 expresses
two overlapping distributions. The effect size is considered
negligible for d < 0.147, small for 0.147 ≤ d < 0.33,
medium for 0.33 ≤ d < 0.47 and large for d ≥ 0.47
[19]. We chose the Mann-Whitney test and Cliff’s Delta
effect size because the values of the SCC per class are
non-normally distributed. Furthermore, our different levels
(small, medium, and large) facilitate the interpretation of
the results. The Cliff’s Delta effect size has been computed



Table III: Number of antipatterns detected with DECOR in the first and last releases of the analyzed systems.

System #Antisingleton #Blob #CDBSP #ComplexC #LazyC #LongM #LPL #MsgC #RPB #Spaghetti #SG #Swiss
argo 352-3 26-169 136-51 56-195 16-53 172-354 195-334 130-197 65-513 22-1 9-34 3-4
hibernate2 113-104 34-37 33-17 30-37 5-3 56-72 34-19 51-101 93-97 15-4 2-1 0-0
hibernate3 176-232 52-75 31-50 58-8 9-12 121-194 48-74 157-236 123-202 9-12 3-8 3-9
eclipse.debug.core 1-22 7-14 0-12 1-8 0-9 5-22 0-18 3-6 0-11 0-1 1-1 0-2
eclipse.debug.ui 18-146 13-70 0-70 11-50 0-22 30-176 25-41 6-53 6-73 3-8 2-24 0-7
eclipse.jface 8-25 7-22 6-32 5-13 6-22 22-60 19-45 22-34 5-14 0-2 7-21 0-2
eclipse.jdt.debug 17-44 26-27 1-74 30-33 8-42 68-78 37-40 78-80 80-82 3-3 1-2 1-1
eclipse.team.core 1-12 2-7 1-10 1-5 0-4 8-33 0-26 1-15 0-7 0-1 3-10 0-0
eclipse.team.cvs.core 9- 64 1-21 2-6 1-21 0-0 17-79 1-51 4-45 0-13 0-1 2-10 0-0
eclipse.team.ui 9-64 1-21 2-6 1-21 0-0 17-79 1-51 4-45 0-13 0-1 2-10 0-0
jabref 12-139 10-136 8-400 9-144 1-126 21-365 2-169 2-332 2-295 1-16 0-17 0-1
mylyn 4-70 43-101 61-174 43-83 2-16 132-300 43-66 98-135 34-165 2-0 12-35 1-1
rhino 16-18 5-11 4-18 9-19 4-9 11-33 9-8 15-51 3-7 0-0 0-2 0-1
rapidminer 11-19 130-161 145-203 152-156 10-15 450-568 214-270 583-674 781-1068 1-1 12-28 3-1
vuze 179-145 199-282 189-270 138-193 29-215 381-473 217-295 514-773 476-637 22-16 21-27 35-70
xerces 10-22 8-59 14-134 13-44 6-21 29-96 16-130 19-99 3-37 2-1 5-4 10-11

with the orddom package3 available for the R environment.4

2) Results: The odds ratios computed to test H1a are
summarized in Table IV. Table IV shows for each system
the total number of releases (#Releases) and the number
of releases that showed a p-value for the Fisher’s ex-
act test smaller than 0.01 and odds ratios greater than 1
(ORs>1). The results show that, except for three systems
(eclipse.team.cvs.core, jabref and rhino), in most of the
analyzed releases, Java classes affected by at least one
antipattern are more change-prone than other classes. In
total, for 190 out of 244 releases (≈82%), classes affected by
at least one antipattern are more change-prone. These results
allow us to reject H1a and accept the alternative hypothesis
that Java classes affected by antipatterns are more likely to
be changed than classes not affected by them.

Table IV: Total number of releases (#Releases) and number
of releases for which Fisher’s exact test and OR show a
significant association between change-proneness and an-
tipatterns in Java classes.

System #Releases Fisher p-value < 0.01 & OR >1
argo 9 9
hibernate2 10 10
hibernate3 20 19
eclipse.debug.core 12 8
eclipse.debug.ui 22 20
eclipse.jface 17 16
eclipse.jdt.debug 16 16
eclipse.team.core 6 4
eclipse.team.cvs.core 11 5
eclipse.team.ui 13 9
jabref 30 3
mylyn 17 17
rhino 8 2
rapidminer 4 4
vuze 29 29
xerces 20 19
Total 244 190

Table V shows the p-values of the Mann-Whitney tests
and values of the Cliff’s Delta d effect size for testing
H1b. Only in 18 releases (≈7%) there is no significant

3http://cran.r-project.org/web/packages/orddom/index.html
4http://www.r-project.org/

difference (Mann-Whitney p-value≥0.01) between the distri-
butions of SCC performed in classes affected by antipatterns
and in other classes. In the other 226 releases (≈93%)
the difference is significant (Mann-Whitney p-value<0.01).
Concerning the effect size we found that this difference
is small (0.147≤d<0.33) in 102 releases (≈42%), medium
(0.33≤d<0.47) in 26 releases (≈11%), large (0.47≤d) in
9 releases (≈4%) and negligible (d < 0.147) in 89 releases
(≈36%). Based on these results we reject H1b and accept the
alternative hypothesis that in most cases Java classes with
antipatterns undergo more changes during the next release
than classes that are free of antipatterns.

Based on these findings we can answer RQ1: Java classes
affected by antipatterns are more change-prone than other
classes. The results confirm the findings of our previous
study [5], this time taking into account the type of changes,
and filtering out non source code changes such as changes
to indentations and comments.

B. Investigation of RQ2

The goal of RQ2 is to test whether certain antipatterns
lead to more changes in Java classes than other antipatterns.
The basic idea is to assist software engineers in identifying
the most change-prone classes affected by antipatterns. They
should be resolved first. We address RQ2 by testing the
following null hypotheses:

• H2: The distribution of SCC is not different for classes
affected by different antipatterns.

1) Analysis Method: As dependent variable we use the
number of SCC performed in a class between two releases
#SCC(k,k+1). As independent variable we use a binary
variable for each antipattern that denotes whether a class
is affected by a particular antipattern. To test H2 we use the
Mann-Whitney test and Cliff’s Delta d effect size over all
releases for a system. We selected all releases per system
since some releases had too few data points (e.g., there
have been only 6 SCC between releases 1.6R3 and 1.6R4
of Rhino). The orddom package used to compute Cliff’s
Delta d is not optimized for very big data sets. Therefore, in



Table V: p-values of the Mann-Whitney tests and Cliff’s Delta d showing the magnitude of the difference between the
distribution of SCC in classes affected and not affected by antipatterns.

Mann-Whitney p-value<0.01 Mann-Whitney p-value≥0.01
System #Releases 0.47≤d 0.33≤d<0.47 0.147≤d<0.33 d≤0.147
argo 9 0 1 6 2 0
hibernate2 10 0 1 6 3 0
hibernate3 20 0 3 7 10 0
eclipse.debug.core 12 4 2 4 1 1
eclipse.debug.ui 22 0 0 14 8 0
eclipse.jface 17 0 0 12 4 1
eclipse.jdt.debug 16 0 1 8 5 2
eclipse.team.core 6 0 1 3 0 2
eclipse.team.cvs.core 11 1 3 4 3 0
eclipse.team.ui 13 1 4 3 1 4
jabref 30 0 3 11 16 0
mylyn 17 0 2 9 6 0
rhino 8 2 0 0 0 6
rapidminer 4 0 0 0 4 0
vuze 29 0 2 7 20 0
xerces 20 1 3 8 6 2
total 244 9 26 102 89 18

cases of systems with more than 5000 data points (i.e., more
than 5000 classes experiencing changes over the revision
history), we randomly sampled 5000 data points 30 times
and computed the average of the obtained Cliff’s Delta
values. This sampling allows us to compute Cliff’s Delta
values for each system with a confidence level of 99%
and a confidence interval of 0.004; which is a very precise
estimation.

2) Results: Table VI shows the values for Cliff’s Delta
d effect size for which the p-value of the Mann-Whitney is
significant (p-value<0.01). NA denotes p-values for Mann-
Whitney greater than 0.01 and consequently Cliff’s Delta is
not computed.

The results of the Mann-Whitney tests show that, except
for the LazyClass and SpeculativeGenerality (SG), the distri-
butions of SCC performed in classes affected by a specific
antipattern are different from the distribution of SCC per-
formed in classes not affected by that antipattern. According
to the median values for Cliff’s Delta shown in the last row
of Table VI, this difference is large for SwissArmyKnife
(Swiss), medium for 2 antipatterns (0.33≤d<0.47), small
for 5 antipatterns (0.147≤d<0.33) and negligible for 4
antipatterns. Note, that for classes affected by LazyClass
and SG the Mann-Whitney test was significant only in 4
and respectively 7 systems.

Looking at the values in bold we can see that classes
affected by the ComplexClass (ComplexC), SpaghettiCode
(Spaghetti) and SwissArmyKnife (Swiss) antipatterns are
more change-prone than classes affected by any other an-
tipattern. More specifically, in 8 systems out of 16 the
Cliff’s Delta effect size is highest for classes affected by
SwissArmyKnife. In 4 systems the Cliff’s Delta effect size
is higher for classes affected by ComplexClass. In the other
3 systems the highest effect size is for classes affected by
SpaghettiCode. Only in one system, namely eclipse.jface, the
Antisingleton antipattern shows the highest value for Cliff’s
Delta.

Based on these results we reject H2 and we conclude that
among all classes the classes affected by the ComplexClass,
SpaghettiCode, and SwissArmyKnife antipatterns are more
change-prone. These results detail our previous findings in
[5] by highlighting three antipatterns that are more change-
prone than the other antipatterns. Moreover, the new findings
allow us to advice software engineers to focus on detecting
instances of these three change-prone antipatterns and fix
them first.

C. Investigation of RQ3

To address RQ3, we analyze the relationship between
different antipatterns and different types of changes. The
goal is to further assist software engineers by verifying
whether a particular type of changes is more likely to
be performed in classes affected by a specific antipattern.
This knowledge can help engineers to avoid or fix certain
antipatterns leading to changes that impact large parts of
the rest of a software system, such as changes in the method
declarations of a class that exposes a public API. We answer
RQ3 by testing the following null hypothesis:

• H3: The distributions of different types of SCC per-
formed in classes affected by different antipatterns are
not different.

1) Analysis Method: To test H3 we categorize the
changes mined with ChangeDistiller in five different cat-
egories as listed in Table I. As dependent variables we
use the change type categories representing the number of
SCC that fall in each category. As for H2, the independent
variables are the set of binary variables that denote whether
a class is affected by a specific antipattern or not. We test
the difference in the distributions of SCC per category using
the Mann-Whitney test and compute the magnitude of the
difference with the Cliff’s Delta d effect size. In order to
have enough data about each change type category we use
the data from all systems as input for this analysis. Similar
to H2, we use the random sampling approach for computing



Table VI: Cliff’s Delta d effect sizes of cases for which Mann-Whitney shows a significant difference (p-value<0.01) or NA
otherwise. Values in bold denote the largest difference per system. For the underlined systems we applied random sampling.

System #AS #Blob #CDBSP #ComplexC #LazyC #LongM #LPL #MsgC #RPB #Spaghetti #SG #Swiss
argo 0.311 0.098 0.331 0.226 -0.012 0.192 0.148 0.248 0.035 0.354 0.030 0.528
hibernate2 0.143 0.112 0.193 0.500 NA 0.149 0.347 0.250 -0.032 0.262 NA 0.654
hibernate3 0.171 0.086 0.064 0.386 -0.110 -0.172 0.169 0.170 0.016 0.191 NA 0.662
eclipse.debug.core 0.553 0.352 0.419 0.889 NA 0.544 0.691 0.289 0.435 NA 0.298 0.650
eclipse.debug.ui 0.169 0.299 0.150 0.454 0.147 0.231 0.169 0.227 NA 0.377 0.009 0.514
eclipse.jface 0.461 NA NA 0.411 NA 0.266 NA 0.385 NA NA NA NA
eclipse.jdt.debug 0.277 0.182 0.078 0.485 0.103 0.250 0.295 0.137 0.051 0.361 NA 0.919
eclipse.team.core 0.422 0.433 NA 0.581 NA 0.33 0.107 0.315 NA NA 0.373 NA
eclipse.team.cvs.core 0.026 0.374 0.085 0.723 NA 0.331 0.172 0.329 NA NA NA NA
eclipse.team.ui 0.290 0.293 0.212 0.395 NA 0.265 0.163 0.187 NA 0.642 0.183 NA
jabref 0.089 0.001 0.019 0.094 NA 0.072 0.044 0.042 -0.006 0.356 NA 0.966
mylyn -0.020 0.150 0.177 0.388 NA 0.192 0.232 0.228 0.063 NA NA NA
rhino 0.276 NA 0.393 0.119 NA 0.067 0.025 0.100 NA 0.928 NA NA
rapidminer 0.051 0.060 -0.001 0.141 NA 0.051 0.080 0.051 -0.002 NA NA 0.600
vuze 0.151 0.076 0.079 0.211 NA 0.121 0.106 0.140 -0.021 0.308 0.028 0.213
xerces 0.302 0.104 0.044 0.541 NA 0.269 0.327 0.122 0.036 0.153 0.307 0.565
Median 0.223 0.131 0.117 0.403 0.045 0.211 0.169 0.207 0.025 0.355 0.183 0.625

Cliff’s Delta and we report the mean effect size of the 30
random samples.

2) Results: Table VII lists the results of this analysis.
Values in bold denotes differences that are at least small ac-
cording to Cliff’s Delta. They show that changes in the class
and methods declaration (API) are more likely to appear in
classes affected by the ComplexClass, SpaghettiCode and
SwissArmKnife antipatterns. Changes in the functionalities
(func) are likely in classes affected by the ComplexClass
and SpaghettiCode antipatterns. Changes in the execution
statements (stmt) are likely to appear in classes affected by
the Antisingleton, ComplexClass, SpaghettiCode and Swis-
sArmyKnife antipatterns. Finally, changes in the condition
expressions and else-parts (cond) are more frequent in
classes affected by the SpaghettiCode antipattern. Based on
these results we reject H3 and conclude that classes affected
by different antipatterns undergo different types of changes.

D. Manual Inspection

To further highlight the relationship between antipatterns
and change-proneness we manually inspected several classes
affected by antipatterns that have been resolved. For these
classes we analyzed the number of changes before and after
the removal of the antipatterns. The analysis clearly shows
that when classes are affected by an antipattern they undergo
a considerably higher number of changes. For instance,
the class org.apache.xerces.StandardParserConfiguration
from the Xerces system. This class was affected by
the ComplexClass antipattern until the release 2.0.2.
Before release 2.0.2, the class underwent on average 64.5
changes per release. The average number of changes
decreased to 5.2 after the antipattern was removed.
Furthermore, the average number of API changes decreased
from 2 to 0.07. As another example, consider the
org.eclipse.debug.ui.views.memory.AddMemoryBlockAction
class from the eclipse.debug.ui system. This class was
affected by the SpaghettiCode antipattern until the release
3.2. The average number of changes decreased from 79.83

to 1.5 after the release 3.2. Moreover the average number
of cond changes decreased from 2.67 to 0.1.

E. Implications of Results

In summary, we see two main implications of our results
that concern software engineers and researchers. Concerning
the researcher, our results provide a deeper insight into
the effects of antipatterns on the change-proneness of Java
classes. First, we confirmed the results from our previous
study [5] but this time taking into account the type of
changes (see RQ1). Second, we identified three antipatterns,
namely ComplexClass, SpaghettiCode and SwissArmyKnife
that lead to change-prone classes (see RQ2). Third and most
of all, we showed that certain antipatterns lead to certain
types of changes (see RQ3). This helps to focus our research
on a sub-set of antipatterns, namely the most change-prone
ones.

Regarding the software engineer, the results of our study
have several implications. In particular, the results for RQ2
and RQ3 show that software engineers should focus on
detecting and resolving the three antipatterns ComplexClass,
SpaghettiCode and SwissArmyKnife. Classes affected by
these antipatterns turned out to be the most change-prone
ones, therefore resolving instances of these antipatterns helps
to prevent changes in their APIs. In particular, because API
changes can have a significant impact on the implementation
of the other parts of a software system therefore should be
prevented.

For instance, consider the scenario in which APIs are
made available through web services. The responsible soft-
ware engineers want to assure the robustness of these
classes to minimize the possibility of breaking the clients
of the web services. Based on the results of our study they
can use DECOR to detect instances of the ComplexClass,
SpaghettiCode and SwissArmyKnife antipatterns in the set of
API classes. These are the antipatterns they should resolve
first in order to reduce the probability that APIs are changed
and, hence, that clients are broken.



Table VII: Cliff’s Delta d effect sizes of cases for which Mann-Whitney shows a significant difference (p-value<0.01) or
NA otherwise. Values in bold denote an effect size that is at least small (d > 0.147).

Group #Antisingleton #Blob #CDBSP #ComplexC #LazyC #LongM #LPL #MsgC #RPB #Spaghetti #SG #Swiss
API 0.131 0.077 0.038 0.213 -0.043 0.073 0.095 0.075 0.001 0.207 0.029 0.150
oState 0.080 0.048 0.031 0.144 NA 0.042 0.060 0.045 -0.001 0.126 -0.001 0.109
func 0.084 0.057 0.019 0.153 -0.040 0.053 0.076 0.054 -0.002 0.149 NA 0.142
stmt 0.157 0.077 0.051 0.252 NA 0.140 0.146 0.120 0.100 0.308 0.007 0.245
cond 0.080 0.035 0.028 0.138 -0.020 0.059 0.081 0.058 0.001 0.178 0.100 0.136

IV. THREATS TO VALIDITY

This section discusses the threats to validity that can affect
the results of our empirical study.

Threats to construct validity concern the relationship
between theory and observation. In our study, this threat
can be due to the fact that we considered SCC performed
in between two subsequent releases. However, the effects
of antipatterns can manifest themselves after the next im-
mediate release whenever the class affected by antipatterns
needs to be changed. We mitigated this threat by testing all
the hypotheses taking into account all the SCC performed
after a release for which we obtained similar results.

Threats to internal validity concern factors that may affect
an independent variable. In our study, both the independent
and dependent variables are computed using deterministic
algorithms (implemented in ChangeDistiller and DECOR)
delivering always the same results.

Threats to conclusion validity concern the relationship
between the treatment and the outcome. To mitigate these
threats our conclusions have been supported by proper sta-
tistical tests, in particular by non-parametric tests that do not
require any assumption on the underlying data distribution.

Threats to external validity concern the generalization of
our findings. Every result obtained through empirical studies
is threatened by the bias of their datasets [20]. To mitigate
these threats we tested our hypotheses over 16 open-source
systems of different size and from different domains.

Threats to reliability validity concern the possibility of
replicating our study and obtaining consistent results. We
mitigated these threats by providing all the details necessary
to replicate our empirical study. The systems under analysis
are open-source and the source code repositories are publicly
available. Moreover, we published on-line the raw data to
allow other researches to replicate our study and to test other
hypotheses on our dataset.

V. RELATED WORK

In this section, we discuss the related literature on antipat-
terns in relation to software evolution.

Code Smells/Antipatterns Detection Techniques: The
first book on “antipatterns” in object-oriented development
was written in 1995 by Webster [21]. The book made several
contributions on conceptual, political, coding, and quality-
assurance problems. Beck [22] defined 22 code smells, sug-
gesting where developers should apply refactorings. Mäntylä

[23] and Wake [24] proposed classifications for code smells.
Brown et al. [7] described 40 antipatterns, including the
Blob, the Spaghetti Code, and the MessageChain. These
books provide in-depth views on heuristics, code smells, and
antipatterns, and are the basis of all approaches to detect
(semi-)automatically code smells and antipatterns, such as
DECOR [25] used in this study.

Several approaches to specify and detect code smells and
antipatterns exist in the literature. They range from manual
approaches, based on inspection techniques [26], to metric-
based heuristics [27], [28], [29], using rules and thresholds
on various metrics or Bayesian belief networks [30]. Some
approaches for complex software analysis use visualization
[31], [32]. Although visualization is sometimes considered
as an interesting compromise between fully automatic de-
tection techniques, which are efficient but loose track of the
context, and manual inspections, which are slow and subjec-
tive [33], visualization requires human expertise and is thus
time-consuming. Sometimes, visualization techniques are
used to present the results of automatic detection approaches
[34], [35]. This previous work significantly contributed to
the specification and detection of antipatterns. The approach
used in this study, DECOR, builds on this previous work.

Code Smells/Antipatterns and Software Evolution:
Deligiannis et al. [36], [37] proposed the first quantitative
study of the relation between antipatterns and software
quality. They performed a controlled experiments with 20
students on two software systems to understand the impact
of Blobs on the understandability and maintainability of
software systems. The results of their study suggested that
Blob classes considerably affect the evolution of design
structures, in particular the use of inheritance. Du Bois
et al. [38] showed that the decomposition of Blob classes
into a number of collaborating classes using refactorings
can improve comprehension. Abbès et al. [39] conducted
three experiments, with 24 subjects each, to investigate
whether the occurrence of antipatterns does affect the under-
standability of systems by developers during comprehension
and maintenance tasks. They concluded that although the
occurrence of one antipattern does not significantly decrease
developers’ performance, a combination of two antipatterns
impedes significantly developers’ performance during com-
prehension and maintenance tasks.

Li et al. [40] investigated the relationship between the
probability of a class to be faulty and some antipatterns



based on three versions of Eclipse and showed that classes
with antipatterns Blob, Shotgun Surgery, and Long Method
have a higher probability to be faulty than other classes.
Olbrich et al. [41], analyzed the historical data of Lucene
and Xerces over several years and concluded that classes
with the antipatterns Blob and Shotgun Surgery have a higher
change frequency than other classes; with Blob classes
featuring more changes. However, they did not investigated
the kinds of changes performed on the antipatterns.

Using Azureus and Eclipse, we investigated the impact
of code smells on the change-proneness of classes and
showed that in general, the likelihood for classes with
code smells to change is very high [10]. In [5] we also
investigated the relation between the presence of antipatterns
and the change- and fault-proneness of classes. We found
that classes participating in antipatterns are significantly
more likely to be subject to changes and to be involved in
fault-fixing changes than other classes. Furthermore, we also
investigated the kind of changes, namely structural and non-
structural changes, experienced by classes with antipatterns.
Structural changes are changes that alter a class interface
while non-structural changes are changes to method bodies.
We found that in general structural changes are more likely
to occur in classes participating in antipatterns. The main
difference with this work is that we detailed the changes into
40 types of source code changes classified in 5 change type
categories. This detailed information about changes allowed
us to analyze which antipatterns lead to which types of
source code changes. Also, this work is performed with more
systems, namely 16, compared to our previous work which
was done with only 4 systems.

VI. CONCLUSION AND FUTURE WORK

Antipatterns have been defined to denote “poor” solutions
to design and implementation problems. Previous studies
have shown that classes affected by antipatterns are more
change-prone than other classes. In this paper we provide
a deeper insight into which antipatterns lead to which
types of changes in Java classes. We analyzed the change-
proneness of these classes taking into account 40 types of
fine-grained source code changes (SCC) extracted from the
version control repositories of 16 Java open-source systems.
Our results show that:

• Classes affected by antipatterns change more frequently
along the evolution of a system, confirming our previ-
ous findings (see RQ1).

• Classes affected by the ComplexClass, SpaghettiCode
and SwissArmyKnife antipatterns are more likely to be
changed than classes affected by other antipatterns (see
RQ2).

• Certain antipatterns lead to certain types of source code
changes, such as API changes are more likely to appear
in classes affected by the ComplexClass, SpaghettiCode
and SwissArmyKnife antipatterns (see RQ3).

Our results have several implications on software en-
gineers and researchers. Regarding researchers our results
suggest to focus our efforts on understanding a subset of
antipatterns that lead to change-prone classes or changes
with a high impact on the other parts of a software system.
Concerning software engineers, our results provide strong
evidence to use antipatterns detection tools, such as DECOR,
to detect and resolve ComplexClass, SpaghettiCode and
SwissArmyKnife antipatterns. Resolving them shows to be
beneficial in terms of preventing source code changes, such
as API changes, that impact other parts of a system.

In future work, we plan to perform a more extended
qualitative analysis of antipatterns. We also plan to enlarge
our data set and analyze industrial software systems. Another
direction of future work is to analyze the types of changes
performed when antipatterns are introduced and when they
are resolved. These analysis are needed to further estimate
the development and maintenance costs caused by antipat-
terns.
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