
Towards Understanding How Developers Spend
Their Effort During Maintenance Activities

Zéphyrin Soh1,3, Foutse Khomh2, Yann-Gaël Guéhéneuc1, Giuliano Antoniol3
1Ptidej Team, 2SWAT Lab, 3Soccer Lab

DGIGL, École Polytechnique de Montréal, Canada
Email: {zephyrin.soh, foutse.khomh, yann-gael.gueheneuc}@polymtl.ca, antoniol@ieee.org

Abstract—For many years, researchers and practitioners have
strived to assess and improve the productivity of software
development teams. One key step toward achieving this goal is
the understanding of factors affecting the efficiency of developers
performing development and maintenance activities. In this paper,
we aim to understand how developers’ spend their effort during
maintenance activities and study the factors affecting developers’
effort. By knowing how developers’ spend their effort and
which factors affect their effort, software organisations will be
able to take the necessary steps to improve the efficiency of
their developers, for example, by providing them with adequate
program comprehension tools. For this preliminary study, we
mine 2,408 developers’ interaction histories and 3,395 patches
from four open-source software projects (ECF, Mylyn, PDE,
Eclipse Platform). We observe that usually, the complexity of
the implementation required for a task does not reflect the effort
spent by developers on the task. Most of the effort appears to be
spent during the exploration of the program. In average, 62%
of files explored during the implementation of a task are not
significantly relevant to the final implementation of the task.
Developers who explore a large number of files that are not
significantly relevant to the solution to their task take a longer
time to perform the task. We expect that the results of this study
will pave the way for better program comprehension tools to
guide developers during their explorations of software systems.

Index Terms—Maintenance task, developers’ effort, interaction
history, patch, change complexity.

I. INTRODUCTION

Over the past decades, maintenance has become the most
time and resource consuming activity in the life cycle of
software systems. It is estimated that 80% of software develop-
ment costs are spent on maintenance [12]. When performing a
maintenance task, developers spend a certain effort exploring
the program, finding relevant entities, understanding and
making changes to the program [8]. The cost of each of these
developers’ activities has a direct impact on the overall cost
of the maintenance of software systems.

Despite the large body of work on software productivity [1],
[3], [11] there are very few studies that empirically investigated
how developers spent their effort during software maintenance
activities. The relationship between the severity of a task, the
complexity of the implementation required for a task and the
effort required to understand and perform the task has yet to be
studied in details. To perform such a study, one needs detailed
information about file editing activities occurring in developers’
workspaces. A tool such as Mylyn which records and monitors
developer’s programming activities, like the selection and the

editing of files, provides the opportunity for such a study.
Indeed, the effort spent by a developer when performing a
task can be estimated from interaction logs recorded with
Mylyn (i.e., the developer’s interaction with program entities).

After performing a task, developers commit their changes in
a repository or provide them as a patch in a code review system
(e.g., Gerrit) or an issue tracking system (e.g., Bugzilla). The
changes provided as a commit or patch can be used to know
how a task was finally addressed i.e., the entities used and the
modifications performed on these entities. These changes are
the result of the effort spent when performing a task.

In this paper, we analyze developers’ interaction logs (i.e.,
logs recording developers’ selection and editing of files) from
four open-source projects, ECF, Mylyn, PDE, Platform. We
aim to (1) understand how developers spend their effort when
finding the solution to a task and (2) identify some of the factors
affecting developers’ effort. In fact, practice and common sense
show that developers are not equal when facing a software
maintenance task. Some developers perform their tasks quickly,
spending less effort, while others perform their tasks slowly
and, worse, with more effort. If these differences are due to
factors which can be influenced through tooling, then we can
identify these factors and propose such tooling. Of course, we
expect that developers’ differences are partly due to individual
differences and partly due to tooling.

To achieve the aforementioned goal, we investigate the
following research questions:

RQ1: Does the complexity of the implementation of a task
reflect developer’s effort?
The effort spent by some developers can be disproportion-
ate to their results. We measure developers’ effort with
the time spend performing the task and the Cyclomatic
complexity of their exploration graph (i.e., how they
move from a program entity to another). We consider
the changes in a patch (i.e., the implementation of a task)
as the result of a developers’ effort. We match interaction
history logs with patches (i.e., identify the patch that is the
implementation of a given interaction history). We find
that the effort spent by a developer when performing a task
is not correlated to the complexity of the implementation
of the task (i.e., the patch).

RQ2: How do developers spend their effort? What are the
factors affecting developers’ effort?

The files in a patch are the significant relevant files
because they are changed to perform a task (e.g., fixing a
bug). The files in the interaction logs are files explored
by developers. The files that are explored, but not
changed, are the additional files that developers used when
performing their tasks. We use the similarity between the
matched interactions and patches to identify the number
of additional files used by developers. We find that when
performing a task, developers use on average about 62%
of additional files, and that developers spend part of
their effort exploring additional files. We also find that
while the bug severity indicates the complexity of the
implementation of the task (i.e., the patch), the impact of
bug severity on developers’ effort is project dependant.
Finally, our study reveals that developers’ experience does
not reduce their effort; we observe that when a program
evolves, developers perform more tasks on the parts (of
the program) where they have no experience.

The paper is organized as follow: Section II describes
the data that we use in this paper. Sections III and IV
respectively address our two research questions RQ1 and RQ2
by describing their motivations, approaches, and results. After
presenting previous work in Section V, we discuss the threats
to the validity of our study in Section VI. Section VII concludes
the paper and outlines some avenues for future work.

II. DATA COLLECTION AND PROCESSING

We download the bug reports of the subjects projects, then
we parse them and extract the interactions histories and patches
ID. There are some bug reports without interaction histories
or patches. Interactions and patches are associated to a bug
report as attachments. The interaction histories attached to the
subjects projects are Mylyn’s logs. In this section, we give
some background information about the Mylyn plugin, then
we explain how we collect and process the data.

A. Backgound

Mylyn is an Eclipse plugin that captures developers’ interac-
tions with program entities when performing a task [7]. Each
developers’ action on a program entity is recorded as an event.
The list of interaction events triggered by a developer form
an interaction history. Mylyn records the interaction history
when the developers activate the working task. When the
developers’ deactivate the working task, Mylyn stops gathering
the interaction history. For the sake of simplicity, we use
“interaction” instead of “interaction history” in the remainder
of the paper.

B. Interaction

To obtain interactions data, we download the bug reports’
attachments with the name “mylyn-context.zip", which is the
default name given by Mylyn to interactions. We parse the
interactions to extract the program entities on which the events
occurred and the time spent on each entity [17]. A program
entity can be a Java entity (file, class, field, method) or a
resource (other project entities). For Java entities, we consider

Table I: Number of interactions and patches

Interaction # Patch Total attachment
ECF 60 83 143
Mylyn 1,644 1,631 3,275
PDE 373 683 1,056
Platform 331 998 1,329
Total 2,408 3,395 5,803

that all the actions that occurred on an entity (class, field,
method) in a Java file are the actions on the Java file. We
aggregate the actions at file level because we match the
interaction data with patch data that contains only changes
at file level. In this paper, we use the word “file” to name
the Java files and resource entities involved in an interaction.
Table I presents the number of interactions per project. Without
distinguishing among projects, an interaction involves on
average 46.87 files (standard deviation 220.05).

C. Patch

We download bug reports’ attachments with the attribute
“ispatch” (of the tag “attachment”) equal to one, that identify
the patch. A patch can involve many files. For each file involved
in a patch, the changes made in the file can be grouped into
many deltas. A delta contains a snippet code before (old code)
and after (new code) the change, respectively called original
chunk and revised chunk. We use the DiffUtils1 library to parse
the patches and extract the files involved in the patch and the
changes for each file.

We observe that 26 attachments are not in the patch unified
diff format (i.e., we are not able to distinguish the source
code before and after the changes) and 11 attachments did
not contain the modifications date of the files. Yet we need
both the modification dates in the patch and the patches in
unified diff format to match them with the interactions, and
to compute some patch metrics. Therefore, we remove these
attachments from the patch data. We finally retain 3,395 patches
as shown in Table I. Without distinguishing among projects,
a patch involves 6.32 files (standard deviation = 18.57). The
raw interactions and patches can be downloaded from Eclipse
Bugzilla2, and the processed data that we used in this paper
can be found online3.

D. Interaction and Patch

In general, the number of files involved in interactions
and patches (the mean is 46.87 for interaction vs. 6.32 for
patch) indicates that developers use/explore more files (in
the interaction) than they modify (in the patch) as expected.
Figure 1 presents the comparison between the files involved in
the interactions (Figure 1a) and patches (Figure 1b) for each
project. We plot the logarithm of the number of files to make
plots readable. The explored files (in the interaction) that are
not modified (in the patch) can be seen as (1) files that are
useful to understand the program or (2) accidental files that
indicate some disorientation when developers are looking for

1http://code.google.com/p/java-diff-utils/
2https://bugs.eclipse.org/bugs/
3http://www.ptidej.net/download/experiments/wcre13b/

(a) Files in interactions (b) Files in patches

Figure 1: Distribution of logarithm of the number of files
involved in the interactions and patches

the files that must be modified. We suspect that the exploration
of these additional files may affect developers’ effort.

III. DOES THE COMPLEXITY OF THE IMPLEMENTATION OF A
TASK REFLECT DEVELOPER’S EFFORT?

Developers perform many change requests daily. To imple-
ment a change request, a developer must change the file(s).
In this research question, we want to verify if the complexity
of the implementation of a change request usually reflects the
effort spent by developers when performing the task.

A. Motivation

Although one expects that complex implementations would
required more effort from developers, sometimes, a simple
implementation can also require a lot of effort from a developer.
In general, developers are not equal when facing a software
maintenance task. Even if some developers are not always
efficient (depending on the task and project), they may mostly
perform their tasks quickly, spending less effort, while others
may mostly perform their tasks slowly and, worse, with more
effort. By understanding if this difference in performance
between developers is related to the complexity of tasks,
software organizations would be able to better assign tasks to
their developers in order to improve the overall productivity
of their development teams.

To study whether the complexity of the implementation
required by a change request reflects developer’s effort, we
compute a set of metrics to measure developers’ effort and
the complexity of the implementation of tasks (Section III-B).
We discuss the approach in Section III-C and Section III-D
discusses the obtained results.

B. Metrics

1) Developers’ Effort: We use the interaction data and
compute two metrics to assess a developers’ effort.
• Time: The time spent when performing a task.
We sort interaction events by StartDate and compute
the time spent which is the sum of the duration on
each interaction event (See Section II-A). We use the
StartDate and EndDate of an event to compute the
duration of the event after removing interruptions and
overlaps time. In fact, we can have both interruptions and

overlaps between events i.e., for the interaction events
Event1 and Event2 where Event1 occurs before Event2
(StartDate(Event1) < StartDate(Event2)), we may
have StartDate(Event2) − EndDate(Event1) 6= 0
(interruption) or EndDate(Event1) >
StartDate(Event2) (overlap). We assume that
the more time developers take to understand and perform
changes, the more they spent effort.
• Cyclomatic complexity: The Cyclomatic complexity of

a developer’s interaction is a bridge to assess his effort. We
use the cyclomatic complexity to quantify the complexity
of the developer’s interaction. Thus, we consider an
interaction as an exploration graph i.e., a graph in which
a node is a file and an edge is an exploration from one file
to another. Because developers can move back and forth
between files when exploring a program, an exploration
graph is a directed pseudograph, i.e., both graph loops
and multiple edges are permitted4. We use the JGraphT5

library to compute an interaction as a directed pseudograph.
The Cyclomatic complexity is defined by the following
formula: Cyclomatic = m− n+ k
where m is the number of edges, n is the number of
vertex, and k is the number of connected components. In
an exploration graph, the number of connected components
is one (k = 1) because the files involved in the interaction
are explored/connected one to another i.e., when the
developers move from one node (file), they always go
to another node (file). We think that the more is the
Cyclomatic complexity of the exploration graph, the more
is the complexity of the interaction.

2) Complexity of Developers’ Implementations: We use the
patches to compute two metrics that measure the complexity
of the implementation of the tasks:
• Entropy: The patch entropy measures how much the
changes are scarttered/expanded between files. We use
the number of files involved in a patch and the number
of inserted and deleted lines of code per file to compute
the Shannon entropy of the patch. The Shannon entropy

is defined by: Hn(P) = −
n∑

k=0

(pk ∗ logn pk)

where P is a patch; pk ≥ 0,∀k ∈ 1, 2, ..., n and
n∑

k=0

pk = 1. In the formula, n is the number of files

involved in the patch and pk is the probability of the
file k to be modified i.e., the number of modified lines of
code in the file k divided by the total number of modified
lines of code in all files involved in the patch. When
all the files have the same probability to be modified
(pk = 1

n ,∀k ∈ 1, 2, ..., n), there is a maximum entropy.
When only one file i is modified (pi = 1), there is minimal
entropy. The higher the entropy, the more the changes are
scattered between files.
• Change distance: Change distance measures how much

is the difference between the old source code (before the

4http://mathworld.wolfram.com/Pseudograph.html
5http://jgrapht.org/

change) and the new source code (after the change). We
define the change distance as the Levenshtein distance
between the old source code and the new source code.
As the changes on a file can be grouped into deltas, we
avoid the mismatch mapping between old code and new
code by computing the change distance for each delta. To
address the confounding effect of the length of the old
and new source code, we normalize the (delta’s) change
distance between zero and one by dividing the distance by
the maximum length of old and new source code in the
delta. The value zero of the normalized distance means
that there is no change (i.e., old code = new code) and
the value one means that there is a complete difference.
We define the change distance of a file as the mean of the
change distance for all the file’s deltas. Then we define
the change distance of a patch as the mean of the change
distance for all the files involved in the patch. The greater
is the difference between the old and the new code (i.e.,
more change distance), the more the change is complex.

When computing the complexity of implementations, we
remove the blank lines and keep the comments. We think
that the comments in the patch cannot affect the matching
between developers’ effort and their implementations. In
fact, when developers comment their code, they spend some
time. However, when we follow the approach explained in
Section III-C using the data with comments and without
comments, the removal of the comments did not affect our
results.

C. Approach

To answer our research question (Does the complexity of
the implementation of a task reflect developer’s effort?), we
process in two steps. First, we match/link the interactions to
the patches. Second, we assess the relation between developers’
effort (extracted from interactions) and the complexity of the
implementations (extracted from patches).

Interaction and Patch Matching: A bug report sometimes
has only interactions, only patches, or both. In the following, we
consider a bug report to which are attached a set of interactions
I (|I| = m is the number of attached interactions) and a set
of patches P (|P| = n is the number of attached patches). We
can have m ≤ n or vice versa, m = 0 and–or n = 0. The
matching consists, for each interaction I ∈ I , to find the patch
P ∈ P that is the result of the interaction I . The matching is
possible if and only if m 6= 0 and n 6= 0 (even if m = n or
m 6= n). An interaction attached to a bug report (for a given
project) cannot be matched to a patch attached to another bug
report (or another project). Therefore, we look at the possible
matching for each pair of interaction/patch attached to the
same bug report. For the bug report considered above, we
should have m× n interaction/patch pairs to investigate. Since
multiple developers can attach interactions and patches to the
same bug report, we reduce the number of interaction/patch
combination by considering only the interaction(s) and the
patch(es) attached by the same developer. We also use the
attachment date (in the Bugzilla’s date format i.e., date, hour,

minute, and timezone) to match the interactions and patches.
In fact, an interaction or a patch is attached to a bug report
at a specific date. We assume that an interaction is matched
to a patch (i.e., the patch is the result of the corresponding
interaction) if and only if both are attached to the same bug
report, by the same developer at the same date and time.

Using the above criteria to match interactions to patches,
we face the unbalanced matching problem. An unbalanced
matching is when developers modify files without interacting
with them e.g., through refactoring. In fact, a refactoring does
not require much effort (in the interaction) to propagate changes,
but the propagation of the changes is materialized in the patch.
We use the number of files involved in both the interaction
and the patch to avoid unbalanced matchings.

Consider that we use the above criteria to match the
interaction I with the patch P . The notation f ∈ I means
that the interaction I involves the file f . The same notation is
used for the patch (f ∈ P). An unbalanced matching appears
in the following cases:
• P 6⊆ I i.e., ∃f ∈ P, f 6∈ I: There are files in the

patch that were not involved in the developer’s interaction.
This situation may be due to refactorings performed by
the developer, or to changes that were not collected
by the Mylyn Plugin (e.g., changes performed between
interruption periods when the Mylyn Plugin was inactive).
• |P | ∩ |I| = ∅: There are no common files between the
interaction and the patch. This situation may be caused
by developers performing the changes appearing in the
patch, when the Mylyn Plugin was inactive.

To match an interaction to a patch and avoid unbalanced
matching, we can also use the working dates in the interaction
and the modifications dates in the patch. With these dates, we
can make sure to consider only patches that were created after
the developer completed the task. However, some developers
may collect their interactions when performing the task. But
they can create the patch (containing all the performed changes)
before disabling the task or vice versa (i.e., they disable
the task before they create the patch). In both cases, the
developers perform the task while collecting their interaction.
A few differences will occur between the end of interaction
date and the modification date in the patch. Therefore, we
cannot automatically use the working dates and modifications
dates to match interactions to patches. We use a sample of
interaction/patch matchings to manually validate the relation
between the working dates and the modifications dates. We
choose our sample size to achieve a 95%±10 confidence level.
The sample was proportionally distributed among projects,
except for ECF project where instead of two interaction/patch
matchings (due to the small number of matchings), we used
half of all the ECF matchings.

Unbalanced matchings are the matchings where the patch is
not (or is the part of) the result of the corresponding interaction.
Because we want to compare developers’ effort (interaction)
and the complexity of the implementation of tasks (patch),
we remove the unbalanced matchings from our data before
performing the comparison.

Table II: Number of interaction/patch pairs and matching

Raw interaction/patch pairs #Matching#Interaction #Patch #Pairs
ECF 31 38 53 17 (2)
Mylyn 946 1,123 2,634 785 (122)
PDE 212 272 397 159 (27)
Platform 314 599 2,331 284 (66)
Total 1,503 2,032 5,415 1,245 (217)

Developers’ effort vs. Complexity of the implementation:
After the matching between the interactions and the patches,
we examine the correlation between the metrics that measure
the effort (time spent and cyclomatic complexity) and those
that measure developers’ implementations (entropy and change
distance). We use the Spearman correlation coefficient because
it is a non-parametric test that does not make assumptions
about the distribution of our metrics.

D. Results and Discussions

The number of raw interaction/patch pairs (raw combination
of interactions and patches of the same developer) and the
number of the matching pairs are shown in Table II. The
number of raw interaction/patch pairs is less than the number
of interaction multiplied by the number of patches because
we made the combination interaction-patch only for each bug
report and each developer. The column “#Matching” shows the
number of matchings with the number of unbalanced matchings
in the parenthesis. Overall, we removed the unbalanced
matchings (217 in total) and retained 1,028 interaction/patch
matchings. Cases where a developer attach one interaction
along with many patches and vice versa did not appear in our
dataset i.e., the number of matching pairs (1,028) is equal to
the number of interactions and the number of patches involved
in the matchings.

We examined cases of unbalanced matchings to understand
developers’ habits when working with interactions and patches.
We observed that unbalanced matchings occur when a developer
gather the interactions (i.e., the working task is activated),
after finding where and how to perform the task, and stops
collecting interactions (i.e., the working task is disabled)
before performing the changes. For example, this practice
is observed on the Platform’s bug #263816 when the developer
“qualidafial” tried to fix a null pointer exception in the class
“ObservableSetContentProvider.java”; there is an unbalanced
matching between the interaction #124830 and the patch
#124829 i.e., their intersection is empty. The same practice
where P 6⊆ I is observed on the ECF’s bug #194975; there
is an unbalanced matching between the interaction #96731 (2
files) and the patch #967330 (3 files). The file involved in the
patch that is not in the interaction is a “property” file.

We observe from the manual validation of matchings that
developers mostly disable the task before creating the patch
(73.95% of matchings) vs. 26.04% where the patch was created
before the task was disabled. However, in most cases the time
difference between these two actions were just a few seconds,
with the maximum being 12 minutes. The sample size was 96
matchings (ECF: 8, Mylyn: 57, PDE: 12, and Platform: 19).
While this time difference may affect our results, we believe

Table III: Spearman correlation between the developers’ effort
and the complexity of the implementation

Complexity of the implementation
Entropy Change distance

Effort Time (sec.) 0.16 0.27
Cyclomatic 0.31 0.33

that in most cases, developers can not disable the task and
create its patch at the same time.

Table III shows that for all combinations of ef-
fort/implementation metrics, the effort spent by developers
when performing a task is not correlated to the complexity
of the implementation of the task. This result means that
developers do not necessary spend more effort on tasks
requiring more complex implementations. The lack of
correlation between the effort spent on a task and the complexity
of the implementation of that task may also suggest that some
of the effort spent by developers on a task do not materialise
in the patch of the task. For example, a developer can spend
time exploring some files that should not be modified for a
given task, but which are useful to understand the program
and perform the required changes on other files. In the next
section, we examine this phenomenon in more details. More
specifically, we investigate how developers spend their effort
and the factors affecting developers’ effort.

IV. HOW DO DEVELOPERS SPEND THEIR EFFORT? WHAT
ARE THE FACTORS AFFECTING DEVELOPERS’ EFFORT?

According to Lee and Kang [10], a significantly relevant
entity is a program entity that a developer needs to change
in order to accomplish the task. Therefore, the files in the
patch are significantly relevant files. We use the expression
explored files to name the files involved in an interaction. We
use the term additional files to name explored files that are
not significantly relevant. We chose the term additional files
because these files can be important for the understanding of
the program and the completion of the task (i.e., useful files).
These additional files can also be just accidental files i.e.,
developers accidentally explored these files when they were
looking for significantly relevant and–or useful files. Our goal
in this research question is to (1) assess how developers spend
their effort i.e., how much they use additional files and (2)
study the factors that affect developers’ effort.

A. Motivation

When performing a maintenance task, developers must
navigate through the program entities (i.e., methods, class, files,
etc.). They must know where and how to perform the changes
on these entities to address the task. However, developers
sometimes explore files that are not significantly relevant to the
task. This use of additional files may increase the developers’
effort. These additional files can also mislead the developer;
making him perform the wrong changes and introduce bugs.
On the positive side, additional files can help better understand
the context of a task and identify program entities that should
be modified to complete the task. The number of additional
files explored by developers may depend on the severity of

the task and developers’ experience and knowledge about the
program. Bug severity indicates the impact the bug has on the
successful execution of the software system [9]. It measures
how much a bug can affect the performance and stability of the
system, or the (percentage of) developers that can be affected
by the bug. A high severity typically represents fatal errors and
crashes [9]. Therefore developers may be careful when fixing
severe bugs. We think that, when fixing severe bugs wrt. less
severe bugs, developers may spend more effort (1) to make sure
that they are performing the right change, and (2) to ensure
that they are not introducing new bugs i.e., by revalidating
their changes because revalidation is one of the three main
activities (understanding, modifying and revalidating) involved
in software maintenance [2]. To find significantly relevant
files, developers may need to explore some additional files.
Developers who have more experience and knowledge of the
project may be able to find significantly relevant files while
those with less experience and knowledge (about the project)
may guess when looking for significantly relevant files. We
hypothesize that the more developers use additional files, the
more they spend effort.

By knowing how much efforts developers spend on additional
files, software organisations could make use of recommendation
systems to reduce the amount of additional files explored by
their developers i.e., by guiding them during the exploration
of the program and improve their productivity.

B. Metrics

To study how developers spend their effort, we consider
the similarity between the explored files and the significantly
relevant files. We use the Jaccard similarity coefficient as
similarity measure. The Jaccard similarity between the matched
interaction I and patch P is: Jaccard(I, P) = |I∩P |

|I∪P |
where |I ∩ P | is the number of file involved in both the
interaction I and the patch P , and |I ∪ P | is the total number
of files involved in I and P .

As we remove the unbalanced matchings in the matching
dataset, it means P ⊆ I i.e., I ∩ P = P and I ∪ P = I . The
Jaccard similarity shows the degree of the use of additional
files. The set of additional files is I\P i.e., f ∈ I and f 6∈ P .
We believe that the more developers use additional files, the
more they spend the effort.

Beside the use of additional files, developers’ effort may de-
pend on the severity of the task and–or developers’ experience.
In fact, Panger [13] found that bug severity is an important
variable to predict bug lifetimes (from the time of confirmation
to resolution) i.e., the resolution time of severe bugs is greater
than the resolution time of less severe bugs. Thus, because
developers may be careful when fixing severe tasks, the effort
spent to perform less severe tasks must be different to the effort
spent to perform more severe tasks. Similarly, it is expected that
an experienced developer would spend less effort compared
to inexperienced developers. We use the following metrics to
assess developers’ experience:
• The number of bug (NB) fixed before;
• The number of files (NF) modified before;

• The number of lines of code (NLOC) inserted and
deleted before (sum of inserted and deleted LOC).

We use the patch to measure these developers’ experience (NF
and NLOC). We use the patch because when mining the source
code repositories of our subjects projects (to capture NLOC
for example), we observed that some developers who attached
the patches were not found as authors in the source code
repository. These developers probably lack commit privileges
and therefore submit their contributions to more seasoned
developers acting as reviewers. This phenomenon have been
observed in many open-source projects. For example the ECF
bug #199366, the interaction #76609 and the patch #76608 are
matched. The attacher was not found in the code repository and
another developer (probably the one who reviewed the patch)
congratulated him in the bug report by saying: “Fixed. Thanks
Abner for the patch. IP log updated”. Thus, we were not able to
mine developers’ experience and knowledge through the source
code repositories. Because we want to study the effect of the
experience on developers’ effort, for a given interaction/patch
matching, we must consider developers’ experience before
they attach their interactions/patches. Therefore, we consider
developers’ experience before the interaction and the patch
attachment date (interaction and patch have the same attachment
date since they are matched). Instead of using only the matching
dataset, we use all the data (See Table I) to compute developers’
experience in order to avoid missing parts of some developers’
experience.

For some tasks, the experience of a developer may not
be helpful e.g., when the task does not need the files that
were used before. The experience is more helpful when the
significantly relevant files for a given task have already been
used in previous tasks. For example, consider a developer D
performing a first task T1 by making changes on files f1 (two
LOC) and f2 (five LOC). Because T1 is the first task of D, the
experience before performing T1 is 0 (0 task, 0 files, and 0
LOC before). Suppose that D have a new task T2 to perform.
Before performing T2, D had experiences on f1 and f2 (one
task, two files and seven LOC). We have two scenario: (1) The
significantly relevant files for T2 are f2, f3, and f4. According
to these significantly relevant files that are needed to perform
T2, the “relevant” experience of D is on f2 because f2 was
already modified when performing T1 and f2 is significantly
relevant to T2; (2) The significantly relevant files for T2 are
f3, f4, and f5. According to these significantly relevant files
needed to perform T2, D may have no “relevant” experience
before performing T2 if f1 or f2 are not used in f3, f4, or f5.
On the contrary, D may have experience before performing T2

if f1 or f2 are used in f3, f4, or f5. However, our dataset does
not allow us to capture such a relationship and we compute
developers’ experience without considering relations between
files. We consider two kinds of experience:
• Overall experience (OE): It is the total number of files

and LOC in the patches already attached by a developer
e.g., two files and seven LOC in the example above.
• Relevant experience (RE): A task relevant experience.

It is the number of files and LOC in all the files that are

significantly relevant to the given task e.g., one file and
two LOC for the first scenario above, and zero file and
zero LOC for the second scenario above.

C. Approach

We compute the similarity between all interaction/patch that
we matched in Section III-D. We identify how much developers
use additional files i.e., the percentage of additional files vs.
significantly relevant files. We study how developers spend their
effort according to the number of additional files by computing
the Spearman correlation coefficient between developers’ effort
and the number of additional files. Then, we examine whether
developers’ effort depends on the bug severity and–or the
developers’ experience.

In RQ1, we observed that the effort spent by developers
when performing a task is not correlated with the complexity of
the implementation of the task. As mentionned in Section IV-A,
developers must be careful when fixing severe bugs i.e., they
may spend more effort. However, the result of RQ1 do
not advise us whether the effort is different among tasks
with different severity levels. To study the effect of bug
severity on developers’ effort, we first check whether the bug
severity is related to the complexity of the implementation of
tasks i.e., do the implementations of tasks with different bug
severities have different complexities? We perform the Kruskal-
Wallis test to assess differences among the complexity of the
implementation of tasks associated with different bug severity
levels. Then, we investigate whether developers’ effort depends
on the bug severity by performing the Kruskall-Wallis test. We
chose the Kruskal-Wallis test because it is a non-parametric
method for testing whether samples originate from the same
distribution. The Kruskal-Wallis test make no assumption about
the distribution of the complexity of the implementation of
tasks (for the first test) and developers’ effort (for the second
test).

To investigate whether the developers’ effort depends on
their experience, we compute the developers’ experience as
explain in Section IV-B. Then we use the Spearman correlation
coefficient to assess the relation between the developers’
experience and their effort. We use the Spearman correlation
coefficient because it is a non-parametric test that does not
make assumptions about the distributions of the metrics (i.e.,
developers’ experience and effort).

D. Results and Discussions

The similarity between the matched interactions and patches
shows that some matchings have a low similarity (See Figure 2).
Developers who attached interactions and patches with low
similarity used more additional files. Since we removed
unbalanced matchings as described in Section III-D, there are
no matchings with a similarity value equal to zero. The median,
mean and standard deviation of similarities are respectively
0.26, 0.38, and 0.33. This result shows that on average,
developers use about 38% of significant relevant files and
about 62% of additional files. We wonder whether the use
of additional files affect developers’ effort. We observe that

Figure 2: Similarity between matched interaction/patch

developers who explore a large number of additional files spend
more effort to perform the task i.e., developers spend part of
their effort exploring additional files. The Spearman correlation
between the number of additional files and developers’ effort
are respectively 0.63 and 0.82 for the time spent and the
complexity of exploration graph. Our result suggests that most
of the developers’ effort is spent trying to understand the
program and making the solution.

The perfect matching is when the matched interaction and
patch are 100% similar i.e., the developers did not use any
additional files. There are 176 perfect matchings. The median,
mean and standard deviation of files involved in perfect
matchings are respectively 1, 2.25, and 2.83. Thus, developers
did not use additional files to perform a task only when the
number of significantly relevant files needed to perform the task
was 2.25 on average. The converse is not true i.e., developers
can use additional files for some tasks that require less than
two significantly relevant files.

The distribution of the complexity of the task implementa-
tions reveals that, except for the ECF project where p-value
is 0.71 (for entropy) and 0.75 (for change distance), the
complexity of task implementations is statistically significantly
different among bug severities. This means that both the entropy
and change distance are related to the severity of the bug.
The distribution of entropy and change distance for different
bug severities is shown in Figure 3. Figure 3a shows that
changes made for critical, enhancement, minor, and normal
bugs involved more files than changes made for other severities
(i.e., blocker, major, trivial). Bug severities that involved
fewer files did not necessarily required fewer changes. For
example, a blocker bug that involved less files than a minor
bug (See Figure 3a) can require more changes than a minor
bug (See Figure 3b). There is also a low correlation between
the entropy and the change distance (Spearman coefficient =
0.27). This may indicate that the two metrics do not measure
the same aspect of the complexity of the implementation.
Knowing that there is a relation between the entropy and
the bug severity on one hand, and the change distance and
the bug severity on the other (except for ECF project as
mentionned above), we argue that bug severities is related to
the complexity of the implementation of tasks. While bug
severity is usually filed from project perspective (performance,
stability, affected developers) by bug reporters or triager team,
this result suggests that (1) severe bugs must be also complex

(a) Entropy (b) Change distance

Figure 3: Distribution of entropy and change distance per bug
severity

Table IV: Developers effort compared to bug severity

Time spent Cyclomatic
ECF 0.91 0.38
Mylyn 3.5e-9 1.06e-9
PDE 0.24 0.02
Platform 9.69e-5 7.9e-6
Total 1.2e-12 9.2e-12

or (2) those who assign severities may also consider severities
from the perspective of complexity.

Table IV shows that developers’ efforts are different among
bug severities for Mylyn and Platform projects. On the contrary,
it seems that the bug severity does not affect developers’ effort
for ECF and PDE projects. We attribute this difference (of
results) between the projects to our dataset of matchings. (1)
some projects did not contained some bug severity levels (only
Mylyn contains all bug severity levels) and (2) the number of
matchings per bug severity is high for Mylyn and Platform
projects compared to ECF and PDE. The standard deviation of
the number of matchings per bug severity is 120.13 for Mylyn
and 50.28 for Platform compared to 2.62 for ECF and 27.67
for PDE. The small number of matchings data for ECF and
PDE projects may justify why the effort spend to fix the bugs
is not different among severity levels.

Concerning developers’ experience, Table V shows that there
is no consensus about the benefits of experience on the time
spent (the Spearman correlation coefficient vary between -0.60
and 0.39). Table VI shows the same trend for the complexity of
exploration graphs i.e., Cyclomatic complexity (the Spearman
correlation coefficient vary between -0.66 and 0.57). The
experience may reduce the effort in some cases e.g., ECF
project where the relevant experience reduce both the time
spent (Table V) and the Cyclomatic complexity of exploration
graphs (Table VI). For the Platform project, the relevant
experience tend to increase the complexity of exploration
graphs (correlations 0.55 and 0.57 in Table VI). However,
for the different measures of effort (time spent and Cyclomatic
complexity of the exploration graphs), the relevant experience
tend to have extreme values of correlation.

When looking at the size of the projects (in terms of the
number of subprojects), we observe that the larger a project,
the more the correlation coefficient between the effort and the

Table V: Spearman correlation coefficient between the time
spent and developers’ experience

NB Overall Experience Relevant Experience
NF NLOC NF NLOC

ECF 0.17 0.03 -0.12 -0.54 -0.60
Mylyn -0.08 -0.10 -0.07 0.34 0.31
PDE -0.27 -0.21 0.04 0.31 0.28
Platform 0.18 0.24 0.28 0.33 0.39
All -0.01 0.01 0.09 0.34 0.34

Table VI: Spearman correlation coeficient between the cyclo-
matic complexity of exploration graphs and the developers’
experience

NB Overall Experience Relevant Experience
NF NLOC NF NLOC

ECF 0.07 -0.02 0.06 -0.55 -0.66
Mylyn -0.05 -0.06 -0.04 0.36 0.29
PDE -0.11 -0.08 0.18 0.32 0.26
Platform 0.34 0.48 0.48 0.55 0.57
All 0.07 0.14 0.21 0.41 0.40

number of relevant LOC increase i.e., in increasing order of
the number of subprojects ECF (one) - PDE (four) - Mylyn
(11) - Platform (14), the respective values of correlation are
-0.60, 0.28, 0.31, and 0.39 (for the time spent - See Table V),
and -0.66, 0.26, 0.29, and 0.57 (for Cyclomatic complexity
- See Table VI). Thus, the way in which the experience can
help save effort may depend on the size of the project since
developers may work on different parts of a project. As shown
with gray cells in Table V and VI, the number of bugs (NB)
and the number of files (NF) for the overall experience may
weakly decrease the time spent and the Cyclomatic complexity
of the exploration graph for Mylyn and PDE projects. Robbes
and Röthlisberger [14] mined the interactions data for PDE
and Mylyn and used different metrics to measure developers’
experience. They found a negative correlation between the
time spent and the developers’ experience. They considered the
experience based on the number of commits in the source code
repository. The comparison of our correlation values (from
-0.08 to -0.27 between the time spent and the number of bugs
and the number of files) to their correlation values (-0.15 and
-0.22) seems to indicate that one can use the number of bugs
and the number of files to measure developers’ experience.

The way a developer perform his maintenance tasks (and
acquire experience) could also explain why this developer’s
experience does not reduce his effort over time. Figure 4
presents the evolution over time of the number of LOC
implemented by three developers. We observe that some
developers almost always perform tasks on the parts of the
program that they never used before i.e., they never had a
relevant experience (See Figure 4a). Other developers perform
tasks both on files used before and files that they never
used i.e., they always had some relevant experience, but they
also performed more modifications on files that they never used
before (See Figure 4b). We also observe that some developers
always work on tasks that require almost the same set of
files (i.e., their overall experience and relevant experience are
almost the same). After acquiring the experience on the files

(a) Developers almost always perform
the task on the files that they never used
before

(b) Developers perform more changes
on the files that they never used before

(c) After a period of time, developer
perform more changes on the files that
they never used before

Figure 4: Developers perform more modifications on the files that they never used before

that they frequently used, they start performing the tasks that
require some files that they never used before (See Figure 4c).
Therefore, developers’ experience may not reduce the effort
required to perform a task because when a program evolves,
developers may increasingly perform tasks on parts of the
program on which they have no previous experience.

V. RELATED WORKS

Our work is related to works that use developers’ interactions
and–or patches and source code repositories to study developers’
effort, experience and the complexity of tasks.

A. Complexity of the tasks and bug severity vs. effort

The bug severity is used by many researchers to predict the
lifetime of bugs [13] and study the re-opening of bugs [16].
Entropy measures have been used by Hassan [6] and Zaman et
al. [18] to assess the complexity of the changes in the source
code repositories and patches. These previous works have
analyzed bug severities and the complexity of tasks separately.
In this paper we introduce the change distance metric (i.e.,
calculated using the Levenshtein distance) as another measure
of the complexity of tasks and examine whether both the
entropy and the change distance are related to bug severity.
Serebrenik et al. [15] have used functions points to assess the
complexity of projects. They examined the relation between the
complexity of projects (in terms of number of functionalities)
and development efforts and concluded that projects with
similar amount of functionalities require different development
efforts. Their work is related to our work in the sense that they
aim to compare the complexity with the effort, but at a different
level of granularity, i.e., the project level in comparison to the
task level investigated in this paper. They also used different
metrics, e.g., function points.

B. Developers’ experience vs. effort

Feigenspan et al. [4] examined strategies used in empirical
studies to control developers’ experience. They argued that self
estimations seems to be reliable ways to measure developers’
experience. We were not able to used self estimations in our
work since we do not have access to the developers of our
studied projects. Also, in this study we were more interested in

assessing the evolution of developers’ experience i.e., measure
their experience at given dates (before they performed a task).
Since most of these tasks were performed many years ago,
developers who performed these tasks could hardly recall the
experience that they had at the time of the task. Fritz et al. [5]
combined developers’ interactions and authorship information
(from change history) to model source code familiarity, i.e.,
the degree of knowledge. Robbes and Röthlisberger [14] also
used developers’ interactions to assess developers’ effort and
correlate the effort to experience. Our work differs from Robbes
and Röthlisberger’s work in two ways. First, we use different
experience metrics mined from patches while they considered
source code repositories and measured a developer’s experience
using the number of commits involving files explored by the
developers. This approach is likely to be inaccurate since
in many open source projects, some developers do not have
commit privileges and have to submit their patches to reviewers,
who revise them and commit.

VI. THREATS TO VALIDITY

Construct validity: Construct validity threats are related
to our matching approach and the metrics used to measure
developers’ effort and the complexity of the implementation
of tasks. Our matching approach may lead to some mis-
matchings i.e., developers gather interactions and patches at
different time period and attach them at the same time or vice
versa. We mitigated the mismatching threat by removing the
unbalanced matchings; we assumed that all interactions and
patches gathered at different time and attached at the same time
may be unbalanced. However, by removing these unbalanced
matchings, our matching approach could have missed some
matchings when developers gathered the interaction and the
patch at the same time and attached them at different time.
Therefore, we cannot guarantee that no matching was missed.
However, we did not observed such cases in our dataset. The use
of JGraphT and DiffUtils libraries may affect the computation
of our metrics. We assume that the JGraphT tool is accurate
because of its popularity e.g., about 2,000 downloads per
month6. We minimized the effect of the DiffUtils library by

6http://sourceforge.net/projects/jgrapht/files/stats/timeline?dates=2013-05-
01+to+2013-06-01 (visited date 08/06/2013)

adapting its implementation and ensuring the accuracy of the
parsing. While cyclomatic complexity indicates developers’
effort, it is not necessarily accurate and complete. To overcome
this limitations, we also used the time spend to measure the
effort. However, some developers may partly record their
interactions. Thus, in some cases, the time recorded may be
different from the time that they spent to perform the task. Our
future controlled experiment will avoid the threat related to
the time spent. Our expertise metrics is based on the files and
LOC in the considered project. The developers’ background
and previous expertise in other projects may influence their
performance within the considered project, and we may miss
some experience for bugs that do not contain interaction
histories or patches.

Conclusion Validity: Conclusion validity threats are related
to the violation of the assumptions of the statistical tests and the
diversity of our dataset. We used non-parametric tests (Kruskal-
Wallis and Spearman correlation) that make no assertion about
the distribution of the data. We used data from four open-source
projects that have different sizes and involve many developers.
Also, we do not claim causation, we simply report observations
and correlations, although we try to explain these observations
in our discussions.

Internal validity: Internal validity threats relate to the tools
used to collect interaction histories and the choice of our
subject projects. We used Mylyn’s interaction histories because
the Mylyn plugin is the only tool that contributors to many
open-source projects used to gather the interactions and provide
them publicly. Our subject projects are the top four open-source
projects that have more interaction histories.

External validity: External validity threats relate to the
generalization of our results. Because our subject projects are
open-source, we cannot guarantee that the findings of this study
can generalize to proprietary software projects. In open source
projects, developers are usually volunteers. In the future, we
plan to analyze more projects, including proprietary projects
and projects written in different programming languages, to
draw more general conclusions.

Reliability validity: Reliability validity threats concern the
possibility of replicating this study. All the raw data used in this
paper are available on Eclipse Bugzilla. The projects studied
in this paper are also available online for the public.

VII. CONCLUSION AND FUTURE WORKS

Developers perform different kinds of tasks daily. Sometimes
the implementation required for a task does not reflect the effort
spent by developers on the task. If we want to improve the
efficiency of developers, it is important to understand how
these developers spend their effort when finding the solution to
a task. In this paper, we mined 2,408 developers’ interaction
histories and 3,395 patches from four open-source software
projects (ECF, Mylyn, PDE, Eclipse Platform) and examined
the factors affecting developers’ effort.

We matched the interactions to the patches (i.e., identify
a patch that is the result of an interaction) and found that
the effort spent by developers when performing a task is not

correlated to the complexity of the implementation of the task.
Most of the effort appears to be spent during the exploration
of the program. On average, 62% of files explored during the
implementation of a task are not significantly relevant to the
final implementation of the task. Developers who explore a
large number of files that are not significantly relevant to the
solution to a task take a longer time to complete the task. We
expect that the results of this study will pave the way for better
program comprehension tools to guide developers during their
explorations of software projects.

In the future, we plan to mine the source code repositories
of the software projects analyzed in this paper to assess
the structural relations between the files involved in the
interaction/patch matchings. With this information, we will
build prediction models of significantly relevant files in order to
recommend relevant files to developers performing maintenance
tasks on the projects.

Acknowledgment: This work has been partly funded by the
Canada Research Chairs on Software Patterns and Patterns of
Software and on Software Change and Evolution.

REFERENCES

[1] R. D. Banker, S. M. Datar, and C. F. Kemerer. Factors affecting software
maintenance productivity: An exploratory study. In Proceedings of the
International Conference on Information Systems, pages 160–175, 1987.

[2] B. Boehm. Software engineering. IEEE Trans. Computers, 12(25):1226–
1242, 1976.

[3] B. Boehm. Improving software productivity. Computer, 20(9):43–57,
1987.

[4] J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and S. Hanenberg.
Measuring programming experience. In Proceedings ICPC, pages 73–82,
2012.

[5] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A degree-of-
knowledge model to capture source code familiarity. In Proceedings
ICSE, pages 385–394, 2010.

[6] A. E. Hassan. Predicting faults using the complexity of code changes.
In Proceedings ICSE, pages 78–88, 2009.

[7] M. Kersten and G. C. Murphy. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT/FSE, pages
1–11, 2006.

[8] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transaction on Software
Engineering, 32(12):971–987, dec 2006.

[9] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting the
severity of a reported bug. In Proceedings MSR, pages 1–10, 2010.

[10] S. Lee and S. Kang. Clustering and recommending collections of code
relevant to tasks. In Proceedings ICSM, pages 536–539, 2011.

[11] K. Maxwell and P. Forselius. Benchmarking software development
productivity. Software, IEEE, 17(1):80–88, 2000.

[12] N. I. of Standards & Technology. The economic impacts of inadequate
infrastructure for software testing, May 2002. US Dept of Commerce.

[13] L. D. Panjer. Predicting eclipse bug lifetimes. In Proceedings MSR,
pages 29–, 2007.

[14] R. Robbes and D. Röthlisberger. Using developer interaction data to
compare expertise metrics. In Proceedings MSR, pages 297–300, 2013.

[15] A. Serebrenik, B. Vasilescu, and M. v. d. Brand. Similar tasks,
different effort: Why the same amount of functionality requires different
development effort? In BENEVOL, 2011.

[16] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K.-i. Matsumoto. Studying re-opened bugs in open
source software. Empirical Software Engineering, 32(12):1–38, 2012.

[17] Z. Soh, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol, and B. Adams. On
the effect of program exploration on maintenance tasks. In Working
Conference on Reverse Engineering (WCRE), 2013. To appear.

[18] S. Zaman, B. Adams, and A. E. Hassan. Security versus performance
bugs: a case study on firefox. In Proceedings MSR, pages 93–102, 2011.

