
On the Effect of Program Exploration
on Maintenance Tasks

Zéphyrin Soh1,3, Foutse Khomh2, Yann-Gaël Guéhéneuc1

Giuliano Antoniol3, Bram Adams4
1Ptidej Team, 2SWAT, 3Soccer Lab, 4MCIS

DGIGL, École Polytechnique de Montréal, Canada
Email: {zephyrin.soh, foutse.khomh, yann-gael.gueheneuc, giuliano.antoniol, bram.adams}@polymtl.ca

Abstract—When developers perform a maintenance task, they
follow an exploration strategy (ES) that is characterised by how
they navigate through the program entities. Studying ES can help
to assess how developers understand a program and perform
a change task. Various factors could influence how developers
explore a program and the way in which they explore a program
may affect their performance for a certain task. In this paper,
we investigate the ES followed by developers during maintenance
tasks and assess the impact of these ES on the duration and effort
spent by developers on the tasks. We want to know if developers
frequently revisit one (or a set) of program entities (referenced
exploration), or if they visit program entities with almost the
same frequency (unreferenced exploration) when performing a
maintenance task. We mine 1,705 Mylyn interaction histories
(IH) from four open-source projects (ECF, Mylyn, PDE, and
Eclipse Platform) and perform a user study to verify if both
referenced exploration (RE) and unreferenced exploration (UE)
were followed by some developers. Using the Gini inequality index
on the number of revisits of program entities, we automatically
classify interaction histories as RE and UE and perform an
empirical study to measure the effect of program exploration
on the task duration and effort. We report that, although a UE
may require more exploration effort than a RE, a UE is on
average 12.30% less time consuming than a RE.

Index Terms—Software Maintenance, Program Exploration,
Interaction Histories, Exploration Strategies, Mylyn

I. INTRODUCTION

Software systems must be maintained and evolved to fix
bugs and adapt to new technologies and requirements. When
developers perform a maintenance task, they always need to
explore the program, i.e., navigate through the entities of the
program. The purpose of this program navigation is to find the
subset of program entities that are relevant to the maintenance
task. Program exploration involves three activities [9], [23]:
looking at the initial entity that seems relevant (starting point),
relating the starting point to other entities and exploring
them (expanding the starting point), and collecting relevant
information/knowledge to perform a task (understanding a set
of program entities).

The way in which developers explore a program for a
specific task, i.e., their exploration strategy, depends on various
factors, such as the characteristics of the task at hand [9],
developers’ experience and proficiency, tool support, and the
software design. The strategy may affect the successfulness
of maintenance tasks [19], as well as the time and effort
spent to perform a task; hence the developers’ productivity.

Thus, studying exploration strategies can help to (1) evaluate
developers’ performance, e.g., find if there is an “efficient" way
to explore a program; (2) improve our knowledge on developers’
comprehension process, e.g., a top-down or bottom-up compre-
hension can be related to a specific strategy; (3) characterise
developers’ expertise, e.g., how experienced developers explore
a program can differ from the way inexperienced ones explore
a program and how the strategy of experienced developers can
be used to help inexperienced ones; (4) find techniques and
tools to reduce the developers’ search effort and guide them
when exploring a program.

As an initial step to achieve the above benefits, we study
the developers’ interaction histories collected from four open-
source Eclipse projects to link exploration strategy to the
duration and effort spent on maintenance tasks. For example, if
a program contains entities {e1, e2, e3, e4} and, for a particular
maintenance task, a developer uses either exploration A =
e1 → e2 → e1 → e3 → e1 → e4 → e1 or B =
e1 → e2 → e3 → e4, then A revisits entity e1 multiple times
compared to B. These revisits could mean that the developer
did not explicitly recognized that e1 is an important entity or
that the developer uses e1 as a reference point to come back
to after losing the flow of exploration. In both cases, time
and effort seems to be greater in the referenced exploration A
compared to B.

To understand how developers’ exploration strategies affect
the time and effort spent on maintenance tasks, we mined
1,705 Mylyn interaction histories (IH) from four open-source
projects (ECF, Mylyn, PDE, and Eclipse Platform). From the
IH of each task, we computed the time and effort spent by
developers performing the task. We performed a user study
with nine participants who were asked to manually classify
104 IHs into referenced exploration (RE) and unreferenced
exploration (UE). Next, based on the manually classified IHs,
we automatically classify the remaining IHs and answer the
following research questions

RQ1: Do developers follow a referenced exploration when
performing maintenance tasks?
We consider two extreme cases of exploration: referenced
exploration (RE) and unreferenced exploration (UE). RE
occurs when a developer reinvestigates one (or a set of)
entity(ies) already visited (referenced entities). On the
contrary, in an UE strategy, a developer visits program

entities with almost the same frequency i.e., there is no
set of referenced entities. Results show that developers
mostly follow the unreferenced exploration (UE) strategy
when performing a maintenance task.

RQ2: Does any difference exist in maintenance time
between referenced exploration (RE) and unreferenced
exploration (UE)?
Maintenance time is the time spent performing a mainte-
nance task. We found that the time spent on a maintenance
task for UE is on average 12.30% less than for RE.

RQ3: Does any difference exist in effort between referenced
exploration (RE) and unreferenced exploration (UE)?
Exploration effort is the effort spent by a developer finding
relevant program entities to modify in order to complete
a task. Our results show that the more effort a developer
spends on a task, the more he is likely to follow the UE
strategy.

The remainder of this paper is organised as follows: Sec-
tion II provides some background and the description of the
data used in this paper. Section III describes our user study to
investigate the exploration strategy and automatically identify
them. Section IV describes our empirical study of the relation
between the exploration strategy and the time and effort spent
performing a maintenance task. Section V discusses the threats
to the validity of our results. We relate our work to previous
work in Section VI while Section VII summarises our findings
and highlights some avenues for future work.

II. BACKGROUND AND DATA

Data used in this paper were collected using the Mylyn
plugin. In this section, we present some background information
on Mylyn and describe our data collection and processing.

A. Mylyn Plugin

Mylyn is an Eclipse plugin that captures developers’ inter-
actions with program entities when performing a task. Each
developers’ action on a program entity is recorded as an event.
There are eight types of events in Mylyn: Attention, Command,
Edit, Manipulation, Prediction, Preference, Propagation, and
Selection [15]. The list of interaction events triggered by a
developer form an interaction history (IH). An interaction his-
tory is therefore a sequence of interaction events that describe
accesses and operations performed on program entities [8].
Interaction histories logs are stored in an XML format. Each
interaction history log is identified by a unique ID and contains
the descriptions of events (i.e., InteractionEvent) recorded
by Mylyn. The description of each event includes: a starting
date (i.e., StartDate), an end date (i.e., EndDate), a type (i.e.,
Kind), the identifier of the UI component that tracks the event
(i.e., OriginId), and the program entity involved in the event
(i.e., StructureHandle). Mylyn also records events that are not
directly triggered by developers. However, in this paper, we
consider only developer’s interaction events: Selection, Edit,
Command, and Preference.

Table I: Descriptive statistics of the data (IH: Interaction
History)

Projects
ECF Mylyn PDE Platform Total

Number of bugs 138 1,603 464 396 2,601
Number of IH 158 2,309 567 579 3,613
Not Java IH 12 68 18 12 110
IH Duration < 0 2 109 8 34 153
IH Duration = 0 82 524 169 198 973
Retained IH 62 1,606 372 335 2,375
IH ≤ 2 classes 27 285 204 45 561
IH class level 26 1,273 131 275 1,705

Figure 1: The structure of a Java StructureHandle

B. Data Collection

We downloaded 3,609 bug reports from Eclipse Bugzilla.
We consider 2,601 bug reports from four projects with the
highest number of bug reports and at least one interaction
history for each bug. Interaction histories related to a bug are
attached to the bug report. We extract the interaction histories
ID of all the attachments with the name “mylyn-context.zip",
which is the default name given by Mylyn to interaction
histories. We download, clean (i.e., remove interaction histories
that have at least one event with negative duration, or that
have zero duration), and retain 2,375 interaction histories. We
removed interaction histories in which only one or two classes
were involved since they cannot be either UE or RE e.g., the
difference between the number of moves from one class to
another will be always one for the interaction history involving
two classes. Overall, we kept 1,705 interaction histories. Table I
presents a description of the data set. All data used in this
paper are available online1.

C. Data Parsing

We parse the interaction histories to extract useful data.
A program entity can be a resource (XML, MANIFEST.MF,
properties, HTML files, etc.) or a Java program entity (i.e.,
project, package, file, class, attribute, or method). In this paper,
we consider only Java StructureHandle. A Java StructureHandle
is structured in multiple parts. We use a regular expression
to identify all its parts. Regular expressions were already
used by Bettenburg et al. [1] to identify parts of stack traces
contained in bug reports. Figure 1 shows the structure of a
Java StructureHandle (we use [*] to ignore the rest of the
StructureHandle.) More details about the parser used in this
paper can be find in our technical report [25].
As an event can occur on a program entity at different levels, i.e.,
file, class, attribute, and method levels, we take into account the
containment principle. For example, at file level, we consider
all the events that occurred on the file Foo.java and on
the classes, attributes, and methods in the file Foo.java. As
class is the primary concept in the object-oriented paradigm,

1http://www.ptidej.net/download/experiments/wcre13a/

Table II: User study data and results

Projects Total %ECF Mylyn PDE Platform
Sample size 13 68 7 16 104 100
Referenced 4 31 3 8 46 53.84
Unreferenced 8 22 1 5 36 34.61
Undecided 1 15 3 3 22 21.15

we focus on the class level in the remainder of this paper.
The results for the file level can be found in our technical
report [25].

III. EMPIRICAL USER STUDY OF EXPLORATION FOCUS

The research question RQ1 that we address in this Section is:
Do developers follow a referenced exploration when performing
maintenance tasks? There are several ways in which a developer
can interact with entities while performing a maintenance
task. Two extreme cases are when the developers do not have
a privileged set of entities on which they concentrate their
activities and when the developers concentrate their activities
on a limited number of entities. In this paper we are referring
to these two extreme cases. To answer our research question,
we perform a user study to investigate whether both referenced
and unreferenced explorations occur in practice. This user
study allows us to build a classifier to automatically classify
an exploration as referenced or unreferenced.

A. User Study

We perform a user study in four steps: (1) we randomly
sample the interaction histories; (2) we generate a graph
representation of the sampled interaction histories; (3) we
let the study participants classify the interaction history graphs
as referenced and unreferenced; and (4) we evaluate how well
the participants agree on the exploration strategy.
(1) We choose the interaction history sample size to achieve
a 95%±10 confidence level. The sample was proportionally
distributed among projects, except for the ECF project. Because
of the small number of data from the ECF project in our data
set, we consider half of all ECF interaction histories in our
sample (instead of two interaction histories as suggested by
the sample size). After the sampling, we observed that our
sample contained program entities from multiple verisons of
each of our subject projects. Table II presents the size of the
sub-samples of the projects.
(2) To prepare the visual aids for manual classification, we
define the number of revisits of a program entity as follows:
NumRevisit(anEntity) is the number of time the entity
anEntity is revisited, which is different from the number
of events. Consider an interaction history with five user
interaction events that occurred on a set of three program
entities {e1, e2, e3}. If we suppose that the events occurred
in the following order: e1 → e2 → e2 → e3 → e1, then the
number of revisits of the program entities are respectively two,
one, and one, while the number of events are respectively two,
two, and one. The number of revisits defines how much an entity
is revisited compare to others. We generate the Graphviz [5]
representation of the interaction histories, i.e., the exploration
graph. Grapviz (http://www.graphviz.org) is an open-source

graph visualisation software. An exploration graph is a graph
in which nodes are the program entities and arrow between
two nodes (source and target) represents how developers move
from one program entity to another, i.e., a revisit of a (target)
program entity.
(3) Nine subjects participated to the manual classification of
exploration strategies (i.e., the interaction histories). Among
them, seven subjects were enrolled in the PhD program and
one in the Bachelor program of software engineering at the
École Polytechnique de Montréal. One subject was enrolled in
a Master program of software engineering at INSA Lyon in
France. There were five female subjects and four male subjects.
The median, mean and standard deviation of the number of
years of experience with Java of the subjects are respectively 5,
4.16, and 2.80. The subjects were asked to manually analyse our
sample of interaction histories and classify them into referenced
exploration (RE) and unreferenced exploration (UE). In case of
doubt, they were required to label the exploration history with
a D. Before the user study, we gave a short training session
to explain the concept of exploration graph to the participants.
After the manual classification of exploration strategies, we
performed a post-study interview with the following questions:
(i) How did you judge that a graph was RE or UE i.e., wether
a developer’s exploration was based on a referenced set of
entities or not? (ii) Did you had a doubt on some graphs? If
so, please explain why?
(4) To aggregate the results of the subjects, we decide that
an exploration is referenced (respectively unreferenced) if at
least 2/3 of the subjects labeled the corresponding graph as RE
(respectively UE). We consider interaction histories with less
than 2/3 of either RE or UE labels to be undecided cases, e.g.,
the interaction history #83119 received 4/9=44.44% of RE
labels, 4/9=44.44% of UE labels, and 1/9=11.11% of D labels.
Table II shows the results of the user study. In total, 88.45%
of interaction histories were classified by our subjects as either
referenced (53.84%) or unreferenced (34.61%) explorations.
We obtained 22 undecided cases representing 21.15% of the
total number of interaction histories in our sample. 9 of the
22 undecided cases were labelled with D (i.e., doubt) by at
least one subject. The remaining 13 undecided cases were
due to a lack of 2/3 agreement on either the RE or the UE
label. We computed the Fleiss’ Kappa interrater agreement
coefficient to evaluate the classification agreement of our
subjects. Fleiss’ Kappa [6] is a generalized version of Cohen’s
Kappa that provides the interrate agreement between more
than two raters on categorical data. We obtained an interrater
agreement coefficient of 0.36. According to Landis and Koch’s
agreement benchmark [10], there is a fair agreement when the
Kappa coefficient is between 0.21 and 0.40 and a moderate
agreement when the Kappa coefficient is between 0.41 and
0.60. Thus, we can conclude that the subjects of our user study
had a fair agreement. The agreement between our subjects is
higher (i.e., close to moderate) when distinguishing between
RE (Kappa = 0.38) and UE (Kappa = 0.39). However, our
subjects have a poor agreement on the undecided cases (Kappa
= -0.009). Overall, these results show that our subjects are

able to distinguish referenced and unreferenced exploration
strategies quite successfully. Since we are studying only the
two extreme exploration strategies RE and UE in this work,
we decided to remove the undecided cases from the data used
to train the exploration strategy classifier.

The user study post-questionnaire revealed that to classify
exploration graphs, participants counted the number of nodes
and the number of in/out arrows in the graphs, i.e., they looked
at the distribution of revisits across graphs. The subjects also
explained that when they were not able to count the number
of nodes and–or arrows (in large graphs) or when they thought
that parts of a graph were RE while other parts were UE, they
labelled the graph with D.

B. Automatic Identification of the Exploration

Based on the result of the user study, we define a technique
to automatically identify exploration strategies. We use the
Gini inequality index to measure the distribution of revisits.

1) Gini Inequality Index: Based on how participants identify
developers’ exploration, the goal is to measure how program
entities are equally or unequally revisited. In econometrics,
many inequality indices are used to measure the inequality of
income among a population. We choose the Gini inequality
index because (1) it has been used in previous software
engineering studies [12], [13], [26] and (2) the mathematical
properties of the Gini inequality index presented by Mordal et
al. [13] are conform to the number of revisits and the number of
entities referred by the participants in the post-questionnaire of
the user study. We are interested in the (un)equality of revisits
among program entities involved in an interaction history. The
set of program entities involved in an interaction history is our
population. The income of a program entity is its number of
revisits.
The Gini inequality index has a value between zero and
one. Zero expresses a perfect equality where everyone has
exactly the same income while one expresses a maximal
income inequality. Xu [28] presented many computational
approaches for the Gini inequality index and mentioned that
theses approaches are consistent with one another. As used
in [12], [13], we use the mean difference approach defined
as “the mean of the difference between every possible pair of
individuals, divided by the mean size µ". We calculate the Gini
inequality index as follows (n is the total number of program
entities and ei represents an entity i):

Gini = 1
2n2µ

n∑
i=1

n∑
j=1
| NumRevisit(ei)−NumRevisit(ej) |

2) Identification Process: To automatically identify the two
extreme cases of exploration, we must define a threshold to
determine if entities are equally or unequally revisited. After
the definition of the threshold (explained below), we identify
the exploration as follows:
• If the Gini value is less than the threshold, the visited

entities are almost equally revisited. Thus, the developer
explored the program entities almost equally. We say
that the exploration is unreferenced (UE) because the
developers do not have a privileged set of entities on
which they concentrate their attention.

Figure 2: F-Measure per threshold for the oracle

• If the Gini is greater or equal to the threshold, it means
that the revisits are concentrated on a few program entities,
i.e., reference entities. We say that the exploration is
referenced (RE).

3) Identification Threshold: We use the oracle build in
Section III-A (i.e., manual classification of the ES) to define a
threshold to distinguish RE and UE. We proceed in two steps.
In the first step, we use 10 threshold values ranging from 0.1
to 1 per step of 0.1. We applied the exploration identification
process above to automatically classify the strategies for the
sample data used in Section III-A. The automatic classification
was independent from the manual classification (oracle). In
step two, we compare the manual classification (oracle) and
the automatic classification for the considered threshold values.
Then we, chose the threshold value with high precision and
recall. To maximize both precision and recall, we computed
the F-Measure as follows:

F-Measure = 2. precision.recallprecision+recall

Figure 2 shows the distribution of the F-Measure for
threshold values from 0.2 to 0.5. We plot this range of threshold
because the F-Measure decrease before and after threshold 0.4.
Figure 2 indicates that the identification of the exploration is
most accurate at 0.4 threshold (the median at the threshold 0.4
is 0.91 vs. 0.90 at the threshold 0.3). Therefore, we consider
the value 0.4 in the remainder of the paper.

According to the considered threshold (0.4), Table III
(column “Exploration") presents the percentage of RE and
UE found in our studied projects. We observe that:�
�

�
�

Observation 1: Developers follow mostly the unrefer-
enced exploration (UE) when performing a mainte-
nance task.

Observing that there are more UE than RE, we look at the
frequency of the number of classes involved in the IH (See
Figure 3b for UE and Figure 3a for RE). There are 711 UE
interaction histories (57.94%) in which less than 10 classes are
involved. For RE, there are 71 interactions histories (14.85%)
in which less than 10 classes are involved. Therefore, the UE
tend to be followed when less classes are involved.

When studying how developers explore source code, Robil-
lard et al. [19] observed that methodical developers do not
reinvestigate methods as frequently as opportunistic developers.
Methodical developers seem to answer specific questions using

Table III: Percentage of referenced and unreferenced exploration and p-values

Exploration p-values
% Avg. class level duration Avg. overall duration Avg. edit ratio

ECF RE 4 15.38 0.11 0.019 0.12UE 22 84.61

Mylyn RE 306 24.03
<2.2e-16 1.4e-10 < 2.2e-16UE 967 75.96

PDE RE 31 23.66 6.7e-05 0.005 4.1e-05UE 100 76.33

Platform RE 137 49.81 4.4e-06 0.016 9.9e-12UE 138 50.18

Total RE 478 28.03
< 2.2e-16 4.3e-16 < 2.2e-16UE 1227 71.96

(a) Referenced Exploration (b) Unreferenced Exploration

Figure 3: Frequency of the number of classes involved in the
interaction histories

focussed searches, while opportunistic developers guess more
and read the source code in details [19]. The number of
revisits used to identify exploration somehow measures the
reinvestigation frequency. We need more investigations to
ascertain whether methodical developers are those who follow
unreferenced exploration.

IV. EMPIRICAL STUDY

This section presents our empirical study that addresses the
following two research questions:

RQ2: Does any difference exist in maintenance time
between referenced exploration (RE) and unreferenced
exploration (UE)?

RQ3: Does any difference exist in effort between ref-
erenced exploration (RE) and unreferenced exploration
(UE)?

The corresponding null hypotheses are:
H0Time : There is no difference in the average time spent be-

tween RE and UE when developers perform a maintenance task.
H0Effort : There is no difference in the average exploration

effort between RE and UE when developers perform a
maintenance task.

First, we compute a set of metrics on the interaction histories.
Then, we perform the statistical analysis to investigate our
research questions and present the results and discussions. For
statistical analysis, we perform an unpaired version of the
non-parametric Wilcoxon test. We use a non-parametric test
because our data is not normally distributed. For all statistical
tests, we use a 5% significance level (i.e., α = 0.05).

Event 1

Event 2

Event 3

d1 ot

d2

it d3

Time

Figure 4: Interruption and overlap between events

A. Metrics

We compute the following metrics on the IH:

• Overall duration is the duration of an
interaction history (IH). We use the StartDate
and EndDate of an event to compute the
duration of the event i.e., Duration(anEvent) =
EndDate(anEvent) − StartDate(anEvent).
Sometimes we can have both interruption and overlap
between events. We sort the interaction events by
StartDate and compute duration of IH after considering
interruption and overlap. For example consider Figure 4,
which shows three events with an overlap between event1
and event2 and an interruption between event2 and event3.
We handle interruptions and overlaps by considering the
overall duration spent on three events as d1+d2+d3, the
overlap time is ot, and the interruption time as it. To
control the confounding effect of the number of entity
involved in an interaction history, we divide the overall
duration by the total number of entity involved in an IH
to obtain the average overall duration.
• Class level duration is a cumulative duration spent on

entities at class level in an interaction history. We compute
the duration at class level in the same manner as overall
duration by considering only the events on the entities
at class level. To control the confounding effect of the
number of class involved in an IH, we divide the class
level duration by the total number of class involved in an
IH to obtain the average class level duration.
• Exploration effort: we use an edit ratio to measure

the exploration effort. An edit ratio is the number of edit
events divided by the number of events. The number of
events (NumEvent) is the total number of user interac-
tion events in an IH. The number of edit (NumEdit) is
the total number of edit events in an IH. anEvent is an
edit event if kind(anEvent) = “Edit” (see Section II-A)
NumEdit(anEvent) =

{
1 if kind(anEvent)=“Edit”
0 if kind(anEvent)!=“Edit”

EditRatio(IH) = NumEdit(IH)
NumEvent(IH)

The exploration effort measures the effort spent by a
developer to find the relevant program entities to edit.
Röthlisberger et al. [20] states that developers perform on
average 19.31 exploration events between two edits. The
motivation behind using edit ratio to measure exploration
effort is that the more developers perform edit events, the
less they spent effort to find the relevant entity(ies) to
modify. The less they perform edit events, the more they
spent effort.

B. Results and Discussions
RQ2 Does any difference exist in maintenance time
between referenced exploration (RE) and unreferenced
exploration (UE)?

In RQ1 (Section III), we found that developers follow both
RE and UE when performing maintenance tasks. We conjecture
that these explorations can affect the time spent to perform a
task. In fact, when developers explore the source code, their
exploration can reflect their mental model and the difficulties
that they have to understand the code and perform a task. In
this research question, we investigate at class level and on the
whole task, whether the time spent by developers to perform a
task is affected by their exploration strategy.

Table III shows that there is significant difference (at class
level and overall) in the average time spent between RE and
UE. Thus, we can reject the null hypothesis H0Time . In general,
the exploration strategy affects both the duration at class
level and the overall duration of an IH. For the ECF project,
this does not hold at the class level, possibly because there are
only 26 interaction histories.

Without distinguishing the projects, we found that the RE
is the most time consuming strategy for both class level
durations and overall durations. The mean of class level
durations for RE is 41,030 sec. vs. 22,470 sec. for UE. The
standard deviation of class level durations for RE is 326,081.1
sec. vs. 187,624.9 sec. for UE.�
�

�
�

Observation 2: For class level duration, the UE is on
average 45.23% less time consuming than the RE.

The mean of overall durations for RE is 7,817 sec. vs. 6,855
sec. for UE. The standard deviation of overall durations for
RE is 49,734.88 sec. vs. 39,367.88 sec. for UE.�
�

�
�

Observation 3: For the overall duration, the UE is on
average 12.30% less time consuming than the RE.

Figure 5 compares the logarithms of the overall durations
of RE and UE for each of our studied projects.

While developers who perform a RE mostly revisit the
entity(ies) already investigated, it seems that (1) they guess
and don’t know exactly what they are looking for or (2) they
come back to their reference entity(ies) after losing the flow of
exploration. On the contrary, the less time spent when following
a UE may be because developers who follow a UE look at
explicit program entity(ies). Robillard et al. [19] states that the
methodical investigation of a source code does not require more

Figure 5: Distribution of overall duration per project

time than an opportunistic investigation. More investigations
should be done to tie our work to Robillard et al.’s one [19].

Typically in open-source projects, developers are volunteers.
Therefore, they address the tasks (e.g., bug fixing) that are
assigned to them on their spare time. Because of lack of time,
they could be working on one change request across several
days. To analyze this, we compute the number of working days
for each interaction history. When we study the percentage
of interaction histories per number of working days, Table IV
shows that developers work for one or two days on about 75%
of interaction histories and more than two days on about 25%
of interaction histories. Even with this unbalanced proportion,
the distribution of the logarithm of duration (see Figure 6)
shows that the more days developers work on a change task,
the more time they spend on program entities.

As RE is more time consuming, more time spent for more
working days indicates that a RE is probably the most followed
strategy when a task spans multiple working days, as shown in
Figure 7. Therefore, we conclude that when developers work
on maintenance tasks for less than three days, more often, they
follow a UE. On the contrary, when a maintenance task spans
four or more days (i.e., is extensive), developers follow the
referenced exploration frequently. By extensive work, we mean
that the number of days spent by a developer on a change
request is greater than three days.

We think that two reasons can justify why more extensive
works result into more RE. First, when the work is extensive,
developers must (re)understand the entities that they explored
before. So, they refresh their mind by (re)exploring the core
entities. Second, when a developer re-activates a task on which
she was already working, all the entities in the context of
the task are reloaded by Mylyn and the developer usually
(re)explore these entities before moving on to new entities. This
feature of Mylyn is likely to push developers to (re)explore
entities already explored in previous working sessions.

RQ3 Does any difference exist in effort between referenced
exploration (RE) and unreferenced exploration (UE)?

Similarly to RQ2, because a RE means that developers
perform back and forth navigation on a set of program entities
compared to UE, a RE may be more costly than UE in term of
exploration effort. By definition (see Section IV-A), a low value
of EditRatio indicates a small number of edit events and a high

Table IV: Percentage of interaction history per number of
working days

Number of working days
1 2 3 4 5 6 7

ECF 69.23 15.38 15.38 0 0 0 0
Mylyn 54.43 22.54 11.07 5.34 4.24 1.72 0.62
PDE 56.48 20.61 12.21 6.87 3.05 0.76 0
Platform 38.90 22.18 12.36 6.54 10.54 2.18 7.27
Total 52.31 22.22 11.43 5.57 5.10 1.70 1.64

Figure 6: Distribution of duration per number of working days

number of other events: the developer spent more exploration
effort. When the EditRatio is high, the developer spent less
exploration effort and performed edit events more frequently.

As shown in Table III, except for the ECF project, developers’
exploration efforts are significantly different for RE and
UE. Thus, we can reject the null hypothesis H0Effort. By
investigating the less costly exploration in terms of exploration
effort, Figure 8 shows that the edit ratio of UE is always
smaller than that of RE for all projects, i.e., UE may require
more exploration effort than RE.�
�

�
�

Observation 4: An unreferenced exploration requires
more effort than a referenced exploration.

The fact that UE lead to more exploration effort is surprising
because they require less back and forth Yet the fact that
developers who follow RE have less exploration effort can be
justified by two reasons: (1) they make their code modifications
almost in one place (i.e., on the entities they are concentrated
on) and reduce their non-edit events or (2) they start editing
program entities before fully understanding the program and
then could have to revert/modify their previous edits as they
explore more program entities. In future work, we plan to
map interaction history modifications (edit events) and commit
modifications from the source code repository to compare
real modifications of the source code with revert/cancelled
modifications that we expect to be frequent with RE.

C. Confounding Factors

In this section, we discuss some factors that can somehow
affect our study of exploration strategy.

1) Architecture of the System: There may be a relation
between the ES and the program architecture. We use four
open-source projects and, except for ECF (possibly due to the
small number of IH), we did not observe an impact of the
systems on the ES. However, developers explore the program
by following different kind of relationships [24]. We conjecture

Figure 7: Percentage of exploration per number of working
days

Figure 8: Distribution of effort per project

that the architecture of the program can affect the exploration
strategy. By definition, the program entities involved in an IH
are the part (architecture) of the system used to perform a
task. Thus, if the exploration is guided by architecture, the IHs
using almost the same part of a system will result in the same
exploration strategy. For example, if two IHs A and B pertain
to almost the same part of a system, they could yield the same
exploration (RE or UE). But, if A and B pertain to different
parts of a system, they could yield different explorations (RE
for A and UE for B or vice-versa). We use the number of
common entities in A and B to capture the same part of a
system involved in A and B. To investigate the architecture
threat, we compute the number of common entities between
each pair of interaction histories. Consider three IHs A, B, and
C involving classes: A = {c1, c2, c3, c4}, B = {c1, c2, c3, c5},
C = {c6, c7, c8}. A and B have common classes while A and
C and B and C have no common class: A ∩B = {c1, c2, c3},
A∩C = ∅, and B∩C = ∅. If the exploration is guided by the
architecture, A and B should yield the same exploration strategy
while C will have possibly different exploration strategy.
We study the number of common entities for each pair of
interaction histories. Except for the Platform project (p-value
= 1.1e-06), the number of common entities is not statistically
different between the pairs of different ES and the pairs of same
ES (ECF: p-value = 0.34, Mylyn: p-value = 1, PDE: p-value
= 1). Without distinguishing the projects, there is no statistical
significant difference (p-value = 1). Therefore, architecture
does not affect the ES.

2) Task Interruption and Switching: Task interruption is
a common problem when developers perform a task. Zhang et
al. [31] found that task interruption increases the risk of bugs in

Table V: Percentage of RE and UE for each type of task

enhancement major minor
RE 203 (42.46%) 239 (50%) 36 (7.53%)
UE 433 (35.28%) 638 (51.99%) 156 (12.71%)
Total 636 (37.30%) 877 (51.43%) 192 (11.26%)

files while Parnin and Rugaber [18] identified how developers
address the task interruption problem. For exploration strategy,
we find that when developers follow a RE, their interruption
time is higher than those of developers following a UE.
Concerning the task switching, if it is true that developers can
work on many task at a time, we think that Mylyn features
minimise the task switching effect. In fact, when gathering the
interaction histories, Mylyn requires developers to activate the
task they are working on. The task ID is unique and appears in
the interaction history because only one task can be activated at
a time, i.e., if T1 is activated and developer try to activate T2,
T1 will become automatically deactivated. Yet, we think that
more empirical study must be performed for task switching.
Ko et al. [9] observe that developers spent on average 5% of
their time switching between applications (IDE, Web browser,
etc.). It is another dimension of switching that could be related
to ES and that must be investigated in the future work.

3) Type of the Task: The exploration strategy could be
related to the type of the task. We looked at the relation between
RE and UE and the type of the task by using the bug severity
as the type of the task. We think that developers may be careful
when fixing severe bugs. Therefore, when fixing severe bugs
wrt. less severe bugs, developers may have more back and forth
navigation to validate their changes and make sure that they are
not introducing new bugs. Because some reporters of the bugs
may not follow the guideline for assigning the bug severity, we
aggregate the bug severity as Ying and Robillard [30] to address
the imprecise nature of bug severity: “enhancement tasks (only
consisting of the enhancement severity category), minor bug
fixes (aggregating minor and trivial severity categories), and
major bug fixes (aggregating blocker, critical, major, and
normal severity categories)". Since the exploration strategy
is based on the Inequality index, we perform a Kruskall-Wallis
test to assess whether different types of task have a different
Inequality index. Except for the Mylyn project, we found that
the difference between the Inequality index of different types of
tasks is not statistically significant. Moreover, the percentages of
RE and UE presented in Table V show no significant relation
between the type of a task and the exploration strategy of
developers.

V. THREATS TO VALIDITY

In this study, we examine the effect of two program
exploration strategies (i.e., referenced exploration (RE) and
unreferenced exploration (UE)) on task duration and effort.
We cannot claim causation, we simply report observations and
correlations, although we try to explain these observations in
our discussions. The remainder of this section discusses the
threats to validity of our study following common guidelines
[29] of empirical studies.

A. Construct Validity

Construct validity threat is related to the identification of
exploration strategy and the metrics that we use to measure
their impact on maintenance tasks. Gini inequality index is
recognized to be a reliable measure of inequality and has
already been applied in software engineering. The number of
revisits defines how much a program entity is relevant for a
developer’s task. A wrong computation of the number of revisits
could affect our study. We mitigate this threat by computing
the number of revisits only for developers’ interaction events,
instead of considering also Mylyn prediction events. We based
our selection of a Gini threshold on a user study. Our user study
is subjective and depends on the way Graphviz displays the
exploration graphs. We have no control on Graphviz, however,
all subjects worked on the same displayed graphs. For threats
related to our metrics; because some developers can partly
record their interaction histories, we think that for some cases
the time recorded can be different from the “real” time spent.
We plan to perform an experiment and collect data to investigate
this threat.

B. Conclusion Validity

Conclusion validity threat concerns possible violations of
the assumptions of the statistical tests, and the diversity of data
used. To avoid violating the assumptions of our statistical tests,
we use an unpaired version of the non-parametric Wilcoxon
test because it makes no assertion about the normality of the
data. Concerning the diversity of the data, our study is based on
real open-source projects; we think that many developers with
different expertise are involved in these projects. Moreover,
theses projects evolved differently and have different developers.
They have different sizes and complexity.

C. Internal Validity

Internal validity threat relates to the tools used to collect
interaction histories and the choice of the projects. Many
tools [16], [20] can collect developers’ interactions with the
IDE. We use Mylyn’s interaction histories because (1) Mylyn is
a tool provided as an Eclipse’s plug-in and (2) all contributions
to Mylyn must be made using Mylyn2, i.e., in contrast to other
tools, the Mylyn interaction histories are available. Concerning
the projects, because we use the Mylyn interaction histories,
we are constrained to use projects that have Mylyn interaction
histories available. Thus, we use the top four projects using
Mylyn to gather developers’ interactions.

D. External Validity

External validity threat concerns the generalization of our
results. In our study, we used Mylyn interaction histories
gathered from four Eclipse-based projects. The fact that our
subject projects are open-source projects may affect our results.
More investigations should be done using (1) data collected
with other tools and (2) other subject projects that are not
open-source.

2http://wiki.eclipse.org/index.php/Mylyn/Contributor_Reference#Contributions

E. Reliability Validity

Reliability validity threat concerns the possibility of replicat-
ing this study. All data used in this study are available online
for the public.
Finally, it is the authors opinion that it pays to be cautious as the
sub population of developers working with Mylyn and recording
interaction history is a specific developer sub population.
Findings, even if interesting may or may not be representative
of the general developers population. This is a first study
investigating if indeed different exploration strategies impact
(at least in the case of Mylyn aware developers) the time and
effort in maintenance tasks. More work is needed, for example
to verify if there are more fine grain exploration strategies or to
verify if other metrics beside the Gini index, possibly including
developers experience, application complexity, may help to
better model and understand the underlying phenomenon.

VI. RELATED WORK

Our work on exploration strategies is related to works on
program exploration and mining of developer’s interaction
histories.

A. Program Exploration and Tools

The exploration of a program is related to the cognitive
process of developers. Program comprehension theories explain
how developers think (processes taking place in their mind)
and use their knowledge [2], [22], [27]. Robillard et al. [19]
studied the external behavior of developers. Our work differs
to Robillard et al.’s work in the sense that (1) they compare
the behavior of successful and unsuccessful developers and
characterize them, while we study how developers move
through program entities, (2) they perform the study in a
lab setting with only five developers performing identical task
on one system, while we use the data of multiple developers
from four open-source projects, (3) they use a video capture
of the screen while we consider the interaction histories
gathered by Mylyn. Due to the lack of capability to access the
successfulness of developers from the bug report, our work
provides a partial validation of Robillard et al. [19] findings.
We plan to investigate the success dimension by performing
an experiment using Mylyn.
Ko et al. [9] also investigate how developers explore a program.
Our work is different to Ko et al. [9] work because they look
at the main activities taking place when developers perform a
task, they restrict the task to perform and limit the experiment
time. They provide an unfamiliar program to the developers,
without documentation nor comments in the program. They
also use the screen-capture video and manually simulate the
interruption.
Lawrance et al. [11] show that Information Foraging Theory
(IFT) can be used to assess developers’ behaviour when
searching relevant information. Compared to our study, they
apply the IFT on debugging tasks and use verbal protocol (think-
aloud) and screen captures to collect data about developers’
behaviour.

Regarding the tools to gather interaction histories, the
Mylyn plug-in was developed by Kersten et al. [8] to capture
developers’ interactions with program entities when they
perform a task using Eclipse IDE. Later on, Röthlisberger
et al. [20] implemented SmartGroups to complement Mylyn
with evolutionary and dynamic information. Similar to Mylyn,
CodingTracker [16] is another Eclipse plug-in that records
developers’ interactions with program entities. However, to date,
only few projects have adopted CodingTracker. Moreover, we
couldn’t find developers’ interaction logs from CodingTracker
in any open-source version control system that we examined.
Hence our choice of Mylyn for this study. Interaction history
data collected from multiple Eclipse projects, using Mylyn are
publicly available in the bug report system of Eclipse.

B. Mining Interaction Histories

Interaction history logs have been used by the research
community to study developers’ programming behaviors and
propose new tools to ease their daily activities.

Zou et al. [32] use the number of transitions between files to
study the impact of interaction couplings on maintenance activ-
ities. They conclude that restructuring activities are more costly
than other maintenance activities. Kersten and Murphy [7] use
developers’ frequency and recency interaction with an entity to
propose a degree-of-interest (DOI) model. The model is used
to built the task context that help to reduce the developers’
information space. Fritz et al. [4] found that the DOI indicates
the developers’ knowledge about the structure of the code.
While developers can work on many tasks at a time, Coman
and Sillitti [3] use the degree of access (i.e., the amount of
time a method is accesses) and the time interval a method is
intensively access to automatically infer task boundaries and
split developers’ sessions. As developers sometimes interrupt
their work [18], Parnin and Görg [17] count the number of
prior consecutive interactions on an entity to extract the usage
context of the task when it has been interrupted. Schneider
et al. [21] investigated the benefits of tracking developers’
local interactions history when developing in a distributed
environment. Murphy et al. [14] mined Mylyn interaction
history logs collected from 41 programmers and observed that
some views of the Eclipse IDE were more useful than others.
Mylyn interaction histories are also used to find developers
editing styles/patterns [30], [31]. Most previous studies on
Mylyn interaction histories only considered the kinds of the
Mylyn events. In this work, we investigate Mylyn events in
more details by looking at the type of program entities on
which an event occurred. Moreover, instead of counting the
number of events and others metrics used in the previous work,
we use the distribution of the number of revisits to study the
exploration strategy.

VII. CONCLUSION AND FUTURE WORK

When developers perform a maintenance task, they must
explore some program entities. Understanding how developers
explore programs can help to evaluate developers’ exploration

performance, improve our knowledge on developers’ compre-
hension process, and characterise developers’ expertise. In
this paper we contribute to the understanding of developers’
exploration strategies in two ways. First, after mining Mylyn’s
interaction histories, we performed a user study with nine
subjects to verify if both referenced exploration (RE) and
unreferenced exploration (UE) are followed by developers
when performing maintenance tasks. The subjects of this
user study were asked to classify developers’ exploration logs
(i.e., IHs) into two categories: referenced exploration, when
developers explore repeatedly one (or a set of) entity(ies),
and unreferenced exploration, when developers explore entities
without privileging a set of entities. The interrater agreement
among the subjects of the user study was fair. Using the
Gini inequality index on the number of revisits of program
entities, we automatically classified interaction histories from
ECF, Mylyn, PDE, and Eclipse Platform into RE and UE and
performed an empirical study to measure the effect of program
exploration on the task duration and effort.

Results show that although a UE requires more effort than
a RE, a UE is on average 12.30% less time consuming than a
RE. We also found that maintenance task taking up to more
than three days typically imply a RE.
We observe that some characteristics of exploration strategies
(e.g., revisits and time) are common to the characteristics of
methodical and opportunistic developers. However, we need
more investigations to fully tie exploration strategy to Robillard
et al.’s results [19].

In the future, we plan to analyze the relation between
exploration strategies and developers’ expertise to confirm
or not the intuition that novice and expert developers may
tend to follow different exploration strategies. We also plan to
implement a tool that will monitor developers’ explorations
and guide them using best exploration strategies recorded from
more experienced/successful developers. We believe that such
a tool can improve the efficiency of unexperienced developers
by avoiding that they follow time/effort consuming program
exploration strategies.

ACKNOWLEDGMENT

This work has been partly funded by the Canada Research
Chairs on Software Patterns and Patterns of Software and on
Software Change and Evolution. We also thanks the subjects
for the manual classification of exploration strategy.

REFERENCES

[1] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Extracting
structural information from bug reports. In Proceedings MSR, pages
27–30, 2008.

[2] R. Brooks. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18(6):543–554, Jun 1983.

[3] I. Coman and A. Sillitti. Automated identification of tasks in development
sessions. In Proceedings ICPC, pages 212–217, 2008.

[4] T. Fritz, G. C. Murphy, and E. Hill. Does a programmer’s activity indicate
knowledge of code? In Proceedings ESEC-FSE ’07, pages 341–350,
2007.

[5] E. R. Gansner and S. C. North. An open graph visualization system
and its applications to software engineering. Software - Practice and
Experience, 30(11):1203–1233, 2000.

[6] F. Joseph L. Measuring nominal scale agreement among many raters.
Psychological Bulletin, 76(5):378–382, 1971.

[7] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for ides.
In Proceedings of the 4th International Conference on Aspect-oriented
Software Development, AOSD ’05, pages 159–168, 2005.

[8] M. Kersten and G. C. Murphy. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT/FSE, pages
1–11, 2006.

[9] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transaction on Software
Engineering, 32(12):971–987, dec 2006.

[10] J. R. Landis and G. G. Koch. The measurement of observer agreement
for categorical data. Biometrics, 33:159–174, 1977.

[11] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and
S. Fleming. How programmers debug, revisited: An information
foraging theory perspective. Software Engineering, IEEE Transactions
on, 39(2):197–215, 2013.

[12] M. R. Martínez-Torres, S. L. Toral, F. Barrero, and F. Cortés. The role of
internet in the development of future software projects. Internet Research,
20(1):72–86, 2010.

[13] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and
S. Ducasse. Software quality metrics aggregation in industry. Journal of
Software: Evolution and Process, 2012.

[14] G. C. Murphy, M. Kersten, and L. Findlater. How are java software
developers using the eclipse IDE? IEEE Software, 23(4):76–83, July
2006.

[15] Mylyn. http://wiki.eclipse.org/mylyn_integrator_reference.
[16] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig. Is it dan-

gerous to use version control histories to study source code evolution? In
26th European Conference on Object-Oriented Programming (ECOOP),
2012.

[17] C. Parnin and C. Görg. Building usage contexts during program
comprehension. In Proceedings ICPC, pages 13–22, 2006.

[18] C. Parnin and S. Rugaber. Resumption strategies for interrupted
programming tasks. Software Quality Journal, 19(1):5–34, 2011.

[19] M. P. Robillard, W. Coelho, and G. C. Murphy. How effective developers
investigate source code: An exploratory study. IEEE Transactions on
Software Engineering, 30(12):899–903, December 2004.

[20] D. Röthlisberger, O. Nierstrasz, and S. Ducasse. Smartgroups: Focusing
on task-relevant source artifacts in IDEs. In Proceedings ICPC, pages
61–70, june 2011.

[21] K. A. Schneider, C. Gutwin, R. Penner, and D. Paquette. Mining a
softare developers local interaction history. In Proceedings MSR, 2004.

[22] B. Shneiderman and R. Mayer. Syntactic/semantic interactions in
programmer behavior: A model and experimental results. International
Journal of Computer and Information Sciences, 8(3):219–238, 1979.

[23] J. Sillito, G. C. Murphy, and K. D. Volder. Asking and answering
questions during a programming change task. IEEE Transactions on
Software Engineering, 34(4):434–451, July/August 2008.

[24] J. Singer, R. Elves, and M. A. Storey. Navtracks: Supporting navigation
in software maintenance. In Proceedings ICSM, pages 325–334, 2005.

[25] Z. Soh and Y.-G. Guéhéneuc. Towards the exploration strategies by
mining mylyns’ interaction histories. Technical Report EPM-RT-2013-01,
École Polytechnique de Montréal, Feb. 2013.

[26] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz. Comparative analysis
of evolving software systems using the gini coefficient. In Proceedings
ICSM, pages 179–188, sept. 2009.

[27] A. von Mayrhauser and A. M. Vans. Program comprehension during
software maintenance and evolution. Computer, 28(8):44–55, Aug 1995.

[28] K. Xu. How has the literature on gini’s index evolved in the past 80
years? Technical report, Department of Economics, Dalhouse University,
Halifax, Nova Scotia, Dec. 2004.

[29] R. K. Yin. Case Study Research: Design and Methods - Third Edition.
SAGE Publications, London, 2002.

[30] A. Ying and M. Robillard. The influence of the task on programmer
behaviour. In Proceedings ICPC, pages 31–40, june 2011.

[31] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An empirical study of
the effect of file editing patterns on software quality. In Proceedings
WCRE, pages 456–465, 2012.

[32] L. Zou, M. Godfrey, and A. Hassan. Detecting interaction coupling from
task interaction histories. In Proceedings ICPC, pages 135–144, 2007.

