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Abstract—Anti-patterns describe poor solutions to design and
implementation problems which are claimed to make object
oriented systems hard to maintain. Anti-patterns indicate weak-
nesses in design that may slow down development or increase the
risk of faults or failures in the future. Classes in anti-patterns

have some dependencies, such as static relationships, that may
propagate potential problems to other classes. To the best of our
knowledge, the relationship between anti-patterns dependencies
(with non anti-patterns classes) and faults has yet to be studied
in details. This paper presents the results of an empirical study
aimed at analysing anti-patterns dependencies in three open
source software systems, namely ArgoUML, JFreeChart, and
XerecesJ. We show that, in almost all releases of the three
systems, classes having dependencies with anti-patterns are more
fault-prone than others. We also report other observations about
these dependencies such as their impact on fault prediction.
Software organizations could make use of these knowledge about
anti-patterns dependencies to better focus their testing and
reviews activities toward the most risky classes, e.g., classes with
fault-prone dependencies with anti-patterns.

Keywords—Anti-patterns; co-change; static relationships; min-
ing software repositories; fault-proneness; empirical software
engineering.

I. CONTEXT AND PROBLEM

Software systems are never complete and evolve contin-

uously [1]. As they evolve, their complexity grows. Prior

work has shown that software complexity is an obstacle to

introducing changes and that complex modules tend to be

fault-prone [2], [3]. Developers often introduce bad solutions,

anti-patterns [4], to recurring design problems in their systems

and these anti-patterns lead to negative effects on code quality.

While existing work has shown that anti-patterns are prob-

lematic ([5], [6], and [7]), we believe that more attention

should be focused on static and co-change relationships be-

tween anti-patterns classes and other classes without anti-

patterns. We conjecture that, static and co-change relation-

ships with anti-patterns can impact the fault-proneness classes

without anti-patterns. A recent finding by Radu and Cristina

Marinescu [8] that clients of classes with Identity Dishar-

monies are more fault-prone than other classes, supports

this conjecture. The static relationships between anti-patterns

classes and other classes (and vice versa) are typically use,

association, aggregation, and composition relationships [9].

Also, classes participating in anti-patterns may have “hidden”,

temporal dependencies. These dependencies occur when de-

velopers know that, when changing a class, they must also

change another. The literature describes many approaches to

extract and analyse such hidden dependencies and to infer

the patterns that describe these changes to help developers

to maintain their systems. For example, some previous work

[10], [11] detected motifs that highlight co-changing groups

of classes and that describe the (often implicit) dependencies

or logical couplings among classes that have been observed to

frequently change together [12]. Two classes are co-changing

if they were changed by the same author and with the same

log message in a time-window between some milliseconds and

some minutes at the most [12], [13]. Recently, we introduced

the novel concept of macro co-change1 and proposed detection

algorithms to identify various co-change situations among the

classes of a software system[14].

In this paper, we analyze static and temporal relationships

(i.e., co-changes) between anti-pattern and (non)anti-pattern

classes from three Java open source software systems: Ar-

goUML, JFreeChart, and XercesJ.

Research Problem. On the one hand, previous work agree

that anti-patterns are commonly introduced by developers but

they are more fault prone and counterproductive in program

development and maintenance [6]. On the other hand, static

relationships and co-change dependencies can be “channels”

propagating faults among classes in software systems. How-

ever, there is no much information available in the literature

about the fault proneness of classes having static or co-change

dependencies with classes infected by anti-patterns. In this

study, we are looking for evidence that practitioners should

pay attention to systems with a high number of classes related

to classes infected by anti-patterns, because these classes are

likely to be the subject of their change efforts.

As in previous work [15], we assume that a class C co-

changes with the anti-pattern A if C co-changes at least with

one class belonging to A. We also assume that a class S has

a static relationships with the anti-pattern A if S has a use,

association, aggregation, or composition relationships with at

1two or more changed files that exactly change together with long time
intervals between their changes and–or performed by different developers and
with different log messages



least one class belonging to A in one of the versions of the

analysed systems.

We analyse dependencies with anti-patterns in two ways:

first, we investigate whether classes having static relationships

(use, association, aggregation, and composition relationships)

with anti-patterns classes are more fault-prone than others.

Second, we investigate whether classes co-changing with anti-

patterns classes are more fault-prone than others. We formulate

the following research questions:

RQ1: Are classes that have static relationships with anti-

patterns more fault-prone than other classes?

RQ2: Are classes that co-change with anti-patterns more

fault-prone than other classes?

We found that, in ArgoUML, JFreeChart, and XercesJ,

classes having static or co-change dependencies with anti-

patterns are more fault prone. We also found that such de-

pendencies can be used to predict faults and–or improve fault

prediction models.

Organisation. Section II presents our approach. Section III

describes our empirical study. Section IV presents the study

results while Section V discusses them along with threats to

their validity. Then, section VI relates our study with previous

work. Finally, Section VII concludes the study and outlines

future work.

II. APPROACH

This section describes the steps necessary to extract and

analyse the data required to perform this study.

A. Step 1: Extracting Anti-patterns From the Source Code

We use the DEtection for CORrection approach DECOR

[5], to specify and detect anti-patterns. DECOR is based on

a thorough domain analysis of anti-patterns defined in the

literature and provides a domain-specific language to specify

code smells and anti-patterns and methods to detect their

occurrences automatically. It can be applied on any object-

oriented system through the use of the PADL [16] meta-

model and POM framework [17]. PADL describes the structure

of systems and a subset of their behavior, i.e. classes and

their relationships. POM is a PADL-based framework that

implements more than 60 structural metrics.

We use seven of these metrics to verify if we find differences

in fault-proneness between classes having dependencies with

anti-patterns and other classes with similar complexity or size.

These metrics measure : (1) the total lines of code per class;

(2) the number of method calls of a class; (3) the nested block

depth of the methods in a class; (4) the number of parameters

of the methods in class; (5) the McCabe cyclomatic complexity

of the methods in a class; (6) the number of fields of a classes;

and (7) the number of methods of a classes. We choose these

seven metrics because they have been successfully used in the

past [18] to predict post-release faults.

We parse the CVS change logs of our subject systems and

apply the heuristics by Sliwersky et al. [19] to identify fault

fix locations. Precisely, we parse commit log messages using a

Perl script and extract bug IDs and specific keywords, such as

“fixed” or “bug” to identify fault fixing commits. For each fault

fixing commit, we extract the list of files that were changed

to fix the fault.

B. Step 2: Detecting Anti-patterns Static Relationships

We use the Ptidej tool suite [16] to detect anti-patterns static

relationships. Ptidej characterizes the constituents of class di-

agrams and proposes algorithms to identify these constituents

in source code. Ptidej distinguishes use, creation, association,

aggregation, and composition relationships because such re-

lationships exist in most notations used to model systems.

This approach uses the PADL [16] meta-model and parses

the source code of systems to detect models that include all

of the constituents found in any object-oriented system: class,

interface, member class and interface, method, field, inheri-

tance and implementation relationships, and rules controlling

their interactions. Ptidej depends on a set of definitions for

unidirectional binary class relationships that we proposed and

formalized in a previous work [16].

C. Step 3: Detecting Anti-pattern Temporal Dependencies

We use Macocha [14] to mine software repositories and

identify classes that are co-changing with anti-patterns. Ma-

cocha mines version-control systems (CVS or SVN) to identify

the change periods in a program, to group classes according

to their stability through the change periods, and to identify,

among changed classes, those that are co-changing with anti-

patterns.

A change contains several attributes: the changed class

names, the dates of changes, the developers having committed

the changes. Macocha takes as input a CVS/SVN change log.

First, it calculates the duration of different change periods

using the -nearest neighbor algorithm. Second, it groups

changes in adequate change periods. Third, it creates a profile

that describes the evolution of each class in each change

period. Fourth, it uses these profiles to compute the stability

of the classes and, then, to identify changed classes. Finally,

Macocha detects classes that are co-changed with anti-patterns.

Macocha also calculates the following process metrics,

defined and successfully used in previous work [20] to predict

software faults. These metrics are used to verify if we find a

difference in fault-proneness between classes having depen-

dencies with anti-patterns and other classes. Thus, process

metrics are used to check if classes having similar change

histories are more or less fault-prone than classes having

dependencies with anti-patterns. Here are the process metrics

calculated with the Macocha approach as defined in [20]:

1) Total Prior Changes: measures the total number of

changes to a class in the 6 months period before the

release.

2) Prior Fault Fixing Changes: the number of fault fixing

changes done to a class in the 6 months period before

the release.

3) Pre-release faults: the number of pre-release faults in a

class in the 6 months period before the release (these



are faults observed during development and testing of a

program).

4) Post-release faults: the number of post-release faults in

a class in the 6 months period after the release (these

faults are observed after the program has been deployed

to the users).

D. Step 4: Analysing Anti-patterns Dependencies

Table I provides some statistics about the anti-patterns found

in the subject systems considered in this paper. To perform the

empirical study, we choose to analyse the relationships of well

known anti-patterns. We choose these anti-patterns because

they are representative of problems with data, complexity,

size, and the features provided by classes [7]. We also use

these anti-patterns because they have been used and analysed

in previous work [7], [5]. Definitions and specifications are

beyond the scope of this paper and are available in [6] and

[21].

Fault-proneness refers to whether a class underwent at least

one fault fixing in the system life cycle. Fault fixings are

documented in bug reports that describe different kinds of

problems in a system. They are usually posted in issue-tracking

systems, e.g., Bugzilla for the three studied systems, by users

and developers to warn their community of pending issues with

its functionalities; issues in these systems deal with different

kinds of change requests: fixing faults, restructuring, and so

on.

In RQ1, we test whether the proportion of classes in Ar-

goUML, JFreeChart, and XercesJ that have static relationships

with anti-patterns classes have (or do not have) significantly

more faults than those that do not have static relationships

with anti-patterns classes.

In RQ2, we test whether the proportion of co-changed

classes with anti-patterns in ArgoUML, JFreeChart, and

XercesJ have (or do not have) significantly more faults than

the other classes.

Because previous studies [20], [22] showed that size, com-

plexity and process metrics are good predictors of faults in

software systems. We perform an experiment to verify if

static relationships and–or co-change relations can provide

additional information over these traditional fault prediction

metrics. Precisely, our experiment consists in building two

models for predicting the presence or absence of faults in

classes: (1) one using only change and code metrics and

(2) one using change metrics, code metrics, and anti-pattern

dependencies information. The goal is to investigate the im-

pact of using anti-patterns dependencies to build an effective

fault prediction model. In our experiment, the independent

variables are the collection of code and process metrics and

the dependent variable is a two value variable that represents

whether or not a class has one or more post-release fault.

There are various machine learning methods available to build

such models. We use Support Vector Machines to build the

prediction models because this machine learning method has

been widely used in literature and has shown good results [23],

[24]. The models output the likelihood of a class to have one

TABLE I
DESCRIPTIVE STATISTICS OF THE OBJECT SYSTEMS

ArgoUML JFreeChart XercesJ

# of classes 3,325 1,615 1,191

# of snapshots 4,480 2,010 159,196

# of AntiSingleton 3 38 24

# of Blob 100 49 12

# of ClassDataShouldBePrivate 51 3 6

# of ComplexClass 158 52 7

# of LongMethod 336 75 7

# of LongParameterList 281 76 4

# of MessageChains 162 59 8

# of RefusedParentBequest 123 5 7

# of SpaghettiCode 1 2 6

# of SpeculativeGenerality 22 3 29

# of SwissArmyKnife 13 26 29

or more post release faults. We use statistical tests to examine

(the significance of) the difference between the performance

of the two models when predicting faults. More specifically,

we use off-the-shelf methods from the R2 statical package to

analyze the statistical significance and collinearity attributes

of the independent variables used in our experiment.

Classes belonging to an anti-pattern can have dependen-

cies (static relationships and–or co-change dependencies) with

classes belonging to other anti-patterns. Thus, the tests re-

ported in this paper cover classes that have a dependency

with an anti-pattern, regardless of the fact that these classes

could belong to other anti-patterns. Nevertheless, we present

in Section IV the result of our analysis of the impact of anti–

patterns dependencies, for classes belonging to anti-patterns

and other classes separately.

III. STUDY DEFINITION AND DESIGN

The goal of our study is to assess whether classes having

dependencies with anti-patterns have a higher likelihood than

other classes to be involved in issues documenting faults. The

quality focus is the improving of program comprehension and

the reducing of maintenance effort by detecting and using

anti-patterns static or co-change dependencies. The context of

our study is both the comprehension and the maintenance of

systems.

A. Objects

We apply our approach on three Java systems: ArgoUML3,

JFreeChart4, and XercesJ5. We use these systems because

they are open source, have been used in previous work, are

of different domains, span several years and versions, and

have between hundreds and thousands of classes. Table I

summarises some statistics about these systems.

ArgoUML is UML diagramming system written in Java and

released under the open-source BSD License. For anti-patterns

dependencies analysis, we extracted a total number of 4,480

snapshots in the time interval between September 27th, 2008

and December 15th, 2011.

2http://www.r-project.org/
3http://argouml.tigris.org/
4http://www.jfree.org/
5http://xerces.apache.org/xerces-j/



JFreeChart is a Java open-source framework to create charts.

For co-change analysis, we considered an interval of observa-

tion ranging from June 15th, 2007 (release 1.0.6) to November

20th, 2009 (release 1.0.13 ALPHA). In such interval we

extracted 2,010 snapshots.

XercesJ is a collection of software libraries for and ma-

nipulating XML. It is developed in Java and managed by the

Apache Foundation. For anti-patterns dependencies analysis,

we extracted a total number of 159,196 snapshots from release

1.0.4 to release 2.9.0 in the time interval between October

14th, 2003 and November 23th, 2006.

B. Research Questions

We break down our study into two steps:

RQ1: Are classes that have static relationships with anti-

patterns more fault-prone than other classes?

First, we check if classes having static relationships (use,

association, aggregation, and composition relationships) with

anti-patterns classes are more fault-prone than other classes in

the three analysed systems.

RQ2: Are classes that co-change with anti-patterns more

fault-prone than other classes?

Second, we investigate whether classes that are co-changing

with anti-patterns classes are more fault-prone than other

classes.

TABLE II
PROPORTION OF THE ANTI-PATTERNS DEPENDENCIES (CC:

CO-CHANGING SITUATIONS OF ANTI-PATTERNS WITH OTHER CLASSES;
S.R.: ANTI-PATTERNS STATIC RELATIONSHIPS)

Anti-patterns Systems # of CC # of S.R.

AntiSingleton ArgoUml 13 152
JFreeChart 20 201
XercesJ 18 188

Blob ArgoUml 51 304
JFreeChart 36 164
XercesJ 24 93

ClassDataShouldBePrivate ArgoUml 4 167
JFreeChart 0 82
XercesJ 0 113

ComplexClass ArgoUml 2 192
JFreeChart 0 146
XercesJ 0 96

LongMethod ArgoUml 42 282
JFreeChart 51 314
XercesJ 0 266

LongParameterList ArgoUml 12 344
JFreeChart 0 276
XercesJ 0 309

MessageChains ArgoUml 48 244
JFreeChart 8 196
XercesJ 16 183

RefusedParentBequest ArgoUml 47 326
JFreeChart 6 183
XercesJ 25 93

SpaghettiCode ArgoUml 0 0
JFreeChart 0 0
XercesJ 0 0

SpeculativeGenerality ArgoUml 13 128
JFreeChart 4 139
XercesJ 8 201

SwissArmyKnife ArgoUml 20 69
JFreeChart 9 142
XercesJ 18 108

We test the following null hypotheses:

H : The proportions of faults carried by classes

having static relationships with anti-patterns and other

classes are the same.

H : The proportions of faults involving classes hav-

ing co-change dependencies with anti-patterns and other

classes are the same.

If we reject the null hypothesis H , it could mean

that the proportions of faults carried by classes having static

relationships with anti-patterns and faults carried by other

classes in the analysed systems are not the same.

If we reject the null hypothesis H , we explain the

rejection as that the proportion of faults carried by classes co-

changing with anti-patterns is not the same as the proportion

of faults carried by classes not co-changing with anti-patterns.

C. Analysis Method

The analysis reported in Section IV have been performed

using the R statistical environment6. We use the contingency

tables to assess the direction of the difference, if any. In

statistics, a contingency table is a table in a matrix format that

displays the frequency distribution of the variables. Fisher’s

exact test [25] is a statistical significance test used in the

analysis of contingency tables. Although in practice it is

employed when sample sizes are small, it is valid for all

sample sizes. The test is useful for categorical data that result

from classifying objects in two different ways. It is used

to examine the significance of the association (contingency)

between the two kinds of classification, in our study: Faulty

classes and clean classes. To compute the -value of the test,

the contingency tables must then be ordered by some criterion

that measures dependence and those tables that represent equal

or greater deviation from independence than the observed

table are the ones whose probabilities are added together.

The contingency tables tested in this study contain the total

numbers of faulty and clean classes identified in ArgoUML,

JFreeChart, and XercesJ.

We also compute the odds ratio [25] that indicates the

likelihood for an event to occur. The odds ratio is defined as the

ratio of the odds of an event occurring in one sample, i.e., the

odds that classes having static relationships with anti-patterns

are identified as fault-prone to the odds of the same event

occurring in the other sample, i.e., the odds that the rest of

classes are identified as fault-prone. Thus, if the probabilities

of the event in each of the groups are (faulty classes for

example) and (not faulty classes), then the odds ratio is:

. An odds ratio greater than 1 indicates that the

event is more likely in the first sample, while an odds ratio less

than 1 indicates that it is more likely in the second sample.

IV. STUDY RESULTS

We now present the results of our empirical study. Tables

II, III and IV summarise our findings.

6http://www.r-project.org



A. RQ1: Are classes that have static relationships with anti-

patterns more fault-prone than other classes?

Table III reports for ArgoUML, JFreeChart, and XercesJ

the numbers of (1) classes having static relationships with

anti-patterns and identified as faulty; (2) classes having static

relationships with anti-patterns and identified as clean (i.e.,

not faulty); (3) classes without static relationships with anti-

patterns and identified as faulty; and, (4) classes without static

relationships with anti-patterns and identified as clean. For

each case, we present separately the result of the set of classes

that do not belonged to other anti-patterns. The result of

Fisher’s exact test and odds ratios when testing are

significant for all three systems. For the three systems, the

-value is less then and the likelihood that a class with

static relationship(s) with anti-patterns experiences a fault (i.e.,

odds ratio) is about two times higher than the likelihood that

other classes experience faults.

We can answer positively to RQ1 as follows: classes having

static relationships with anti-patterns are significantly more

fault-prone than other classes.

But... Two observations limit the results of RQ1: First, in the

three systems, as shown in Table II, we do not detect any class

having static dependencies (use, association, aggregation, and

composition relationships) with SpaghettiCode. In this case,

we cannot relate the impact of using this anti-pattern and

the fault-proneness of other classes in the systems. Second,

based on complexity metrics and change metrics analysis, it

is neither possible to conclude that other classes having similar

complexity, change history, and code size are less fault-prone

than classes having static relationships with anti-patterns. In

fact, we take as input the list of code and change metrics

described in Section II and check if there is a significant

statistical difference on fault proneness between a model based

on only these metrics and a model based on these metrics

plus anti-patterns static relationships. If all anti-patterns are

considered in this comparison, it is impossible to definitely

exclude the possibility that there is no statistically differences

in fault-proneness between classes related to anti-patterns and

other classes with similar complexity, change history, and

code size. However, if we group the results according to

distinct anti-patterns, we observe that classes having static

relationships with Blob, ComplexClass, and SwissArmyKnife

are significantly more fault prone than other classes with

similar complexity, change history, and code size. Future work

include the categorisation of anti-patterns according to the

impact of their dependencies on fault proneness.

Other observations. Many anti-patterns’ relationships were

with classes playing roles in design patterns. Opposite

to anti-patterns, design patterns [21] are “good” solutions

to recurring design problems, conceived to increase reuse,

code quality, code readability and, above all, maintainabil-

ity and resilience to changes. As a consequence, these

classes, playing roles in design patterns and having static

relationships with anti-patterns, can bias the results. In-

deed, we observe cases where developers amended anti-

patterns using design patterns to facilitate maintenance

tasks and reduce comprehension effort. For example, in

XercesJ v1.0.4, the class org.apache.xerces.vali-

dators.common.XMLValidator.java is an exces-

sively complex class interface. The developer attempted to

provide services for all possible uses of this class. In her

attempt, she added a large number of interface signatures to

meet all possible needs. The developer may not have a clear

abstraction or purpose for org.apache.xerces.vali-

dators.common.XMLValidator.java, which is repre-

sented by the lack of focus in its interface. Thus, we claim

that this class belongs to a SwissArmyKnife anti-pattern.

This anti-pattern is problematic because the complicated in-

terface is difficult for other developers to understand and

obscures how the class is intended to be used, even in simple

cases. Other consequences of this complexity include the

difficulties of debugging, documentation, and maintenance.

We detect that this class has a use-relationship with the

class org.apache.xerces.validators.dtd.DTDI-

mporter.java, which belongs to the Command design

pattern. Using Command classes makes it easier to con-

struct general components that delegate sequence or execute

method calls at a time of their choosing without the need

to know the owner of the method or the method parameters.

Thus, developer can correct org.apache.xerces.va-

lidators.common.XMLValidator.java, by using the

related Command pattern, to represent and encapsulate all the

information needed to call a method at a later time. This

information includes the method name, the object that owns

the method, and values for the method parameters. Thus, by

using the relationships of an anti-pattern with a specific design

pattern, we could help developers to maintain the anti-pattern

classes while reducing its influence on the system by benefiting

from its relationships with other design pattern so that, in the

long term, developers could eliminate this anti-pattern while

propagating changes adequately. We plan to study in future

work the effect of knowing and using the relationships of

anti-patterns and design patterns in maintenance tasks and

comprehension effort.

B. RQ2: Are classes that co-change with anti-patterns more

fault-prone than other classes?

In the three systems, we detected co-change situations for

the majority of anti-patterns classes. In ArgoUML, we observe

that Blob, LongMethod, and RefusedParentBequest co-change

with other classes more than the rest of anti-patterns. Whilst

during the evolution of JFreeChart and XercesJ, Blob is the

anti-pattern that co-change the most with other classes.

Table IV presents a contingency table for ArgoUML,

JFreeChart, and XercesJ that reports the number of (1) classes

co-changing with anti-patterns and identified as faulty; (2)

classes co-changing with anti-patterns and identified as clean

(i.e., not faulty); (3) other classes identified as faulty; and, (4)

other classes identified as clean. For each case, we present

separately the result of the set of classes that do not belonged



TABLE III
CONTINGENCY TABLE AND FISHER TEST RESULTS IN ARGOUML,

JFREECHART AND XERCESJ FOR CLASSES WITH AT LEAST ONE FAULT

(S.R.: STATIC RELATIONSHIPS, AP: ANTI-PATTERN, NBPA: NOT

BELONGED TO OTHER ANTI-PATTERNS

Faulty Clean

Total of classes having S.R. with AP in ArgoUML 1062 1003

Classes having S.R. with AP and NBAP 402 600

Other classes in ArgoUML 681 579

Total of classes having S.R. with AP in JFreeChart 432 226

Classes having S.R. with AP and NBAP 281 103

Other classes in JFreeChart 310 647

Total of classes having S.R. with AP in XercesJ 445 121

Classes having S.R. with AP and NBAP 262 75

Other classes in XercesJ 126 499

Total of classes related to AP 1939 1350

Classes having S.R. with AP and NBAP 945 778

Total of other classes 1117 1725

Fisher’s test

Odd-ratio 2.21802

Fisher’s test for NBAP

Odd-ratio for NBAP 1.875567

TABLE IV
CONTINGENCY TABLE AND FISHER TEST RESULTS IN ARGOUML,

JFREECHART AND XERCESJ FOR CLASSES WITH AT LEAST ONE FAULT

(AP: ANTI-PATTERNS, NBPA: NOT BELONGED TO OTHER

ANTI-PATTERNS)

Faulty Clean

Classes co-changing with AP in ArgoUML 241 102

Classes co-changing with AP and NBPA 120 59

Other classes in ArgoUML 1502 1480

Classes co-changing with AP in JFreeChart 68 26

Classes co-changing with AP and NBPA 33 10

Other classes in JFreeChart 674 847

Classes co-changing with AP in XercesJ 37 21

Classes co-changing with AP and NBPA 20 12

Other classes in in XercesJ 534 599

Total of classes co-changing with AP 346 149

Classes co-changing with AP and NBPA 173 81

Total of other classes 2710 2926

Fisher’s test

Odd-ratio 2.50723

Fisher’s test for NBAP

Odd-ratio for NBAP 2.305731

to other anti-patterns. The result of Fisher’s exact test and

odds ratios when testing are significant. For all the

three systems, the -value is less than and the likelihood

that a class co-changing with anti-patterns experiences a fault

(i.e., odds ratios) is about two and half times higher than the

likelihood that other classes experience faults.

We can answer positively to RQ2 as follows: classes co-

changing with anti-patterns are significantly more fault-prone

than other classes.

But... We observe in Table II, in the three analysed systems,

that if a class belongs to the SpaghettiCode anti-pattern, it

does not co-change with any other class in the system. In

ArgoUML, we detect some occurrences of ClassDataShould-

BePrivate, ComplexClass, and LongParameterList that co-

changed with other classes. However, we do not detect any

class playing role in these anti-patterns and which is co-

changing with other classes in JFreeChart and XercesJ. We do

not detect, also, classes that are co-changing with LongMethod

classes in XercesJ. Finally, we found that classes that are

co-changing with anti-patterns classes are significantly more

fault prone than other classes with similar complexity, change

history, and code size. However, it is impossible to exclude

the possibility that there is no impact on fault-proneness for

classes that co-changed with SpaghettiCode, ClassDataShould-

BePrivate, ComplexClass, and LongParameterList.

Other observations. If co-change dependencies of anti-

patterns are not properly maintained, they can lead to faults

in the system. For example, the class GoClassToNavi-

gableClass.java belongs to a Blob anti-pattern in Ar-

goUML0.26. Concurrently, this class is co-changed with

the class GoClassToAssociatedClass.java. How-

ever, these two classes are not always maintained to-

gether although the developer changing GoClassToNavi-

gableClass.java should, also, assess GoClassTo-

AssociatedClass.java for change. Yet, in the Bugzilla

database of ArgoUML, the bug ID55057 confirms that the two

classes are related but were not maintained together, leading

to a fault.

V. DISCUSSION

This section discusses the results reported in Section IV as

well as the threats to their validity.

A. Exploratory Findings

From Table II, we note that many anti-patterns in Ar-

goUML, JFreechart, and XercesJ have static relationships and–

or have been co-changed with other classes. To the best of our

knowledge, we are the first to analyze these dependencies in

details; especially their impact on fault proneness.

We do not consider that an anti-pattern is necessarily the

result of a “bad” implementation or design choice; only the

concerned developers can make such a judgement. We do not

exclude that, in a particular context, an anti-pattern can be the

best way to actually implement and–or design a (part of a)

class. For example, automatically-generated parsers are often

very large and complex classes. Only developers can evaluate

their impact according to the context: it can be perfectly

sensible to have these large and complex classes if they come

from a well-defined grammar. Such classes are excluded from

our analysis because generated code is likely to be of a very

different nature than hand-written code and possibly more

reliable because the domain must be well understood before

one can develop a code generator. On the other hand, the

interface of such code may have the same issues as hand-

written code and could affect maintenance in a similar way.

From Table II, we report that different anti-patterns have

different proportion of static relationships with other classes

in systems. This difference is not surprising because these

systems have been developed in three unrelated contexts, under

different processes. It highlights the interest of analysing and

7http://argouml.tigris.org/issues/show bug.cgi?id=5505



reporting the anti-patterns dependencies when assessing finely

the quality of systems.

SpaghettiCodes do not co-change and have no static rela-

tionships (use, association, aggregation, and composition) with

other classes in the three analysed systems. This observation

is not surprising because a SpaghettiCode is revealed by

classes with no structure, declaring long methods with no

parameters, and utilising global variables for processing. A

SpaghettiCode does not exploit and prevent the use of object-

orientation mechanisms: polymorphism and inheritance. With

a SpaghettiCode, minimal relationships exist between objects.

Many object methods have no parameters, and utilise classes

or global variables for processing. Thus, a SpaghettiCode

is difficult to reuse and to maintain, and when it is, it is

often through cloning. In many cases, however, code is never

considered for reuse.

We found that classes that have dependencies with nu-

merous anti-patterns (such as Blob and ComplexClass) are

significantly more fault prone than other classes with similar

complexity, change history, and code size. However, for the

three analysed systems, it is impossible to get significant

statistical difference on fault proneness for some anti-patterns

such as SpaghettiCode.

We also observe that many anti-patterns dependencies were

with other motifs in systems such as design patterns. We noted

that developers use design patterns, possibly unintentionally,

as proven solutions to recurring design problems [26], e.g.,

when there is a proliferation of similar methods and–or the

user-interface code becomes difficult to maintain.

Last but not least, we confirmed that knowing that two

classes are co-changing implies the existence of (hidden)

dependencies between these two classes. If these dependencies

are not properly maintained, they can introduce faults in a

program [27]. We found that classes that co-changed with anti-

patterns are more fault-prone than other co-changed classes in

ArgoUML, JFreechart, and XercesJ. Thus, by knowing the

sets of classes that co-changed with anti-patterns, we could

explain and possibly prevent faults, thus lessening the anti-

patterns negative impact. Indeed, team managers can guide

programmers based on the program history and point out

risky item coupling such as classes that are co-changing with

anti-patterns classes. In addition, with the availability of such

information, a tester could decide to focus on classes having

dependencies with anti-patterns, because she knows that such

classes are likely to contain faults.

B. Threats to Validity

We now discuss in details the threats to the validity of our

results, following the guidelines provided in [28].

Construct validity threats concern the relation between

theory and observation. In our context, they are mainly due to

errors introduced in measurements. We are aware that the de-

tection technique used includes some subjective understanding

of the definitions of the anti-patterns. However, as discussed,

we are interested to relate anti-patterns as they are defined

in DECOR [5] with other classes by static relationships as

they are defined in PADL [16]. For this reason, the precision

of the anti-patterns detection is a concern that we agree to

accept. Moha et al. [5] reported that the current DECOR

detection algorithms for anti-patterns ensure 100% recall and

have a precision greater than 31% in the worst case, with

an average precision greater than 60%. Macocha’s approach

detection for macro co-change ensures 96% recall and has

a precision greater than 85% [14]. We preprocessed the

inconsistent anti-patterns to eliminate false positives. This

preprocessing reduces the chances that we could answer our

research questions wrongly. In addition, our results can still

be affected by the presence of false negatives, i.e., by a low

recall exhibited by the anti-pattern detection tool. In case anti-

pattern specifications are variants of the specification used

by DECOR, some anti-patterns may be missed during the

detection phase. Although the sample of detected anti-patterns

can be considered large enough to claim our conclusions,

further investigations aimed at assessing to what extent the

detection tool performance assess our results are needed.

We compute the fault-proneness of a class by relating fault

reports and commits to the class. In fact, fault fixing changes

are documented in text reports that describe different kinds

of problems in a program. Thus, we match faults/issues to

changes using their IDs and their dates in the ChangeLog

files and in the fault reports. On the one hand, we care about

independent changes that were accidentally combined in the

same commit. Thus, we manually investigate the code to be

sure that the fault fixes documented in the commit message

is really related to the class committed in the SVN/CVS

log file. On the other hand, having a fault is a temporary

property, whereas being involved in an anti-pattern is a rather

even somewhat long-term persistent property. Thus, these two

different types of properties can be related to each other: there

will be times when an anti-pattern related to a class will have

no fault and times when it will have faults. In this study, and

as in previous work [7] analyzing fault proneness, we declared

that a class is a faulty class if it was involved in at least one

fault fixing change.

Conclusion validity threats concern the relation between the

treatment and the outcome. We paid attention not to violate the

assumptions of the statistical test that we used, i.e., the Fisher’s

exact test, which is a non-parametric test. A possible threat to

the conclusion validity is our particular choice of complexity

and change metrics. Although these metrics are widely used

and accepted by other researchers, there is no consensus on

their universality. We do not yet fully understand the complex

mechanism of why and how faults are introduced in software

systems. Thus, in theory there could exist some better fault

prediction metrics, that are yet to be discovered.

Reliability validity threats concern the possibility of replicat-

ing this study. We attempted here to provide all the necessary

details to replicate our study. Moreover, both ArgoUML,

JFreeChart, and XercesJ source code repositories are publicly

available, as well as the anti-pattern detection tool used in this

study. Our analysis process is described in detail in Section

II. Finally, all the data used in this study are available on the



Web8.

Threats to external validity concern the possibility to gener-

alise our observations. First, although we performed our study

on three different, real systems belonging to different domains

and with different sizes and histories, we cannot assert that our

results and observations are generalisable to any other systems

and the facts that all the analysed systems are in Java and open-

source may also reduce the generalizability of our findings.

In the future, we plan to analyze further systems, written

in different programming languages, to draw more general

conclusions. Second, we used particular, yet representative,

sets of anti-patterns. Different anti-patterns could have lead

to different results, which are part of our future work. In

addition, the list of metrics used in our study is by no means

complete. Therefore, using other metrics may yield different

results. However, we believe that the same approach can be

applied on any list of metrics. The odds ratio and p-value

thresholds used in our study were chosen because they proved

to be successful in previous studies [7].

VI. RELATED WORK

Several works have studied the detection and the analysis

of anti-patterns. Other work studied co-changes. Because of

lack of space, we only cite some relevant work, the interested

readers can find more references in our previous work [5].

Anti-patterns Definition and Detection. The first book on

“anti-patterns” in object-oriented development was written in

1995 by Webster [4]. In this book, the author reported that an

anti-pattern describes a frequently used solution to a problem

that generates ineffective or decidedly negative consequences.

Brown et al. [29] presented 40 anti-patterns, which are often

described in terms of lower-level code smells. These books

provide in-depth views on heuristics, code smells, and anti-

patterns aimed at a wide academic audience. They are the

basis of all the approaches to detect anti-patterns.

The study presented in this paper relies on anti-patterns

detection approach proposed in [5]. However several other

approaches have been proposed in the past. For example, Van

Emden et al. [30] developed the JCosmo tool. This tool parses

source code into an abstract model (similar to the Famix meta-

model). It used primitive and rules to detect the presence of

smells and anti-patterns. Marinescu et al. developed a set of

detection strategies to detect anti-patterns based on metrics

[31]. Settas et al. explored the ways in which an anti-pattern

ontology can be enhanced using Bayesian networks [32]. Their

approach allowed developers to quantify the existence of an

anti-pattern using Bayesian networks, based on probabilistic

knowledge contained in an anti-pattern ontology.

The Integrated Platform for Software Modeling and Anal-

ysis (iPlasma) described in [33] can be used for anti-patterns

detection. This platform calculates metrics from C++ or Java

source code and applies rules to detect anti-patterns. The rules

combine the metrics and are used to find code fragments that

exceed some thresholds. We share with all the above authors

8http://www.ptidej.net/download/experiments/wcre13/

the idea that anti-patterns detection is a powerful mechanism

to asses code quality, in particular indicating whether the

existence of anti-patterns and the growth of their relationships

makes the source code more difficult to maintain.

Anti-patterns Static Relationships. There are few papers

analyzing empirically the anti-patterns relationships.

Binkley [34] et al. defined the dependence anti-pattern as

a dependence structure that may indicate potential problems

for ongoing software maintenance and evolution. Dependence

anti-patterns are not structures that must always be avoided.

Rather, they denote warnings that should be investigated.

Typically these problems will take the form of difficulties

in comprehension, testing, reverse engineering, re-use, and

maintenance. The authors showed how these anti-patterns

can be identified using techniques for dependence analysis

and visualization. While it is hard to define what a “bad”

dependence structure should look like, we believe that it

is comparatively easy to identify dependence between anti-

patens and others classes in the systems that denote potential

problems.

Radu and Cristina Marinescu [8] reported that if a class

makes use of a class that reveals design flaws, that class

is more likely to exhibit faults. Thus, when a developer is

aware of a class revealing design flaws within a system, he

should also monitor the clients of this class since they are

likely to also exhibit faults. Our work differs from Radu and

Cristina’s study in that we analyze different types of dependen-

cies and anti-patterns. Indeed, Radu and Cristina considered

only four design flaws called Identity Disharmonies. Identity

Disharmonies are design flaws that affect single entities such

as classes and method. They are characterized by a lack

of harmony between the size of operations and classes; a

lack of harmony in the collaboration of data and operations;

these entities exhibit more than one responsibility. Example of

Identity Disharmonies are: Data Class, God Class, Brain Class,

and Feature Envy. In their study, they considered that a class

(client) makes use of a God Class, Brain Class or Feature Envy

if that class calls at least one method from a flawed class (i.e.,

God Class, Brain Class or Feature Envy). They considered

that a client makes use of a Data Class if the client accesses

at least one attribute of the Data class or calls at least one of

the exposed methods from the class. Given this differences

between our two studies, we can claim that our study is

the first detailed analysis of the impact of different anti-

patterns relationships (including use relationship), co-change

dependencies and fault-proneness. In total, we have analyzed

11 anti-patterns.

Vokac [35] analyzed the corrective maintenance of a large

commercial program, comparing the fault rates of classes

participating in design motifs against those that did not. Their

approach showed correlation between some design patterns

and smells like LargeClass but do not report an exhaustive in-

vestigation of possible correlations between these patterns and

anti-patterns. Pietrzak and Walter [36] defined and analysed

the different relationships that exist among smells and provide



tips on how they could be exploited to alleviate the detection of

anti-patterns. They proposed six coarse relations that describe

dependencies between smells: plain support, mutual support,

rejection aggregate support, transitive support, and inclusion.

Rather than focusing on the relationships among code smells

and anti-patterns, our study focuses on analysing anti-patterns

dependencies and their impact on fault-proneness.

Co-change Dependencies. Aversano et al. [15] presented

results from an empirical study aimed at understanding the

evolution of design patterns in three open source programs,

namely JHotDraw, ArgoUML, and Eclipse-JDT. Specifically,

the study analysed the frequency of the modification of pat-

terns, the type of changes that patterns undergo and classes

that co-change with patterns. Results suggested that developers

should carefully consider pattern usage when this supports

crucial features of the application. Such patterns will likely un-

dergo frequent changes and be involved in large maintenance

activities, that would be highly affected by wrong pattern

choices. While Aversano et al. focused on design patterns,

our study analyses classes that co-changed with anti-patterns.

Bouktif et al. defined the general concept of change patterns

and described one such pattern, synchrony, that highlights co-

changing groups of classes. Other approaches to detect co-

changes exist [12], [13], [15], and [37]. These approaches

are intrinsically limited in their definition of co-change. They

cannot express patterns of changes between long time intervals

and-or performed by different developers. Thus, we introduced

the novel patterns of macro co-changes (MCCs) and dephase

macro co-changes (DMCCs) [14], inspired from co-changes

and using the concept of change periods. A MCC describes a

set of classes that always change together in the same periods

of time (of duration much greater than 200 ms). A DMCC

describes a set of classes that always change together with

some shift in time in their periods of change. We proposed

an approach, Macocha [14], to mine software repositories

(CVS and SVN) and identify (dephase) macro co-changing

classes. We showed that Macocha have a better precision and

recall for co-changes detection than the approach based on

association rules. We used external information provided by

bugs reports, mailing lists, and requirement descriptions to

show that detected MCCs and DMCCs explain real, important

evolution phenomena. In [7], Khomh et al. showed that anti-

patterns do have a negative impact on class change-proneness

and fault-proneness and that certain kinds of anti-patterns do

have a higher impact than other. In this paper, we showed,

in RQ2, that detecting classes that are co-changing with anti-

patterns classes help to identify which entities are more likely

to be fault prone.

A. Fault-proneness

Nagappan and Ball [18] performed a study on the influence

of code churn [22] on the fault density. They found that

relative code churn was a better predictor than absolute churn.

Moser et al. [24] used metrics (e.g. code churn, past faults and

refactorings, etc.) to predict the presence/absence of faults in

files of Eclipse. Hassan and Holt [38] proposed heuristics to

analyse fault proneness. They found that recently modified

and fixed classes were the most fault-prone. Ostrand et al.

[23] predict faults in two industrial systems, using change

and fault data. Bernstein et al. [39] used fault and change

information in non-linear prediction models. Zimmermann

and Nagappan [20] used dependencies between binaries in

Windows server 2003 to predict faults. Marcus et al. [40] used

a cohesion measurement based on LSI for fault prediction.

Neuhaus et al. [41] used a variety of features of Mozilla, such

as past faults, package imports, call structure, to determine

fault vulnerabilities. Previous approach on fault-proneness out

there did not link class evolution behaviors to faults. In this

paper, we spotted the links between software evolution and

fault-proneness.

VII. CONCLUSIONS AND FUTURE WORK

A large amount of effort has been put into analysis models

to explain and forecast faults in software systems. As this area

of research grows, a greater number of metrics is being used

to predict faults. In this paper, we reported the results of an

empirical study, performed on three object-oriented systems,

which provides empirical evidence of the negative impact of

dependencies with anti-patterns on fault-proneness. Through

our two research questions:

RQ1: Are classes that have static relationships with anti-

patterns more fault-prone than other classes?

RQ2: Are classes that co-change with anti-patterns more

fault-prone than other classes?

We found that:

Having static relationships with anti-patterns can signifi-

cantly increase fault-proneness.

Classes having co-change dependencies with anti-patterns

are more fault prone than others.

This empirical study confirms, within the limits of the

threats to its validity, the conjecture in the literature that anti-

patterns have a negative impact on system architecture. It

also suggests to use the knowledge about the anti-patterns

dependencies to maintain a system correctly, to eliminate

design defects, and to propagate changes adequately.

Future work includes (i) replicating our study on other

systems to assess the generalizability of our results, (ii) study-

ing the effect of the anti-patterns dependencies on change-

proneness, and (iii) analysing relation between some of the

considered size and complexity measures and classes depen-

dent on other classes that are involved in anti-patterns.
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