
An Empirical Study on the Fault-Proneness of
Clone Migration in Clone Genealogies

Shuai Xie1, Foutse Khomh2, Ying Zou1, Iman Keivanloo1
1 Department of Electrical and Computer Engineering, Queen’s University, Canada.

{shuai.xie, ying.zou, iman.keivanloo}@queensu.ca
2 SWAT, Polytechnique Montréal, QC, Canada.

foutse.khomh@polymtl.ca

Abstract—Copy and paste activities create clone groups in
software systems. The evolution of a clone group across the
history of a software system is termed as clone genealogy. During
the evolution of a clone group, developers may change the location
of the code fragments in the clone group. The type of the clone
group may also change (e.g., from Type-1 to Type-2). These two
phenomena have been referred to as clone migration and clone
mutation respectively. Previous studies have found that clone
migration occur frequently in software systems, and suggested
that clone migration can induce faults in a software system.
In this paper, we examine how clone migration phenomena
affect the risk for faults in clone segments, clone groups, and
clone genealogies from three long-lived software systems JBOSS,
APACHE-ANT, and ARGOUML. Results show that: (1) migrated
clone segments, clone groups, and clone genealogies are not
equally fault-prone; (2) when a clone mutation occurs during
a clone migration, the risk for faults in the migrated clone is
increased; (3) migrating a clone that was not changed for a
longer period of time is risky.

Index Terms—Type of clones; clone genealogy; clone migra-
tion; clone mutation; fault-proneness.

I. INTRODUCTION

When two or more code segments have a certain similarity
or are exactly the same, they are considered to be code clones.
Based on the textual similarity among code segments, clones
can be classified into four types [1]:

• Type-1: Identical code segments except for variations in
whitespace, layout and comments.

• Type-2: Syntactically identical segments except for vari-
ations in identifiers, literals, types, whitespace, layout and
comments.

• Type-3: Copied segments with further modifications such
as changed, added or removed statements, in addition to
variations in identifiers, literals, types, whitespace, layout
or comments.

• Type-4: Code segments implemented through different
syntactic variants that perform the same computation.

Code clones are usually introduced in software systems by
developers, inadvertently or through copy and paste activities.
When more than one duplication is made from a code segment,
several clones are created. These clones form a clone group
(also known as clone class). A clone group is composed of
multiple cloned segments. Duplications of code segments by
developers can cross distant parts of a software system and
span multiple revisions of the system. Hence, increasing the

risk for faults since developers may forget to propagate some
of the changes performed on one clone to other clones in the
clone group.

The evolution of a clone group during the revisions of a
software system is named clone genealogy. A clone genealogy
captures the creation, the modification, and the removal of
clone groups during the revisions of a software system. Clone
mutation [2] refers to the changes in clone types (e.g., a Type-
1 clone becoming a Type-2 clone after some modifications),
while a clone migration occurs when a revision changes the
location in the source code directory structure of a cloned
code.

Many researchers have examined how clone genealogies
affect software quality [3], [4]. In particular, in our previous
work [2], we investigated how clone migration affects the
fault-proneness of clone genealogies, through an analysis of
the evolution trend of the distances between clone pairs in
a clone group. The results showed that clone migration is
a risky phenomenon that affects a high proportion (68% of
clone groups experienced a migration in ArgoUML) of clones
in software systems. If all clone migrations in ArgoUML are
considered equally prone to faults, this means that 68% of all
clone groups must be monitored for faults, which is resource
intensive. Because developers have limited resources, they are
more interested in identifying which clones are most at risk
of faults so that they could be a target for testing and reviews.

In this paper, we study the characteristics of different clone
migration and estimate the likelihood of faults. Our goal
is to identify risky patterns of clone migration (eventually
associated with clone mutation) in order to raise the awareness
of developers about risky modifications of clones in their soft-
ware system. We perform our study on three large open source
software systems written in JAVA, i.e., JBOSS, APACHE-ANT,
and ARGOUML (the same systems used in our previous
work [2]). We address the following three research questions:

RQ1: Are clone genealogies that experienced a clone mi-
gration more fault-prone than other clone genealo-
gies?

We categorize clone migrations based on the types of clones
at three levels of granularity: cloned segments, clone groups,
and clone genealogies. We also categorize clone groups and
clone genealogies based on the frequency of their clone
migrations. All migrated clones are identified at the clone



context (i.e., the cloned segment level of granularity). At
the clone group (respectively clone genealogy) context, we
examine how often clone migration affects the fault-proneness
of clone groups (respectively clone genealogies). We observe
that clone migration occurs in clones, clone groups, and clone
genealogies, and increases their fault-proneness. Clone groups
with a large proportion of migrated clones are more fault-
prone than clone groups with smaller proportions of migrated
clones.

RQ2: Are clone migrations associated with a mutation
more fault-prone than other clone migrations?

We analyze whether clone migrations associated with clone
mutation are more fault-prone than clone migrations without
clone mutation. We also study if different types of clone
mutations (e.g., from Type-1 to Type-2) during clone migra-
tions impact the fault-proneness of clones in clone genealogies
differently. Results show that clones experiencing both clone
migration and clone mutation are more fault-prone than clones
that experienced only clone migration. Moreover, loose migra-
tions where the similarity of clones is decreased (e.g., mutation
from Type-1 to Type-2) are found to be more fault-prone in
two of our three subject systems. The risk for faults is the
highest when a clone is mutated from or to a Type-3 clone
during clone migration.

RQ3: Does the time interval between the migrating change
and the last change before migration affect the fault-
proneness?

We investigate how the length of time interval between the
migration activity and the last change before the clone migra-
tion affects the risk of having fault in a genealogy. We divide
the time interval into different period levels and compare the
fault-proneness at different time periods. We observe that a
longer time interval between the migrating change and the
last change before the clone migration increases the risk for
faults in the migrated clones.

The rest of the paper is organized as follows. Section
II discusses the related literature on code clone and clone
genealogies. Section III explains the experiment process of
our study. Section IV introduces the approach for each re-
search question and analyzes the results. Section V discusses
possible threats to the validity of our study. Finally, Section
VI concludes the paper and outlines some avenues for future
work.

II. RELATED WORK

Kim et al. [5] perform the first study on clone genealogies.
They create a tool to generate clone genealogies. Using two
JAVA systems and the CCFINDER clone detection tool, they
investigate if eliminating clones using refactoring can solve
issues related to the fault-proneness of code clones. They
conclude that refactoring clones is not helpful when dealing
with long-lived and consistently changing clones. In our study,
we use a different approach to generate clone genealogies.
Our work focus on understanding the evolution of three types
of clones experiencing different clone migration patterns. We

investigate faulty clone migration patterns to help developers
reduce their maintenance efforts.

Bakota et al. [6] show that the changes in similarity of
clones can be used to identify smells in code clone evolution.
Barbour et al. [4], [7] examine the fault-proneness of different
clone evolutionary patterns in software systems. They investi-
gate risky states and transitions along the evolution history of
clones. They also build models to predict faults in code clones
using some genealogy based metrics. Comparing to their study,
our work uses the same method to process data and a similar
approach to generate clone genealogies. However, we use a
different clone detection tool and examine a different aspect of
clone genealogies, i.e., clone migration in clone genealogies.

Aversano et al. [8] investigate clone genealogies in two
JAVA open source systems to understand how clones are
maintained. They use the SIMSCAN tool to detect the clones
and define some patterns of clone evolution. They observe
that most clone classes are always maintained consistently
and that late propagation genealogies are risky. Using the
same method as in [8], Thummalapenta et al. [3] performed
a study about clone genealogies on four open source software
systems written in C and JAVA. They found that clones in a
late propagation genealogy are more fault-prone than other
clones. In our study, we examine clone migration. These
studies are limited to Type-1 and Type-2 clones while our
work investigates also clone genealogies containing Type-3
clones.

Göde [9] presents an approach to build a model of clone
evolution based on source code changes between two versions.
He performed an empirical study of the evolution of Type-1
clones using nine open-source systems. He concluded that the
ratio of clones is reduced during the lifetime of a software
system and that cloned segments exist in systems for more
than a year on average. Our study builds clone genealogies of
Type-1, 2, and 3 clones by mapping clones at the revision level
while Göde [9] maps clones at the version level. Our study also
takes advantage of defect information to study fault-proneness
of genealogies while Göde [9] only studied the inconsistent
changes.

Duala-Ekoko et al. [10] present an approach to track clones
in evolving software systems. They propose the CLONE-
TRACKER framework which is based on the concept of clone
region descriptors (CRDs). CLONETRACKER processes out-
puts of the SIMSCAN clone detection tool and enables tracking
clone regions so that developers can edit the clones. They
perform a case study and conclude that CLONETRACKER
can track the vast majority of the 3,275 clone regions in
the systems. Their study can help developers identify clone
regions in software systems, while our study focuses on clone
migration.

In our previous study [2], we observed that clone migration
and clone mutation occur frequently in clone genealogies.
Furthermore, we studied that specific behaviours in clone
migration and clone mutation can increase fault-proneness in
clone genealogies. Motivated by the outcome of our previous
study [2], in this paper, we continue our research by focusing



on clone migration fault-proneness. Specifically, we examine
clone migration from three different aspects to identify the
specific risky behaviour.

III. STUDY DESIGN

This section presents the design of our case study. The goal
of this study is to evaluate the risk of introducing faults in
clones, clone groups and clone genealogies when migrating
different types of clones. The motivation of this study is
to inform developers about the increased maintenance effort
and cost that results from migrating and mutating clones
during the evolution of a software system. Our findings may
benefit developers and testers who perform development and
maintenance activities during the evolution of a software
system. Indeed, developers need to estimate their efforts to
make changes, while testers are required to know which code
segments should be tested in priority. Development teams
could also make use of our results to better assess the risk
caused by some clone migrations and better focus their testing
and reviews.

A. Data Collection

At first, we process the change history of our three subject
systems, i.e., JBOSS, APACHE ANT, and ARGOUML. All
three systems are written in JAVA. The three systems are from
different domains and have different sizes (in terms of lines
of code). Table I shows some descriptive statistics about the
systems where Processed LOC refers to the total size of the
data considered for genealogy extraction and clone detection.

Table I
STATISTIC OVERVIEW OF THE SUBJECT SYSTEMS

System # LOC # Proc. LOC # Revisions # Genealogies
JBoss 635K 1.6M 109K 1.7K
Apache-Ant 254K 2.3M 10K 23 K
ArgoUML 247K 3.1M 18K 15.6K

JBOSS is an open source application server written in JAVA.
JBOSS is a division of Red Hat created in 1999. JBOSS has
109K revisions and about 1.7M LOC (lines of code). We
conduct our experimental study on the code snapshots from
April 2000 to December 2010.

APACHE-ANT is an open source tool to compile, assemble,
test and run applications written in JAVA, C, and C++.
APACHE-ANT is written in JAVA and contains 1.0M revisions
and over 2.3M LOC in its history. The system was built in
January 2000 and is still active today. We study code snapshots
from January 2000 to November 2010.

ARGOUML is a open source UML-modeling application.
It allows users to model systems, generate the corresponding
code skeletons, and reverse-engineer diagrams. ARGOUML
was started in January 1998 and is still evolving today.
ARGOUML is written in JAVA and has 18K revisions and
over 3.1M LOC. We analyze code snapshots of the period
from January 1998 to November 2010 covering all of the
subsystems and packages available in the versioning control.

ARGOUML is used in previous studies on clone evolution [8],
[4].

B. Processing Data

We follow the same procedures as our previous work [2] to
process data and build clone genealogies. An overview of our
approach to process data is shown in Figure 1. We use J-REX
[11] to mine the source code repository of each of the three
JAVA subject systems. J-REX can identify the revisions that
have code changes and output the snapshots of the files that are
changed at those revisions. In the next step, we remove all test
files and use the NICAD clone detection tool to detect clones
on the three systems. In addition to the test cases, we also
exclude auto-generated code by discarding code fragment with
more than 1000 lines of code. Then we use the clones created
at different time periods to build clone genealogies. Finally,
we extract all the clone migrations in the clone genealogies.
We identify the different migration patterns for each research
question. For RQ2, we also extract clone migrations associated
with clone mutation. More details about our experiment are
discussed in the following five sections.

1) Identifying Faults: Similar to the approach in our pre-
vious work [2], we use J-REX to extract snapshots of all the
revisions in the software systems. We flag all the methods
that are modified during a revision. J-REX also helps us to
analyze each commit message to identify fault fixes. J-REX
uses the heuristics proposed by Mockus et al. [12] to identify
fault fixing changes. J-REX is reported to have an accuracy for
87% [4]. A previous empirical study performed by Hassan [13]
shows that J-REX is comparable to professional developers
when identifying fault fixes. The correlation between J-REX
and those developers is found to be larger than 0.8.

2) Detecting Clones: The clone detection tool used in
this work is NICAD [14]. NICAD is a flexible TXL-based
hybrid language-sensitive and text comparison software. It can
handle many languages, i.e., C, C-SHARP, JAVA, PYTHON and
WSDL. Roy et al. [14], claim that NICAD can detect both
exact (i.e., Type-1) and near-miss (i.e., Type-2 and Type-3)
clones with high accuracy. NICAD has a short processing time
and a low memory consumption. We select NICAD because we
need to parse all the revisions of each of our studied software
system in one shot. NICAD does not require the complete
compilation unit. However, each code fragment (i.e., method
block) must be syntactically correct.

Before performing clone detection, we remove test files
since they are primarily used to test the functions of the
software. Same as Barbour et al. [4], we remove all the files
containing the keyword “test” in their filenames or folder-
names and manually verify the removed files. After removing
test files, we extract methods from all the remaining files
using the extension function in J-REX. We save each method
snapshot into a single file and use the NICAD clone detection
tool to detect cloned code in the files.

The NICAD clone detection tool has been already used in
some previous studies on clone genealogies (e.g., Zibran et
al. [15]). We use the same parameters and configuration for



Detect Clones 

(NiCad)

Remove Test 

Files

Identify Clone 

Migrations
Mine the SVN 

(J-Rex)

RQ1

RQ2

RQ3

System 

Snapshots

Bug Fix 

Revisions

Software

Repositories

Build Clone 

Genealogies

Figure 1. Overview of the Analysis Process

NICAD as in the work of Zibran et al. [15]. Table II shows the
parameters of NICAD that are used in our study. We use the
version 3.4 of NICAD, which is the latest version at the time
of this study. We process the results of the clone detection to
identify clones that co-exist within the same revision. A similar
processing step is done in the work by Barbour et al. [4], [16].

Table II
NICAD’S PARAMETERS

Clone Types Identifier Renaming Similarity Threshold
Type-1 None 100%
Type-2 Blind-rename 100%
Type-3 Blind-rename 80%

3) Building Clone Genealogies: We build clone genealo-
gies following the same method as our previous work [2].
First, we assign a unique identifier to each version of a code
fragment. We create the search space by including all of the
identified revisions of all of the code fragments within the
given time span. We use NICAD to detect any possible clone
pair within the search space. Second, we remove all unchanged
clones by mapping clone detection results with the output from
the version control systems. In our approach, it is possible to
have invalid clone groups in the context of clone genealogies
since NICAD is not sensitive to the revision information. We
remove the invalid clone groups, e.g., groups containing only
code segments belonging to the same method but different
revisions. After this pre-processing, we map all of the clones
obtained from NICAD across the revisions of the software
system. We follow a similar approach as Barbour et al. [4]
to generate the genealogies of the clone groups. First, we
process the output of J-REX to extract the date of each change,
for each of the changed methods. We check each modified
method to see if the contained clones are modified. We repeat
the entire process for each revision. Finally, we extract valid
clone groups from the results of the clone detection and link
each two of them throughout the revisions of the software
system to generate the clone genealogies. To build the clone
genealogy, we connect each two clone groups by identifying
shared clones, start date and end date for each group.

4) Identifying Clone Migrations: We follow a different
approach to track clone migration in comparison with our
previous study [2]. We follow a different approach since we

do not require the distance information. As a result, both
approaches are consistent but just capturing different aspects
of the migration. We identify clone migrations by checking
clones with changed location (in the source code directory
structure) but unchanged file name. We also examine the order
of each two clones to identify the source and destination of
each clone migration. Then, we track fault fixes in all of the
post migration revisions (i.e., after the migrating action) of
migrated clones. For RQ2, we also check for clone mutation
(i.e., changes of clone types) in all clone migrations.

C. Statistical Analysis Method

We use the Chi-Square test [17] to check for associations
between clone migration patterns and future faults. We com-
pute odds ratio (OR) [17] to compare the fault-proneness
of different clone migration patterns. OR is the ratio of the
odds of an event occurring in an experimental group to the
odds of it occurring in a control group. OR is computed
by OR = p/(1−p)

q/(1−q) , where p is the probability of the event
occurring in the experimental group and q the probability of it
occurring in the control group. An OR value of 1 means that
the event is equally likely in both groups. OR > 1 means that
the event is more likely to occur in the experimental group,
while OR < 1 indicates that the event is more likely to occur
in the control group. We use the 5% level (i.e., p-value <0.05)
as the threshold value to identify if the results of the Chi-
square test are significant.

IV. CASE STUDY RESULTS

This section presents the results of our three research
questions. For each question, we discuss the motivation behind
the question, the analysis approach and the findings.

RQ1: Are clone genealogies that experienced a clone migra-
tion more fault-prone than other clone genealogies?

Motivation. Our previous study [2] has provided quantitative
evidence of the frequent occurrence of clone migration in
clone genealogies from the three subject systems investigated
in this study. However, clone migration can be observed in dif-
ferent contexts: clones, clone groups, and clone genealogies. In
this question, we want to study the impact of clone migration
with regard to fault-proneness for these three contexts.



In particular, we are interested in understanding if migrated
clones are more faulty than non-migrated clones in the context
of a clone itself. We also want to understand if the proportion
of migrated clones in a clone group would affect the risk
for faults when modifying the clones in the clone groups.
Moreover, we examine the effect of clone migration over
the evolution of clone groups (i.e., clone genealogies). The
result of this research question will enable developers to better
estimate the efforts and the risks related to clone migration
(i.e., changing the location of one or more clones). This
question is preliminary to RQ2 and RQ3, which identify more
migration patterns from two different aspects.
Approach. Before identifying clone migration in clone ge-
nealogies, we classify clone genealogies into four categories
as presented in Table III. We use these four categories of clone
genealogies to identify how clone migration affects the fault-
proneness in different clone contexts, i.e., clones, clone groups,
and clone genealogies. These categories of clone genealogies
are characterized using all the clone types involved in the
genealogies. For example, G<1> represents clone genealogies
containing only Type-1 clones that remained Type-1 clones all
through their history, while the G<1,2,3> category represents
genealogies containing all three types of clones.

In the context of clones, we identify migrated clones and ex-
amine how clone migration directly affects the fault-proneness
of code clones. In the context of clone groups, there are
different proportions of migrated clones in clone groups, or
no clone migration at all. In this context we examine how
the proportion of migrated clones in a clone group affects the
fault-proneness of the clone group. In the context of clone
genealogies, there are also different proportions of migrated
clones among different clone genealogies. Considering differ-
ent numbers of clone groups in clone genealogies, we compute
the migration density to measure the frequency of the clone
migration that occurred in the clone genealogies. We want to
understand if clone groups and clone genealogies will be more
fault-prone when they have more clone migrations.

In order to examine the fault-proneness of clone genealogies
with different numbers of clone migrations, we need to cate-
gorize the genealogies based on the different proportion levels
of clone migration. We use the migration density of clone
genealogies to measure how often clone migrations occurred
in clone genealogies. Because there are different numbers of
clone groups in clone genealogies, we use the number of
groups and the number of clone migrations to calculate the
migration density. We compute the migration density by Nm

Ng−1 ,
where Nm is the number of clone groups experiencing at
least one clone migration and the denominator corresponds
to the number of modifications of the clone group during the
evolution of the system within the clone genealogy.

Next, we divide the clone genealogies into five levels based
on different proportions of the maximum migration density
from all the clone genealogies. Then we can identify how
different migration densities affect the risk for faults in clone
genealogies. As shown in the first two rows of Table IV, five
levels are identified (from level 0 to level 4). Level 0 stands

Table III
CATEGORIES OF CLONE GENEALOGIES

Categories Clone types in the genealogy
G<1> Type-1
G<2> Type-2
G<3> Type-3

G<1,2,3> Type-1, Type-2, Type-3

for genealogies without clone migration, level 1 for very low
migration frequency, level 2 for low migration frequency, level
3 for high migration frequency, and level 4 for very high
migration frequency. In the third row of Table IV, D stands for
the migration density. Level 4 refers to the largest migration
density compared with all other genealogies. Similar to clone
genealogies, we also divide the clone groups into five levels
based on the proportion of migrated clones in each clone
group. As shown in the last row of Table IV, P refers to
the proportion of migrated clone in a clone group. Therefore,
clone groups in level 0 have no migration, i.e., they have a 0
percentage of migrated clone. Clone groups in level 4 (very
high migration) have the largest proportion of migrated clones.

We perform the Chi-square test at a 5% level for p-value to
verify if clone migrations at different levels are related to a
higher risk for fault. We also compute odds ratios respectively
for migrated clones, different proportion levels of clone migra-
tions in clone groups and different density levels of migrated
clones in clone genealogies. We categorize the migration-
containing clone groups into four experimental groups based
on the proportion of migrated clones as introduced in IV.
We also divide the migration-containing genealogies into four
experimental groups by computing the migration density. The
control groups for all three contexts are respectively clones,
clone groups, and clone genealogies without clone migration.
To mitigate the potential impact of the similarity threshold
used to detect Type-3 clones, on our results, we perform
the computation using six different similarity thresholds (i.e.,
70%, 75%, 85%, 90% and 95%) for G<3> and G<1,2,3>
introduced in III, for all three subject systems.

We address RQ1 by building clone genealogies and iden-
tifying clone migration in three subject systems following
the methods described in Section III. We examine the fault-
proneness of migrated clones, clone groups and clone genealo-
gies that contain migrated clones. Based on this question, we
formulate the following null hypothesis: H1: Clone migration
does not affect the fault-proneness of clones, clone groups,
and clone genealogies.
Findings. Table V shows odds ratio results for migration-
containing clones, clone groups, and clone genealogies. The
following three paragraphs discuss odds ratios results for
clone, clone group, and clone genealogy contexts.
Clone Context: We compare the fault-proneness between mi-
grated clones and non-migrated clones by comparing the odds
ratios. The fault flag “1” means migrated clones have larger
odds ratios and hence are more fault-prone than non-migrated
clones. The fault flag “0” means the opposite. The “p-value”
column of clone context shows that one value in APACHE-



Table IV
MIGRATION DENSITY OF CLONE GENEALOGIES AND MIGRATION PROPORTION OF CLONE GROUPS

Names No Migration Very Low Migration Low Migration High Migration Very High Migration

Levels 0 1 2 3 4

Migration Density of Clone Genealogies 0 0<D 6 0.25 0.25<D 6 0.5 0.5<D 6 0.75 0.75<D 6 1

Migration Proportion of Clone Groups 0 0<P 6 0.25 0.25<P 6 0.5 0.5<P 6 0.75 0.75<P 6 1

Table V
FAULT-PRONENESS OF CLONE MIGRATIONS IN CLONES, CLONE GROUPS, AND CLONE GENEALOGIES

Contexts Clones Clone Groups Clone Genealogies
System JBoss Apache-Ant ArgoUML JBoss Apache-Ant ArgoUML JBoss Apache-Ant ArgoUML

Clone
Type

Simil-
arity

Fault
Flag

P-
Value

Fault
Flag

P-
Value

Fault
Flag

P-
Value

Prop-
ortion
Level

P-
Value

Prop-
ortion
Level

P-
Value

Prop-
ortion
Level

P-
Value

Prop-
ortion
Level

P-
Value

Prop-
ortion
Level

P-
Value

Prop-
ortion
Level

P-
Value

G<1> 100% 1 <0.05 1 0.831 1 0.205 0 0.152 0 <0.05 0 <0.05 0 <0.05 0 <0.05 4 <0.05

G<2> 100% 1 <0.05 1 <0.05 0 <0.05 2 <0.05 2 <0.05 3 <0.05 1 <0.05 0 <0.05 1 <0.05

G<3>

70% 1 <0.05 1 <0.05 0 <0.05 4 <0.05 4 <0.05 2 <0.05 4 0.370 1 <0.05 0 <0.05
75% 1 <0.05 1 <0.05 1 <0.05 4 <0.05 4 <0.05 3 <0.05 1 <0.05 2 0.156 1 <0.05
80% 1 <0.05 0 <0.05 1 <0.05 4 <0.05 4 <0.05 3 <0.05 1 <0.05 0 <0.05 1 <0.05
85% 1 <0.05 0 <0.05 1 0.082 2 <0.05 0 <0.05 2 <0.05 1 <0.05 3 0.164 1 <0.05
90% 1 <0.05 0 <0.05 1 <0.05 2 <0.05 4 <0.05 2 <0.05 2 <0.05 3 <0.05 1 <0.05
95% 1 <0.05 0 <0.05 1 <0.05 2 <0.05 4 <0.05 2 <0.05 0 <0.05 1 0.109 1 <0.05

G<1,
2, 3>

70% 1 <0.05 1 <0.05 0 <0.05 4 0.601 0 <0.05 0 <0.05 1 <0.05 2 <0.05 0 <0.05
75% 1 <0.05 1 <0.05 0 <0.05 4 <0.05 0 <0.05 3 <0.05 1 <0.05 2 <0.05 3 <0.05
80% 1 <0.05 1 <0.05 0 <0.05 4 <0.05 0 <0.05 3 <0.05 3 <0.05 1 <0.05 4 <0.05
85% 1 <0.05 1 <0.05 0 <0.05 4 <0.05 0 <0.05 3 <0.05 1 <0.05 0 <0.05 2 <0.05
90% 1 <0.05 0 <0.05 0 <0.05 4 <0.05 2 <0.05 3 <0.05 4 <0.05 1 <0.05 3 <0.05
95% 1 <0.05 0 <0.05 0 0.459 2 <0.05 0 <0.05 3 <0.05 1 <0.05 2 0.132 2 <0.05

ANT and three values in ARGOUML are larger than our
Chi-square test threshold (0.05). Overall, the results for clone
context are statistically significant. However, both APACHE-
ANT and ARGOUML show inconsistent behaviours such as
Type-3 (G<3>) clones in APACHE-ANT and clones with
three types of clones (G<1,2,3>) in ARGOUML. Therefore,
we cannot conclude that migration in the clone context is a
generalizable indicator for fault-proneness.
Clone Group Context: The “proportion level” column in
Table V presents the most faulty proportion level. Clone
groups containing clone migration are more faulty if the value
is larger than 0, while a larger value means that groups with
larger proportions of migrated clones are more fault-prone
than others. Only two values in JBOSS are larger than our
Chi-square test threshold (0.05), thus the overall result for the
clone group context is statistically significant. We find that
most of the values are 3 and 4, which means that clone groups
with larger percentage of migrated clones are more fault-prone.
Therefore, from the results of the three subject systems, we
can conclude that clone groups are more faulty when they have
migrated clones, and having a larger proportion of migrated
clones increases the risk for future faults. However, in all three
subject systems, Type-1 (G<1>) clone groups without clone
migration are more fault-prone.
Clone Genealogy Context: The “proportion level” column
for genealogy context in Table V presents the most faulty
proportion level. The proportion level measures how large is

the migration density in a clone genealogy. A high proportion
level refers to high migration density in comparison to other
clone genealogies. As shown in Table V, there is only one
value in APACHE-ANT and four values in ARGOUML that
are larger than our Chi-square test threshold (0.05), hence the
overall result for clone genealogies are statistically significant.
Since most of the values are larger than 0, which means
that no clone migration occurred in the clone genealogies,
we conclude that clone genealogies with clone migrations
are more faulty excluding Type-1 (G<1>) clone genealogies.
As we notice Type-1 related observations are not completely
consistent with the rest of the study, we explore this issue in
the following discussion section.

Results for the other five similarity thresholds, for all
three contexts, in all three subject systems, are statistically
significant. This means that fault-proneness degree is different
between migration-containing and non-migration-containing
clones, clone groups, and clone genealogies. Overall, we can
reject H1. Based on our results, we suggest that developers
pay more attention when migrating near-miss clones.
Discussion: In this section, we observed that the migration
event in the context of clone group and genealogy is a reliable
indicator for fault-proneness. However, Type-1 clones are the
exceptions in our study. Similar to the results of the clone
group context, Type-1 (i.e., G<1>) clone genealogies without
clone migration are more fault-prone in JBOSS and APACHE-
ANT. In order to find an explanation behind this exceptional



Figure 2. The Clone Mutation and Clone Migration Patterns

behaviour, we examine the source code of Type-1 clones in
our subject systems. We also examine the potential impact of
LOC (lines of code) on our results by comparing the average
LOC of all migrated clones in the clone genealogies for the
three systems. The results show that the average LOC for
faulty and non-faulty migrated clones are respectively, 32 and
33 in JBOSS, 48 and 43 in APACHE-ANT, and 25 and 24
in ARGOUML. Therefore, there is no significant difference
between the LOC of faulty and non-faulty migrated clones.
We conclude the LOC of the migrated clone has no impact
on our results shown in Table V. Concerning Type-1 clones,
we examined the source code of every Type-1 clone pair and
observed that whenever a Type-1 clone pair exists, both pairs
always have identical method name. We also notice that the
Type-1 cloned methods are always within either the same class
or sibling classes. This behaviour is significantly different
from Type-2 and 3 clones. Such coarse grained similarity
decreases the chance of inconsistent change in the cloned code.
Inconsistent change in code clones is a known factor to the
fault-proneness of the cloned code [5]. This observation may
explain why Type-1 clones with migration behave differently
(i.e., not significantly more fault-prone or even less faulty)
from the other clone types in our study in Table V.

Overall, we conclude that clones, clone groups, and
clone genealogies containing clone migration have
higher fault-proneness in software systems.

In the first research question, we observed that clone migra-
tion in genealogies is related to higher fault-proneness. In the
next research questions, we study this phenomena (i.e., clone
migration) into more details to identify if some migrations
(Figure 2) are more fault-prone than others.

RQ2: Are clone migrations associated with a mutation more
fault-prone than other clone migrations?

Motivation. When making clone migration for clone seg-
ments, the clone type could be changed due to code changes
on the cloned code segment. We refer to changes on clone
type as clone mutation. We refer to the consistent migration
as the clone migration without changing the clone type. We
identify a set of clone migration patterns along with different
clone mutations on clone types (Figure 2). We aim to verify
whether the existence of clone mutation in the clone migration
will affect the fault-proneness of the migrated clones in the

future period. Identifying the effect of code changes causing
clone mutation in clone migration can help developers decide
the risk of changing and moving cloned code.
Approach. When the clone type is changed after clone
migration, the change on clone type can make the clones
have higher or lower similarity. We define the phenomena
of changing clone types to the one with a higher similarity
as tight mutation and to the one with a lower similarity as
loose mutation. The loose mutation leads to a change on
clone type from a lower type with a higher similarity to a
higher type with a lower similarity. While the tight mutation
leads to a higher similarity between clones. We flag our seven
migration patterns from P1 to P7, where the consistent pattern
with no clone mutation is flagged as P1. The loose migration
pattern contains loose mutation and the tight migration pattern
contains tight mutation. For loose migration pattern, we define
three migration patterns with all change possibilities among
three types of clones. Figure 2 shows the examples for the
seven migration patterns. For example, a code clone changes
clone type from Type-1 to Type-2 in the P2 loose mutation
pattern. We define three related migration patterns (i.e., P2,
P3, and P4) for loose mutation and define other three related
migration patterns (i.e., P5, P6, and P7) for tight mutation.
As shown in Figure 2, those six migration patterns (i.e., P2
to P7) present all the possible mutation scenarios among the
three clone types.

For each subject system, we build clone genealogies fol-
lowing the approach introduced in Section III-B3. Next, we
identify the clone migrations and classify them based on the
different mutation patterns, which are shown in Figure 2.
For all seven migration patterns, we compute the number of
fault-containing and fault-free genealogies and formulate the
following null hypothesis: H2: The clone migrations with and
without clone mutation are equally fault-prone.

We detect Type-3 clones with a selected similarity threshold
of 80% (see Table II). To assess the potential impact of this
chosen threshold on our results, we perform our study by
repeating the detection of Type-3 clones using other similarity
thresholds, i.e., 70%, 75%, 85%, 90% and 95%. For each
of these similarity thresholds, we build clone genealogies,
classify them into seven migration patterns presented in Figure
2 with different mutation patterns. We repeat the testing of H2

using the Chi-square test and odds ratios.
We use all seven migration patterns (ie P1 to P7) in Figure 2



Table VI
ODDS RATIOS OF CLONE MIGRATION PATTERNS ALONG WITH CLONE MUTATION

System Type-3
Similarity

P1: No
Mutation

P2: Type-1
to Type-2

P3: Type-2
to Type-3

P4: Type-1
to Type-3

P5: Type-3
to Type-2

P6: Type-2
to Type-1

P7: Type-3
to Type-1

P-
Value

JBoss

70% 1 2.67 1.19 0.71 0.93 1.38 0.69 <0.05
75% 1 2.09 1.07 0.66 0.82 1.08 0.67 <0.05
80% 1 2.11 7.39 2.66 2.37 0.78 1.1 <0.05
85% 1 1.87 9.36 3.06 2.72 0.69 1.36 <0.05
90% 1 1.5 7.5 4.14 10.91 0.55 4.64 <0.05
95% 1 1.12 0 4.73 - 0.44 - <0.05

Apache
-Ant

70% 1 1.66 1.99 1.53 1.81 1.2 1.62 <0.05
75% 1 1.37 1.71 1.63 1.08 0.92 1.38 <0.05
80% 1 1.48 1.97 1.74 1.35 0.94 1.32 <0.05
85% 1 1.37 2.16 1.94 1.5 0.89 1.35 <0.05
90% 1 1.77 1.12 1.42 1.19 1.22 1.86 <0.05
95% 1 1.29 1.93 2.77 1.18 0.91 2.97 <0.05

Argo
-UML

70% 1 0.35 3.11 5.43 5.2 1.12 8.43 <0.05
75% 1 1.1 9.2 18.01 13.55 3.53 25.89 <0.05
80% 1 1.58 9.5 24.2 24.84 5.07 48.49 <0.05
85% 1 1.77 16.51 37.76 31.12 5.69 83.4 <0.05
90% 1 2.19 14.41 27.97 37.83 7.02 122.48 <0.05
95% 1 2.62 0 122.29 0 8.42 88.05 <0.05

to compute odds ratios. When computing odds ratios, we select
the consistent migration pattern (P1) without clone mutation as
the control group. We build six experimental groups containing
clones that experienced patterns P2 to P7 respectively. We
perform the Chi-square test using the 5% level.
Findings. Table VI shows the results of the Chi-square test and
odds ratios for the clone migration without clone mutation,
with different tight migration and loose migration patterns.
The results present six similarities for G<1,2,3> category. The
clone migration without clone mutation on the clone types is
the control group, thus they all have a value 1. The largest
value for each experimental group of migration pattern (i.e.,
loose mutation and tight migration) is highlighted in bold.

From the results, we find that the results of migration pattern
with loose mutation (i.e., P2, P3, or P4) have higher odds ratios
than non-mutation clone migration and tight migration patterns
(i.e., P5, P6, or P7) for JBOSS and APACHE-ANT except for
the result of 90% similarity in JBOSS, 90% and 95% similarity
in APACHE-ANT. Thus for JBOSS and APACHE-ANT, the
loose migration patterns (i.e., P2, P3, or P4) changing the
clone type from the one with higher similarity to the one with
a lower similarity, are more fault-prone than other patterns.
While for ARGOUML, except the results for 95% similarity,
cloned code that experienced tight migration patterns (i.e., P5,
P6, or P7) have higher fault-proneness than the other patterns.

Moreover, in Table VI, migrated clones with clone mutation
between Type-2 and Type-3 (i.e., Type-2 to Type-3 (P3) and
Type-3 to Type-2 (P5)) are more fault-prone for the results of
about more than half the similarity thresholds in both JBOSS
and APACHE-ANT systems. Clone migration containing clone
mutation from Type-3 to Type-1 (P7) are also more fault-prone
in APACHE-ANT. While for ARGOUML, clone migration
with changing clone type from Type-3 to Type-1 (P7) is the
most fault-prone one for five in six similarity thresholds. Clone

migration from Type-2 to Type-1 (i.e., P6) includes most of
our exceptional cases within these observations. As discussed
earlier, our inspection revealed that this different behaviour
is due to the special characteristics of Type-1 clones in the
subject systems, which are inherently having less inconsistent
changes (i.e., a common source of fault-proneness in cloned
code [5]).

All of the results shown in Table VI are statistically sig-
nificant. Overall, based on the results we get, we can reject
H2. We conclude that loose migration is more fault-prone in
two of the three systems and clone mutation involving Type-
3 clone makes the clone migration more fault-prone in both
directions (e.g., P3, P4, and P5).

Overall, we conclude that migrated clones containing
clone mutation have higher risk for faults.

RQ3: Does the time interval between the migrating change and
the last change before migration affect the fault-proneness?

Motivation. Clone migration can be carried out immediately
after the last change made to the cloned code segment or in a
long period after the change. A long time interval between the
clone migration and the last change to the clone code segment
may lead to a higher chance to introduce defects when making
a clone migration. We examine this question to help developers
learn about the risk of introducing defects when applying clone
migration by considering the length of time interval after the
last code change before clone migration.
Approach. We compute the number of clones that have faults
and have no faults for clone migrations with different time
intervals between the last code change and clone migration.
We use 200 days as the unit to divide the length values into
different levels (i.e., Np

200 , Np is the number of days between
the last code change and clone migration). Level value of 1



means that the migration occurred after 200 days from the last
change and lower values means that migrations occured within
200 days. We select 200 days as our unit of time, however,
using other units will provide levels that are isomorphic to
the ones presented in this paper, and therefore will yield
equivalent results. The three systems have the different lengths
of evolution, thus three subject systems have different levels.
We perform this method on six similarities (i.e., 70%, 75%,
80%, 85%, 90% and 95%) for G<1,2,3> category and the
four different categories of clones presented in Table III.

We compute the Chi-square test and the odds ratio to
examine the following hypothesis: H3: the length of the time
interval between the last code change and clone migration will
not affect the number of faults in the migrated clones.
Finding. As presented in Table VII and VIII, odds ratios in
different period levels are calculated considering the entire
history of each system. Level 0 means the clone migration is
made in the shortest time period after the last code change,
while the largest level that has valid odds ratios refers to the
longest observed period.

The results for cloned code in clone genealogies containing
all three types of clones are presented in Table VII. In
the JBOSS system, the highest odds ratios for all similarity
thresholds are presented in period level 8 (from 1601 to 1800
days), which is the ninth period level of thirteen period levels.
For APACHE-ANT system, the most fault-prone period levels
are 9 (from 1801 to 2000 days), 14 (from 2801 to 3000
days), 15 (from 3001 to 3200 days), and 16 (3201 to 3400
days) out of 17 period levels for different similarity thresholds.
While in ARGOUML, the period level 5 (from 1001 to 1200
days) out of 12 period levels is most fault-prone for five of
six similarity thresholds. The only exception is period level
7 (from 1401 to 1600 days) that has the most fault-prone
result 70% similarity. Overall, we can conclude that the clone
migration is more fault-prone if the time interval between the
last change and migration becomes larger than half of the
history of the software system.

Moreover, Table VIII shows the results for four different
categories of clone genealogies defined in Table III from RQ1.
There is no valid odds ratio for cloned code in Type-1 clone
genealogy for JBOSS, this is due to few clone migration
experiences and the special characteristics of the Type-1 clones
that are discussed earlier. In these results, we find that in
Type-3 clone genealogies (G<3>) and clone genealogies
with all three clone types (G<1,2,3>), migrated clones made
in a longer interval time than the middle period level are
more fault-prone for three systems, except in G<1,2,3> of
ARGOUML. For clone migrations in Type-1 clone genealogies
(G<1>), the higher period level (i.e., 8 out in 17) has the
highest risk for faults in two of three systems.

All the P -value results shown in Table VII and Table VIII
are larger than 0.05, therefore they are statistically significant
and we can reject H3. In general, we conclude that Type-3
related clone genealogies that are involved in clone migrations
occurring in a longer time interval (since the last code changes)
are more fault-prone than the ones made after a shorter time

interval.

Overall, we conclude that the clone migration made in a
longer time interval after the last code change is riskier.

V. THREATS TO VALIDITY

In this section, we analyze the threats to validity for this
study. We follow the common guidelines [18] for empirical
studies.

Construct validity threats are related to the relation between
theory and observation. In this study these threats mainly result
from the reliability of the tool that we use to detect code
clones. We use NICAD to detect clones since it detects both
exact and near-miss code clones with enough precision and
recall [14]. It is a stable clone detection tool and is also used
in our previous study [2]. Note, NiCad is limited to block and
method-level clone detection.

The other threat for construct validity is the accuracy of J-
REX, which uses the same algorithm as previous studies from
Hassan et al. [19] and Mockus et al. [20]. Hassan [13] has
conducted an experiment to compare a classification of commit
messages with a manual evaluation of commit messages by six
professional developers, and found a correlation of σ > 0.8.
Thus, the ability to recognize bug fixes of J-REX is proved to
be comparable to the ability of professional developers.

There is no threat to internal validity in our study, which is
an exploratory study [18]. Even though we try to explain the
observations in our analyses, we cannot claim causation. We
just report observations and correlations from our results.

Conclusion validity threats concern the relation between the
treatment and result. We carefully analyze the assumptions for
the statistical test. We use non-parametric tests without making
assumptions on the distribution of data.

Reliability validity threats deal with the possibility to repeat
this empirical study. All the three subject systems used in
our study have available data for public. We also reported the
configurations of the third-party tools used in this study such
as NICAD and J-REX and the details of our experiments.

Threats for external validity are about how to generalize our
results. Each of three large open source software systems used
in this study has a plug-in architecture. They are written in the
same language (JAVA), still, they represents different domains
and various project sizes (line of code). Nevertheless, more
analysis using more subject systems are desirable.

VI. CONCLUSION

In this study, we examine how clone migration affects the
risk for faults in software systems. We identify the faults of
clone migration on three contexts, i.e., clones, clone groups,
and clone genealogies. Our results show that clone genealogies
with clone migration have higher fault-proneness for the
clones in all three contexts (i.e., clones, clone groups, and
clone genealogies). Specifically, our observation highlights
that the frequency of migration in a clone genealogy has a
direct correlation with the fault-proneness of the genealogy.

Furthermore, we investigate the fault-proneness of the clone
migration without clone mutation, loose migration and tight



Table VII
ODDS RATIOS OF CLONE MIGRATIONS FOR DIFFERENT PERIOD LEVELS IN TYPE-3 CLONE GENEALOGIES

Days Ranges 0-200 201-400 401-600 601-800 801-1000 1001-1200 1201-1400 1401-1600 1601-1800 1801-2000 2001-2200 2201-2400 2401-2600 2601-2800 2801-3000 3001-3200 3201-3400 P-ValueG<1,2,3> Similarity Level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Jboss

70% 1 0.95 0.93 0.57 0.89 1.87 0.9 0 107.13 1.28 0 - 1.28 - - - - <0.05
75% 1 1.06 1.44 1.8 0.92 0.69 1.54 0 116.08 1.66 0 - 2.76 - - - - <0.05
80% 1 0.64 1.22 1.46 0.44 0 0.92 0 137.13 0.65 - - 0 - - - - <0.05
85% 1 0.59 1.18 1.83 0.42 0 0.91 - 118.87 0 - - - - - - - <0.05
90% 1 0.66 1.02 1.33 0.56 0 0.73 - 90.55 0 - - - - - - - <0.05
95% 1 0.7 0.73 1.15 0.18 0 0 - 1.74 0 - - - - - - - <0.05

Apache-Ant

70% 1 1.09 1.32 0.77 0.39 0.69 1.11 3.03 2.15 1.96 0.71 5.59 0.83 1 20.89 5.99 39.52 <0.05
75% 1 1 0.84 0.89 0.33 0.62 0.83 0.67 0.71 2.84 0.18 6.81 6.82 0.29 23.07 86.75 28.92 <0.05
80% 1 0.85 1.11 0.51 0.25 0.42 0.85 0.56 0.4 161.89 0.26 2.98 4.6 0.87 52.22 167.11 0 <0.05
85% 1 0.93 1.22 0.6 0.22 0.48 0.29 0.58 0.42 143.61 0.3 4.2 0.17 - 51.29 - 0 <0.05
90% 1 1.54 0.23 0.13 0.06 0.27 0.24 0.12 0.14 147.84 0.52 0 - - - - - <0.05
95% 1 1.8 0.37 0.25 0.11 0.32 0.3 0.22 0.13 121.53 0.4 0 - - - - - <0.05

ArgoUML

70% 1 8.65 2.1 1.02 2.96 33.11 57.5 186.49 21.97 11.11 8.37 0.85 0 - - - - <0.05
75% 1 11.46 1.64 1.83 7.03 241.88 68.63 145.04 69.35 37.68 9.23 0 0 - - - - <0.05
80% 1 11.13 1.5 1.24 5.48 374.38 80.69 204.92 67.73 57.2 2.19 0 0 - - - - <0.05
85% 1 11.69 1.64 1.3 6.71 614.82 118.05 281.71 67.92 118.25 2.86 0 0 - - - - <0.05
90% 1 11.72 1.2 1.3 7.97 777.94 147.66 327.93 86.44 149.18 3.68 0 0 - - - - <0.05
95% 1 13.3 1.27 1.06 7.52 964.93 161.65 322.71 36.34 168.85 4.5 0 0 - - - - <0.05

Table VIII
ODDS RATIOS OF CLONE MIGRATIONS FOR DIFFERENT PERIOD LEVELS IN FOUR CATEGORIES OF CLONE GENEALOGIES

Days Ranges 0-200 201-400 401-600 601-800 801-1000 1001-1200 1201-1400 1401-1600 1601-1800 1801-2000 2001-2200 2201-2400 2401-2600 2601-2800 2801-3000 3001-3200 3201-3400 P-ValueSystem Category Similarity Level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

JBoss

G<1> 100% 1 - - - - - - - - - - - - - - - - -
G<2> 100% 1 1.48 0.48 3.41 0 - 0 - 1.56 - - - - - - - - <0.05
G<3> 80% 1 0.51 1.02 1.81 1.2 0 3.61 0 - 1.81 - - 0 - - - - <0.05

G<1,2,3> 80% 1 0.64 1.22 1.46 0.44 0 0.92 0 137.13 0.65 - - 0 - - - - <0.05

Apache-Ant

G<1> 100% 1 0.96 0.57 0 0 1.6 2.86 0 6.67 - 3.33 - - - - - - <0.05
G<2> 100% 1 2.52 0.4 0.17 0 0 0 18.75 0 - 3.13 0 - - - - - <0.05
G<3> 80% 1 0.44 1.15 0.57 0.21 0.34 0.57 0.71 0.29 71.54 0.04 2.34 4.87 1.04 22.59 203.31 0 <0.05

G<1,2,3> 80% 1 0.85 1.11 0.51 0.25 0.42 0.85 0.56 0.4 161.89 0.26 2.98 4.6 0.87 52.22 167.11 0 <0.05

ArgoUML

G<1> 100% 1 0.21 0.08 0 0 0.76 1.21 0 1.52 1.18 0 0 - - - - - <0.05
G<2> 100% 1 12.86 1.58 0.96 3.54 3117.74 249.42 683.5 88.97 383.6 11.27 0 - - - - - <0.05
G<3> 80% 1 1.31 0.37 0.34 0.36 4.12 0.72 4.68 9.73 0.15 0.1 0 0 - - - - <0.05

G<1,2,3> 80% 1 11.13 1.5 1.24 5.48 374.38 80.69 204.92 67.73 57.2 2.19 0 0 - - - - <0.05

migration respectively. We also examine the impact on the risk
for faults in clone migration of six different mutation patterns
with changing clone types. We find that the existence of clone
mutation makes the clone migration riskier. Between the loose
migration and tight migration, we find that loose migrations
that reduce the similarity between clones is more fault-prone
in two of the three subject systems. We also found that clone
mutations involving Type-3 (i.e., between Type-1 and Type-3,
between Type-2 and Type-3) make the clone migrations more
fault-prone for all the three systems.

Finally, we examine how the length of time interval between
the clone migration change and the last change made on
these clones affects the risk of clone migration in terms of
fault-proneness. The results show that, a longer time interval
between clone migration and the last change yields a signif-
icantly higher fault-proneness for the migrated clones related
to Type-3 and Type-1. In the future, we aim to extend our
study by examining more software systems written in other
programming languages.

REFERENCES

[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Trans. Software
Eng., pp. 577–591, 2007.

[2] S. Xie, F. Khomh, and Y. Zou, “An empirical study of the fault-proneness
of clone mutation and clone migration,” in MSR, 2013, pp. 149–158.

[3] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An
empirical study on the maintenance of source code clones,” Empirical
Software Engineering, vol. 15, pp. 1–34, 2010.

[4] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software
clones,” in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on, sept. 2011, pp. 273 – 282.

[5] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical study
of code clone genealogies,” in ESEC/SIGSOFT FSE’05, 2005, pp. 187–
196.

[6] T. Bakota, R. Ferenc, and T. Gyimothy, “Clone smells in software
evolution,” in IEEE International Conference on Software Maintenance,
2007, pp. 24 –33.

[7] L. J. Barbour, “Empirical studies of code clone genealogies,” Master’s
thesis, Depart of Electrical and Computer Engineering, Queen’s Univer-
sity, Kingston, Ontraio, Canada, 2012.

[8] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are maintained:
An empirical study,” in 11th European Conference on Software Main-
tenance and Reengineering, 2007, pp. 81 –90.

[9] N. Göde, “Evolution of type-1 clones,” in SCAM’09, 2009, pp. 77–86.
[10] E. Duala-Ekoko and M. P. Robillard, “Tracking code clones in evolving

software,” in ICSE’07, 2007, pp. 158–167.
[11] W. Shang, Z. M. Jiang, B. Adams, and A. Hassan, “Mapreduce as a

general framework to support research in mining software repositories
(msr),” in 6th IEEE International Working Conference on Mining
Software Repositories, May 2009, pp. 21 –30.

[12] A. Mockus and L. Votta, “Identifying reasons for software changes
using historic databases,” in Proceedings. International Conference on
Software Maintenance, 2000.

[13] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 78–88. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070510

[14] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in ICPC’08, 2008, pp. 172–181.

[15] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy, “Analyzing
and forecasting near-miss clones in evolving software: An empirical
study,” in ICECCS’11, 2011, pp. 295–304.

[16] G. M. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, and
Y. Zou, “Studying the impact of clones on software defects,” Working
Conference on Reverse Engineering, pp. 13–21, 2010.

[17] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Fourth Edition. Chapman & Hall/CRC, Jan. 2007.

[18] R. K. Yin, “Design and methods third edition, 3rd ed.” in ICSM’00,
2002.

[19] A. E. Hassan and R. C. Holt, “Studying the evolution of software
systems using evolutionary code extractors,” in IWPSE’04, 2004, pp.
76–81.

[20] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” in ICSM’00, 2000, pp. 120–130.


