
Supplementary Bug Fixes vs. Re-opened Bugs
Le An, Foutse Khomh, Bram Adams

SWAT–MCIS, Polytechnique Montréal, Québec, Canada
{le.an, foutse.khomh, bram.adams}@polymtl.ca

Abstract—A typical bug fixing cycle involves the reporting of
a bug, the triaging of the report, the production and verification
of a fix, and the closing of the bug. However, previous work has
studied two phenomena where more than one fix are associated
with the same bug report. The first one is the case where
developers re-open a previously fixed bug in the bug repository
(sometimes even multiple times) to provide a new bug fix that
replace a previous fix, whereas the second one is the case where
multiple commits in the version control system contribute to the
same bug report (“supplementary bug fixes”). Even though both
phenomena seem related, they have never been studied together,
i.e., are supplementary fixes a subset of re-opened bugs or the
other way around? This paper investigates the interplay between
both phenomena in five open source software projects: Mozilla,
Netbeans, Eclipse JDT Core, Eclipse Platform SWT, and WebKit.
We found that re-opened bugs account for between 21.6% and
33.8% of all supplementary fixes. However, 33% to 57.5% of re-
opened bugs had only one commit associated, which means that
the original bug report was prematurely closed instead of fixed
incorrectly. Furthermore, we constructed predictive models for
re-opened bugs using historical information about supplementary
bug fixes with a precision between 72.2% and 97%, as well
as a recall between 47.7% and 65.3%. Software researchers
and practitioners who are mining data repositories can use our
approach to identify potential failures of their bug fixes and the
re-opening of bug reports.

Index Terms—Supplementary fixes, re-opened bugs, prediction
model, mining software repositories

I. INTRODUCTION

According to a report by the US Department of Com-
merce [11], bug fixing accounts for up to 80% of software
development costs. Part of the reason for this is that a typical
bug fixing cycle includes many different phases, performed by
a variety of stakeholders: reporting of the bug, production of a
fix, verification of the fix, and closing of the bug definitively. In
some cases, developers even have to try multiple times before
fixing a bug. As a result of these several attempts, bug reports
are sometimes re-opened, which requires even more time for a
bug to be fixed and hence is likely to degrade the satisfaction
of users and decrease the productivity of development teams,
as developers have to rework the same bug multiple times: re-
analyzing the context of the bug, reading previous discussions
about the bug and examining previous failed fixes (proposed
for the bug). Thus, it is important to identify flawed bug fixes
early before they can crash in the field.

Work on failed bug fixes has focused on two areas, i.e.,
supplementary bug fixes and re-opened bugs. Supplementary
bug fixes correspond to multiple commits linked (via their
commit log message) to the same bug report. Park et al. [12]
investigated supplementary fixes in three open source projects:

Eclipse JDT core, Eclipse SWT, and Mozilla. They conclude
that supplementary fixes are typically caused by forgetting to
port changes, by incorrect handling of conditional statements,
or by incomplete refactorings. On the other hand, the work
on re-opened bugs analyzes bug reports that have been closed
at least once and re-opened again later, possibly replacing an
old bug fix by a newer (possibly more correct) one. Shihab
et al. [13], Zimmermann et al. [17], and Xia et al. [15]
proposed models for the prediction of such re-opened bugs.
Although both areas obviously are related and have spawned
two active research communities, their exact relation has never
been studied: are re-opened bugs a subset of supplementary
bug fixes (or the other way around)?

This paper analyzes the relation between supplementary
bug fixes and re-opened bugs by studying the factors that
indicate whether a bug fix will require supplementary fixes
and–or will be re-opened. Knowing the characteristics of fixes
that require supplementary fixes will help to better focus code
review activities and prevent known bugs from re-appearing
in the field. Knowing the characteristics of bugs that require
to be re-opened will help to predict the probability of bug
re-opening in order to reduce the maintenance overhead and
improve the overall quality of software. Using bug fix and
bug re-opening information from five open source software
projects, Mozilla, Netbeans, Eclipse JDT Core, Eclipse
Platform SWT and WebKit, we address the following three
research questions:

RQ1: What is the proportion of bugs among all bug re-
ports that require supplementary bug fixes or are re-
opened?

This research question replicates the work of Park et
al. [12], who analyzed Eclipse JDT core, Eclipse SWT,
Mozilla and found that between 22.5% to 32.8% of
resolved bugs involved more than one fixing attempt. In
this research, we want to verify whether supplementary
fixes are related to frequent failure, and hence, whether
they are worth investigating in details. We find that
the proportion of bugs that required supplementary
bug fixes in Mozilla1, Netbeans2, Eclipse JDT Core3,
Eclipse Platform SWT4 and WebKit5 accounts for,
respectively, 23.8%, 17.2%, 26.9%, 25.9% and 10.3%

1 http://www.mozilla.org/
2 https://netbeans.org/
3 http://www.eclipse.org/jdt/core/
4 http://www.eclipse.org/swt/
5 https://www.webkit.org



of the total number of resolved bugs reports. Only the
results for Webkit are not similar to those of Park et
al. We attribute the difference to the style of commit
messages in this project where many commits cannot
be mapped to their corresponding bug reports.

RQ2: What is the relation between supplementary bug fixes
and re-opened bugs?

We want to understand whether bug fix failures are
caught early during reviews and testing activities or
whether they slip through these verification processes
and crash in the field, prompting the re-opening of bug
reports. According to our result, between 21.6% and
33.8% of supplementary fixes have been re-opened at
least once. In addition, bug re-openings tend to coincide
with multiple fixing attempts, long fixing period and
multiple developers. Surprisingly, we also found that,
contrary to intuition, 33% to 57.5% of the re-opened
bugs were not detected as supplementary fixes, instead
they are mostly due to premature closing of bugs.

RQ3: Can we predict the re-opening of supplementary bug
fixes?

Re-opened bugs may increase maintenance costs, de-
grade the overall software quality and the satisfaction
of users [13]. In this research question, we use GLM,
C5.0, ctree, cforest and randomForest [3] algorithms
with attributes about developers’ working habits, com-
mit logs, bug fix, and development teams’ dynamic, to
build models that can predict whether or not a bug that
required supplementary fixes before initial closing of
its report will be re-opened. Our models can correctly
predict whether or not a supplementary fix will need
to be re-opened with a precision between 72.2% and
97% and a recall between 47.7% and 65.3%. Software
organizations could use our proposed models to predict
potential failures of their bug fixes and the re-opening
of bug reports, hence preventing these bugs from re-
appearing in the field.

The rest of this paper is organized as follows. Section II
describes the design of our case study. Section III describes
and discusses the results of our three research questions.
Section IV discusses the results of our replication study in
the context of previous work. Section V discloses the threats
to validity of our study. Section VI summarizes related work.
Section VII concludes the paper.

II. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

RQ1: What is the proportion of bugs among all bug reports
that require supplementary bug fixes or are re-opened?

RQ2: What is the relation between supplementary bug fixes
and re-opened bugs?

RQ3: Can we predict the re-opening of supplementary bug
fixes?

A. Data Collection

Since our study replicates existing work on supplementary
bug fixes [12] and re-opened bugs [13], we selected the
following five open source software projects: Mozilla, Net-
beans, Eclipse JDT Core, Eclipse Platform SWT, and WebKit.
Mozilla, which was also used by Park et al. [12], is a web
project that includes several sub-products, such as the Firefox
Internet browser and the Thunderbird e-mail client. Eclipse,
which was used by both Park et al. and Shihab et al. [13],
is an integrated development environment (IDE) supporting
various programming languages. In addition, to compare with
the results in [12] and [13], we introduced two other projects:
Netbeans and WebKit. Similar to Eclipse, Netbeans is another
commonly used IDE. WebKit is a layout engine software
component for rendering web pages that powers Apple’s safari
browser.6

B. Data Processing

Figure 1 shows an overview of our analysis approach. First,
we extract bug fix information from version control systems
(i.e., Mercurial and Git) and apply the algorithm of Park et al.
to identify supplementary bug fixes [12]. Then, we mine the
bug repositories (i.e., Bugzilla) of our five subject projects to
identify re-opened bugs. Using these data, we compute several
metrics and build statistical models to predict the re-opening
probability of supplementary bugs fixes. The remainder of this
section elaborates on each of these steps.

1) Identification of bug fixes: We extract the revision his-
tory of each subject project from the Mercurial (for Mozilla
and Netbeans) and Git (for Eclipse projects, and WebKit)
repositories. We obtained the data of the three repositories
Mozilla, Netbeans and Eclipse from the MSR 2011 challenge,
which respectively cover the period from March 2007 to
August 2010, from January 1999 to June 2010, and from
October 2001 to June 2010. The WebKit data cover the period
from August 2001 to June 2014. Next, we parse the files’
revision logs to extract the following commit information:
revision numbers, committer names, commit dates, commit
messages, number of changed files, and number of insert-
ed/deleted lines. We apply heuristics from Fischer et al. [6]
to identify bug fixing commits. More specifically, we apply
the following regular expressions incrementally to match bug
report identifiers:
(bug|issue)[:#\s_]*[0-9]+

(b=|#)[0-9]+

[0-9]+\b

\b[0-9]+

Finally, we cross-check the bug IDs obtained from commit
logs with the Bugzilla repository to ensure that they represent
actual bug reports. i.e., check whether the extracted bug IDs
exist in the corresponding Bugzilla repository.

2) Identification of supplementary bug fixes: We apply the
algorithm proposed by Park et al. [12] to track supplementary

6 All our studied data repositories, and analysis scripts are available here:
https://github.com/anlepoly/supplementary_fixes



Version Control 
System

Extract commit 
logs

Analyze Data

RQ1

RQ2

RQ2
Bug Repository Re-opened bugs

Supplementary 
Bug Fixes

Commits with 
Bug ID

Identification of 
supplementary 

bug fixes

Identification of 
bug fixes

Identification of  
re-opened bugs

Figure 1: OVERVIEW OF OUR APPROACH TO STUDY THE RELATION BETWEEN SUPPLEMENTARY FIXES AND RE-OPENED
BUGS

bug fixes. This algorithm considers as a supplementary bug
fix, any fix where the commit message contains the bug ID of
a previous bug fixing commit. Therefore, among all detected
bug fixing commits, we search for revisions where the bug ID
is repeated. During this process, we observed that in some
commit messages, committers just mentioned the revision
number of a previous bug fix instead of the bug ID. Hence, we
enhance Park et al.’s heuristic by also matching these revisions
to the corresponding bugs.

Table I presents an example of supplementary bug fixes.
In this table, there are three revisions that mention the same
bug ID #462381. Revision 21149 is the initial bug fix, while
revisions 34890 and 34902 are supplementary bug fixes.

Table I: SUPPLEMENTARY BUG FIXES OF BUG #462381

changeset 21149:7aeaf064ad9f

date Fri Oct 31 09:07:15 2008 -0700

summary Bug 462381 - Build layout directories in parallel r=ted sr=roc

churn 12 files changed, 16 insertions(+), 464 deletions(-)

... ...

changeset 34890:fae81b8a5648

date Fri Nov 13 14:40:00 2009 -0500

summary bug 462381 - sprinkle magic PARALLEL DIRS fairy dust about
the build system r=ted.mielczarek

churn 12 files changed, 191 insertions(+), 173 deletions(-)

... ...

changeset 34902:827d8651799e

date Mon Nov 16 07:57:15 2009 -0500

summary bustage fix from bug 462381

churn 1 files changed, 4 insertions(+), 2 deletions(-)

After the identification of supplementary bug fixes, we
organize all bug fixes into two groups (similarly to [12]):

- Type I bug fix - bug fixes that definitively solve the bug
in the first attempt (i.e., no supplementary fix is needed)

- Type II bug fix - bug fixes that require supplementary
fixes before the bug can be solved.

3) Identification of Re-opened Bugs: In Bugzilla, a re-
opened bug may be marked “REOPENED” in two places: in
the “status” field, when it is currently re-opened and not yet
solved; and in its “history” list, if it was once re-opened but
afterwards the status had been changed to something else (e.g.,
again “CLOSED”). Instead of just looking at the final status

of a bug, we check the bug’s “history” list and find whether
there is at lease one “REOPENED” tag. In the case of Mozilla,
Netbeans, Eclipse JDT Core and Eclipse Platform SWT, we
extract this information directly from the Bug SQL databases
that were provided for MSR 2011 Mining Challenge. In the
case of WebKit, we concatenate the Bugzilla URL with each
detected bug ID to download “history” pages of the bug. Then,
we check whether the tag “REOPENED” exists in the bug’s
history. For example, to check whether bug #32698 in WebKit
was once re-opened, we combine the history link of WebKit
Bugzilla and the target bug ID as follows:

https://bugs.webkit.org/show_bug.cgi?id=32698

III. CASE STUDY RESULTS

This section presents and discusses the results of our three
research questions.

RQ1: What is the proportion of bugs among all bug reports
that require supplementary bug fixes or are re-opened?

Motivation. This question is preliminary to the other ques-
tions. It provides quantitative data on the proportion of bugs
that required supplementary bug fixes and bugs that have
been re-opened in our five subject systems. In this research
question, as in the study of Park et al. [12], we determine
whether bug fixes fail frequently, how fast the bugs are fixed
for good and how many developers are needed for this. These
results will clarify the prevalence (and hence importance) of
supplementary bug fixes, and allow us to compare our findings
with those from [12].
Approach. We identify supplementary bug fixes by classifying
bug fixes from the five systems into two categories: Type I
bug fix and Type II bug fix, as discussed in Section II-B2. We
identify re-opened bugs following the heuristics described in
Section II-B3, and compute the proportion of bug reports that
have been re-opened. For each bug report, we also compute the
number of fixing attempts required for the bug, the duration (in
days) of the fixing period, and the number of developers that
contributed to fix the bug. Since type II bugs contain multiple
fixes, we respectively calculate their number of bug fixes and
number of bug reports (i.e., all fixes corresponding to the same
bug ID count for one).
Findings. Overall, in the five studied projects, type II bug



Table II: DESCRIPTIVE STATISTICS OF THE SUBJECT SYSTEMS

Mozilla Netbeans JDT Core Platform SWT WebKit

Studied period 03/2007 - 08/2010 01/1999 - 06/2010 10/2001 - 06/2010 10/2001 - 06/2010 08/2001 - 06/2014

# commits 51500 173559 18099 20744 152296

# detected bug fixing commits 41227 53599 7744 8504 49388

# Type II bug fixing commits 20389 (49.5%) 19111 (35.7%) 3960 (51.1%) 4523 (53.2%) 10530 (21.3%)

# bug reports 27349 41633 5176 5374 43326

# Type I bug reports 20838 (76.2%) 34488 (82.8%) 3784 (73.1%) 3981 (74.1%) 38858 (89.7%)

# Type II bug reports 6511 (23.8%) 7145 (17.2%) 1392 (26.9%) 1393 (25.9%) 4468 (10.3%)

# re-opened bug reports 2876 (10.5%) 5681 (13.6%) 707 (13.7%) 653 (12.2%) 2311(5.3%)

Max # of fixing attempts for
a bug report

97 56 24 45 36

Max # of fixing days for a bug
report

1125 3781 1616 1947 889

Max # of involved developers
for a bug report

6 7 14 12 6

Netbeans

0%

18%

36%

54%

72%

90%

1 2 3 4 5 6
0.2%0.4%1.0%2.8%12.2%

82.8%

Mozilla

0%

16%

32%

48%

64%

80%

1 2 3 4 5 6

0.7%1.1%2.3%4.9%
13.6%

76.2%

Eclipse JDT Core

0%

16%

32%

48%

64%

80%

1 2 3 4 5 6

0.5%0.7%1.8%5.1%
18.0%

73.1%

Eclipse Platform SWT

0%

16%

32%

48%

64%

80%

1 2 3 4 5 6

0.6%0.8%1.7%4.6%
16.8%

74.1%

8.4% 
reopened

48.8% 
reopened

13.1% 
reopened

38.6% 
reopened

12.8% 
reopened

37% 
reopened

11.6% 
reopened

23.6% 
reopened

WebKit

0%

18%

36%

54%

72%

90%

1 2 3 4 5 6

0.1%0.1%0.4%1.5%8.2%

89.7% 5.2% 
reopened

20.5% 
reopened

attempts - all bugs

Figure 2: NUMBER OF FIXES REQUIRED FOR BUGS AS WELL AS PERCENTAGE OF BUGS THAT ARE RE-OPENED WITHIN 3
FIXING ATTEMPTS AND WITH MORE THAN 3 ATTEMPTS

reports account for 10.3% to 26.9% of all the bug reports.
Table II shows descriptive statistics about our subject systems.

Netbeans has the lowest percentage of commits that
fix a bug. This seems counterintuitive, because Netbeans
has the highest number of commits. However, further manual
analysis shows that more than 20% of commit messages only
mentioned the product repository links instead of bug IDs (e.g.,
Automated merge with http://hg.netbeans.org/cnd-main/). In
other words, these commits cannot be identified as fixing
a bug. There are also many very short commit messages
from which we can not extract any useful information about
bug fixes with the heuristic introduced in the Section II-B1.
This result reveals a limitation of the current identification
algorithm for supplementary bug fixes.

On average, more than one tenth of bug fixes have been
re-opened. Since our re-opened bugs are detected from both
VCS and bug repositories, we can guarantee that any bug fix
that has been re-opened can be identified. The proportion of

re-opened bugs over all detected bug fixes are similar between
projects, i.e., from 5.3% to 13.7%.

Most bugs required only 1 to 2 fixing attempts and less
than 24 hours to get fixed. Figure 2 shows the distribution
of fixing attempts required for bugs. In the worst case, in
Mozilla, a bug can require up to 97 attempts before getting
fixed. In other projects, we also found bugs fixed with 24 to
56 attempts. To understand the period of time needed to make
the supplementary fixes, Figure 3 presents the distribution of
fix duration required for bugs. Overall, most bugs are solved
within 24 hours (i.e., 1 day). The maximum time taken for
fixing bugs is 889 to 3781 days. Some of those outliers (e.g.,
bug #3875 in Netbeans) correspond to cases where developers
forgot to close a fixed bug report (this is a threat to validity),
whereas others (e.g., bug #55701 in Netbeans) really took such
a long time to get fixed.

In Mozilla, Netbeans, Eclipse JDT Core and Eclipse
SWT, the proportion of bugs that required supplementary
bug fixes is between 17.2% and 26.9%. This result is similar



Netbeans

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.5%0.6%0.8%1.4%

90.3%

Mozilla

0%

18%

36%

54%

72%

90%

1 2 3 4 5

0.7%0.8%1.0%1.6%

86.2%

Eclipse JDT Core

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.5%0.7%0.8%1.8%

90.1%

Eclipse Platform SWT

0%

18%

36%

54%

72%

90%

1 2 3 4 5

0.5%0.7%0.9%1.2%

90.0%

6% 
reopened

38.8% 
reopened

10% 
reopened

47.6% 
reopened

11.4% 
reopened

34.7% 
reopened

9.9% 
reopened

32.7% 
reopened

WebKit

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.2%0.3%0.4%0.7%

92.8%

3.6% 
reopened

28.3% 
reopened

days - all bugs

Figure 3: NUMBER OF FIXING DAYS OF BUGS AS WELL AS PERCENTAGE OF RE-OPENED BUGS THAT ARE FIXED WITHIN 1
DAY AND MORE THAN 1 DAY

Eclipse Platform SWT

0%

20%

40%

60%

80%

100%

1 2 3 4 5
0.04%0.04%0.56%3.74%

95.50%

Eclipse JDT Core

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.06%0.02%0.33%4.73%

94.76%

Mozilla

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.03%0.20%0.97%7.92%

90.86%

Netbeans

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.01%0.04%0.28%4.05%

95.61%

13% 
reopened

25.5% 
reopened

11.5% 
reopened

26.4% 
reopened

7.8% 
reopened

37.9% 
reopened

12.4% 
reopened

40.3% 
reopened

WebKit

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.02%0.07%0.59%4.94%

94.37%

4.9% 
reopened

12.5% 
reopened

developers - all bugs

Figure 4: NUMBER OF DEVELOPERS PARTICIPATING IN FIXING BUGS AS WELL AS PERCENTAGE OF RE-OPENED BUGS THAT
ARE FIXED BY ONE DEVELOPER AND BY MULTIPLE DEVELOPERS

to the finding of Park et al. [12] in which supplementary
fixes account for 22.5% to 32.8% of all detected bug fixes.
In Webkit, supplementary fixes account only for 10.3%. With
a manual check, we found that Webkit allows developers to
use both SVN and Git clients to access the source code.
As a result, many commit messages mention an SVN style
revision number instead of a Git revision number or a bug
ID, making it difficult to track all commits related to a bug.
For example, the following message could not be mapped to
a bug report: “Rebaseline compositing/geometry/horizontal-
scroll-composited.html after r107389”. The latter number is
an SVN style revision number.

Overall, in our five studied projects, supplementary bug fixes
account for 10.3% to 26.9%, while re-opened bugs account for
5.3% to 13.7%.

RQ2: What is the relation between supplementary bug fixes
and re-opened bugs?

Motivation. Many factors can explain the supplementary fixes
found in our subject systems. A first explanation could be
agile development and continuous integration practices that
advocate for incremental development, in particular those that
solved bugs within 24 hours, since developers may have just
submitted their bug fixes incrementally (i.e., through succes-
sive chunks of commits). A second explanation is suggested by
the Type II bugs that experienced multiple bug fixing attempts
over long period of time (up to 3781 days). It is possible
that long fixing period may increase the probability of bug re-
opening. A third explanation is that multiple failing attempts
at fixing a bug (many supplementary bug fixes) increases the
odds that the bug will be re-opened in the future. A fourth



explanation is that a bug fixing process may involve multiple
committers. Multiple reasons can explain why different com-
mitters would contribute fixes for a same bug, such as the
turnover in development teams, or the complexity of a bug
that may require the collaboration of several developers. To
verify these hypotheses, this research question investigates the
relation between Type II bug fixes and re-opened bugs.
Approach. To verify the above mentioned hypotheses re-
garding the relation between supplementary bug fixes and
re-opened bugs, we split the results in Figure 2 and 3 in
two parts (by dashed lines), to distinguish bugs that required
less than three fixing attempts, and those that required more
than three fixing attempts (respectively bugs fixed within 24
hours, and those that required more than 24 hours). We choose
these thresholds because they correspond to the modes of the
distributions of the number of fixing attempts (respectively the
number of fixing days). Also, bugs fixed by less than three
successive commits, within 24 hours are more likely to be
linked to agile development rather than incorrect bug fixes. In
each figure, we then calculate the percentage of bugs below
and over the above thresholds (on the left and right side of
the dashed line) that are re-opened. The resulting percentages
show where re-opened bugs are concentrated the most.

Figure 4 shows the distribution of the number of developers
involved in fixing each bug. Dashed lines separate fixes by
single developers and multiple developers. For each Type II
bug, we count all different names or emails that appeared in
the same Type II bug fix group (i.e., all the fixing commits of a
Type II bug) to identify the number of developers involved in
fixing the bug. Since we extract this information from commit
logs, it is possible that these developers (i.e., the committers)
are not the authors of the bug fixes, but are instead reviewers
with commit privileges [2]. A re-opened bug may also be
assigned to a different (more experienced) developer in an
attempt to avoid further fixing failures. To evaluate this last
hypothesis, we investigate the distribution of re-opened bugs
among the groups of bugs fixed by single versus multiple
developers.

Figure 5 shows the relation between supplementary bug
fixes and re-opened bugs. The green circles represent type II
bugs, blue circles represent re-opened bugs, pink circles rep-
resent “invalid reports” (i.e., bug reports that have been closed
by the following resolutions: “invalid”, “wontfix”, “duplicate”,
or “worksforme”, which have a strong probability of being
re-opened [13]). The overlapped parts are their intersection.
For example, in Mozilla, there are 6511 type II bug reports
(4583+1757+171), from which 1928 are also re-opened bugs
(1757+171). Also, 171 of these re-opened bugs were “invalid
reports” before being re-opened. We also found 948 re-opened
bugs (324+624) with only one commit, among which 324 were
“invalid reports” before being re-opened.
Findings. Re-opened bugs are more concentrated respec-
tively in the areas above 24 hours, three fixing attempts, or
by multiple developers. Overall, between 21.6% and 33.8%
of Type II bugs have been re-opened at least once. However,
almost half of the re-opened bugs were not detected as

Type II bug fixes (i.e., we did not find more than one
fix for these re-opened bugs). This outcome was quite a
surprise for us because we expected re-opened bugs to be
a subset of supplementary fixes. At first sight, this finding
could be explained by limitations in our data set, such as
developers forgetting to mention a bug ID in their commit
message. However, closer analysis shows that 22.8% to 49.1%
of re-opened bugs with only one fix tend to be linked with
invalid reports, i.e., not all re-opened bugs address previously
fixed bugs. This seems counterintuitive, but in many cases the
original bug fix was prematurely closed because developers
considered that: the problem described is not a bug (marked
invalid in Bugzilla), the bug do not need to be fixed (marked as
wontfix), the problem is a duplicate of an existing bug (marked
as duplicate), or all attempts at reproducing this bug were
futile (marked as worksforme). To validate whether the invalid
reports are significantly associated with single re-opened bugs,
we applied Chi-squared test and Fisher’s exact test to compare
the four types of invalid reports in re-opened bugs with only
one commit and in those with multiple commits. The result
shows that in all studied systems, the p-value is less than 0.05,
i.e., invalid reports have a significant association with single
re-opened bugs. This finding also explains that not all bug
re-openings have a negative impact on software development,
contrary to the conclusion of earlier works like [13]. In our
subject systems, 22.8% to 49.1% of single re-opened bugs (i.e.,
re-opened bugs with only one commit associated) have at least
one of these invalid closed status. Those bugs have less impact
on software quality than the re-opened bugs previously closed
by the “fixed” status. Therefore, instead of building predictive
models for bug re-opening over all bug fixes, like in [13], we
only predict bug re-opening for supplementary bug fixes.

Therefore, bugs fixed during long period, with multiple
attempts or with multiple developers tend to be re-opened.
Counterintuitively, almost half of the re-opened bugs have only
one fixing attempt. 22.8% to 49.1% of these single re-opened
bugs are due to prematurely closed reports.

RQ3: Can we predict the re-opening of supplementary bug
fixes?

Motivation. In RQ1 and RQ2, we observed that between
10.3% and 26.9% of bugs required at least one supplementary
fix before they were resolved for good. Among these bugs that
required supplementary fixes, between 21.6% and 33.8% were
re-opened. Bug fix failures, and most of the re-opened bugs are
not desirable since they increase maintenance costs, degrade
software quality and users’ satisfaction [13]. For example, the
average time from bug report to bug closing in one of the
Eclipse projects for re-opened bugs was found to be as much
as twice the average time to resolve a non-reopened bug [13].
In this research question, we replicate the work of Shihab et
al. [13] to explore statistical models to predict whether or not
a bug that required supplementary fixes will be re-opened.
Using a prediction model, development teams will be able to
target faulty/incomplete bug fixes for more thorough reviews,
preventing re-opened bugs.



1090 221 25281 153

Type II Reopened

Invalid

Eclipse JDT Core

1092 217 17984 173

Type II Reopened

Invalid

Eclipse Platform SWT

3125 1135 88208 880

Type II Reopened

Invalid

WebKit

4583 1757 624171 324

Type II Reopened

Invalid

Mozilla

4729 1922 1728494 1537

Type II Reopened

Invalid

Netbeans

Figure 5: RELATIONSHIP BETWEEN SUPPLEMENTARY BUGS AND RE-OPENED BUGS

Table III: WORK HABIT DIMENSION

Attribute Explanation and Rationale

Hour Hour (0-24). Fix committed at certain hours may induce bug
re-opening (e.g., hours around quitting time).

Week day Day of week (from Mon to Sun). Fix committed on certain
week days may induce bug re-opening (e.g., Friday) [14],
[1].

Month day Day in month (1-31). Fix committed on certain days may
induce bug re-opening (e.g., some dates before holidays).

Month Month of year (1-12). Fix committed in some months
may induce bug re-opening (e.g., December, when we have
Chrismas)

Day of year* Day of year (1-366). Combining the rationales of month day
and month.

Commit Size Words in commit message. Too short (due to hasty work)
or too long message (due to the difficulty) may lead to bug
re-opening.

* this attribute was eliminated according to the VIF result

Table IV: BUG REPORT DIMENSION

Attribute Explanation and Rationale

Platform Platform (e.g., PC, Mac) on which the bug was reported.
Bugs on some platforms are difficult to be solved, which
may induce bug re-opening.

Severity Severity of a bug report. Developers may mark a difficult
bug as higher severity.

Priority Priority of a bug report. Developers may mark a difficult
bug as higher priority.

CC Number Number of users who may not have a direct role to play on
the bug, but who are interested in its progress. Bugs followed
by many people may have a higher re-opening probability.

Description
Size

Words in bug description. Too short (due to hasty work) or
too long message (due to the difficulty) may lead to bug
re-opening.

Invalid Status Boolean value, i.e., whether it exists an invalid status (see
Section 3) before a commit. Invalid status may be followed
by bug re-opening.

Approach. Based on the approach of Shihab et al. [13], we
extract 19 attributes from commit logs and bug repositories
along the four dimensions shown in Table III to Table VI.

We choose several regression and classification algorithms
in R to build predictive models: General Linear Model (GLM),
C5.0, ctree, cforest and randomForest. GLM is an extension
of multiple linear regression for a single dependent variable.
It is extensively used in regression analyses. The model C4.5
obtained a good prediction score in the work of Shihab et
al. [13]. As a comparison, we use two Decision Tree models,

Table V: BUG FIX DIMENSION

Attribute Explanation and Rationale

Changed files Number of changed files in a commit. Large number of
changed files may increase the risk of bug re-opening.

Churn Total number of inserted and deleted lines. Large number of
changed LOC may increase the risk of bug re-opening.

Fixing time Time span since the first fix. Long fixing time may induce
bug re-opening.

Keywords Some keywords (e.g., crash, error, incorrect) in the commit
message may imply bug re-opening.

Table VI: PEOPLE DIMENSION

Attribute Explanation and Rationale

Reporter expe-
rience

The number of prior reported bugs. Inexperienced reporters
are likely to introduce buggy report.

Assignee
experience

The number of prior assigned bugs. Inexperienced assignee
are likely to introduce buggy fixes.

Committer ex-
perience

The number of prior committed patches. Inexperienced
committers are likely to introduce buggy fixes.

C5.0 and ctree. C5.0 is an improved version of C4.5. The two
algorithms are respectively derived from R packages “C50”
and “party”. In addition, we apply two implementations of
the Random Forest algorithm, i.e., randomForest from the
R package “randomForest” and cforest from the R package
“party”. Random Forest was developed by Leo Breiman and
Adele Cutler [3]. It uses a majority voting of decision trees to
generate classification (predicting, often binary, class labels) or
regression (predicting numerical values) results. Random For-
est offers good out-of-the-box performance and has performed
very well in different defect prediction benchmarks [9]. The
algorithm yields an ensemble that can achieve both low bias
and low variance [4]. In our configuration, we build 50 trees
with five randomly selected attributes in each tree.

Before building our models, we use Variance Inflation
Factor (VIF) analysis to remove correlated variables. We set
the correlation threshold to 5. Variables with VIF result over
the threshold are considered as correlated, and hence are not
included in our models. Among the selected attributes, “day
of year” was eliminated, since its VIF result is higher than 5.
We do not use reporter and assignee names like in Shihab et
al.’s work [13], because these variables may lead to overfitted
models.



Table VII: ACCURACY, PRECISION, RECALL AND F-MEASURE (IN %) OBTAINED FROM GLM, C5.0, CTREE, CFOREST AND
RANDOMFOREST

Algo. Acc. Re-op. Pre. Re-op. Rec. Re-op. F-m. Non Re-op. Pre. Non Re-op. Rec. Non Re-op. F-m.

Mozilla GLM 64.2 69.6 6.6 12 64 98.3 77.5

C5.0 74.3 70 53.9 60.9 76 86.4 80.8

ctree 68.9 62.8 40.2 49.1 70.8 85.9 77.6

cforest 76.4 79.4 49.3 60.8 75.5 92.4 83.1

randomForest 82.1 82.8 65.3 73.1 81.8 92 86.6

Netbeans GLM 69.9 87.7 13.2 22.9 69 99.1 81.3

C5.0 74.4 67.9 46.2 55 76.3 88.8 82.1

ctree 71 75 21.8 33.8 70.6 96.3 81.5

cforest 74.1 82.8 29.9 44 72.9 96.8 83.2

randomForest 78.3 80.2 47.7 59.8 77.8 94 85.1

JDT Core GLM 77.5 76.6 15.1 25.3 77.5 98.4 86.7

C5.0 83.3 72.7 53.8 61.8 85.7 93.2 89.3

ctree 81 78.4 34.2 47.6 81.4 96.8 88.4

cforest 83.3 92.2 36.8 52.6 82.3 99 89.9

randomForest 87.7 89.9 57.7 70.2 87.3 97.8 92.2

Plat. SWT GLM 78.9 71.4 5.9 10.8 79.1 99.3 88.1

C5.0 88 80.9 58.9 68.1 89.3 96.1 92.6

ctree 82.2 73 29.3 41.8 83.1 97 89.5

cforest 86.2 97 37.8 54.4 85.2 99.7 91.8

randomForest 91.6 95.4 64.4 76.9 90.9 99.1 94.8

WebKit GLM 71.9 51.7 5.2 9.4 72.4 98.1 83.3

C50 76.6 62 44 51.5 80.2 89.4 84.6

ctree 74.9 58.4 38.5 46.4 78.7 89.2 83.6

cforest 77.8 72.2 34.7 46.9 78.7 94.7 86

randomForest 80.5 69.8 54.4 61.1 83.5 90.8 87

To evaluate the importance of the different attributes (pre-
diction variables), we applied the MeanDecreaseGini criteria,
in which a higher value represents higher importance.

We applied 10-fold cross validation [5] to calculate the
accuracy as well as the precision, recall and F-measure for
respectively re-opened and non re-opened bugs. In the cross
validation, each data set is randomly split into ten folds. Nine
folds are used as the training set, and the remaining one fold is
used as the testing set. We repeat the 10-fold cross validation
for ten times and report the average results obtained.

Findings. In all studied projects, randomForest outper-
forms C5.0 and other algorithms in accuracy, re-opened
F-measure and non re-opened F-measure. When predicting
re-opened bugs with randomForest, we can achieve an
average accuracy of 84%, a precision of 83.6%, and a recall
of 57.9%. Table VII presents accuracy, precision, recall, and
F-measure results for the five models predicting whether or
not a bug that required supplementary fixes will be re-opened.
Table VIII shows the top and second important attributes as
well as their frequency in randomForest. As we executed 10
times the validation, the maximum frequency is 10. Overall,
assignee experience, commit month, churn, reporter expe-
rience and committer experience are evaluated as the top
or second attributes in different projects.

In summary, our predictive models for re-opened bugs can
achieve a precision between 72.2% and 97% and a recall
between 47.7% and 65.3%.

Table VIII: TOP AND SECOND ATTRIBUTES AND THEIR
FREQUENCY IN RANDOMFOREST

Project Top attribute Freq. Second attribute Freq.

Mozilla commit month 5 commit month 5

assignee exp. 5 assignee exp. 5

Netbeans assignee exp. 10 reporter exp. 6

commit month 3

committer exp. 1

JDT assignee exp. 10 commit month 10

SWT assignee exp. 10 commit month 10

WebKit churn 10 assignee exp. 7

commit month 3

IV. DISCUSSION

This section discusses some of the key aspects of our study
that differ from the works of Park et al. and Shihab et al.
Identification of supplementary bug fixes. During our
data collection and processing, we have uncovered some
limitations of the algorithm proposed by Park et al. [12] to



track supplementary bug fixes. We have proposed an enhanced
heuristic that can identify supplementary fixes with higher
precision. Indeed, the new heuristic can track bug IDs that
cannot be tracked by the algorithm proposed by Park et al.
and it cross-checks all bug IDs mentioned in commit logs with
the Bugzilla repositories to eliminate false bug IDs. Compared
to the results of Park et al., the new heuristic have reported
a higher percentage of supplementary bug fixes in Eclipse
Platform SWT (25.9% vs. 24.04%) and Eclipse JDT core
(26.9% vs. 22.46%), but a lower percentage in Mozilla (23.8%
vs. 32.8%).
Prediction models. In RQ2, we observed that almost half of
the re-opened bugs are fixed by only one commit. 22.8% to
49.1% of these single re-opened bugs were due to prematurely
closed reports. These prematurely closed bugs do not neces-
sarily have a negative impact on software development, since
they are not related to failed bug fixes. For this reason, we
decided in this study to focus our prediction of bug re-openings
on supplementary bug fixes rather than on all bug reports as
in the work of Shihab et al. [13]. Compared to their results
(although our prediction models have a different dependent
variable), our prediction models have a higher precision (72.2-
97% vs. 52.1%-78.6%) and a lower recall (47.7%-65.3% vs.
70.5%-94.1%).

V. THREATS TO VALIDITY

This section discusses the threats to validity of our study
following the guidelines for case study research [16].

Construct validity threats concern the relation between
theory and observation. We answered RQ1, RQ2, and RQ3
by carefully choosing the experimental measures, i.e., identi-
fication technique and prediction algorithms. Concerning the
proportion of supplementary fixes in a project, since our results
for Webkit are different from those obtained by Park et al. [12],
we have manually verified 200 commit messages of each
project to validate the correctness of the results. Compared
to Park et al., we enhanced the identification heuristic and
cross-checked all the bug IDs obtained from commit logs
with Bugzilla repositories to ensure that all detected bug IDs
represent actual bug reports. In addition, we have the lowest
type II bug reports percentage in Netbeans, since in this
project, many report messages are either non bug fixing related
or too brief, so it is difficult to map a fix to a certain bug ID. In
WebKit, the re-opened bugs only account for 5.3% of all bug
reports. In this project, many bug reports are only available to
the internal staff (marked by “Access Denied”). Therefore, we
cannot judge whether these bugs have been re-opened.

Internal validity threats concern factors that may affect a
dependent variable and were not considered in the study.
Theoretically, one would expect that all re-opened bugs are
fixed more than once (i.e., a fix before re-opening and other
fixes afterwards), yet we obtain 33% to 57.5% re-opened bugs
in the type I bug set. Although we found that a large part
of these bugs had been closed prematurely without any fix,
another explanation could be a limitation of the identification
technique by regular expressions. Even though we used not

only bug IDs to trace a bug, but also revision numbers to map
revisions and bug fixes. Some software organizations do not
explicitly mark bug IDs in the revision history (or at least
do not enforce this). So, we can not track these bug fixes in
VCS. In future work, novel identification heuristics need to be
explored. Another threat is related to the computation of bug
fixing time values. It is possible that some developers forgot
to close a fixed bug report.

Conclusion validity threats concern the relation between the
treatment and the outcome. We paid attention not to violate
assumptions of the constructed statistical models. According
to the bug identification technique, we improve the existing
heuristic, considered commits referring to an earlier commit’s
revision number, and compare the identified numbers with bug
repositories. We manually checked the number sequences that
were not detected by our mentioned regular expressions and
found that none of those numbers were related to bug IDs. In
the prediction, our best model, randomForest, can achieve a
precision between 69.8% and 95.4%, a recall between 47.7%
and 65.3%. Due to the state of art of the bug identification
technique from VCS, many bug fixes are not mapped to their
corresponding bug reports. This may affect the recall of the
prediction for bug re-opening.

External validity threats concern the possibility to generalize
our results. Besides the project used by Park et al. [12] and
Shihab [13] et al., we introduced two other projects in this
study, i.e., Netbeans and WebKit. They have a similar type
II bug percentage and a similar prediction accuracy. In future
work, we plan to expand this study by analyzing other open
source projects and applying novel identification techniques.
For example, we could compare the bug fix committed time
with the time in the attachments of bug reports to map a bug fix
to its corresponding bug report. In addition, manual analysis of
commit information and re-opening distribution will help us to
determine the failure-prone fixes over all supplementary bug
fixes. We provide our data and script in Github (https://github.
com/anlepoly/supplementary_fixes). Researchers and software
practitioners can verify our results or apply our approach to
other projects.

VI. RELATED WORK

Supplementary fixes. Park et al. [12] used delimiter and
integer sequences to identify bug reports and supplementary
fixes. In contrast, Kim et al. [8] and Mockus et al. [10] use key-
words to match bug fix revisions. Śliwerski et al. combine syn-
tactic analysis and semantic analysis to identify bug fixes [14].
Fischer et al. use both version control system and bug tracking
database to populate a release history database [6]. We applied
their approaches and also took revision numbers into account
to extract supplementary fixes. To eliminate false bug IDs,
we cross checked all identified IDs with Bugzilla databases
or Bugzilla website. Park et al. also did a manual analysis to
find the rationale behind supplementary fixes. However, they
did not investigate whether supplementary fixes are related to
bug re-opening, neither did they attempt to predict potential
failures of supplementary fixes.



Bug re-opening. Previous work considered re-opened bugs
primarily as a negative factor since repeated work increases
maintenance overhead, degrading the software quality. Shihab
et al. [13] discussed the risk of re-opened bugs and built
prediction models to prevent bug re-opening. Zimmermann
et al. [18] and Xia et al. [15] also proposed models for
the prediction of re-opened bugs. However, neither of these
studies has considered the relation between supplementary
bug fixes and bug re-openings. We link supplementary bug
fixes and re-opened bugs, and found that bug re-opening is
an important reason of supplementary fixes, that 21.6% to
33.8% supplementary fixes have been re-opened at least once.
On the other hand, a lot of re-opened bugs do not belong to
supplementary fixes, i.e., they do not have any prior bug fix
in the studied repositories.

Prediction. Bug re-opening is not favorable to software
development. It is worth building predictive models to pre-
vent these bugs from re-appearing in the field. Researchers
found that some factors might be linked to failure, such
as, the changes committed on Fridays [14], or by certain
inexperienced developers [7]. In previous studies, Hassan et al.
used C4.5 decision tree algorithm to predict the certification
result of a build for a large software project in IBM Toronto
Lab [7], Shihab et al. compared C4.5, Zero-R, Naive Bayes
and Logistic Regression algorithms to predict the re-opened
bugs in three open source projects [13], and Zimmermann et
al. used Logistic Regression model to predict re-opened bugs
in Windows [18]. We selected C5.0 (the improved implementa-
tion of C4.5, which is the best algorithm in the study of Shihab
et al. [13]) and applied other classification algorithms in our
study. According to our results, randomForest outperforms
other algorithms in the prediction for bug re-opening.

VII. CONCLUSION

In software development, bug fixing is a dominant activity
for developers and testers. A typical bug fixing cycle includes
the reporting of the bug, the production of a fix, the ver-
ification of the fix, and the closing of the bug. However,
sometimes a closed bug later may be re-opened by devel-
opers. Previous studies show that such bug re-opening can
increase the maintenance costs as well as degrade the software
quality and the satisfaction of users. To discover the relation
between supplementary bug fixes and re-opened bugs, we
investigate supplementary bug fixes where more than one fix
are associated with the same bug and re-opened bugs in five
open source projects, and found that supplementary bug fixes
account for 10.3% to 26.9% of total bug reports. In addition,
in the subject systems, a high percentage (i.e., from 21.6%
to 33.8%) of the supplementary fixes have been re-opened.
To help development teams target faulty/incomplete bug fixes
(for more thorough reviews) and prevent re-opened bugs, we
have explored the possibility of predicting bug re-openings
over supplementary bug fixes, using GLM, C5.0, ctree, cforest
and randomForest models. Results show that these models can
achieve between 72.2% and 97% precision as well as between
47.7% and 65.3% recall. Moreover, we found between 33%

to 57.5% of re-opened bugs with only one commit associated
to them. These re-opened bugs have a strong association with
invalid bug reports in all our five studied systems. In fact,
they were prematurely dismissed as “invalid” before being re-
opened. These bugs are not as risky as re-opened bugs with
more than one commit to the software development. In other
words, contrary to claims by existing works on re-opened bugs,
they will not affect the quality of the software product. Future
researchers and practitioners who are mining data repositories
can use our models to identify fault-prone bug fixes.

REFERENCES

[1] P. Anbalagan and M. Vouk. Days of the week effect in predicting
the time taken to fix defects. In Proceedings of the 2nd International
Workshop on Defects in Large Software Systems: Held in conjunction
with the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2009), pages 29–30. ACM, 2009.

[2] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining git. In Proceedings of the
2009 6th IEEE International Working Conference on Mining Software
Repositories, MSR ’09, pages 1–10, Washington, DC, USA, 2009. IEEE
Computer Society.

[3] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[4] R. Díaz-Uriarte and S. A. De Andres. Gene selection and classification

of microarray data using random forest. BMC bioinformatics, 7(1):3,
2006.

[5] B. Efron. Estimating the error rate of a prediction rule: improvement
on cross-validation. Journal of the American Statistical Association,
78(382):316–331, 1983.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on, pages 23–32. IEEE, 2003.

[7] A. E. Hassan and K. Zhang. Using decision trees to predict the
certification result of a build. In Automated Software Engineering, 2006.
ASE’06. 21st IEEE/ACM International Conference on, pages 189–198.
IEEE, 2006.

[8] S. Kim, E. J. Whitehead, and Y. Zhang. Classifying software
changes: Clean or buggy? Software Engineering, IEEE Transactions
on, 34(2):181–196, 2008.

[9] T. Mende and R. Koschke. Effort-aware defect prediction models. In
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on, pages 107–116. IEEE, 2010.

[10] A. Mockus and L. G. Votta. Identifying reasons for software changes
using historic databases. In Software Maintenance, 2000. Proceedings.
International Conference on, pages 120–130. IEEE, 2000.

[11] N. I. of Standards & Technology. The economic impacts of inadequate
infrastructure for software testing, May 2002. US Dept of Commerce.

[12] J. Park, M. Kim, B. Ray, and D.-H. Bae. An empirical study of
supplementary bug fixes. In Mining Software Repositories (MSR), 2012
9th IEEE Working Conference on, pages 40–49. IEEE, 2012.

[13] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto. Studying re-opened bugs in open
source software. Empirical Software Engineering, pages 1–38, 2012.

[14] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In ACM sigsoft software engineering notes, volume 30, pages
1–5. ACM, 2005.

[15] X. Xia, D. Lo, X. Wang, X. Yang, S. Li, and J. Sun. A comparative
study of supervised learning algorithms for re-opened bug prediction. In
Software Maintenance and Reengineering (CSMR), 2013 17th European
Conference on, pages 331–334, March 2013.

[16] R. K. Yin. Case Study Research: Design and Methods - Third Edition.
SAGE Publication, 3rd edition, 2002.

[17] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy. Characterizing
and predicting which bugs get reopened. In Proceedings of the 2012
International Conference on Software Engineering, ICSE 2012, pages
1074–1083, Piscataway, NJ, USA, 2012. IEEE Press.

[18] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy. Characterizing
and predicting which bugs get reopened. In Software Engineering
(ICSE), 2012 34th International Conference on, pages 1074–1083. IEEE,
2012.


