

Classifying Field Crash Reports for Fixing Bugs : A

Case Study of Mozilla Firefox

Tejinder Dhaliwal, Foutse Khomh, Ying Zou

Dept. of Electrical and Computer Engineering

Queen’s University, Kingston

{tejinder.dhaliwal, foutse.khomh, ying.zou}@queensu.ca

Abstract— Many software systems support automatic

collection of field crash-reports which record the stack traces

and other runtime information when crashes occur. Analysis

of field crash-reports can help developers to locate and fix

bugs. However, the amount of crash-reports collected is often

too large to handle. To reduce the amount of data for the

analysis, the existing approaches group similar crash-reports

together. A bug can trigger a crash in different usage

scenarios. Therefore, the crash-reports triggered by the same

bug may not be identical. Using the existing approaches, the

crash-reports triggered by the same bugs can be distributed

into different groups and one group may contain crash-

reports triggered by different bugs. We perform an empirical

study of crash-reports collected for Mozilla Firefox to analyze

the impact of crash-report grouping and identify the

characteristics of an efficient grouping. We observe that when

a group contains crash-reports triggered by multiple bugs, it

takes longer time to fix the bugs in comparison to the bugs

where crash-reports triggered by each bug are grouped

separately. To effectively reduce the bug fixing time, we

propose a grouping approach, such that, each group contains

the crash-reports triggered by only one bug. The case study

shows that an effective grouping can reduce the bug fix time

by more than 5%.

Keywords-Bug localization, Automatic crash reporting,

Clustering.

I. INTRODUCTION

A crash terminates an application unexpectedly in a
natural setting. Automatic crash reporting tools are
commonly built into software systems to collect crash-
reports from a user environment and send them to a central
repository. A crash-report usually contains a stack trace of
the failing thread and other runtime information. A stack
trace is an ordered set of frames and each frame refers to a
method signature. The crash-reports can help the software
developers to diagnose and fix the root cause of the crashes.
The automatic collection of crash-reports in Mozilla Firefox
improved the reliability of Mozilla Firefox by 40% from
November 2009 to March 2010 [21]. Microsoft was able to
fix 29% of all Windows XP bugs and third-party bugs due
to the automatic collection and analysis of crash-reports

[12]. However, the built-in automatic crash reporting tools
often collect a large number of crash-reports. For example,
Firefox receives 2.5 million crash-reports every day [21].

It is challenging for organizations to manage large
amount of collected crash-reports effectively. In particular,
due to the reoccurrence of the same bug, many of the crash-
reports are redundant. To reduce the amount of crash-reports
to handle, similar crash-reports are identified and grouped
together in the central repository. We refer to a group of
similar crash-reports as a crash-type. For example, Mozilla
groups the crash-reports using the top method signature in
the failing stack trace. However, such a grouping approach
is not accurate since the crash-reports triggered by the same
bug might not be identical. If multiple bugs have the same
top method signature in their failing stack traces, the crash-
reports triggered by these bugs are designated to the same
crash-type. We observe that if the crash-reports caused by
multiple bugs are grouped together it takes longer time to
fix the bugs. The observation indicates that if each crash-
type contains the crash-reports triggered by only one bug, it
is easier for a developer to fix the bugs. A detailed
comparison of the stack traces of two crash-reports can help
to determine if the crash-reports are triggered by the same
bug. Therefore, to ensure that the crash-reports triggered by
different bugs are grouped separately, we propose a two-
level grouping approach, where a crash-type is further
divided based on the similarity of the stack traces of the
crash-reports. We strive for the similar stack traces of the
crash-reports within the same subgroup, such that each
subgroup contains the crash-reports triggered by a single
bug. The crash-reports are large in number, and a detailed
comparison of stack traces could be an intensive
computation, therefore we optimize our approach to handle
the large amount of crash-reports.

 We conduct an empirical study on crash-reports and
bugs, collected from ten releases of Firefox. We want to
understand the issues with the existing crash-report
grouping approach and to evaluate if our proposed two-level
grouping approach can improve the bug fixing process. We
formulate the following research questions for our study:

http://en.wikipedia.org/wiki/Software_developers
http://en.wikipedia.org/wiki/Software_developers

Crash Type -M

Crash Type -2

Mozilla FireFox

+

Mozilla Crash Reporter

Signature – UserCallWin…

Bug IDs – 610103 …

Crash Type - 1

N
2Crash Report

1

Socorro - Crash Report Server

Bug Report -R

Crash Type -2

Bug ID – 610103

Submitter –

Status –

Open Date –

Last Modify Date –

Fix Information –

 Bug Report -1

Bugzilla – Bug Tracking Server

Crash

Report

Crash Types

are linked with

Bugs

Firefox Submits a

Crash Report when a

Crash Occurs

Figure 1: Mozilla Crash Report System

RQ1: Can stack traces in crash-reports help to locate bugs?

Our first research question evaluates the usefulness of
the stack traces in the crash-reports for bug fixing activities.
We want to verify if it is useful to analyze the stack traces in
crash-reports to identify the bugs. We analyze the already
fixed bugs and observe that 80% of the bugs are located in
the faulty modules that appear in the stack traces of crash-
reports.

RQ2: Does a crash-report grouping approach have an
impact on bug fixing?

Our second question investigates the impacts of a crash-
report grouping approach on the bug fixing time. In Firefox
crash-reports, we find that when multiple bugs are filed for
the same crash-type, it takes longer time to fix the bugs in
comparison to fixing the bugs, which are uniquely filed for a
crash-type. Moreover, when a bug is filed and related to
multiple crash-types, it takes even shorter time to fix the
bug. The result indicates that it takes longer time to fix bugs
when crash-reports triggered by multiple bugs are grouped
together. Furthermore, we compare the similarity among the
stack traces of different crash-reports within a crash-type
and observe that lower similarity indicates that the crash-
reports within a crash-type are triggered by different bugs.

 RQ3: Does a detailed comparison of stack trace help
improve the grouping?

The third question evaluates our proposed grouping
approach. This question verifies if the approach can group
the crash-reports triggered by different bugs separately.
Using our approach, we found that 88% of the identified
groups contain the crash-reports triggered by a single bug.
On average, 98% of the crash-reports in an identified group
are triggered by the same bug.

Organization of the paper: Section 2 gives an
overview of the Mozilla crash reporting system. Section 3
introduces the proposed enhancements in crash-report
grouping approach. Section 4 describes our experimental
setup, data collection and analysis approach. Section 5
presents the results of our study. Section 6 discusses the
limitations and threats to validity of the study. Section 7
discusses the related work. Finally, Section 8 concludes our
work and discusses future work.

II. OVERVIEW OF MOZILLA CRASH REPORTING SYSTEM

Firefox is the second most popular web browser with
27% usage share worldwide [6]. Firefox supports automatic
collection of the crash-reports. It is delivered with a built in
crash reporting tool, Mozilla Crash Reporter [3]. Figure 1
presents an overview of the Mozilla crash reporting system.
When Firefox is terminated unexpectedly, the Mozilla Cash
Reporter sends a detailed crash-report to the Socorro crash
report server [17]. A crash-report includes the stack trace of
the failing thread and other information about the user
environment, such as operating system, Firefox version,
install time, and a list of plug-ins installed.

Socorro groups the crash-reports based on the top
method signature of the stack trace. However, the
subsequent frames in the stack trace might be different for
different crash-reports in a crash-type. For each crash-type,
Socorro server provides a crash-type summary, i.e., a list of
the crash-reports of the crash-type and a set of bugs filed for
the crash-type. Socorro provides a rich web interface for the
developers to analyze the crash-types. Developers prioritize
the top crash-types (i.e., the crash-type with the maximum
number of crash-reports) to analyze and fix the bugs
responsible for the crash.

Mozilla uses Bugzilla to track bugs and maintains a bug
report for each filed bug. A bug report contains detailed
information about a bug, such as the bug open date, the last
modification date, and the bug status. When a developer
fixes a bug, he often submits a patch to Bugzilla. The patch
includes source code changes and other configuration file
changes. Once approved, the patch code is integrated into
the source code of Firefox. Patches can be used to identify
where a bug is fixed. For the top crash-types, Firefox
developers file bugs in Bugzilla and link them to the
corresponding crash-type in the Socorro server. Multiple
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. Web interfaces
of the Socorro server and Bugzilla are integrated, developers
can navigate from a crash-type summary in the Socorro
server to the bugs filed for the crash-type in Bugzilla.

New Crash-
Report

Represen
tative
Trace

1.Compare the top method
signature and select a crash-type

Crash-Type 1 Crash-Type 2 Crash-Type N

subgroup1 subgroup2 Subgroup N

2.Compare with the
representative trace of
each subgroup in the
selected crash-type

subgroup1 subgroup2 Subgroup N subgroup1 subgroup2 Subgroup N

Figure 2: The Tow-Level grouping of crash reports using representative trace

III.TWO-LEVEL GROUPING APPROACH OF CRASH-REPORTS

To group the crash-reports triggered by different bugs
separately, we propose to enhance the existing crash-report
grouping approach of Socorro. The existing approach is
performance efficient as it compares only the top method
signature of the stack traces. However, using this approach,
a crash-type might contain the crash-reports caused by
multiple bugs. We suggest a two level grouping of the
crash-reports. The first level of grouping leverages the
existing approach used by Socorro. It clusters the crash-
reports based on the top method signature of the stack traces
to form crash-types. Furthermore, we use a detailed
comparison of stack traces to divide the crash-reports in a
crash-type into subgroups. The subgroups within a crash-
type create the second level grouping. Each subgroup is
intended for developers to analyze and file bugs, instead of
using the crash-types. Our approach subdivides crash-
reports that have greater dissimilarities among stack traces
within a crash-type. If the first level crash-types contain
very similar crash-reports, such crash-types remain intact.
Figure 2 shows the structure of the two- level grouping of
crash-reports.

We use the Levenshtein distance [11] to evaluate the
similarity between stack traces. The Levenshtein distance is
used for comparing two sequences. It measures the amount
of differences between the sequences. The Levenshtein
distance between two stack traces is the number of changes
needed to transform one stack trace into the other. A change
can be inserting a frame, deleting a frame or replacing a
frame. We evaluate the Levenshtein distances for every pair
of stack traces within a crash-type by comparing the top 10
frames of the stack traces. We limit the comparison of stack
traces to the top 10 frames of each stack trace, since
previous study [1] found that bugs are in general fixed in
one of the top 10 frames from the failing stack trace.

The average value of Levenshtein distance is calculated
by comparing the differences between every pair of stack
traces in a crash-type. The average value of Levenshtein

distance for a crash-type indicates the diversity among all
the stack traces of the crash-type. We refer to it as the Trace
Diversity of the crash-type. Similarly, we can compute the
Trace Diversity of a subgroup, i.e., the average Levenshtein
distance among the stack traces of all the crash-reports in a
subgroup. We measure the trace diversity for existing crash-
types and determine the threshold value, i.e., the maximum
value of the trace diversity for crash-types where the crash-
reports are triggered by the same bug. We suggest that each
subgroup must have a trace diversity value less than the
threshold value, such that we can ensure that all crash-
reports in a subgroup are triggered by the same bug.

In the top ranked crash-types (i.e., the most frequently
occurring crash-types), the number of crash-reports is very
large. As a consequence, the detailed comparison of a large
amount of stack traces could be computation intensive.
Therefore, the grouping approach must be performance
efficient. Moreover, it is a continuous process to collect the
field crash-reports and assign them to appropriate crash-
types. If a grouping approach is applied to all the crash-
reports collected for a crash-type, the organization of
existing sub-groups might be changed each time when a
new crash-report is added into a crash-type. However, it is
critical to maintain the subgroups over time. In particular,
stable subgroups allow developers to analyze the crash-
reports within a subgroup, file bugs for each subgroup and
refer back to the subgroup. To address these issues we use
incremental grouping at the second level of our approach.
When a new crash-report is added to a crash-type, the report
is assigned to a subgroup without changing the grouping
structure of existing crash-reports in the crash-type.

To improve the performance of the detailed comparison
and maintain the structure of the already formed subgroups
within a crash-type, we assign a representative trace for
each sub-group (as shown in Figure 3). When a crash-report
is received at the central repository, it is assigned to a crash-
type based on the top method signature. In the selected
crash-type, the new crash-report is compared with the
existing subgroups. To compare a crash-report with a

subgroup, it is not compared with every report in the
subgroup. Instead, the stack trace of the new report is
compared with the representative trace of the subgroup. The
new report is added to the subgroup with the minimum
Levenshtein distance between the stack trace of the new
crash-report and the representative trace of the subgroup.
However, the Levenshtein distance value must be less than
the threshold value; otherwise a new subgroup is created for
the crash-report.

In particular, a representative trace is a sequence
presenting the number of appearance of the modules in each
of the top 10 frames of the stack traces. More specifically,
the i

th
 frame of a representative stack trace presents the

number of appearance of each module that appears in the i
th

frame of any stack trace from the subgroup. Figure 3 shows
an example subgroup with four crash-reports. In this
example, three crash-reports have the module B in the
second frame of their stack trace and one crash-report has
the module C in the second frame of its stack trace.
Therefore, the second frame of the representative stack trace
has a value ―FB =3, FC =1‖. FB in the second frame denotes
the number of appearance for module B in the second frame
of the stack traces from the subgroup.

The Levenshtein distance measures the amount of
difference between two sequences. More specifically,
Levenshtein algorithm incrementally combines the distances
of individual nodes to compute the difference. If both
sequences are of the same type, for any pair of nodes from
each sequence, the distance is 0 if the nodes are the same;
and the distance is 1 if the nodes are different. In our work,
we compare the stack trace of a crash-report with the
representative trace, which are not of the same type, because
the stack trace is a sequence of frames and the
representative trace is a sequence of set of frequencies. For a
representative trace R and a stack trace S, the difference
between any pair of nodes r and s, selected from R and S
respectively, is defined in Equation (1). For example, the
distance between a stack trace frame containing module B,
and the second frame of the representative stack trace shown
in Figure 3 i.e., (FB =3, FC =1) would be 1-3/4 = 0.25.

RC

srFreq
srdist

),(
1),(

 (1)

Where Freq(r,s) is the frequency value of the module M in r,
where M is the module appearing in s ; and RC is the total
number of crash-reports in a subgroup.

The representative trace gives higher preference to more
frequent frames, therefore only the new crash-reports
containing the stack traces with frames similar to the
frequent frames in a subgroup are added to the subgroup.
We assume this way that the representative trace bootstrap
the similarity among the crash-reports of a subgroup, we
evaluate the approach on Mozilla crash-report dataset to
verify the effectiveness of the grouping approach.

A

B

D

D

A

B

E

C

A

C

C

D

A

B

C

D

Stack Traces from different

crash-reports in sub group

Representative

 Stack Trace

FA = 4

FB = 3,Fc = 1

FC = 2, FD = 1,FE = 1

FD = 3,FC = 1

Figure 3: Representative stack trace for a Subgroup

IV. EXPERIMENTAL SETUP

This section introduces the data collection process,
outlines the steps of our data analysis, and discusses the
techniques used to evaluate the proposed two-level grouping
approach.

A. Data Collection

We sample crash-reports from ten beta releases of
Firefox, ranging from Firefox-4.0b1 to Firefox-4.0b10. The
beta releases are used for field testing. We download the
summaries of the available crash-types and select the crash-
types for which at least one bug is filed. For each selected
crash-type we download 100 crash-reports (randomly
sampled). We download all the available crash-reports for
the crash-types which have less than 100 crash-reports. We
parse the sampled crash-reports and extract the failing stack
traces. Table 1 reports the descriptive statistics of our
dataset.

For all the bugs filed for the crash-types in our data set,
we retrieve the bug reports from Bugzilla. If a patch is
submitted for the bug, the bug report includes the patch. For
every patch found in a bug report, we perform a syntactical
analysis to retrieve information about what changes are
made to fix the bug. We map this information on source
code change locations to the stack trace in the crash-reports.
Moreover, for each fixed bug we compute the bug fixing
time, i.e., the difference between the bug open time and the
last modification time. In the case of a bug resolved as
DUPLICATE, if the original bug is filed for the same crash-
type, we ignore the duplicate bug. If the original bug is filed
for some other crash-type, we link the original bug to where
the duplicate bug was linked.

Table 1: Descriptive Statistics of the Data Set

The number of crash-types with at least one bug filed 1,329

The total number of crash-reports sampled 82,156

The total number of bugs linked to crash-types 1,733

The number of fixed bugs 519

The number of duplicated bugs 253

The number of open bugs 961

The number of fixed bugs with a patch 231

B. Data Analysis

In this study, we examine the usefulness of stack traces
for bug fixing activities and evaluate the current grouping
approach used in Firefox.

RQ1: We investigate if stack traces contained in crash-
reports can help developer to locate the bugs. We map the
modules changed for bug fixing to the stack traces of the
crash-reports. If the faulty module appears in any of the
stack traces from the crash-type for which the bug is filed,
we call it a bug fixed in the linked stack trace. If the faulty
module appears in a stack trace from other crash-type, i.e. a
crash-type not linked with the bug, we call it a bug fixed in
other stack traces. If a bug is fixed in a module that has
never appeared in a failing stack traces from any crash-type,
we call it a bug fixed elsewhere. We compute the bug fixing
time for the bugs and test the following null hypothesis:

H01: the lifetime of a bug is the same for the bugs fixed
in the linked stack traces, the bugs fixed in other stack
traces and the bugs fixed elsewhere.

We use the Kruskal-Wallis rank sum test to investigate if
the distribution of fixing times is the same for the bugs fixed
in the linked stack traces, the bugs fixed in other stack traces
and the bugs fixed elsewhere. The Kruskal-Wallis rank sum
test is a non-parametric method for testing the equality of
the population medians among different groups. It is an
extension of the Wilcoxon rank sum test to 3 or more
groups.

RQ2: We investigate if the grouping of crash-reports has
an impact on the bug fixing time. First we categorize the
bugs by checking if the crash-reports triggered by a bug are
grouped separately or if the crash-reports triggered by
multiple bugs are grouped together. When the bugs are
uniquely linked with one or more crash-types, it indicates
that the crash-reports triggered by the bug are grouped
separately. If multiple bugs are collectively linked with a
crash-type, it indicates that the crash-reports triggered by
multiple bugs are grouped together. Figure 4 presents the
categories we defined for the bugs filed for the crash-types.
We subdivide the bugs for which the crash reports are
grouped separately, by checking if the crash-reports
triggered by a bug are grouped together in a single crash-
type, or split in multiple crash-types. We compare the fixing
time for the categories and test the following two null
hypotheses:

H
1
02: the lifetime of a bug is the same for the bugs for

which crash-reports triggered by multiple bugs are grouped
together and for the bugs for which the crash-reports
triggered by every individual bug are grouped separately.

H
2
02: the lifetime of a bug is the same for bugs for which

the crash-reports are grouped in a single crash-type or
crash-reports are split in multiple groups.

Figure 4: Categories of bugs based on the number of bugs linked to the
corresponding crash-type

We use the Wilcoxon rank sum test [15] to accept or
reject H

1
02 and H

2
02. The Wilcoxon rank sum test is a non-

parametric statistical test used for assessing whether two
independent distributions have equally large values. For
example, we compute the Wilcoxon rank sum test to
compare the distribution of the fixing time for the bugs
linked to multiple crash–types and the bugs linked to a
single crash-type.

Furthermore, we analyze the trace diversity of the crash-
types, as discussed in Section 3. We analyze the relation
between the trace diversity of crash-types and the number of
bugs linked with the crash-types.

RQ3: The third research question evaluates the two-
level grouping approach presented in Section 3. We use the
silhouette validation technique to evaluate the two-level
grouping algorithm. The silhouette validation [19] is a
technique to measures the goodness of a grouping approach.
Using silhouette validation, we compare the dissimilarity of
a crash-report with other crash-reports from the same
subgroup and the similarity of the crash-report with other
subgroups in the same crash-type. For a crash-report i the
silhouette value S(i) is defined in Equation (2).

))(),(max(

)()(
)(

iaib

iaib
iS




 (2)

Where a(i) is the average dissimilarity of the crash-report i
to all other crash-reports in the same subgroup and b(i) is
the minimum of average dissimilarity of the crash-report i
to the crash-reports in other subgroups in the same crash-
type.

We compute the similarity (or dissimilarity) of two
crash-reports by comparing the top ten frames of the stack
traces from the crash-report, as discussed in Section 3. The
average silhouette value for all crash-reports is the silhouette
value for the crash-type. The silhouette value has a range
from -1 to 1, where the value -1 implies misclassified and a
value close to 1 implies well clustered.

Furthermore, we assess the effectiveness of the two-
level grouping approach to group the crash-reports triggered
by the same bug. We select the crash-types for which at
least one bug is fixed and the bug has the patch information.
We apply our proposed grouping approach to the selected
crash-types, and build subgroups. For each bug, we identify

Crash-type Bug

(i.b) Bugs linked to multiple crash-types

Crash-type

Crash-type

Bug

Bug

Bug

(i.a) Bugs linked to only one crash-type

(ii) Bugs linked collectively to
a crash-type

(i) Bugs linked uniquely to
a crash-type

Crash-type

modules that are changed to fix the bug. We map this
information to the stack traces contained in crash-reports
from a subgroup. If a bug fix location appears in the stack
trace of any of the crash-report from the subgroup, we link
the bug with the subgroup. As a result, a subgroup can be
linked to a single bug, to multiple bugs, or to no bug. It is
desirable to have a subgroup linked with a single bug, since
it suggests that crash-reports in the subgroup are triggered
by the same bug.

We compute the accuracy of our grouping algorithm as
defined in Equation (3):

)()()(

)()(

mNzNsN

zNsN
Accuraccy






 (3)

Where N(s) is the number of crash-reports in the subgroups
linked to a single bug, N(z) is the number of crash-reports in
the subgroups linked to no bug, and N(m) is the number of
crash-reports in the subgroups linked to multiple bugs.

The accuracy metric assesses the ability of the approach
to group the crash-reports triggered by the same bug. When
a subgroup is linked to multiple bugs, it’s likely that the
crash-reports in the subgroup are triggered by multiple bugs.
If the crash-reports in the subgroups are not linked with any
bugs, such crash-reports are triggered by a bug which is not
identified and not filed by the developers.

We compute the precision of a subgroup as defined in
Equation (4). The precision of a subgroup measures the
percentage of crash-reports in the subgroup triggered by the
bug linked to the subgroup. If the faulty module, where the
bug is fixed, appears in the stack trace of a crash-report, we
consider that the crash-report is caused by the same bug.

)()(

)(

fNtN

tN
Precision




 (4)

Where N(t) is the number of crash-reports in a subgroup for
which the faulty module appears in the stack trace; and N(f)
is the number of crash-reports in a subgroup for which the
faulty module does not appear in the stack trace.

V. RESULTS

In this section, we present the results of our case study
on the research questions and discuss our findings.

A. RQ1: Can stack traces in crash-reports help to locate

bugs?

This research question investigates the use of the crash-
reports for bug fixing. More specifically, we aim to assess
if stack traces contained in the crash-reports are useful to fix
bugs. We analyze all fixed bugs which have available
patches, and extract the corresponding patches to identify
modules that are changed to fix the bug. The patches are
available for 231 bugs and can be mapped to the source
code. We map the bug fix locations to the stack traces of the
crash-reports, as described in Section 4.B. We compute the
percentages of bugs belonging to each of the following three

Figure 5: Boxplots comparing lifetimes of the bugs, based on bug fix

locations.

categories: (1) bugs that are fixed in the linked stack traces;
(2) bugs that are fixed in other stack traces; and (3) bugs that
are fixed elsewhere. On average, 57% of bugs are fixed in
the linked stack traces; 23% of the bugs are fixed in other
stack traces; and the remaining 20% of bugs are fixed
elsewhere. Figure 5 presents the boxplots of the lifetime of
bugs in the three categories.

As shown in Figure 5, the bugs fixed in the linked stack
traces are fixed quicker than the bugs classified in the other
two categories. The mean and median values of the time to
fix bugs in the linked stack traces category are 19 days and
5 days, respectively. The mean and median values are 23
days and 11 days, respectively for bugs fixed in other stack
traces and 48 days and 29 days, respectively for the bugs
that are fixed elsewhere.

We perform the Kruskal-Wallis rank sum test on the
lifetimes of bugs from the three categories and obtain a
statistically significant result (i.e., p-value is less than 0.01).
Therefore, we reject hypothesis H01. We conclude that the
lifetime of a bug is significantly shorter when the faulty
module appears in the stack traces of the crash-reports. The
lifetime of a bug can be further reduced when the stack
traces containing the faulty modules are correctly linked to
the bug.

It indicates that bugs fixed in the linked stack traces take
shorter time to get fixed, since developers can locate the
bugs easily by analyzing the failing stack traces of the
linked crash-reports. However, it is surprising that bugs
fixed in other stack traces take shorter time than bugs fixed
elsewhere. Since we sample only 100 crash-reports for each
crash-type, the shorter bug fixing time observed for the bugs
fixed in other stack traces indicates that there may be other
crash-reports in the crash-types with stack traces containing
the faulty module. Overall, our results suggest that in
general for 57% to 80% of the bugs, stack traces in the
crash-reports can help to locate the bugs. We answer
positively our research question that the stack traces in
crash-reports can help the localization and correction of
bugs. Moreover, crash-reports triggered by the bug can be
identified by analyzing the stack traces in the crash-reports.

0

20

40

60

80

Fixed in linked
stack trace

Fixed in other
stack trace

Fixed else
where

B
u
g
 A

g
e

in
 d

a
y
s

B. RQ2: Does the grouping of crash-reports impacts bug

fixing?

We observe in our data set that for some of the crash-
type, multiple bugs are filed and some bugs are linked to
multiple crash-types. We assume that if crashes triggered by
multiple bugs are grouped together, this creates ambiguity
for developers to analyze the crash-type. We also assume
that if a crash-type contains the reports triggered by a single
bug, developers can fix the bug more efficiently. To verify
our assumptions and answer the research question, we
compare the bug fixing times for different bug categories
based on bug crash-type relations.

1) Crash-types Linked to Multiple Bugs
Our data set contains 519 fixed bugs. 74% of the fixed

bugs are uniquely linked to the corresponding crash-types.
The remaining 26% of bugs are linked to the crash-types
where other OPEN or FIXED bugs are also linked to the
same crash-type; it indicates that crash-reports triggered by
different bugs are grouped together.

We compare the fixing time of bugs that are uniquely
linked to one or more crash-types with the fixing time of
bugs that are collectively linked to the same crash-type.
Figure 6 shows the boxplots of bug fixing times for both
cases. The mean and median values of the time to fix bugs
uniquely linked with one or more crash-types are 26 days
and 10 days, respectively. The mean and median values are
43 days and 17 days respectively, for bugs collectively
linked to a same crash-type. If the crash-reports triggered by
each bug are grouped separately, the bug takes on average
17 days lesser to be fixed than fixing the bugs for which
crash-reports are grouped together. This finding validates
our assumption that it is difficult to locate and fix the bug
when crash-reports triggered by different bugs are grouped
together. We perform a Wilcoxon rank sum test to verify the
statistically significance of this result and obtained a p-value
of 0.04. Therefore, we reject H

1
02.

In summary, when multiple bugs are collectively linked
to the same crash-type, it takes a longer time to have the
bugs fixed than fixing the bugs that are uniquely linked to
one or more crash-types. We answer our research question
positively: the grouping of crash-reports has an impact on
the bug fixing time.

2) Bugs Linked to Multiple Crash-types
In our data set, 384 fixed bugs are uniquely linked to one

or multiple crash-types; 40% of the bugs are uniquely linked
to multiple crash-types and the remaining 60% of bugs are
uniquely linked to a single crash-type. We compute the
lifetimes of bugs and observe that the bugs linked to
multiple crash-types take on average 3 days less to be fixed
than fixing the bugs linked to a single crash-type. It hints
that the bug is assigned a high priority when a bug is linked
with multiple crash-types. Moreover, when bugs are linked
to multiple crash-types, the crash-types provide rich
information on different scenarios of the bug occurrences.
Thus, it helps developers better understand the issues.

Figure 6: Boxplots comparing lifetimes of bugs uniquely linked to a crash-

type vs bugs collectively linked to a crash-type

However, the Wilcoxon rank sum test reveals no statistically
significant difference between the lifetimes of the bugs
linked to multiple crash-types and the lifetimes of the bugs
linked to a single crash-type (i.e., p-value equal to 0.08).

3) Trace Diversity of Crash-types

We analyze the current grouping approach of crash-
reports from Socorro to understand the diversity of the stack
traces contained in the crash-reports of a crash-type. As
aforementioned, the existing approach groups crash-reports
based on the top method signature of the failing stack trace.
The stack traces are not identical for all the crash-reports of
a crash-type. We quantify the diversity of the stack trace in
crash-reports from a crash-type using the trace diversity as
discussed in Section 3. We categorize the crash-types based
on the number of bugs filed for each crash-type. For each
category, we compute the average trace diversity of the
crash-types. Table 2 lists the detailed results for the
categories.

As shown in Table 2, if a single bug is filed for a crash-
type, the crash-type has relatively lower trace diversity than
the crash-types that have multiple bugs filed. We
statistically verify the result as the Spearman's rank
correlation value between the trace diversity values and the
number of bugs linked to the crash-type is 0.95 (i.e., p-value
equal to 4.96e-05). The result shows that higher trace
diversity indicates that crash-reports in a crash-type are
triggered by multiple bugs. The effectiveness of a crash-
report grouping approach can be improved by controlling
the magnitude of the trace diversity value when grouping
crash-reports together.

Table 2: Average Trace Diversity Values for All Crash-Types

Number of bugs linked to

each crash-type

Average Trace

Diversity

1 4.82

2 5.81

3 5.88

4 6.67

5 8.22

0

20

40

60

80

Bugs Uniquely linked
to a crash-type

Multiple bugs linked
to a crash-type

B
u
g
 A

g
e

in
 d

a
y
s

C. RQ3: Does a detailed comparison of stack trace help

improve the grouping?

We perform a case study to assess the effectiveness of
the two-level grouping approach presented in Section 3. We
select the 231 bugs from our data set that have patches
available. The 231 bugs are linked to 277 crash-types which
consist of 18,498 crash-reports. We apply the two-level
grouping approach to regroup the crash-reports. We set the
trace diversity threshold value to 5, since in Section 5.B we
observe that the crash-types for which a single bug is filed
have a trace diversity value close to 5. Table 3 lists the
descriptive statistics of the data set used for our evaluation.
Table 4 shows the result of the evaluation of the two-level
grouping approach.

The average trace diversity of the subgroups created
using the two-level grouping approach is low, i.e., 3.8. We
measure the goodness of our grouping by computing
silhouette values. The average silhouette value for each
crash-type is 0.81. A high value (i.e., 0.81) suggests a good
clustering of crash-types.

For the subgroups, we compute the accuracy as
described in Section 4.B. As shown in Table 4, the accuracy
of the two-level grouping approach is 0.88. It shows that
88% of the newly created subgroups are linked to only one
bug or no bug.

We compute the precision for the 512 subgroups that are
linked to a single bug, using Equation (4). The average
precision of the subgroups is 0.98, meaning that on average
98% of crash-reports in each subgroup are triggered by the
same bug, which is linked to the subgroup.

Despite 88% of accuracy and 98% precision, one can
question that the number of subgroups created are 3 times
more than the number of crash-types. But our approach
maintains the existing crash-types, so at the first level, the
number of groups is the same as currently in Socorro.
However, when developers analyze a crash-type, the
subgroups provide more detailed information. If two
subgroups are related to different bugs, the subgroups
improve the bug fixing process by separating the crash-
reports caused by each bug. Even if two subgroups are
caused by the same bug, both subgroups represent
significantly different stack traces. As discussed in Section
5.B when a developer selects one crash-report from each
subgroup, the selected crash-reports provide better
information than randomly selected reports. The 512
accurately created subgroups are linked to 220 bugs, i.e., on
average 2.3 subgroups are created for each bug.

To further assess the benefit of our proposed grouping
approach, we compare the estimated bug fixing time when
crash-types are divided in subgroups using the two-level
grouping approach and the actual bug fixing time that we
compute from the bug reports. The collective time for fixing
all the 231 bugs is 6540 days. As discussed in Section 5.B,
on average the bug fixing time for a bug uniquely linked
with a crash-type is 26 days; and the bug fixing time for the
bugs collectively linked with a crash-type is 43 days.

Table 3: Descriptive Statistics of Evaluation Data Set

of

crash-

type

of

crash-

reports

of

Bugs

Linked

fix time

(days)

Avg.

TD

All crash-types 277 18498 231 6540 6.5

Crash-types linked

to a single bug
225 14244 204 5212 4.6

Crash-types linked
to multiple bugs

52 4254 27 1328 14.7

Table 4: Descriptive Statistics of Result

of

subgro

ups

of

crash-

reports

of

Bugs

Linked

Est. fix

time

(days)

Avg.

TD

All subgroups 941 18498 231 6193 3.8

subgroups linked
to a single bug

512 10812 220 5720 3.6

subgroups linked

to zero bug
297 5547 0 0 3.9

subgroups linked
to multiple bugs

132 2139 11 473 4.3

Avg. TD – Average Trace Diversity

Est. fix time – Estimated Bug Fixing Time

Using these average values of bug fixing time, we estimate
the collective bug fixing time for the 231 bugs when
developers use the proposed two-level grouping approach.
The estimated time is (220*26 + 11*43) = 6193 days. We
can conclude that the two-level grouping approach can
reduce the bug fixing time by 5.3%.

VI. THREATS TO VALIDITY

We now discuss the threats to validity of our study
following the guidelines for case study research [20].

Construct validity threats concern the relation between

theory and observation. In this study, the construct validity

threats are mainly due to measurement errors. We extract

stack trace and bug information by parsing the html and

xml files and map the bug fix location to the stack traces by

applying string matching. The techniques we use are

similar to the techniques used by previous studies [1][16].

Threats to internal validity do not affect this study since

we do not claim causation [20]. We simply report our

observations, although our discussion tries to explain these

observations.

Conclusion validity threats concern the relation between

the treatment and the outcome. We paid attention not to

violate assumptions of the performed statistical tests. We

used non-parametric tests that do not require making

assumptions about the data set distribution.

Reliability validity threats concern the possibility of

replicating this study. We attempt to provide all the

necessary details to replicate our study. Moreover, both the

Socorro crash server and Bugzilla are available

publicly[17], to obtain the same data for the same releases

of Firefox.

Threats to external validity concern the possibility to

generalize our results. Nevertheless, our study is limited to

10 releases of Firefox, further studies with different

systems and different automatic crash-reporting systems are

desirable to make our findings more generic.

VII. RELATED WORK

This section discusses the related literature on field

crash-reports, bug correlation, and analysis of stack trace.

A. Bug correlation and localization.

Grouping of field crash-reports is similar to bug
correlation, where we try to find which two crash-reports
are correlated. There has been an extensive research on
automatic bug correlation and bug localization. Lee and
Soffa [26] introduced a bug correlation algorithm to identify
causal relationships among bugs in a system. Ball et al. [24]
developed a localization technique for error traces generated
from a model checker. The aim of their technique was to
identify the transitions that only appear in failing traces but
not correct traces. Liblit et al. [2] analyzed predicate
patterns in correct and incorrect executions traces and
proposed an algorithm to separate the effects of different
bugs in order to identify predictors associated with
individual bugs. They claim that their algorithm is able to
detect a wide variety of both anticipated and unanticipated
causes of failure. Jones et al. [8] [10] examined the
execution traces of successful and fail test cases and
proposed Tarantula, a technique based on visualization to
assist developers locates errors and bugs in their systems.
Nessa et al. [22] proposed a bug localization algorithm
based on N-gram analysis, to rank the executable statements
of a software by level of suspicion. Their new algorithm was
able to outperform Tarantula on three case studies. Wong
and Debroy [25] propose a comprehensive survey of
existing bug localization techniques. Similar to our study,
the above works emphasize the importance of stack trace for
bug localization. However, none of the techniques
mentioned in these works can be used to analyze stack trace
from crash-reports. These techniques are all dependent on
instrumentation, predicates, and coverage reports or
successful traces. This needed information is not available
in crash-reports.

B. Analysis of stack trace

Schroter et al. [1] investigated the use of stack trace for
bug fixing through an empirical study of the bugs in Eclipse.
They observed that for 60% of crashes that had at least one
stack trace available, bugs were fixed in one of the frame
from the stack trace. Our study confirms the result and we
use this result as base for our grouping algorithm. Chan and
Zou [4] proposed the use of visualization for bug correlation
and the identification of relation between different crashes.
But given the large number of crash-reports (2.5 M crash-
reports every day), visualization cannot be used to
comprehend all the crash-reports. However, when crash-
reports are grouped together correctly, the visualization of

representative reports from each group can be used to find
correlation between different bugs. The most closely related
work to our study is the work by Brodie et al. [14][13], they
used the stack-trace comparison to identify similar bugs.
But, their approach makes use of historical data of already
known problems. From a collection of different stack-traces
of an already known problem, they develop a stack-trace
pattern for each problem. Whenever a new problem is
reported, it is compared with existing pattern of known
problems and if a match is found, support staff can use this
knowledge to handle the issue. However, the problem we
address in this study is fundamentally different, as we
propose an approach to identify similar crashes without
having a prior knowledge of the bug or any pattern related
to that bug.

C. Crash-report grouping

WER [12] is a system developed by Microsoft for
handling field error reports. WER predates other crash-
reporting tools and has a very large user base compared to
Socorro since it is used with all Windows, IE and Microsoft
Office applications. WER performs a progressive data
collection of field errors; whenever a crash occurs on user’s
side, only a crash label is sent to the server. Developers need
to configure the server if they wish to receive detailed crash-
reports for a crash label. WER server groups detailed crash-
reports using a bucketing algorithm. The Bucketing
algorithm uses multiple heuristics specific to the application
supported by WER and updated by developers manually.
Whereas the system studied in this paper uses the open
sources libraries, Breakpad [3] for the collection of client
side data and Socorro [21] for processing field crash-reports
on the server side. In comparison with WER, we propose a
simpler and application independent approach. The
suggested approach does not require any intervention from
developers. Moreover, crash graphs, which are aggregated
views of multiple crashes, proposed by Kim et al. [23] to
identify fixable crashes in advance can also be applied with
our grouping approach. The bucketing algorithm of WER
can be easily replaced with our simpler and application
independent grouping approach to predict fixable crashes.

VIII. CONCLUSION AND FUTURE WORK

It has become the norm to embed automatic collection of
crash-reports in software systems. However, limited studies
investigated the use of the collected crash-reports by
developers in their maintenance activities. In this work, we
studied the use of field crash-reports during the beta testing
of Firefox-4. We summarize the key findings of our study as
follows:

1) We analyze the use of failing stack traces in crash-
reports by developers when performing bug fixing activities
and find that 80% of bugs are fixed in modules appearing in
failing stack traces of crash-reports. Therefore, stack traces
in crash-reports can be used to identify the crash-reports that
are triggered by the same bug.

2) We investigate the crash-report grouping approach
used by Mozilla. We observe that in average it takes 17 days

longer to fix the bugs when crash-reports triggered by
multiple bugs are grouped together in comparison to fixing
the bugs for which the crash-reports are grouped separately.

3) We identify the limitation of the current grouping
approach and propose a Trace Diversity metric which could
help improve the efficiency of groupings. The result shows
that if the trace diversity of a crash-type is greater than 5,
the crash-type is likely to contain crash-reports triggered by
multiple bugs.

4) We suggest a detailed comparison of stack traces to
group the crash-reports. This limits the trace diversity of a
crash-report group and it is easier for developers to locate
and fix bugs. Our grouping approach limits the trace
diversity of a subgroup to less than 5 and 88% of the
subgroups contain crash-reports triggered by a single bug.
This improvement to the existing Mozilla crash reporting
system can help to reduce the bug fixing time by more than
5%.

We create a representative trace to identify the crash-
reports caused by the same bug. In a way, the representative
stack trace reflects the stack trace pattern of the bug. In the
future, we plan to optimize the representative trace to further
improve the crash report grouping. The representative trace
can also be used for bug correlation and bug localization.

ACKNOWLEDGMENT

We are very thankful to Chris Hofmann from the
Mozilla Foundation, for his valuable suggestions and
support for this empirical study.

REFERENCES

[1] A. Schroter, N. Bettenburg, R.Premraj ―Do The Stack Traces
Help Developers Fix Bugs?‖ MSR 2010: 7th IEEE Working
Conference on Mining Software Repositories, Waterloo, Ontario,
Canada, May 2010

[2] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
―Scalable Statistical Bug Isolation,‖ Proc. of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pp. 15-26, Chicago, Illinois, USA, June 2005

[3] Breakpad: Client side bug reporting in Mozilla
https://wiki.mozilla.org/Breakpad (accessed March 29, 2011)

[4] B. Chan, Ying zou, A. E. Hassan and A. Sinha ―Visualizing the
Results of Field Testing.‖ Internaional Symposium on Software
Relibality Engimeering, Mysuru, India, November 2009

[5] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, ―Statistical
Debugging: A Hypothesis Testing-based Approach,‖ IEEE
Transactions on Software Engineering, October 2006

[6] Global stat counter, http://gs.statcounter.com/#browser (accessed
March 29, 2011)

[7] H. Shah, C. Görg, and M. J. Harrold, ―Why do developers neglect
exception handling?‖ in Procs. of the Int. Workshop on Exception
Handling. ACM, 2008, pp. 62–68.

[8] J. A. Jones and M. J. Harrold, ―Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique,‖ IEEE/ACM
Conference on Automated Software Engineering, December,
2005

[9] J. Goerzen, ―Finding stubborn bugs with meaningful debug info,‖
Linux J., vol. 2005, no. 129, p. 7, 2005.

[10] J. Jones, M. J. Harrold, and J. Stasko. ―Visualization of test
information to assist fault localization.‖ In Proceedings of the
International Conference on Software Engineering, pages
467{477, Orlando, Florida, May 2002

[11] J. B. Kruskal. ―An Overview of Sequence Comparison: Time
Warps, String Edits, and Macromolecules,‖ SIAM Review.Vol.
25, No. 2 (Apr., 1983), pp. 201-237

[12] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle and G. Hunt. ―Deugging in the
(Very) Large: Ten Years of Implementation and Experience.‖ In
Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles 2009

[13] M. Brodie, S. Ma, G. Lohman, L. Mignet, N. Modani, M.
Wilding, J. Champlin, P. Shon. ―Quickly Finding Known
Software Problems via Automated Symptom Matching.‖ In
Proceedings of the Second International Conference on
Autonomic Computing 2005

[14] M. Brodie, S. Ma, L. Rachevsky and J. Champlin. ―Automatic
Problem Determination Using Call-Stack Matching.‖ Journal of
Network and System Management, Vol. 13, No 2, June 2005.

[15] Mathematical statistics with application, K. M. Ramchandrab,
Chris P Tsokos, 2009

[16] M. Fischer, M. Pinzger, and H. Gall. 2003. ―Populating a Release
History Database from Version Control and Bug Tracking
Systems‖. In Proceedings of the International Conference on
Software Maintenance (ICSM '03). IEEE Computer Society,
Washington, DC, USA.

[17] Mozilla crash reporting server, http://crash-
stats.mozilla.com/products/Firefox (accessed March 29, 2011)

[18] N. Bettenburg, S. Just, A. Schr¨oter, C. Weiss, R. Premraj, and T.
Zimmermann, ―What makes a good bug report?‖ in Procs of FSE.
ACM, 2008, pp. 308–318.

[19] P. Rousseeuw, ―Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis‖ Journal of Computational and
Applied Mathematics archive,Volume 20 Issue 1, Nov. 1987

[20] R. K. Yin. Case Study Research: Design and Methods Third
Edition. SAGE Publications, London, 2002

[21] Socorro: Mozilla’s Crash Reporting System,
http://blog.mozilla.com/webdev/2010/05/19/socorro-mozilla-
crash-reports/ (accessed March 29, 2011)

[22] S. Nessa, M. Abedin, W. Eric Wong, L. Khan, and Y. Qi,
Software Fault Localization Using N-gram Analysis, WASA
2008, LNCS 5258, pp. 548–559, 2008.

[23] Sunghun Kim, Thomas Zimmermann, Nachiappan
Nagappan. Crash Graphs: An Aggregated View of Multiple
Crashes to Improve Crash Triage (Practical Experience Report).
In Proceedings of the 2011 IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2011), Hong Kong,
China, June 2011.

[24] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause:
localizing errors in counterexample traces. In Proceedings of the
30th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 2003.

[25] W. Eric Wong and Vidroha Debroy ―Software Fault
Localization?‖ IEEE Reliability Society 2009, Annual
Technology Report.

[26] W. Le and M. L. Soffa, ―Path-Based Fault Correlations,‖
Proceeding of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering (FSE '10),
SantaFe, New Mexico, USA, November 2010

https://wiki.mozilla.org/Breakpad
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.google.com/url?q=http%3A%2F%2Fgs.statcounter.com%2F%23browser&sa=D&sntz=1&usg=AFQjCNEIdOfhvrvTOe5dW1iUINqQwffQzg
http://www.jstor.org/stable/2030214
http://www.jstor.org/stable/2030214
http://www.jstor.org/action/showPublication?journalCode=siamreview
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://www.google.com/url?q=http%3A%2F%2Fcrash-stats.mozilla.com%2Fproducts%2FFirefox&sa=D&sntz=1&usg=AFQjCNHXmTRAZJPddyknAQ9RizQkMqXx2A
http://portal.acm.org/author_page.cfm?id=81100224152&coll=DL&dl=ACM&trk=0&cfid=17719864&cftoken=53820961
http://portal.acm.org/citation.cfm?id=J409&picked=prox&cfid=17719864&cftoken=53820961
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q
http://www.google.com/url?q=http%3A%2F%2Fblog.mozilla.com%2Fwebdev%2F2010%2F05%2F19%2Fsocorro-mozilla-crash-reports%2F&sa=D&sntz=1&usg=AFQjCNEGRhLlRR8RSUjjcOYQAxp7QZF54Q

