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Abstract— Many software systems support automatic 

collection of field crash-reports which record the stack traces 

and other runtime information when crashes occur.  Analysis 

of field crash-reports can help developers to locate and fix 

bugs. However, the amount of crash-reports collected is often 

too large to handle. To reduce the amount of data for the 

analysis, the existing approaches group similar crash-reports 

together. A bug can trigger a crash in different usage 

scenarios.  Therefore, the crash-reports triggered by the same 

bug may not be identical. Using the existing approaches, the 

crash-reports triggered by the same bugs can be distributed 

into different groups and one group may contain crash-

reports triggered by different bugs. We perform an empirical 

study of crash-reports collected for Mozilla Firefox to analyze 

the impact of crash-report grouping and identify the 

characteristics of an efficient grouping. We observe that when 

a group contains crash-reports triggered by multiple bugs, it 

takes longer time to fix the bugs in comparison to the bugs 

where crash-reports triggered by each bug are grouped 

separately. To effectively reduce the bug fixing time, we 

propose a grouping approach, such that, each group contains 

the crash-reports triggered by only one bug. The case study 

shows that an effective grouping can reduce the bug fix time 

by more than 5%.  

Keywords-Bug localization, Automatic crash reporting, 

Clustering. 

I.   INTRODUCTION 

A crash terminates an application unexpectedly in a 
natural setting. Automatic crash reporting tools are 
commonly built into software systems to collect crash-
reports from a user environment and send them to a central 
repository. A crash-report usually contains a stack trace of 
the failing thread and other runtime information. A stack 
trace is an ordered set of frames and each frame refers to a 
method signature. The crash-reports can help the software 
developers to diagnose and fix the root cause of the crashes. 
The automatic collection of crash-reports in Mozilla Firefox 
improved the reliability of Mozilla Firefox by 40% from 
November 2009 to March 2010 [21]. Microsoft was able to 
fix 29% of all Windows XP bugs and third-party bugs due 
to the automatic collection and analysis of crash-reports 

[12]. However, the built-in automatic crash reporting tools 
often collect a large number of crash-reports. For example, 
Firefox receives 2.5 million crash-reports every day [21].  

It is challenging for organizations to manage large 
amount of collected crash-reports effectively. In particular, 
due to the reoccurrence of the same bug, many of the crash-
reports are redundant. To reduce the amount of crash-reports 
to handle, similar crash-reports are identified and grouped 
together in the central repository. We refer to a group of 
similar crash-reports as a crash-type. For example, Mozilla 
groups the crash-reports using the top method signature in 
the failing stack trace. However, such a grouping approach 
is not accurate since the crash-reports triggered by the same 
bug might not be identical. If multiple bugs have the same 
top method signature in their failing stack traces, the crash-
reports triggered by these bugs are designated to the same 
crash-type. We observe that if the crash-reports caused by 
multiple bugs are grouped together it takes longer time to 
fix the bugs. The observation indicates that if each crash-
type contains the crash-reports triggered by only one bug, it 
is easier for a developer to fix the bugs. A detailed 
comparison of the stack traces of two crash-reports can help 
to determine if the crash-reports are triggered by the same 
bug. Therefore, to ensure that the crash-reports triggered by 
different bugs are grouped separately, we propose a two-
level grouping approach, where a crash-type is further 
divided based on the similarity of the stack traces of the 
crash-reports. We strive for the similar stack traces of the 
crash-reports within the same subgroup, such that each 
subgroup contains the crash-reports triggered by a single 
bug. The crash-reports are large in number, and a detailed 
comparison of stack traces could be an intensive 
computation, therefore we optimize our approach to handle 
the large amount of crash-reports. 

  We conduct an empirical study on crash-reports and 
bugs, collected from ten releases of Firefox. We want to 
understand the issues with the existing crash-report 
grouping approach and to evaluate if our proposed two-level 
grouping approach can improve the bug fixing process. We 
formulate the following research questions for our study:   
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Figure 1: Mozilla Crash Report System 

RQ1: Can stack traces in crash-reports help to locate bugs? 

Our first research question evaluates the usefulness of 
the stack traces in the crash-reports for bug fixing activities. 
We want to verify if it is useful to analyze the stack traces in 
crash-reports to identify the bugs. We analyze the already 
fixed bugs and observe that 80% of the bugs are located in 
the faulty modules that appear in the stack traces of crash-
reports. 

RQ2:  Does a crash-report grouping approach have an 
impact on bug fixing? 

Our second question investigates the impacts of a crash-
report grouping approach on the bug fixing time. In Firefox 
crash-reports, we find that when multiple bugs are filed for 
the same crash-type, it takes longer time to fix the bugs in 
comparison to fixing the bugs, which are uniquely filed for a 
crash-type. Moreover, when a bug is filed and related to 
multiple crash-types, it takes even shorter time to fix the 
bug. The result indicates that it takes longer time to fix bugs 
when crash-reports triggered by multiple bugs are grouped 
together. Furthermore, we compare the similarity among the 
stack traces of different crash-reports within a crash-type 
and observe that lower similarity indicates that the crash-
reports within a crash-type are triggered by different bugs.  

 RQ3:  Does a detailed comparison of stack trace help 
improve the grouping? 

The third question evaluates our proposed grouping 
approach. This question verifies if the approach can group 
the crash-reports triggered by different bugs separately. 
Using our approach, we found that 88% of the identified 
groups contain the crash-reports triggered by a single bug. 
On average, 98% of the crash-reports in an identified group 
are triggered by the same bug. 

Organization of the paper: Section 2 gives an 
overview of the Mozilla crash reporting system. Section 3 
introduces the proposed enhancements in crash-report 
grouping approach. Section 4 describes our experimental 
setup, data collection and analysis approach. Section 5 
presents the results of our study. Section 6 discusses the 
limitations and threats to validity of the study. Section 7 
discusses the related work. Finally, Section 8 concludes our 
work and discusses future work.  

II.    OVERVIEW OF MOZILLA CRASH REPORTING SYSTEM 

Firefox is the second most popular web browser with 
27% usage share worldwide [6]. Firefox supports automatic 
collection of the crash-reports. It is delivered with a built in 
crash reporting tool, Mozilla Crash Reporter [3]. Figure 1 
presents an overview of the Mozilla crash reporting system. 
When Firefox is terminated unexpectedly, the Mozilla Cash 
Reporter sends a detailed crash-report to the Socorro crash 
report server [17]. A crash-report includes the stack trace of 
the failing thread and other information about the user 
environment, such as operating system, Firefox version, 
install time, and a list of plug-ins installed.  

Socorro groups the crash-reports based on the top 
method signature of the stack trace. However, the 
subsequent frames in the stack trace might be different for 
different crash-reports in a crash-type. For each crash-type, 
Socorro server provides a crash-type summary, i.e., a list of 
the crash-reports of the crash-type and a set of bugs filed for 
the crash-type. Socorro provides a rich web interface for the 
developers to analyze the crash-types. Developers prioritize 
the top crash-types (i.e., the crash-type with the maximum 
number of crash-reports) to analyze and fix the bugs 
responsible for the crash. 

Mozilla uses Bugzilla to track bugs and maintains a bug 
report for each filed bug. A bug report contains detailed 
information about a bug, such as the bug open date, the last 
modification date, and the bug status. When a developer 
fixes a bug, he often submits a patch to Bugzilla. The patch 
includes source code changes and other configuration file 
changes. Once approved, the patch code is integrated into 
the source code of Firefox. Patches can be used to identify 
where a bug is fixed. For the top crash-types, Firefox 
developers file bugs in Bugzilla and link them to the 
corresponding crash-type in the Socorro server. Multiple 
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. Web interfaces 
of the Socorro server and Bugzilla are integrated, developers 
can navigate from a crash-type summary in the Socorro 
server to the bugs filed for the crash-type in Bugzilla. 
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Figure 2: The Tow-Level grouping of crash reports using representative trace 

III.TWO-LEVEL GROUPING APPROACH OF CRASH-REPORTS 

To group the crash-reports triggered by different bugs 
separately, we propose to enhance the existing crash-report 
grouping approach of Socorro. The existing approach is 
performance efficient as it compares only the top method 
signature of the stack traces. However, using this approach, 
a crash-type might contain the crash-reports caused by 
multiple bugs. We suggest a two level grouping of the 
crash-reports. The first level of grouping leverages the 
existing approach used by Socorro. It clusters the crash-
reports based on the top method signature of the stack traces 
to form crash-types. Furthermore, we use a detailed 
comparison of stack traces to divide the crash-reports in a 
crash-type into subgroups. The subgroups within a crash-
type create the second level grouping. Each subgroup is 
intended for developers to analyze and file bugs, instead of 
using the crash-types. Our approach subdivides crash-
reports that have greater dissimilarities among stack traces 
within a crash-type. If the first level crash-types contain 
very similar crash-reports, such crash-types remain intact. 
Figure 2 shows the structure of the two- level grouping of 
crash-reports.  

We use the Levenshtein distance [11] to evaluate the 
similarity between stack traces. The Levenshtein distance is 
used for comparing two sequences.  It measures the amount 
of differences between the sequences. The Levenshtein 
distance between two stack traces is the number of changes 
needed to transform one stack trace into the other. A change 
can be inserting a frame, deleting a frame or replacing a 
frame. We evaluate the Levenshtein distances for every pair 
of stack traces within a crash-type by comparing the top 10 
frames of the stack traces. We limit the comparison of stack 
traces to the top 10 frames of each stack trace, since 
previous study [1] found that bugs are in general fixed in 
one of the top 10 frames from the failing stack trace.  

The average value of Levenshtein distance is calculated 
by comparing the differences between every pair of stack 
traces in a crash-type. The average value of Levenshtein 

distance for a crash-type indicates the diversity among all 
the stack traces of the crash-type.  We refer to it as the Trace 
Diversity of the crash-type. Similarly, we can compute the 
Trace Diversity of a subgroup, i.e., the average Levenshtein 
distance among the stack traces of all the crash-reports in a 
subgroup. We measure the trace diversity for existing crash-
types and determine the threshold value, i.e., the maximum 
value of the trace diversity for crash-types where the crash-
reports are triggered by the same bug. We suggest that each 
subgroup must have a trace diversity value less than the 
threshold value, such that we can ensure that all crash-
reports in a subgroup are triggered by the same bug. 

In the top ranked crash-types (i.e., the most frequently 
occurring crash-types), the number of crash-reports is very 
large. As a consequence, the detailed comparison of a large 
amount of stack traces could be computation intensive.  
Therefore, the grouping approach must be performance 
efficient. Moreover, it is a continuous process to collect the 
field crash-reports and assign them to appropriate crash-
types. If a grouping approach is applied to all the crash-
reports collected for a crash-type, the organization of 
existing sub-groups might be changed each time when a 
new crash-report is added into a crash-type. However, it is 
critical to maintain the subgroups over time. In particular, 
stable subgroups allow developers to analyze the crash-
reports within a subgroup, file bugs for each subgroup and 
refer back to the subgroup. To address these issues we use 
incremental grouping at the second level of our approach. 
When a new crash-report is added to a crash-type, the report 
is assigned to a subgroup without changing the grouping 
structure of existing crash-reports in the crash-type.  

To improve the performance of the detailed comparison 
and maintain the structure of the already formed subgroups 
within a crash-type, we assign a representative trace for 
each sub-group (as shown in Figure 3). When a crash-report 
is received at the central repository, it is assigned to a crash-
type based on the top method signature. In the selected 
crash-type, the new crash-report is compared with the 
existing subgroups. To compare a crash-report with a 



 

 

subgroup, it is not compared with every report in the 
subgroup.  Instead, the stack trace of the new report is 
compared with the representative trace of the subgroup. The 
new report is added to the subgroup with the minimum 
Levenshtein distance between the stack trace of the new 
crash-report and the representative trace of the subgroup.  
However, the Levenshtein distance value must be less than 
the threshold value; otherwise a new subgroup is created for 
the crash-report.  

In particular, a representative trace is a sequence 
presenting the number of appearance of the modules in each 
of the top 10 frames of the stack traces. More specifically, 
the i

th
 frame of a representative stack trace presents the 

number of appearance of each module that appears in the i
th
 

frame of any stack trace from the subgroup. Figure 3 shows 
an example subgroup with four crash-reports. In this 
example, three crash-reports have the module B in the 
second frame of their stack trace and one crash-report has 
the module C in the second frame of its stack trace. 
Therefore, the second frame of the representative stack trace 
has a value ―FB =3, FC =1‖. FB in the second frame denotes 
the number of appearance for module B in the second frame 
of the stack traces from the subgroup.  

The Levenshtein distance measures the amount of 
difference between two sequences. More specifically, 
Levenshtein algorithm incrementally combines the distances 
of individual nodes to compute the difference. If both 
sequences are of the same type, for any pair of nodes from 
each sequence, the distance is 0 if the nodes are the same; 
and the distance is 1 if the nodes are different. In our work, 
we compare the stack trace of a crash-report with the 
representative trace, which are not of the same type, because 
the stack trace is a sequence of frames and the 
representative trace is a sequence of set of frequencies. For a 
representative trace R and a stack trace S, the difference 
between any pair of nodes r and s, selected from R and S 
respectively, is defined in Equation (1). For example, the 
distance between a stack trace frame containing module B, 
and the second frame of the representative stack trace shown 
in Figure 3 i.e., (FB =3, FC =1) would be 1-3/4 = 0.25. 

RC

srFreq
srdist

),(
1),( 

                     (1) 

Where Freq(r,s) is the frequency value of the module M in r, 
where M is the module appearing in s ; and RC is the total 
number of crash-reports in a subgroup. 

The representative trace gives higher preference to more 
frequent frames, therefore only the new crash-reports 
containing the stack traces with frames similar to the 
frequent frames in a subgroup are added to the subgroup. 
We assume this way that the representative trace bootstrap 
the similarity among the crash-reports of a subgroup, we 
evaluate the approach on Mozilla crash-report dataset to 
verify the effectiveness of the grouping approach. 
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Figure 3: Representative stack trace for a Subgroup 

IV.    EXPERIMENTAL SETUP 

This section introduces the data collection process, 
outlines the steps of our data analysis, and discusses the 
techniques used to evaluate the proposed two-level grouping 
approach. 

A. Data Collection 

We sample crash-reports from ten beta releases of 
Firefox, ranging from Firefox-4.0b1 to Firefox-4.0b10. The 
beta releases are used for field testing. We download the 
summaries of the available crash-types and select the crash-
types for which at least one bug is filed. For each selected 
crash-type we download 100 crash-reports (randomly 
sampled). We download all the available crash-reports for 
the crash-types which have less than 100 crash-reports. We 
parse the sampled crash-reports and extract the failing stack 
traces. Table 1 reports the descriptive statistics of our 
dataset. 

For all the bugs filed for the crash-types in our data set, 
we retrieve the bug reports from Bugzilla. If a patch is 
submitted for the bug, the bug report includes the patch. For 
every patch found in a bug report, we perform a syntactical 
analysis to retrieve information about what changes are 
made to fix the bug. We map this information on source 
code change locations to the stack trace in the crash-reports. 
Moreover, for each fixed bug we compute the bug fixing 
time, i.e., the difference between the bug open time and the 
last modification time. In the case of a bug resolved as 
DUPLICATE, if the original bug is filed for the same crash-
type, we ignore the duplicate bug. If the original bug is filed 
for some other crash-type, we link the original bug to where 
the duplicate bug was linked. 

Table 1:    Descriptive Statistics of the Data Set 

The number of crash-types  with at least one bug  filed 1,329 

The total number of crash-reports sampled 82,156 

The total number of bugs linked to crash-types 1,733 

The number of fixed bugs 519 

The number of duplicated bugs 253 

The number of open bugs 961 

The number of fixed bugs with a patch 231 



 

 

B. Data Analysis 

In this study, we examine the usefulness of stack traces 
for bug fixing activities and evaluate the current grouping 
approach used in Firefox.  

RQ1: We investigate if stack traces contained in crash-
reports can help developer to locate the bugs. We map the 
modules changed for bug fixing to the stack traces of the 
crash-reports. If the faulty module appears in any of the 
stack traces from the crash-type for which the bug is filed, 
we call it a bug fixed in the linked stack trace. If the faulty 
module appears in a stack trace from other crash-type, i.e. a 
crash-type not linked with the bug, we call it a bug fixed in 
other stack traces. If a bug is fixed in a module that has 
never appeared in a failing stack traces from any crash-type, 
we call it a bug fixed elsewhere. We compute the bug fixing 
time for the bugs and test the following null hypothesis:  

H01: the lifetime of a bug is the same for the bugs fixed 
in the linked stack traces, the bugs fixed in other stack 
traces and the bugs fixed elsewhere.  

We use the Kruskal-Wallis rank sum test to investigate if 
the distribution of fixing times is the same for the bugs fixed 
in the linked stack traces, the bugs fixed in other stack traces 
and the bugs fixed elsewhere.  The Kruskal-Wallis rank sum 
test is a non-parametric method for testing the equality of 
the population medians among different groups. It is an 
extension of the Wilcoxon rank sum test to 3 or more 
groups. 

RQ2: We investigate if the grouping of crash-reports has 
an impact on the bug fixing time. First we categorize the 
bugs by checking if the crash-reports triggered by a bug are 
grouped separately or if the crash-reports triggered by 
multiple bugs are grouped together. When the bugs are 
uniquely linked with one or more crash-types, it indicates 
that the crash-reports triggered by the bug are grouped 
separately. If multiple bugs are collectively linked with a 
crash-type, it indicates that the crash-reports triggered by 
multiple bugs are grouped together. Figure 4 presents the 
categories we defined for the bugs filed for the crash-types. 
We subdivide the bugs for which the crash reports are 
grouped separately, by checking if the crash-reports 
triggered by a bug are grouped together in a single crash-
type, or split in multiple crash-types. We compare the fixing 
time for the categories and test the following two null 
hypotheses: 

H
1
02: the lifetime of a bug is the same for the bugs for 

which crash-reports triggered by multiple bugs are grouped 
together and for the bugs for which the crash-reports 
triggered by every individual bug are grouped separately. 

H
2
02: the lifetime of a bug is the same for bugs for which 

the crash-reports are grouped in a single crash-type or 
crash-reports are split in multiple groups. 

 

 

 

 

Figure 4: Categories of bugs based on the number of bugs linked to the 
corresponding crash-type 

We use the Wilcoxon rank sum test [15] to accept or 
reject H

1
02 and H

2
02. The Wilcoxon rank sum test is a non-

parametric statistical test used for assessing whether two 
independent distributions have equally large values. For 
example, we compute the Wilcoxon rank sum test to 
compare the distribution of the fixing time for the bugs 
linked to multiple crash–types and the bugs linked to a 
single crash-type. 

Furthermore, we analyze the trace diversity of the crash-
types, as discussed in Section 3. We analyze the relation 
between the trace diversity of crash-types and the number of 
bugs linked with the crash-types. 

RQ3:  The third research question evaluates the two-
level grouping approach presented in Section 3. We use the 
silhouette validation technique to evaluate the two-level 
grouping algorithm.  The silhouette validation [19] is a 
technique to measures the goodness of a grouping approach. 
Using silhouette validation, we compare the dissimilarity of 
a crash-report with other crash-reports from the same 
subgroup and the similarity of the crash-report with other 
subgroups in the same crash-type. For a crash-report i the 
silhouette value S(i) is defined in  Equation (2). 
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Where a(i) is the average dissimilarity of the crash-report i  
to all other crash-reports in the same subgroup and b(i) is 
the minimum of average dissimilarity of the crash-report  i 
to the crash-reports in other subgroups in the same crash-
type.  

We compute the similarity (or dissimilarity) of two 
crash-reports by comparing the top ten frames of the stack 
traces from the crash-report, as discussed in Section 3. The 
average silhouette value for all crash-reports is the silhouette 
value for the crash-type. The silhouette value has a range 
from -1 to 1, where the value -1 implies misclassified and a 
value close to 1 implies well clustered.  

Furthermore, we assess the effectiveness of the two-
level grouping approach to group the crash-reports triggered 
by the same bug. We select the crash-types for which at 
least one bug is fixed and the bug has the patch information. 
We apply our proposed grouping approach to the selected 
crash-types, and build subgroups. For each bug, we identify 
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modules that are changed to fix the bug. We map this 
information to the stack traces contained in crash-reports 
from a subgroup. If a bug fix location appears in the stack 
trace of any of the crash-report from the subgroup, we link 
the bug with the subgroup. As a result, a subgroup can be 
linked to a single bug, to multiple bugs, or to no bug. It is 
desirable to have a subgroup linked with a single bug, since 
it suggests that crash-reports in the subgroup are triggered 
by the same bug.  

We compute the accuracy of our grouping algorithm as 
defined in Equation (3):  
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Where N(s) is the number of crash-reports in the subgroups 
linked to a single bug, N(z) is the number of crash-reports in 
the subgroups linked to no bug, and N(m) is the number of 
crash-reports in the subgroups linked to multiple bugs. 

The accuracy metric assesses the ability of the approach 
to group the crash-reports triggered by the same bug. When 
a subgroup is linked to multiple bugs, it’s likely that the 
crash-reports in the subgroup are triggered by multiple bugs. 
If the crash-reports in the subgroups are not linked with any 
bugs, such crash-reports are triggered by a bug which is not 
identified and not filed by the developers.  

We compute the precision of a subgroup as defined in 
Equation (4). The precision of a subgroup measures the 
percentage of crash-reports in the subgroup triggered by the 
bug linked to the subgroup. If the faulty module, where the 
bug is fixed, appears in the stack trace of a crash-report, we 
consider that the crash-report is caused by the same bug. 
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Where N(t) is the number of crash-reports in a subgroup for 
which the faulty module appears in the stack trace; and N(f) 
is the number of crash-reports in a subgroup for which the 
faulty module does not appear in the stack trace. 

V.     RESULTS 

In this section, we present the results of our case study 
on the research questions and discuss our findings. 

A. RQ1: Can stack traces in crash-reports help to locate 

bugs? 

This research question investigates the use of the crash-
reports for bug fixing.  More specifically, we aim to assess 
if stack traces contained in the crash-reports are useful to fix 
bugs. We analyze all fixed bugs which have available 
patches, and extract the corresponding patches to identify 
modules that are changed to fix the bug. The patches are 
available for 231 bugs and can be mapped to the source 
code. We map the bug fix locations to the stack traces of the 
crash-reports, as described in Section 4.B. We compute the 
percentages of bugs belonging to each of the following three  

 

 
Figure 5: Boxplots comparing lifetimes of the bugs, based on bug fix 

locations. 

categories: (1) bugs that are fixed in the linked stack traces; 
(2) bugs that are fixed in other stack traces; and (3) bugs that 
are fixed elsewhere. On average, 57% of bugs are fixed in 
the linked stack traces; 23% of the bugs are fixed in other 
stack traces; and the remaining 20% of bugs are fixed 
elsewhere. Figure 5 presents the boxplots of the lifetime of 
bugs in the three categories. 

As shown in Figure 5, the bugs fixed in the linked stack 
traces are fixed quicker than the bugs classified in the other 
two categories. The mean and median values of the time to 
fix bugs in the linked stack traces category are 19 days and 
5 days, respectively. The mean and median values are 23 
days and 11 days, respectively for bugs fixed in other stack 
traces and 48 days and 29 days, respectively for the bugs 
that are fixed elsewhere. 

We perform the Kruskal-Wallis rank sum test on the 
lifetimes of bugs from the three categories and obtain a 
statistically significant result (i.e., p-value is less than 0.01). 
Therefore, we reject hypothesis H01. We conclude that the 
lifetime of a bug is significantly shorter when the faulty 
module appears in the stack traces of the crash-reports. The 
lifetime of a bug can be further reduced when the stack 
traces containing the faulty modules are correctly linked to 
the bug. 

It indicates that bugs fixed in the linked stack traces take 
shorter time to get fixed, since developers can locate the 
bugs easily by analyzing the failing stack traces of the 
linked crash-reports. However, it is surprising that bugs 
fixed in other stack traces take shorter time than bugs fixed 
elsewhere. Since we sample only 100 crash-reports for each 
crash-type, the shorter bug fixing time observed for the bugs 
fixed in other stack traces indicates that there may be other 
crash-reports in the crash-types with stack traces containing 
the faulty module. Overall, our results suggest that in 
general for 57% to 80% of the bugs, stack traces in the 
crash-reports can help to locate the bugs. We answer 
positively our research question that the stack traces in 
crash-reports can help the localization and correction of 
bugs. Moreover, crash-reports triggered by the bug can be 
identified by analyzing the stack traces in the crash-reports. 
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B. RQ2:  Does the grouping of crash-reports impacts bug 

fixing? 

We observe in our data set that for some of the crash-
type, multiple bugs are filed and some bugs are linked to 
multiple crash-types. We assume that if crashes triggered by 
multiple bugs are grouped together, this creates ambiguity 
for developers to analyze the crash-type. We also assume 
that if a crash-type contains the reports triggered by a single 
bug, developers can fix the bug more efficiently. To verify 
our assumptions and answer the research question, we 
compare the bug fixing times for different bug categories 
based on bug crash-type relations. 

1)  Crash-types Linked to Multiple Bugs 
Our data set contains 519 fixed bugs. 74% of the fixed 

bugs are uniquely linked to the corresponding crash-types. 
The remaining 26% of bugs are linked to the crash-types 
where other OPEN or FIXED bugs are also linked to the 
same crash-type; it indicates that crash-reports triggered by 
different bugs are grouped together. 

We compare the fixing time of bugs that are uniquely 
linked to one or more crash-types with the fixing time of 
bugs that are collectively linked to the same crash-type. 
Figure 6 shows the boxplots of bug fixing times for both 
cases. The mean and median values of the time to fix bugs 
uniquely linked with one or more crash-types are 26 days 
and 10 days, respectively. The mean and median values are 
43 days and 17 days respectively, for bugs collectively 
linked to a same crash-type. If the crash-reports triggered by 
each bug are grouped separately, the bug takes on average 
17 days lesser to be fixed than fixing the bugs for which 
crash-reports are grouped together. This finding validates 
our assumption that it is difficult to locate and fix the bug 
when crash-reports triggered by different bugs are grouped 
together. We perform a Wilcoxon rank sum test to verify the 
statistically significance of this result and obtained a p-value 
of 0.04. Therefore, we reject H

1
02.  

In summary, when multiple bugs are collectively linked 
to the same crash-type, it takes a longer time to have the 
bugs fixed than fixing the bugs that are uniquely linked to 
one or more crash-types.  We answer our research question 
positively: the grouping of crash-reports has an impact on 
the bug fixing time. 

2) Bugs Linked to Multiple Crash-types 
In our data set, 384 fixed bugs are uniquely linked to one 

or multiple crash-types; 40% of the bugs are uniquely linked 
to multiple crash-types and the remaining 60% of bugs are 
uniquely linked to a single crash-type. We compute the 
lifetimes of bugs and observe that the bugs linked to 
multiple crash-types take on average 3 days less to be fixed 
than fixing the bugs linked to a single crash-type. It hints 
that the bug is assigned a high priority when a bug is linked 
with multiple crash-types. Moreover, when bugs are linked 
to multiple crash-types, the crash-types provide rich 
information on different scenarios of the bug occurrences. 
Thus, it helps developers better understand the issues.  

 

 
Figure 6: Boxplots comparing lifetimes of bugs uniquely linked to a crash-

type vs bugs collectively linked to a crash-type 

However, the Wilcoxon rank sum test reveals no statistically 
significant difference between the lifetimes of the bugs 
linked to multiple crash-types and the lifetimes of the bugs 
linked to a single crash-type (i.e., p-value equal to 0.08). 

3)  Trace Diversity of Crash-types 

We analyze the current grouping approach of crash-
reports from Socorro to understand the diversity of the stack 
traces contained in the crash-reports of a crash-type. As 
aforementioned, the existing approach groups crash-reports 
based on the top method signature of the failing stack trace. 
The stack traces are not identical for all the crash-reports of 
a crash-type. We quantify the diversity of the stack trace in 
crash-reports from a crash-type using the trace diversity as 
discussed in Section 3. We categorize the crash-types based 
on the number of bugs filed for each crash-type. For each 
category, we compute the average trace diversity of the 
crash-types. Table 2 lists the detailed results for the 
categories. 

As shown in Table 2, if a single bug is filed for a crash-
type, the crash-type has relatively lower trace diversity than 
the crash-types that have multiple bugs filed.  We 
statistically verify the result as the Spearman's rank 
correlation value between the trace diversity values and the 
number of bugs linked to the crash-type is 0.95 (i.e., p-value 
equal to 4.96e-05).  The result shows that higher trace 
diversity indicates that crash-reports in a crash-type are 
triggered by multiple bugs. The effectiveness of a crash-
report grouping approach can be improved by controlling 
the magnitude of the trace diversity value when grouping 
crash-reports together. 

Table 2: Average Trace Diversity Values for All Crash-Types  

Number of bugs linked to 

each crash-type 

Average Trace 

Diversity 

1 4.82 

2 5.81 

3 5.88 

4 6.67 

5 8.22 
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C. RQ3: Does a detailed comparison of stack trace help 

improve the grouping? 

We perform a case study to assess the effectiveness of 
the two-level grouping approach presented in Section 3. We 
select the 231 bugs from our data set that have patches 
available. The 231 bugs are linked to 277 crash-types which 
consist of 18,498 crash-reports. We apply the two-level 
grouping approach to regroup the crash-reports. We set the 
trace diversity threshold value to 5, since in Section 5.B we 
observe that the crash-types for which a single bug is filed 
have a trace diversity value close to 5.  Table 3 lists the 
descriptive statistics of the data set used for our evaluation. 
Table 4 shows the result of the evaluation of the two-level 
grouping approach. 

The average trace diversity of the subgroups created 
using the two-level grouping approach is low, i.e., 3.8. We 
measure the goodness of our grouping by computing 
silhouette values. The average silhouette value for each 
crash-type is 0.81. A high value (i.e., 0.81) suggests a good 
clustering of crash-types.  

For the subgroups, we compute the accuracy as 
described in Section 4.B. As shown in Table 4, the accuracy 
of the two-level grouping approach is 0.88. It shows that 
88% of the newly created subgroups are linked to only one 
bug or no bug.  

We compute the precision for the 512 subgroups that are 
linked to a single bug, using Equation (4). The average 
precision of the subgroups is 0.98, meaning that on average 
98% of crash-reports in each subgroup are triggered by the 
same bug, which is linked to the subgroup. 

Despite 88% of accuracy and 98% precision, one can 
question that the number of subgroups created are 3 times 
more than the number of crash-types. But our approach 
maintains the existing crash-types, so at the first level, the 
number of groups is the same as currently in Socorro. 
However, when developers analyze a crash-type, the 
subgroups provide more detailed information. If two 
subgroups are related to different bugs, the subgroups 
improve the bug fixing process by separating the crash-
reports caused by each bug. Even if two subgroups are 
caused by the same bug, both subgroups represent 
significantly different stack traces. As discussed in Section 
5.B when a developer selects one crash-report from each 
subgroup, the selected crash-reports provide better 
information than randomly selected reports. The 512 
accurately created subgroups are linked to 220 bugs, i.e., on 
average 2.3 subgroups are created for each bug.  

To further assess the benefit of our proposed grouping 
approach, we compare the estimated bug fixing time when 
crash-types are divided in subgroups using the two-level 
grouping approach and the actual bug fixing time that we 
compute from the bug reports. The collective time for fixing 
all the 231 bugs is 6540 days. As discussed in Section 5.B, 
on average the bug fixing time for a bug uniquely linked 
with a crash-type is 26 days; and the bug fixing time for the 
bugs collectively linked with a crash-type is 43 days. 

Table 3: Descriptive Statistics of Evaluation Data Set 

  

# of 

crash-

type 

# of 

crash-

reports 

# of 

Bugs 

Linked 

fix time 

(days) 

Avg. 

TD 

All crash-types 277 18498 231 6540 6.5 

Crash-types linked 

to a single bug 
225 14244 204 5212 4.6 

Crash-types linked 
to multiple bugs 

52 4254 27 1328 14.7 

 

Table 4: Descriptive Statistics of Result 

  
# of 

subgro

ups 

# of 

crash-

reports 

# of 

Bugs 

Linked 

Est. fix 

time 

(days) 

Avg. 

TD 

All subgroups 941 18498 231 6193 3.8 

subgroups linked 
to a single bug 

512 10812 220 5720 3.6 

subgroups linked 

to zero bug 
297 5547 0 0 3.9 

subgroups linked 
to multiple bugs 

132 2139 11 473 4.3 

Avg. TD – Average Trace Diversity 

Est. fix time – Estimated Bug Fixing Time 

Using these average values of bug fixing time, we estimate 
the collective bug fixing time for the 231 bugs when 
developers use the proposed two-level grouping approach. 
The estimated time is (220*26 + 11*43) = 6193 days. We 
can conclude that the two-level grouping approach can 
reduce the bug fixing time by 5.3%. 

VI.    THREATS TO VALIDITY 

We now discuss the threats to validity of our study 
following the guidelines for case study research [20]. 

Construct validity threats concern the relation between 

theory and observation. In this study, the construct validity 

threats are mainly due to measurement errors. We extract 

stack trace and bug information by parsing the html and 

xml files and map the bug fix location to the stack traces by 

applying string matching. The techniques we use are 

similar to the techniques  used by previous studies [1][16]. 

Threats to internal validity do not affect this study since 

we do not claim causation [20]. We simply report our 

observations, although our discussion tries to explain these 

observations.  

Conclusion validity threats concern the relation between 

the treatment and the outcome. We paid attention not to 

violate assumptions of the performed statistical tests. We 

used non-parametric tests that do not require making 

assumptions about the data set distribution. 

Reliability validity threats concern the possibility of 

replicating this study. We attempt to provide all the 

necessary details to replicate our study. Moreover, both the 

Socorro crash server and Bugzilla are available 

publicly[17], to obtain the same data for the same releases 

of Firefox. 



 

 

Threats to external validity concern the possibility to 

generalize our results.  Nevertheless, our study is limited to 

10 releases of Firefox, further studies with different 

systems and different automatic crash-reporting systems are 

desirable to make our findings more generic. 

VII.  RELATED WORK 

This section discusses the related literature on field 

crash-reports, bug correlation, and analysis of stack trace. 

A. Bug correlation and localization. 

Grouping of field crash-reports is similar to bug 
correlation, where we try to find which two crash-reports 
are correlated. There has been an extensive research on 
automatic bug correlation and bug localization. Lee and 
Soffa [26] introduced a bug correlation algorithm to identify 
causal relationships among bugs in a system. Ball et al. [24] 
developed a localization technique for error traces generated 
from a model checker. The aim of their technique was to 
identify the transitions that only appear in failing traces but 
not correct traces. Liblit et al. [2] analyzed predicate 
patterns in correct and incorrect executions traces and 
proposed an algorithm to separate the effects of different 
bugs in order to identify predictors associated with 
individual bugs. They claim that their algorithm is able to 
detect a wide variety of both anticipated and unanticipated 
causes of failure. Jones et al. [8] [10] examined the 
execution traces of successful and fail test cases and 
proposed Tarantula, a technique based on visualization to 
assist developers locates errors and bugs in their systems. 
Nessa et al. [22] proposed a bug localization algorithm 
based on N-gram analysis, to rank the executable statements 
of a software by level of suspicion. Their new algorithm was 
able to outperform Tarantula on three case studies. Wong 
and Debroy [25] propose a comprehensive survey of 
existing bug localization techniques. Similar to our study, 
the above works emphasize the importance of stack trace for 
bug localization. However, none of the techniques 
mentioned in these works can be used to analyze stack trace 
from crash-reports. These techniques are all dependent on 
instrumentation, predicates, and coverage reports or 
successful traces. This needed information is not available 
in crash-reports.  

B. Analysis of stack trace 

Schroter et al. [1] investigated the use of stack trace for 
bug fixing through an empirical study of the bugs in Eclipse. 
They observed that for 60% of crashes that had at least one 
stack trace available, bugs were fixed in one of the frame 
from the stack trace. Our study confirms the result and we 
use this result as base for our grouping algorithm. Chan and 
Zou [4] proposed the use of visualization for bug correlation 
and the identification of relation between different crashes. 
But given the large number of crash-reports (2.5 M crash-
reports every day), visualization cannot be used to 
comprehend all the crash-reports. However, when crash-
reports are grouped together correctly, the visualization of 

representative reports from each group can be used to find 
correlation between different bugs. The most closely related 
work to our study is the work by Brodie et al. [14][13], they  
used the stack-trace comparison to identify similar bugs. 
But, their approach makes use of historical data of already 
known problems. From a collection of different stack-traces 
of an already known problem, they develop a stack-trace 
pattern for each problem. Whenever a new problem is 
reported, it is compared with existing pattern of known 
problems and if a match is found, support staff can use this 
knowledge to handle the issue. However, the problem we 
address in this study is fundamentally different, as we 
propose an approach to identify similar crashes without 
having a prior knowledge of the bug or any pattern related 
to that bug.  

C. Crash-report grouping 

WER [12] is a system developed by Microsoft for 
handling field error reports. WER predates other crash-
reporting tools and has a very large user base compared to 
Socorro since it is used with all Windows, IE and Microsoft 
Office applications. WER performs a progressive data 
collection of field errors; whenever a crash occurs on user’s 
side, only a crash label is sent to the server. Developers need 
to configure the server if they wish to receive detailed crash-
reports for a crash label. WER server groups detailed crash-
reports using a bucketing algorithm. The Bucketing 
algorithm uses multiple heuristics specific to the application 
supported by WER and updated by developers manually. 
Whereas the system studied in this paper uses the open 
sources libraries, Breakpad [3] for the collection of client 
side data and Socorro [21] for processing field crash-reports 
on the server side. In comparison with WER, we propose a 
simpler and application independent approach. The 
suggested approach does not require any intervention from 
developers. Moreover, crash graphs, which are aggregated 
views of multiple crashes, proposed by Kim et al. [23] to 
identify fixable crashes in advance can also be applied with 
our grouping approach. The bucketing algorithm of WER 
can be easily replaced with our simpler and application 
independent grouping approach to predict fixable crashes. 

VIII.     CONCLUSION AND FUTURE WORK 

It has become the norm to embed automatic collection of 
crash-reports in software systems. However, limited studies 
investigated the use of the collected crash-reports by 
developers in their maintenance activities. In this work, we 
studied the use of field crash-reports during the beta testing 
of Firefox-4. We summarize the key findings of our study as 
follows: 

1) We analyze the use of failing stack traces in crash-
reports by developers when performing bug fixing activities 
and find that 80% of bugs are fixed in modules appearing in 
failing stack traces of crash-reports. Therefore, stack traces 
in crash-reports can be used to identify the crash-reports that 
are triggered by the same bug. 

2) We investigate the crash-report grouping approach 
used by Mozilla. We observe that in average it takes 17 days 



 

 

longer to fix the bugs when crash-reports triggered by 
multiple bugs are grouped together in comparison to fixing 
the bugs for which the crash-reports are grouped separately.  

3) We identify the limitation of the current grouping 
approach and propose a Trace Diversity metric which could 
help improve the efficiency of groupings. The result shows 
that if the trace diversity of a crash-type is greater than 5, 
the crash-type is likely to contain crash-reports triggered by 
multiple bugs.  

4) We suggest a detailed comparison of stack traces to 
group the crash-reports. This limits the trace diversity of a 
crash-report group and it is easier for developers to locate 
and fix bugs. Our grouping approach limits the trace 
diversity of a subgroup to less than 5 and 88% of the 
subgroups contain crash-reports triggered by a single bug. 
This improvement to the existing Mozilla crash reporting 
system can help to reduce the bug fixing time by more than 
5%. 

We create a representative trace to identify the crash-
reports caused by the same bug. In a way, the representative 
stack trace reflects the stack trace pattern of the bug. In the 
future, we plan to optimize the representative trace to further 
improve the crash report grouping. The representative trace 
can also be used for bug correlation and bug localization.   
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