
International Journal of Business Process Integration and Management, Vol. x, No. x, 200x 1

Copyright © 200x Inderscience Enterprises Ltd.

An Approach to Extract RESTful Services
from Web Applications

Bipin Upadhyaya*, and Ying Zou
Department of Electrical and Computer Engineering
Queen’s University
19 union Street, Kingston, Ontario, Canada
E-mail: (9bu, ying.zou)@queensu.ca
*Corresponding author

Foutse Khomh
SoftWare Analytics and Technologies Lab. (SWAT) Polytechnique Montréal,
Montréal, Canada
E-mail: foutse.khomh@polymtl.ca

Abstract: The web is the largest database with a huge amount of information and services
primarily intended for human users. A user performs different tasks on the web, such as reserving
a table in a restaurant, and buying a movie ticket. Similar tasks are often performed in various
web applications. The reuse of web application components would offer greater productivity and
ease the maintenance of web applications. Due to the short time-to-market and the faster pace of
technology development, designing reusable web application components is often not a primary
concern for developers. The focus of this paper is to circumvent this limitation by proposing an
approach to interactively identify reusable web tasks in a web application. We represent these
tasks as services that developers can reuse to speed up the development of their web applications.
We perform a case study on 21 real world web applications from four domains. We identify tasks
and services from these web applications. Results show that our proposed approach can identify
tasks correctly with a precision of 89% and a recall of more than 90%. Our proposed approach
also successfully identifies relations among tasks with a precision of 86% and 100% recall.
Hence, using our approach, a web developer can semi-automatically extract reusable tasks and
represent each task as a RESTful service.

Keywords: Web application, Service extraction, RESTful Service, Design tools and techniques

Biographical notes:

Bipin Upadhyaya received his PhD degree in 2014 from Queen’s University. He is currently
doing a post-doctoral fellow in Department of Electrical and Computer Engineering in Software
Re-engineering lab in Queen’s University. His research interest includes service-oriented
architecture, user service composition and cloud computing.

Ying Zou is a Canada Research Chair in Software Evolution. She is an associate professor in the
Department of Electrical and Computer Engineering and cross-appointed to the School of
Computing at Queen’s University in Canada. She is a visiting scientist of IBM Center for
Advanced Studies, IBM Canada. Her research interests include soft-ware engineering, software
reengineering, software reverse engineering, software maintenance, and service-oriented
architecture.

Foutse Khomh is an Assistant Professor at Polytechnique Montréal, where he heads the SWAT
Lab on software analytics and cloud engineering research (http://swat.polymtl.ca/). He received a
Ph.D in Software Engineering from the University of Montreal in 2010. His research interests
include software maintenance and evolution, cloud engineering, service-centric software
engineering, empirical software engineering, and software analytic. He has published several
papers in international conferences and journals, including ICSM, MSR, WCRE, ICWS, JSS,
JSP, and EMSE. He has served on the program committees of several international conferences
including ICSM, WCRE, MSR, ICPC, SCAM, and has reviewed for top international journals
such as SQJ, EMSE, TSE and TOSEM. He is program co-chair of the Workshops track at WCRE
2013, program chair of the Tool track at SCAM 2013, program chair for Satellite Events at
SANER 2015, and program co-chair for SCAM 2015. He is one of the organizers of the
RELENG workshop series (http://releng.polymtl.ca) and guest editor for a special issue on
Release Engineering in the IEEE Software magazine.

International Journal of Business Process Integration and Management, Vol. x, No. x, 200x 2

Copyright © 200x Inderscience Enterprises Ltd.

1. Introduction

Millions of web applications are available and even more
people access web applications for conducting their daily
activities, such as buying a product or booking a flight
ticket. Web applications are popular, due to the ubiquity of
web browsers and the possibility to update and maintain
web applications without interrupting the clients. A web
application is coded in a browser-supported language, such
as JavaScript, and combined with a browser-rendered
markup language, such as the HyperText Markup Language
(HTML). Web applications are facing new challenges in
today’s business environment, such as the integration of
software provided by different organizations. In the current
state of practice, most web applications are intended for
manual use. Because of shorter time-to-market, most web
applications are not built using principles of Service
Oriented Architecture (SOA), which results in the web
applications lacking machine-to-machine interaction
capability. Similar to the problems faced by early traditional
applications, many web applications become legacy systems
because of their lack of machine-to-machine interaction
capability. Moreover, these web applications are full of
unstructured data that make them hard to process
automatically [15]. There is a desperate need for tools that
can convert unstructured web data into structured
information, by creating an automatically processable
machine to machine functionality. We believe this need can
be fulfilled through web services which provide machine-to-
machine interactions.

A Web service is a software component designed to support
interoperation between machines over the Web. Web
services are increasingly used as basic constructs for rapidly
developing low-cost distributed applications. The
composition of services via business processes are covered
by existing tools and solutions, concepts for lightweight
service consumption are still in a preliminary phase. The
complexity of state-of-the-art SOA technology prevents
users with limited IT skills in getting easy access to Web
services and their offered functionalities. In a service chain,
one Web service invokes another based on the service
definition. For some Web services, the invoker may be a
user. The ways for a service to interact with an application
and a user should be different. When the service interacts
with a user, it is preferable to provide a UI. A user may
access a Web service from different devices, such as
desktops and various handheld devices, and the UI should
be designed differently to fit different characteristics of the
devices. However, it would be a burden to a service
composer to manually develop the interfaces for potential
user interactions or even manually design various interfaces
to fit potential user devices. The two most popular
architectural styles used in web services are Simple Object
Access Protocol (SOAP) based services and RESTful
services. Compared with SOAP-based services, RESTful
services are lightweight and easy to build, and provide

readable results. Hence, the majority of service providers
now uses RESTful services [30].

It is not simple to use data and functionalities from different
web applications as web services. A little work has been
done on the migration of web applications to SOA. The few
migration approaches that have been proposed either
migrate a web application into SOAP-based service or needs
to re-engineer the web application’s code-base [1, 2, 7, 8,
10]. However, the web application code base is not always
available and SOAP-based services consume more power
and time to process the messages [31]. In this work, we
view a web application as a set of tasks; an activity as a set
of task and a process as a set of activities. Contrary to
previous work, we do not re-engineer the web application
code base, but instead, we reverse engineer the client
representation, request and response pattern of a web
application, to extract tasks as services. A task is a goal
specific functionality, such as search a restaurant, and book
a table in a restaurant. A goal may be defined as a state of
affairs that a user wishes to achieve; a task is the course of
action a user goes through in order to achieve this state. In a
web application, the code responsible for a task is scattered
between several files, and it is written in different
languages, such as service side scripting language (e.g.,
PHP), database query languages (e.g., SQL), client side
scripting language (e.g., JavaScript), and HTML. We treat
web applications like black-boxes and extract tasks by
analysing client-side representation of a web application.
Extracting a task from a client representation can be
particularly useful when the code-base of a web application
is not available. The extracted tasks can then be specified in
terms of RESTful service and deployed through proxies
accessing the original web server and parsing its responses.

This paper extends our earlier work published in the
proceedings of the 5th IEEE International Conference on
Service-Oriented Computing and Applications (SOCA)
[26]. We enhance this previous publication in the following
aspects:

1) An improvement of the model used to represent a
task. We can now identify a segment of a web
application that a user browses to accomplish a
task. We represent the functionality of the
identified segment of a web application as a
RESTful service.

2) The extraction of logical data as input and output
for a task, from the data decorated with HTML tags
for human users. The extracted data capture
semantic information; making machine interactions
easier.

3) The identification of relations between tasks to
automate the transition between tasks and the
migration of tasks as RESTful services.

4) A case study that examines the performance of our
proposed approach for extracting service
descriptions from web applications. The case study

3

examines the proposed approach on web
applications from four domains (i.e., book, housing
travel and tourism).

The remainder of this paper is organized as follows. Section 2
discusses background knowledge on web applications and
RESTful services. Section 3 introduces a meta-model for
tasks. Section 4 presents an overview of our approach.
Section 5 reports our case study and discusses its results.
Section 6 discusses the related works. Finally, section 7
concludes the paper and explores some avenues for future
work.

2. Background

In this section, we introduce web applications and RESTful
services in more details. Our paper focuses on extracting
RESTful services from web applications, hence
understanding the following two topics is crucial.

Figure 1: A fragment of client code segment of a web
Application

2.1 Web applications

In web applications, the layout of a web page is defined
using HTML and is represented with the Document Object
Model (DOM). All client side interactions involve
modifications of the DOM. The presentation of the web
pages is defined through Cascading Style Sheets (CSS).
Figure 1 shows a code segment from a web application
where the style is defined by the CSS class inputlabel, and
JavaScript functions. A web application uses the HyperText
Transfer Protocol (HTTP) as the transfer protocol and
consists of a series of events. An event is a subset of an
application that consists of at least one user input, followed
by some processing. For example, an online banking system
should maintain a communication session with a specific
user during the time the user is logged in. Unfortunately, the
communication protocol between a web browser and a web
server (HTTP) is stateless, and it does not provide

functionality on session control. The connection is
established when a browser sends out a request and receives
a response message. In order to maintain a logical session
between a web browser and a web server, the identification
of a web client should be included in each request/response
communication cycle. The cookie technique has emerged as
a solution to enable user’s control of the session. A cookie
contains a unique identification information that enables a
web server to recognize the identity of the browser and trace
the communication with the client.

The conceptual modelling of most existing development
methods for web applications is based on the objects (or
data) and the related methods, functions, or services. A web
page frequently adopts the traditional CRUD (Create, Read,
Update, and Delete) pattern: a web page is limited to basic
operations on objects and their relationships. A web
developer manually links different web pages to enable the
navigation of users from one web page to another during the
accomplishment of their goal.

2.2 RESTful services

 A RESTful service is a web of interconnected resources
identified with URIs. A RESTful service can be
manipulated through a uniform interface (e.g., HTTP
operations), whose state is served through representations
(e.g., an HTML page). A resource representation embeds
links and controls for a service. The simplicity of REST
[101], along with its natural fit over HTTP, has contributed
to its status as a method of choice for exposing the data of
web applications. At the core of REST based design is a set
of state transfer operations universal to any data storage and
retrieval systems. A resource may have two states: a server
state and a client state. We are interested in client side state
and the changes during the completion of a task.

Hypermedia as the Engine of Application State
(HATEOAS) is a constraint of the REST application
architecture. The principle is that a client interacts entirely
through hypermedia provided dynamically by application
servers. A REST client needs no prior knowledge to interact
with particular applications or server beyond a generic
understanding of hypermedia. One of the benefits of using
RESTful services is the ability to use HTTP Headers to
provide the context of request around each of the CRUD
operations. A request to a particular resource might result in
an HTML, XML, or JSON depending on the desired media
type transmitted in the HTTP Accept header. This allows
developers to overlay the programmatic API for a website
directly on top of the site exposed to web users and reduces
the cost and complexity of providing multiple formats for
accessing the underlying data of a website. The function
signature of a call in RESTful services is described by the
tuple: (Resource URL, HTTP method, Input parameters and
Accept Header).

Table I: Different Types of Resources in a Web Application
Resource Type Description Example
Type 1 Type I resources represent a simple

process without any input parameters
Information web pages, such as a web page
without any parameters

Type II Type II resources take input parameters
and output representation

Searching products based on keywords, such
as Amazon product search web page

Type III Type III task is a complex process with
input parameters, output representation
and client side scripts

A login process with client-side validation,
such as an email login process

source target

Event

User System

1

Initial State Final State
1 1..*

Client side

script

uses

Resource

Name

URL

description

Representation

Name

Schema

description

mediaType

Task

Name

description

Request

headers<name, value>

InputParameters

description

Respnse

headers<name, value>

description

Transition
Triggered by

1..*

1 1..*

URL

HTTP

Methods

1

1..4

11

Effect Of

1..*

1

1

1

re
q

u
e

st
R

e
p

re
se

n
ta

ti
o

n

re
sp

o
n

se
R

e
p

re
se

n
ta

ti
o

n

Figure 2: Meta-model for users’ tasks

The Web Application Description Language (WADL) [25]
is a machine-readable XML description of RESTful web
services. WADL models the resources provided by a service
and the relationships between them. WADL is intended to
simplify the reuse of RESTful services. It is platform and
language independent and aims to facilitate the reuse and
integration of RESTful services.

3. Meta model for a task

A task is a set of resource interactions grouped in a
meaningful way to accomplish a goal. The identification of
a task is essentially centred on the question: What will a
user do with a web application? A task is a course of actions
that a user performs on a web application. A task captures a
navigation structure of a web application that performs
certain functionality.

A task is identified on the basis of two main characteristics:
1) should be reusable, and 2) should perform a functionality.
An example of a task includes searching a product, login
into a web page and purchasing a product. For example, by
identifying a task to buy a product, service providers can
reduce multiple user interactions (e.g., product selection,
credit card verification and address confirmation) to one
task where a user do not have to go through multiple
interactions. The types of resources included in tasks define
the nature of a task. We have identified three types of
resources used in web applications as shown in Table I. The
classification is based on how a user-agent (e.g., web
browser) interacts with a resource. Type I resources have
fixed URLs. However, the content changes over time or
when a user invokes a URL. An example of Type I resource
is a weather page [22]. Type II resources take input as URL
parameters or payload. The representation of a resource

5

updates with the changes in the parameters. An example of
Type II resources is a product search page of an e-
commerce site [23]. Type III resources uses both input and
client side code to manipulate and change the resource state.
A user event, such as a button click calls a JavaScript
function. The HTTP protocol is invoked from the JS
function. An example of Type III is a login page that
validates the format of a user input before requesting a
resource [24]. A task can be accomplished by one or more
resource interaction as shown in Equation (1). Examples of
resource interaction include opening a page specified by a
URL, clicking a link, and submitting some data to a form.
Each resource interaction is a function of a URL, http
method, input parameters or a client side script as shown in
Equation (2).

���� ∶= ��| ��	"."	����	 (1)

�� ∶= �	(���,���ℎ��, ��)	|	�������(�) (2)

Where RI is the resource interaction. ip is the input
parameters, method is a HTTP method used on URL and
execute (S) is the execution of a client side code S.

Figure 2 shows the meta-model to model users’ tasks. A
task starts with an initial resource (i.e., initial state) and ends
with one or more final resource. Each resource has a URL,
HTTP method, request and response. The request and
response contain the header information, input parameters
and response representation. A response representation is
the description of the messages sent or received from a
Resource in terms of a technological language. Currently
XML and JSON are the most popular languages for
describing these messages. Therefore a representation is
defined in the meta-model as an abstract entity that is
generalized in the different types of representations
according to the corresponding media-types. For accessing
or modifying a resource, one of the four HTTP methods
(GET, POST, PUT or DELETE) are used. HTTP headers

define the operating parameters of a resource interaction.
While completing a task, a resource undergoes a series of
transitions. A transition can be triggered by a user action
(e.g., form submission and resource request) or by system
events (e.g., automatic updates of the representation at
certain intervals and web page redirections). Resources in
our meta-model can be one of the three resources listed in
Table I. Based on the model presented in Figure 2, we
describe each task as a RESTful resource.

4. Our approach

Figure 3 gives an overview of our approach to represent a
task as a RESTful service extracted from a web application.
Our approach consists of two steps as shown in Figure 3.
The first step is to select and execute a task to migrate. A
user does not necessarily need to be an expert in the
language and technology used to develop the web
application. We implemented as a browser plugin to mark
the start of a task and the completion of a task. We
instrument a browser to log all the events generated by a
web application in a client-side (i.e., execution log) in order
to capture all scenarios involved in the completion of a task
as shown in Figure 4(a). Figure 4(b) shows an annotation
tool to select the region of an HTML page as an output. We
store this annotation in as annotation log. Section 4.3
describes in details the annotation process and the
annotation logs. Figure 4(c) describes a task completion
process for a login task. In the login task, a user clicks the
login link (i.e., shown as navigational link in Figure 4(c))
and fills a login form. Based on the data entered, the task
can reach one of the two final states (i.e., success or failure).
A recorded portion (i.e., between start and end of a task) is
performed multiple times with different combinations of
input parameters. We separate output based on the similarity
of the corresponding DOM structure.

Select and

Execute the

Task to Migrate

Annotate

Resource

Representation

Execution

Annotation

logs

Identify Inputs

of a Task

Identify

Outputs of a

Task

Identify

Task

Relations

Identify

Resources and

HTTP Methods

Wrap a

Task as a

Service

Input to

Task

Output of

Task

Resource

& HTTP

Methods
First Step Second Step

Figure 3: Overview of our approach to identify services from a web page

International Journal of Business Process Integration and Management, Vol. x, No. x, 200x 6

Copyright © 200x Inderscience Enterprises Ltd.

(a) Menu to denote start and completion of a task

(b) Annotated content in a web page

7

(c) Task involving navigation over multiple web pages

Figure 4: Screenshot showing different phases of task identification

In the case of the example shown in Figure 4(c), the output
DOM structure from multiple runs belongs to two groups.
One group represents the success, and the other refers to the
failure.

The second step is the analysis of the annotation logs and
the execution logs to identify input, output and HTTP
methods of a task. In the following subsections, we describe
the second step (illustrated in Figure 3) in more details.

4.1 Identifying inputs of a task

A task in a web application includes interactions with web
pages. Hence, input parameters for a task include the input
parameters needed to accomplish interactions in a web page.
These input parameters include input elements in web
forms, cookie and request headers. One of the sources of
input for a task comes from web forms. Therefore,

identifying the correct parameter label is crucial as it
corresponds to the data required by a task. In this
subsection, we discuss our approach to extract parameters,
labels from web forms and other input parameters, such as
session and cookie information.

A web form contains different input elements, such as input
fields and radio buttons. Each input element contains
semantic information (i.e., label) and the name of the
element. A label of an input element defines the semantics
of that input-element. Hence, correctly identifying a label
for an input element helps to retrieve and integrate
information hidden behind web form interfaces. As
illustrated by meta-model shown in Figure 2, a resource
transition can be either a user event or a system event. Web
forms and hyperlinks are the most usual ways to provide
input to a web application. A web form submission does not
always invoke a resource. Web forms generate a number of
events. These events are handled by client side functions.
Client side functions are executed by a client’s web browser
and have access, via a document object model, to the
resources of the browser, in particular, to the HTML
document shown in the browser. For this purpose, the
document is represented as a hierarchical object structure
where the attributes of each object can be accessed or
manipulated by the standard “dot notation”. For instance,
the class identifier (whose meaning is usually defined in a
style sheet) of an object element in an HTML document can
be changed to myStyle by the assignment elem.className =
"myStyle". JavaScript programs are usually executed by the
web browser when some events occur. For instance, if an
input button in an HTML form has an attribute
onsubmit="fun(x)", the function call fun(x) is evaluated
whenever the user clicks this button. Our plugin tracks all
the events generated during the completion of a task
including JavaScript events.

Web forms and hyperlinks contain semantic information
(i.e., labels). It is challenging to identify labels that describe
HTML input elements. Especially, web forms have different
layouts. The positions of labels in a web form depend on the
designer of the web form. Labels can be placed above,
below, to the left, or to the right of an input element. To
identify the label representing an input element, we analyse
the content of a web page delimited by the opening and the
closing tags of an HTML partitioning element that separates
the different sections of a web page. For example, paragraph
tag (i.e., <p>) separates a paragraph in HTML. The text
nodes under the partitioning element are part of the same
blob (i.e., a text contained within a partitioning element).
However, style tags, such as, the italic tag (i.e., <i>) and the
bold tag (i.e.,) add styles (e.g., bold, and italic) within a
section of text. Therefore, styling tags are not considered as
partitioning elements. A web form is a hierarchy of HTML
tags. Labels and form input elements are often positioned in
proximity in the hierarchical structure of tags.
Hierarchically nested labels and form input elements are
placed close to the lowest common ancestor in the

hierarchy. If a label and the associated input element are in
the same parent structure, they are close to each other within
the parent structure. The hierarchical proximity between the
elements helps to associate the input elements with the text
blob. Figure 5(a) shows a screenshot of a web query
interface. Figure 5(b) shows a fragment of the DOM tree of
the query web form shown in Figure 5(a). In Figure 5(b),
the input field r1 is in closer hierarchical proximity with the
label l1 (i.e., “Search Criteria”) than the label l2 (i.e.,
“Categories”). Therefore, the label l1 (i.e., “Search
Criteria”) should be associated with the input r1.

table

tr

td td

tr

td td

checkboxselect

form

Categories

tr

td td

select
Manufacturers

tr

td td

input
Date To:

div

input

div

h2

Search

Criteria

body
head

html

(a) HTML Representation of a Web Form

(b) DOM Tree of the Web Form shown in (a)

l1
r1

l2 r2 l3r3 r4

l4

r5

Figure 5: HTML and DOM representation of a web

interface

To identify the association between input elements and
labels, we traverse and analyse the DOM tree to find the text
nodes that constitute a label. When a partitioning element
(e.g., paragraph tag <p>) is reached, we create a new label.
The text node under the partitioning element is added to the
label. If the partitioning element contains another
partitioning element as a child, then the text nodes that
appear under the sub-partitioning child belongs to the text

9

blob of the sub-partitioning child. For each input element,
we compare the hierarchical proximity between the input
element and the text blob. For example, in Figure 5(b) to
reach r1 from l1, we have to traverse three nodes (i.e., h2,
div and div). The label with the least distance is considered
as a candidate of an input description tag for the input
element. The distance between a text blob and an input
element is given by the number of nodes visited from the
text blob to reach the input element. For example, in Figure
5(b), the distance between the nodes r1 and l1 is 3; the
distance between the nodes, r1 and l2, is 6; and the distance
between the nodes, r1 and l6, is 6. The node r1 has the least
distance with the text blob l1, and hence the node l1 is
selected as the description tag for the node r1. If more than
one candidate is identified, we calculate the edit distance
[17] between the candidates and the “name” attribute of the
input element to choose the candidate for the input
description tag. The edit distance between two strings of
characters is the number of operations required to transform
one string of characters into the other.

Cookies are considered as an input field in HTTP requests.
The web browser cookie technology provides persistent data
storage on the client side. A cookie is a data set consisting
of at least a cookie's name, a value and a domain. Cookies
are sent by a web server as part of an HTTP response
message using the Set-Cookie header field. The cookie's
domain value is used to determine in which HTTP requests
the cookie is included. Whenever the web browser accesses
a webpage that lies in the domain of the cookie, the cookie
is automatically included in the HTTP request. Cookies are
often used as authentication tokens in web applications.
After a successful login procedure, the server sends a cookie
to the client. Every following HTTP request that contains
this cookie is automatically regarded as authenticated. We
track changes in cookies and other HTTP header fields and
consider them as input parameters.

4.2 Identifying outputs of a task

Multiple web pages constitute for an output of a task. As a
user finishes a task, he annotates the output from web pages.
In this subsection, we describe the process of data extraction
from web pages for a task.

The output of a task is encoded in the return representation
generated once a web page is requested or a web form is
submitted. There are mainly two kinds of data that are
received in a return page: (1) header information containing
a status code; and (2) a resource representation. We record
the changes in the header fields. To identify the output of a
task, a user has to select the region in an HTML
representation that represents the output of the task, using
our plugin. In a resource representation, we look for data
relevant to a task output. For example, in Figure 6(a) the
items in the shopping cart relevant are the name of the
product, quantity and the unit price. The return page is
represented in a common template. The generated template

content contains information, such as, advertisements, and
navigational panels.

Figure 6: Identify data segments from an HTML
representation

Although the above mentioned parts of a web page may be
helpful for a user to browse, they can be considered as
“noisy data” that may complicate the process of extracting
the output of a task from web pages. The noisy data could
be wrongly matched as correct data resulting in either
inefficient or even incorrect wrappers. Therefore, we allow
users to identify the data rich section that contains the
output of a task. Our data extraction is based on the
following steps:

1) Select a portion of an HTML representation that
contains the output of a task. Figure 6(a) shows an
example of a user selecting a specific part of an
HTML page.

2) Parse the HTML document to find the starting (SP),
and ending (EP) positions of the selected region.

3) Identify regions with the similar DOM structures
between SP, and EP. Our approach identifies
segments of DOM regions with the similar DOM
structure. The similar DOM structure represents the
similar type of data. Figure 6(b) shows an example of
similar DOM structures. We use the following
heuristic to identify the semantics of the extracted
elements:

a) Match if web form labels are presented in the
response representation.

b) Search for labels in table headers in a resource
representation. HTML specifications define
tags, such as, header cells in HTML tables,
<TH>, and header contents in HTML tables,
<THEAD>. We list the columns of HTML
tables.

c) Search for voluntary labels encoded in the
response pages. For example, if a response
page contains a column with the symbol ‘$’,
we consider that the data item represents
currency related fields such as, price.

4) Refine the semantics of the extracted data template.
A user can import the available ontology or define
her own ontology if there is no available ontology.
Figure 6(c) shows a screenshot of GUI that helps a
user to refine the extracted data template.

Figure 6(c) shows a screenshot of the GUI of our tool which
is used to help users to refine the extracted data templates.
Based on user selections, we identify different parts of the
resource representation. The selected part of a resource
representation is extracted as an XPath. The semantics for
each XPath is defined using a label extracted from the web
page. A user can verify each semantic label, and XPath
mapping as shown in Figure 6(c). The XPath, and semantic
label mapping are described in a single file for each task.

4.3 Identifying resources and HTTP methods of a task

At this stage, we identify resources required to accomplish a
task, and the execution sequence between the resources. A
task often encapsulates multiple resources. When
abstracting different resources to a task, the focus is the

idempotent HTTP methods. Idempotent describes the ability
of a method that produces the same result if it is applied to
itself (i.e., f(x) = f(f(x)). In HTTP, this concept ensures
safely resent of the same representation irrespective of
receipt of the same message multiple times. We select
unsafe methods over safe methods, and un-idempotent
methods over idempotent methods [11]. For example, if a
task uses two resources: one using HTTP method retrieves a
representation of a resource (e.g., using GET method on a
resource URL), and other changes the representation of a
resource (e.g., using POST methods on a resource URL),
the HTTP method for that task is POST. Similarly, a
request/response header of a task is the most recent header
used in the resources invoked for that task. The meaning of
the HTTP header plays important role in determining the
header of a task. For example, If-Modified-Since header
gives the timestamp when a resource has been changed.
Hence a resource of a task involving multiple resources
takes the most recent date among all the dates used in a
resource. Similarly, if an intermediate resource changes
parameter of cookies during the completion of a task, the
most recent change in the cookie is propagated to the client.

4.4 Identifying task relations

We model a task as REST resource; hence we include
HATEOS behaviour in extracted services. The HATEOS
behaviour will guide a user between different tasks. For
example after register task, a user will be provided with the
link for register task. Web developers embed the links that
guides a user from one state to another.

We use two different approaches to extract HATEOS
information between extracted tasks. The first approach is
based on how a user navigates Web pages during the task
start to completion period. For example after finishing a
register task a user performs a login task. Hence the
representation of a register resource should contain login
resources. In addition to that, we analyse all the extracted
links and forms in HTML representation that helps to
identify the possible next state information. Based on URLs
and analysis of representation, we define rules to extract
resource. For example, after finishing a register task, a user
can perform a login task. Hence the register representation
should contain links for login task. In a web application,
relations between tasks are embedded as HTML links and
web forms. We analyse all the web forms, incoming and
outgoing links between the tasks to identify task relations.
We propose the following rules to extract task relations
from a client-side representation.

Rule 1: Identify state changes without requests and
responses

This rule identifies the client side script that does not
perform HTTP requests, and responses, but change the state
for an HTML representation. In such a case, the URL,
HTTP-methods, and parameters between the two resource

11

interactions remain the same, whereas there is a change in
the DOM elements. This change is due to client side scripts,
such as validation of data entered in a web form. For
example in Figure 4(c), when a user tries to submit a form
without username, and password, the representation displays
an error, but the validation is only performed in the client-
side. Hence the state of the resource representation is
dependent on the client-side script.

������� ����� ! = {���! , #��$ −&��ℎ��, $����!}
������� ����� (= {���! , #��$ − &��ℎ��, $����!}
������� ����� ! ≠ ������� ����� (

The URL, HTTP-method and Parameters remain the same,
where there is a change in the representation. This kind of
change is due to client side scripts. For example client
validation for Web forms such as User registration and login
forms.

Rule 2: Identify tasks sharing output parameters

This rule helps to identify resources that share input output
parameters. For example, with a product id, one can find the
product as well as the product review as well. The resources
may have one to many relationships with other resources.
We cluster URLs with similar parameters, and resource
paths. To automatically create the clusters, we use k-means
[27 and 28] which is an unsupervised clustering algorithm.
K-means algorithm divides the resources into a set of
disjoint groups. The main challenge in using such a
clustering algorithm is to identify the expected number of
clusters [28]. In case of k-means, this parameter is called k.
One possible solution is to ask domain experts to identify
the proper value for k empirically. However, since we need
to automate the process completely, we use a clustering
validation approach proposed by Hartigan [28]. Using this
approach, we can measure the success of any possible value
for k in generating a set of coherent clusters. To find the
proper value for k automatically, we create clusters with all
possible values for k where the maximum value is the
number of distinct data points. Then, we measure the
success of each experiment using Rousseeuw [29] approach.
Finally, we select the k value with the highest measured
success rate for our actual clustering. The resources in a
same cluster share input output parameters and hence have
resource relations.

��������! = {���! , #��$ − &��ℎ��, $��������!}
��������(= {���(, #��$ − &��ℎ��, $��������(}

 where,
$��������! = $��������(∪ {�}

Resource2	 is related to Resource3. For example, if the
URL of a product resource (i.e., product Info task) is
http://foo.org/product?pid=xx , and the URL of the review
resource (i.e., product review task) is
http://foo.org/reveiw?pid=xx, the parameter names in the
URLs of the product info task, and the product review task

are similar, and belong to the same cluster. Hence the two
tasks are related.

Rule 3: Identify the next task to perform

A web developer embeds a link or a web form that helps a
user to decide what to do next. In this rule, we identify the
next task a user can perform after completing a task. We
extract all next-state elements. For any two given resource,
we choose non-reoccurring elements. A non-reoccurring
element is a symmetric difference among a set of next-
states. We identify tasks whose initial states are present in
the non-reoccurring elements list.

4���! = 5������6������ ��{����!}
4���(= 5������6������ ��{����(}

4���78998: = 4���! ⊓	4���(
4���<= = 4���(−	4���78998:
4���<> = 4���! ⊓	4���78998:

4���! 	� �		4���(are the set of links and forms extracted
from the representation of Task A and Task B. For example
when a user selects a product and adds to a shop cart,
general links (such as categories product links, search
forms) get excluded as shown in	4���78998: above.
4���<=	 and 4���<> are next state tasks from task A and
task B.

Rule 4: Identify dependent task through flow sequence
analysis

In this rule, we mainly focus in the order of task execution.
For two tasks (i.e., task A, and task B), if the completion of
task A is required before starting task B, then task B is
dependent on task A. One task can be invoked more than
once (e.g., multiple add to cart task in a shopping activity).
The multiple occurrences of a task should not affect the
technique since we do not consider the number of
occurrences of a task. If the execution flow of a task is
present in another task, a flow-based relation is discovered.

��������! = {���! , #��$ − &��ℎ��, $��������!}
��������(= {���! , #��$ −&��ℎ��, $��������(}

��������!	���������	��	��������(

For example, checking out a shopping cart resource needs a
login task to be invoked first; hence checkout task is
dependent on the login task.

Different rules may be applied to recognize a common
relation. We select unique task relations. Figure 7 shows the
resource relations identified among different tasks in a web
application. For simplicity, we removed the reverse relation
in figure 7. Figure 7 shows some hierarchical relations as
well. In hierarchical relation the parent task has to be
complete to perform child task. The register node cannot be
reached directly from the index node. login node points to

the register resource, and forgotpassword resource.
Similarly, one can only reach a review state from the
product or a Newproducts resource.

Figure 7: Task relations extracted from a web

application in E-commerce domain

We have extracted a task and task relations. Figure 8 shows
a visual representation of a product search task. A task is
denoted by a URL, HTTP method, HTTP headers, input
parameters, output parameters, and task relation links. For
simplicity in Figure 8, we show only the task name, input
parameters, output parameters, and tasks relations.

Figure 8: A task showing input parameters, output
parameters and related links

5. Case study

In this section, we discuss our case study to evaluate the
effectiveness of our proposed approach to extract tasks, and
task relations from a web application. For this case study,

we selected web applications that already have exposed web
services. Selecting the web application with exposed
services make task selection easier for our case study. We
consider each resource as a task and compare the
effectiveness of our approach. More specifically, we aim at
accessing (1) the effectiveness of our approach to extract
task from a web application with correct input and output
parameters, and (2) the effectiveness of our approach to
identify task relations. In the following subsection, we
discuss the case study in more detail.

5.1 Data Collection

We randomly choose 21 web applications from five
different domains (i.e., finance, weather, ecommerce, book
and travel). We make sure there are services for these web
applications. Having services allow us to extract tasks as
those described in the service description documents. Table
II lists the domains and the number of web sites selected to
assess our approach

Table II: Domain and number of web applications used

in the case study

Domain # Example web application
Finance 4 http://www.exchangerate.com

Weather 3 http://www.theweathernetwork.com

Ecommerce 6 http://ebay.com

Book 5 http://www.freebooksearch.net/

Travel 3 http://www.expedia.ca/Flights

We use our Firefox plugin tool as discussed in Section 4 to
extract tasks from web applications and represent the
extracted tasks as RESTful services. The plugin tool is
designed to assist users in identifying tasks. Figure 3(a)
shows an annotated screenshot of the initial and final states
of a task. Figure 3(b) helps a user to annotate a resource
representation. Figure 6 shows a screen-shot where a user
selects a region of an HTML representation and verifies the
name of the output elements.

A user can verify all the identified resources as shown in
Figure 9 and generate a Web Application Description
Language (WADL) file as shown in Figure 10. WADL
describes the task extract long with input and output
parameters. WADL helps machine to machine integration.
The tool is directly connected with the Firefox JavaScript
engine. Code fragments specific to some browsers (e.g.,
Internet Explorer, Opera, and Safari) are not extracted. We
execute web applications to record the execution logs and
the annotated information. The plugin tool extracts tasks as
RESTful services and identifies the relation among different
tasks.

Index login register searchcategories

contact

listproducts

review

Newproducts

Type I resource

Type II resource

Type III resource

Legend
addtoCart

Checkout

ChangeShipping

Address

product
forgotpassword

updatetoCart

International Journal of Business Process Integration and Management, Vol. x, No. x, 200x 13

Copyright © 200x Inderscience Enterprises Ltd.

Figure 9: An annotated GUI used to verify the tasks identified

Figure 10: A WADL file generated by clicking “Generate WADL” in figure 8

International Journal of Business Process Integration and Management, Vol. x, No. x, 200x 14

Copyright © 200x Inderscience Enterprises Ltd.

5.2 Evaluation criteria

We measure the quality of our approach using precision and
recall. We discuss the evaluation criteria in this sub-section.

A. Evaluate the quality of tasks extracted from a web
application

We evaluate the effectiveness of our approach to identify
and extract tasks without any prior knowledge of a web
application by examining if our approach can correctly
identify the input and the output parameters for a task. As
defined in Equation (3), the precision evaluates if any
irrelevant input and output of tasks are misidentified. Recall
is a measure of completeness. As specified in Equation (4),
the recall evaluates whether our approach can correctly
identify all necessary input and output of tasks without
omissions. We use both metrics to evaluate our approach.

�������� =
?{@A}	∩C@DE?

|"@A'|
 (3)

����FF =
?"@A'	∩C@DE?

|C@DE|
 (4)

Where "��'	the number of input and output parameters
identified by our approach; "�G'	is the total number of input
and output parameters and {�H} ∩ {�I} is the number of

correctly identified input and output parameters.

B. Evaluate the quality of identified task relations

We evaluate the effectiveness of our approach to extract
task relations among identified tasks from a web
application. As defined in Equation (3) and Equation (4),
the precision evaluates if there is any irrelevant task
relations, while the recall evaluates whether our approach
can correctly identify all necessary task relations. As In
Equation (3) and (4), "�H'	is the number of task relations
that are correctly identified by our approach; "�I'	is the total
number of task relations that are manually verified as
correct; and "�H' 	∩ C�IE is the number of correctly
identified task relations in a web application. We exercise
each web application individually and create a set of tasks
containing all the tasks that can be achieved using the web
application. The set also contains relations between the
tasks (i.e., correct sets from Equation (3) and (4)). We
manually verified the correctness of all tasks and task
relations that were generated during the data collection
phase.

5.3 Analysis of Results

In this subsection, we present and discuss the result of the
case studies.

A. Evaluate the quality of tasks extracted from a web
application

To identify if our approach can correctly extract tasks, we
annotated different tasks in each of the web application
shown in Table II. Table III lists the average number of
tasks extracted by our approach. We find the extracted
resources containing all the three kinds of resources (i.e.,
Type 1, Type 2 and Type 3). Table III lists the results
showing the effectiveness of the proposed approach at
identifying the input and output parameters. Our approach
achieves a satisfactory performance (i.e., above 80%
precision) on identifying the input/output of a task. The high
recall (i.e., above 95%) shows that our approach can recover
most of the input/output parameters.

Table III: Result of Identifying Input/Output for T asks

Domain
#Average

task
Identified

#Average
input &
output

Precision Recall

Finance 10 24 80% 93%
Weather 3 6 100% 100%

Ecommerce 12 58 78% 95%
Book 8 74 81% 92%
Travel 12 82 79% 96%

Our approach misidentified some of the input and output
element labels because of the complex layout and nested
structures of web forms and the response pages. Some of the
input elements have default values without having any
descriptive text. Similarly, the use of graphic images instead
of text hinders the identification of the description of an
element.

B. Evaluate the quality of identified task relations

Figure 6 shows the task relations identified among different
tasks in a web application from the e-commerce domain.
Table IV lists the result showing the effectiveness of our
approach in identifying task relations. Indeed, our approach
has a satisfactory performance (i.e., above 80% precision)
on identifying resource relations. The high recall (i.e.,
100%) shows that our approach can recover all resource
relations.

Table IV: Result of Identifying Task Relations

Domain
#Average task
Relations in a

Domain
Precision Recall

Finance 7 85% 100%

Weather 2 100% 100%

Ecommerce 10 78% 100%
Book 8 77% 100%
Travel 7 82% 100%

15

Using our approach, a developer can extract services from
web applications that have not exposed web services, and
also from web applications whose source code is not
available.

5.4 Threats for validity

The main threat that could affect the generalization of the
presented results relates to the number of web applications
analysed. We have analysed 21 web applications from
different domains. Nevertheless, further validation of our
approach requires an analysis of a larger set of web
applications. We are aware that our approach depends on
the tasks selected by a developer. It might be the case that
all the tasks have not been selected. Therefore our approach
can miss tasks and task relations.

6. Related work

In this section, we discuss migration approaches in web
application and web application analysis approaches.

Service-oriented architecture (SOA) migration is an
architectural migration from any non-SOA system to a
system that follows the service-oriented architecture
principles, in order to achieve a new maintainable service
oriented architecture implementation of the system. The
major benefits of adopting service oriented architecture as a
design framework is the ability to realize rapid and low-cost
system development, to improve overall system quality, and
to better enable integration with other systems. Several
studies in the literature have focused on the problem of
migrating traditional legacy systems to web services. Lewis
et al. [5] discuss a migration technique called the Service-
Oriented Migration and Reuse Technique (SMART). The
SMART technique helps organizations analyse legacy
systems to decide whether their functionalities can be
reasonably exposed as services in a service-oriented
architecture. In our approach, a user can use a framework
like SMART to identify the tasks to migrate.

Sneed et al. [16] discuss a tool-supported method for legacy
code written in COBOL and wrapped behind an XML shell
allowing individual functions within the programs to be
offered as web services to any external user. Tatsubori et al.
[2] present a framework named H2W, which can be used to
construct web service wrappers for existing, multi-paged
web applications. H2Ws contribution is mainly in its service
extraction step. The authors propose a page-transition-based
decomposition model and a page access abstraction model
with context propagation. Similar to Tatsubori et al. [2]
approach, our approach extracts services analysing the client
representation. However, our approach represents a task as
RESTful services with the state transition. Almonaies et al.
[7] present an approach to migrate web applications to a
web service. Unlike our approach, Almonaies et al. [7] uses
analysing the server side code to extract service.

Our work understands a web application by analysing client
side code. There are two tools that facilitate the
understanding of dynamic web page behaviours: Script
InSight [6] and FireCrystal [4]. Script InSight helps to relate
the elements in the browser with the lower-level JS syntax.
It uses the information gathered during the script's execution
to build a dynamic, context-sensitive, control flow model
that summarises tracing information. FireCrystal facilitates
the understanding of interactive behaviours in dynamic web
pages by recording interactions and logging information
about DOM changes, user input events, and JS executions.
After the recording phase, a user can use an execution time-
line to see the code that is of interest for the particular
behaviour. Compared to our approach, they make no
attempt to track data dependencies between different
resources and are limited to understanding the code.
However, we use this information to extract tasks, identify
relations among tasks and then wrap tasks as services.

7. Conclusion

In this paper, we present a meta-model to represent tasks as
RESTful services. We propose a semi-automatic approach
to extract RESTful services from Web applications. Our
approach migrates reusable tasks extracted from web
applications towards RESTful services. We analyse client
side web user interfaces and HTML representation
developed with a combination of JavaScript, HTML and
CSS code. Our approach only requires client-side code of a
web applications and do not depend on the server side code.
We identify required resources for the tasks from Web
application. We find that our approach can identify
input/output parameters related to tasks with high precision
and recall. More specifically, our approach has 89% of
precision and 90% of recall when identifying input/output
parameters for tasks. Similarly, 86% of precision and 100%
of recall are achieved when extracting task relations. Our
work can help to integrate different functionality from web
applications that have not been exposed as Web services.

In the future, we plan to extend our approach to support the
extraction of tasks and their relations from web applications
that use Silverlight or Flash.

References

1 A. Almonaies, J.R. Cordy and T.R. Dean. Legacy System
Evolution towards Service-Oriented Architecture. In
International Workshop on SOA Migration and Evolution,
pages 53–62, 2010.

2 M. Tatsubori, and K. Takashi, Decomposition and abstraction
of web applications for web service extraction and
composition. In IEEE International Conference on web
Services, pages 859–868, 2006.

3 L. Aversano, G. Canfora, A. Cimitile, and A. De Lucia.
Migrating legacy systems to the web: an experience report. In
Proceedings of Fifth European Conference on Software
Maintenance and Reengineering, pages 148–157, 2001.

4 S. Oney, B. Myers, FireCrystal: Understanding interactive

behaviors in dynamic web pages, IEEE Symposium on Visual
Languages and Human-Centric Computing, 2009.

5 G. Lewis., E. Morris, and D. Smith, Analyzing the reuse
potential of migrating legacy components to a service-
oriented architecture. In Proc. of the Conference on Software
Maintenance and Reengineering, pp 15–23, 2006.

6 P. Li, E. Wohlstadter, Script InSight: Using Models to
Explore JavaScript Code from the Browser View,
Proceedings of the 9th International Conference on web
Engineering pages 260 - 274

7 A. Almonaies, M. Alalfi, J.R. Cordy, and T.R. Dean ,
Towards a Framework for Migrating web Applications to web
Services, 21st IBM Centre for Advanced Studies International
Conference on Computer Science and Software Engineering,
Toronto

8 A. Ajlan., and H. Zedan, E-learning (MOODLE) Based on
Service Oriented Architecture. In the EADTU’s 20th
Anniversary Conference, Lisbon, Portugal, pages 62–700,
2007.

9 G. Lewis, E. Morris, L OBrien, D. Smith, and L. Wrage.
Smart: The service oriented migration and reuse technique. In
Proceedings of the 13th IEEE International Workshop on
Software Technology and Engineering Practice, pages 222–
229, 2005.

10 R. Khadka, A.M. Saeidi, R.L. Jansen, & J. Hage, (2013). A
structured legacy to SOA migration process and its evaluation
in practice. In IEEE 7th International Symposium on the
Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems MESOCA

11 R.T. Fielding. “Architectural Styles and The Design of
Network-based Software Architectures”. PhD thesis,
University of California, Irvine (2000)

12 M. Fowler. Refactoring: improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., MA,
USA, 1999.

13 C. Maynard, G. Charters, M. Peters, and S. Laws. SCA/SDO
for PHP. http://pecl.php.net/package/SCA_SDO

14 delicious/help/api - Delicious.com - Discover Yourself!
delicious.com/help/api

15 R. K. Lomotey, and R. Deters, Analytics-as-a-Service
Framework for Terms Association Mining in Unstructured
Data. International Journal of Business Process Integration
and Management (IJBPIM), 2014, Vol. 7, No. 1, 2014 ,
pages.49-61

16 H. M. Sneed and S. H. Sneed, “Creating web services from
legacy host programs,” 5th International Workshop on web
Site Evolution, pages. 59–65, 2003.

17 R. Baeza-Yates, Algorithms for string matching: A survey.
ACM SIGIR Forum, 23(3-4):34-58, 1989.

18 R. Holmes, T. Ratchford, M. Robillard, and R. J. Walker.
Automatically Recommending Triage Decisions for
Pragmatic Reuse Tasks. In Proc. Of 24th IEEE International
Conference on Automated Software Engineering, 2009.

19 L.D. Paulson, "Building rich web applications with Ajax,"
Computer , vol.38, no.10, pp. 14- 17, Oct. 2005

20 K. Gottschalk, S. Graham, H. Kreger, J. Snell, Introduction to
web services architecture , IBM Systems Journal , vol.41,
no.2, pp.170-177, 2002

21 R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Addison-Wesley, 1999.

22 Weather Forecast
http://www.theweathernetwork.com/weather/caon0349

23 EBay http://www.ebay.ca/sch/i.html?_nkw=IPhone

24 Google Accounts https://accounts.google.com/ServiceLogin

25 Web Application Description Language,
http:ééwww.w3.org/Submission/wadl/

26 B. Upadhyaya, F. Khomh, Y. Zou, Extracting RESTful
Services from Web Applications, 5th IEEE International
Conference on Service-Oriented Computing and Applications
(SOCA), December 17 - 19, 2012, Taipei, Taiwan

27 E. W. Forgy, Cluster analysis of multivariate data: efficiency
vs interpretability of classifications. Biometrics 21, 1965

28 J. A. Hartigan, and M. A. Wong, A K-means clustering
algorithm. Applied Statistics 28, pages 100–108, 1979

29 P. J. Rousseeuw, Silhouettes: a Graphical Aid to the
Interpretation and Validation of Cluster Analysis".
Computational and Applied Mathematics 20: pages 53–65,
1987

30 Programmable Web, http://www.programmableweb.com/apis

31 B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau ,
Migration of SOAP-based Services to RESTful Services
,Proc. International IEEE Symposium on Web Systems
Evolution (WSE) , September 30, 2011, Williamsburg, VA,
USA. IEEE Computer Society Press.

