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Abstract— Software evolution and development are continu-
ous activities that have a never-ending cycle. While developers
commit changes on a software system to fix bugs or to implement
new requirements, they sometimes introduce anti-patterns, which
are bad solutions to recurring design problems in the system.
Many previous studies have shown that these anti-patterns have
negative effects on code quality, in particular fault-proneness.
However, it is not clear if and how anti-patterns evolve and
which evolutionary behaviors are more fault-prone. This paper
presents results from an empirical study aimed at understanding
the evolution of anti-patterns in 27 releases of three open-source
software systems: ArgoUML, Mylyn, and Rhino. Specifically, the
study analyzes the mutations of anti-patterns, the changes that
they undergo, and the relation between anti-pattern evolution
behaviors and fault-proneness. Results show that (1) anti-patterns
mutate from one type of anti-patterns to another, (2) structural
changes are behind these mutations, and (3) some mutations are
more risky in terms of fault-proneness.

Index Terms—Anti-patterns; Faults proneness; Markov Chain

I. INTRODUCTION

Code quality analysis aims to identify the most important or
the more risky parts of a software system, using for example
static code analysis [1] [2]. Such analysis can specify and
detect structural patterns in software systems that are signs
of poor design decisions, like code smells and anti-patterns.
Indeed, code smells [3] are low-level or local problems that are
usually symptoms of more global design smells such as anti-
patterns. An anti-pattern [4] is a literary form that describes a
bad solution to a recurring design problem that has negative
effects on code quality [5]. In object-oriented systems, an anti-
pattern can pertain to one class or a set of classes.

Previous work [6], [7] reported that anti-patterns render
the maintenance of systems more difficult, e.g., classes par-
ticipating in anti-patterns are more change and fault-prone
than others. However, there has been little effort to identify
and understand the evolution of anti-patterns and their poten-
tial impacts on code quality, especially on fault proneness.
We argue that it is important to obtain and disseminate
the information about the risks in relation with anti-pattern
evolutions. Concretely, assuming that all anti-pattern classes
are considered to have the same likelihood for fault-proneness
is not realistic. Many previous work showed that some anti-
patterns are more fault prone than others [7]. For example,
we observed in a previous work that different anti-patterns
have different probabilities of fault-proneness and that faults
occurred to some entities just after their evolutions, e.g., the
class GoClassToNavigableClass.java in ArgoUML

[8]. Indeed, knowledge about anti-pattern mutations and their
impacts on fault-proneness should facilitate the development
of strategies to mitigate these risks. We define an anti-pattern
mutation as the set of changes occurred into an anti-pattern
and that result could be the appearance of a different anti-
pattern, the preservation of the previous anti-pattern, or the
deletion of the anti-pattern symptoms.

Unlike previous work [9], [10] that analyzed the evolution
of design problems or our preceding paper [8] that reported
the impact of anti-pattern dependencies on fault proneness, the
purpose of this paper is not only to study how anti-patterns
have changed over time but also (1) to model the behavior of
these changes, (2) to detect the different states through which
the anti-patterns are mutated during their evolutions, (3) and
the impact of such mutations on fault-proneness.

Our main motivation is to obtain insight into the actual
risks of anti-pattern mutation and to use the results from
this exploratory study as the basis for more in-depth studies.
Concretely, we explore the use of Markov chains [11] to
capture evolving states of anti-patterns and the transitions that
model anti-pattern mutations during the evolution of a system
as well as their fault-proneness at each stage of their evolution.
Such modeling of anti-pattern mutations provides developers
with the knowledge about the risk of system code decay and
describe anti-pattern genealogies.

By examining anti-pattern mutations and tracing their evo-
lution, we will gain the ability to not only identify existing
anti-patterns and their possible impact on fault-proneness,
but also even predict future anti-pattern states and, therefore,
allow developers to decide if they want to reach these states.
Using anti-pattern information extracted from three open-
source systems, we answer the following research questions:

• RQ1: Are anti-patterns persistent in software systems?
Our motivation is to analyze the persistence/mutation of
anti-patterns among different releases. We investigate the
mutation of anti-patterns using Markov chains [11] and
examine their evolution behaviors.

• RQ2: What kind of changes lead to anti-patterns mu-
tation? In this research question, we examine how anti-
patterns are mutated and whether there are some specific
changes that lead their mutations.

• RQ3: Are anti-patterns equally fault-prone at every mu-
tation? A common knowledge is that some anti-patterns
are more fault-prone than others. Our motivation in
this research question is to verify if some anti-patterns
become more fault-prone after mutations.



The results of RQ1 show the high probabilities for each
anti-pattern to mutate to another anti-pattern. We extract
changes behind anti-patterns mutations in RQ2 and found that,
in the majority of anti-patterns, structural changes, such as
adding a huge number of attributes and long methods, domi-
nate the change types. Results of RQ3 show that the mutation
of some anti-patterns, such as RefusedParentBequests into
MessageChains, are the most risky evolution phenomena in
terms of fault-proneness.

The remainder of this paper is organized as follows. Section
II describes the empirical study. Section III presents our
methodology. Section IV presents the study results, while
Section V analyzes the results along with threats to their
validity. Then, Section VI relates our study with previous
work. Finally, Section VII concludes the study and outlines
some avenues for future work.

II. STUDY DESIGN

This section describes the design of our empirical study.
In particular, we present more details about the approach and
the analyzed subject systems. Then, we discuss our research
questions and the analysis method.

The design of our study follows the Goal-Question-Metric
(GQM) approach [12]: the goal of our study is to investigate
the fault proneness of anti-patterns through all the stages
of their evolution. The quality focus is the identification of
risky anti-pattern mutations in terms of fault-proneness. The
perspective is that of researchers, interested in studying anti-
pattern mutations and their impacts. The results may also
be of interest to developers, who perform development or
maintenance activities, in deciding which classes are most at
risk for faults and in prioritizing the code for testing. The
context of this study is three software systems, ArgoUML,
Mylyn, and Rhino. In this paper, we report the results of
analysis of nine different releases of each system.

A. Analyzed Systems

ArgoUML1 is a UML-modeling application that provides a
set of views and tools to model systems using UML diagrams.
The project started in January 1998 and is still active. It has
over 3.1M LOC and 18k commits in its software repository.
We consider an interval of observation ranging from January
1998 to February 2006. Mylyn2 is an open-source system
written in Java to implement a Task-Focused Interface. We
analyze nine releases of this system by considering an interval
of observation ranging from June 2007 to September 2008.
Rhino3 is an open source JavaScript engine developed entirely
in Java to convert JavaScript scripts into classes. In this
paper, we study the evolution of anti-patterns in Rhino’s code
by analyzing nine releases of this system in an interval of
observation ranging from May 1999 to July 2006.

1http://argouml.tigris.org/
2http://www.eclipse.org/mylyn/
3https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino

B. Analyzed Anti-patterns

We focus on 12 anti-patterns from Brown et al. [13]. We
choose these anti-patterns because they are representative of
problems with data, complexity, size, and the features provided
by classes [7]. We also use these anti-patterns because they
have been used and analyzed in previous work [7] to validate
our results by comparing them with previous data [14]. The
definitions and specifications of the anti-patterns are beyond
the scope of this paper and are available in [15]. The list of
anti-patterns considered in this study is as follows:

• AntiSingleton (AS): a class that provides mutable vari-
ables, which could be used as global variables.

• God Class (GC): a class that is too large and not cohesive
enough, that monopolizes most of the processing, takes
most of the decisions, and is associated to data classes.
It is also known as a Blob.

• ClassDataShouldBePrivate (CDSBP): a class that exposes
its fields, thus violating the principle of encapsulation.

• ComplexClass (CC): a class that has (at least) one large
method, in terms of cyclomatic complexity and LOCs.

• LargeClass (LGC): a class that has (at least) one large
method, in terms of LOCs.

• LazyClass (LZC): a class that has few fields and methods.
• LongMethod (LM): a class that has a method that is

overly long, in terms of LOCs.
• LongParameterList (LPL): a class that has (at least) one

method with a long list of parameters with respect to the
average number of parameters per methods.

• MessageChain (MC): a class that uses a long chain of
method invocations to realize one of its functionality.

• RefusedParentBequest (RPB): a class that redefines in-
herited method using empty bodies.

• SpeculativeGenerality (SG): a class that is defined as
abstract but that has very few children, which do not make
use of its methods.

• SwissArmyKnife (SAKF): a class whose methods can be
divided in disjoint sets of many methods, thus providing
many different unrelated functionalities.

III. METHODOLOGY

This section describes the steps of our data analysis process.
As shown in Figure 1, we perform the identification of anti-
patterns using the detection model presented in [14]. Then,
we use Markov chains [11] to built a probabilistic model
of anti-pattern mutations. Finally, we apply the heuristics
by Sliwersky et al. [16] to identify fault fix locations and
investigate the fault proneness of anti-pattern mutations.

A. Detecting Anti-patterns

We use the Defect DEtection for CORrection Approach
DECOR [14] to specify and detect anti-patterns in each release
of the three systems. DECOR proposes a domain-specific
language to specify and generate design defect detection
algorithms automatically. A domain-specific language offers
greater flexibility than ad hoc algorithms [14] because the
domain experts, i.e., the software engineers, can specify and



TABLE I
DESCRIPTIVE STATISTICS OF THE OBJECT SYSTEMS

System Release Date of publication Number of files Number of classes Number of line of codes
ArgoUML 0.10.1 October 2002 777 881 146,041

0.12 August 2003 850 984 163,423
0.14 December 2003 1,133 1,294 197,942
0.15.6 May 2004 1,122 1,271 199,195
0.16 June 2004 1,122 1,271 200,051
0.17.5 February 2005 1,161 2,276 217,190
0.18.1 April 2005 1,226 1,360 240,762
0.19.8 November 2005 1,364 1,538 280,996
0.20 February 2006 1,386 1,559 285,284

Mylyn 2.0.0 June 2007 1589 1668 207,436
2.1.0 September 2007 1695 1737 209,214
2.2.0 December 2007 1736 1809 211,052
2.3.0 February 2008 1805 1939 214,869
2.3.1 March 2008 1836 1935 230,144
2.3.2 April 2008 1839 1937 236,219
3.0.0 June 2008 2005 2216 244,053
3.0.1 July 2008 2002 2217 256,553
3.0.2 September 2008 2319 2233 263,759

Rhino 1.4R3 May 1999 82 97 30,748
1.5R1 September 2000 112 132 45,699
1.5R2 July 2001 136 177 56,452
1.5R3 January 2002 134 176 56,685
1.5R4 February 2003 141 202 60,353
1.5R5 February 2004 139 207 63,166
1.6R1 November 2004 154 226 74,529
1.6R2 September 2005 155 229 74,755
1.6R3 July 2006 156 223 76,592

Fig. 1. Overview of our approach to study the evolutionary behavior of anti-patterns

modify the detection rules manually. Indeed, software engi-
neers used high-level abstractions, taking into account the con-
text, environment, and characteristics of the analyzed systems.
DECOR can be applied on any object-oriented system through
the use of the Pattern and Abstract-level Description Language,
PADL meta-model [17], and POM (Primitives, Operators,
Metrics) framework [18]. PADL is a meta-model to describe
object-oriented systems [17] at different levels of abstractions4.
POM is a PADL-based framework that implements more than
60 metrics.

Moha et al. [14] reported that DECOR’s current anti-
patterns’ detection algorithms achieve 100% recall and have
an average precision greater than 60%.

B. Analyzing Anti-pattern Mutation

We determine the different mutation of anti-patterns in order
to illustrate the evolution of anti-patterns over time. During

4http://wiki.ptidej.net/doku.php?id=padl

their evolution, anti-patterns are sometimes mutated from one
type into another (e.g., a LongParameterList can become a
Blob). To the best of our knowledge, we present in this paper
the first exploration of the use of Markov chains [11] to
model anti-pattern mutations. A Markov chain refers to the
sequence of random variables that a process moves through,
with the Markov property that defines serial dependencies
between periods in sequence. Markov chains are suitable for
describing sequences of linked events: what happens next
release depends on the previous releases of the system. In
our study, we use Markov chains to capture the sequence
of anti-pattern mutations during the evolutionary histories of
software systems. Specifically, for each release, we detect
occurrences of anti-patterns. Then, we map the anti-patterns
across all the releases of the system and identify anti-pattern
mutations. Using information about mutated and non-mutated
anti-patterns, we compute the likelihood for each type of anti-
pattern to become another type and the risk of such mutation



on term of fault-proneness. We extract and categorize the
source code changes that caused anti-patterns mutations by
mining version-control systems (Concurrent Versions System
named CVS5 and Apache Subversion System named SVN6),
as described in the next step.

C. Analyzing the Fault Proneness

We compute the fault-proneness of a class by relating fault
reports (extracted from Bugzilla) and commits to the class.
We mine version-control systems (CVS and SVN), to detect
changes committed for each class. A commit contains several
attributes such as the changed files names that contain the
class, the dates of the changes, and the names of the developers
who committed the changes. In fact, fault fixing changes are
documented in textual reports that describe different kinds of
problems in a program. These textual reports are stored in issue
tracking systems like Bugzilla or Jira. We use a Perl script to
parse the SVN/CVS change logs of the systems to identify
all fault fixing commits. This Perl script, which was used
successfully in previous work [7], implements the heuristics
by Sliwersky et al. [16]7. From each fault fixing commit, we
extract the list of files that were changed to fix the fault. This
list of files contain classes that were changed to fix the faults.

IV. STUDY RESULTS

Table I summarizes the data obtained by analyzing Ar-
goUML, Mylyn and Rhino. We validated anti-pattern occur-
rences manually and checked external sources of information
provided by bugs reports and textual descriptions of change
commits to confirm and to discuss some typical examples.

A. Are anti-patterns persistent in software systems?

1) Motivation: A good understanding of the evolutionary
behavior of anti-patterns is important if we want to maintain
them efficiently. Many tools exist to automatically assess
entities and check if they present anti-patterns (e.g., [19],
[20], [21], and [10]). However, to the best of our knowledge,
developers are still unable to predict/anticipate the evolution of
an anti-pattern. All anti-patterns are not equally risky as shown
by previous work [7]; different anti-patterns have different
“bad” properties that make them prone to faults or hard to
understand/maintain. Knowing the evolutionary behavior of an
anti-pattern could help prevent its mutation into a most fault-
prone anti-pattern. Studying the evolutionary behavior of anti-
patterns can also help identify instabilities in software systems.
Indeed, frequent mutations of anti-patterns could indicate an
instability in the system. Consequently, a good knowledge of
the evolutionary behavior of anti-patterns will not only help
development teams track the most risky anti-patterns, but also
prevent some occurrences of anti-patterns. It could also help
them spot areas of instability in the code.

5http://cvs.nongnu.org/
6http://subversion.apache.org/
7 Rhino and Mylyn bugs were validated manually by Marc Eaddy. We

thank him for making his data on faults freely available.

2) Method: For each system, we identify anti-pattern oc-
currences in the analyzed releases using DECOR. To build
the anti-patterns genealogies, we map anti-patterns from the
detected anti-patterns across releases. We define anti-patterns
genealogies as the set of states that identify all possible
anti-pattern mutations among the releases. These genealogies
are structures comprised of singular nodes and modeled by
Markov chain. A Markov chain is a sequence of random
variables X1, X2, X3, ..., Xn with the Markov property:

The possible values of Xi form a countable set S called the
state space of the chain. In our study, the state space is the
12 anti-patterns. Markov chains are described by a directed
graph, as showed in Figure 2, where the edges are labeled by
the probabilities of mutation from one state to the other. The
arcs of the chain define transitions between anti-pattern states.

3) Results: Figure 2 shows a Markov chain that models the
anti-pattern mutations of the AntiSingleton to other forms of
anti-patterns in the different analyzed release of ArgoUML.
The sum of all the mutation from AntiSingleton state to other
states in the Markov chain is equal to one.

Actually, we observed that not all anti-pattern occurrences
undergo mutations, some of them remain stable during the sys-
tem evolution or could be maintained without being mutated to
another anti-pattern. Indeed, the classes of these anti-patterns
are refactored to become a part of non-anti-pattern codes or
remain in the same state without any change.

In general, anti-patterns do not remain persistent in Ar-
goUML, Mylyn, and Rhino. The majority of anti-patterns are
mutated during their evolution as shown by Table II. In this
table, we add an additional state (NoAP) to model the set of
classes that do not belong to the anti-pattern set after their
mutations. Indeed, more than the half of anti-pattern occur-
rences mutated among the different releases of ArgoUML. For
example, in ArgoUML, 41.5% of AntiSingleton occurrences
retain their states from a release to another. 57.3% are mutated
to another form of anti-patterns and around 1% are corrected
and do not belong to anti-pattern set. We found similar results
in Mylyn and Rhino (the complete results of these systems are
available on the Web8)�
�

�
�

More than the half of anti-pattern occurrences
mutated among the different releases of the three
analyzed systems.

B. What kind of changes lead to anti-patterns mutation?

1) Motivation: Because all anti-patterns are not equally
fault-prone [7] and anti-pattern mutations occur frequently,
understanding the causes of anti-pattern mutations could allow
us to predict when an anti-pattern class becomes more fault-
prone. In fact, change is an essential feature of the evolutionary
history of anti-patterns. Therefore, recognizing the changes

8http://www.ptidej.net/downloads/replications/qsic14/



Fig. 2. Anti-singleton mutation among the different releases of ArgoUML

TABLE II
MUTATION PROBABILITIES OF ANTI-PATTERNS IN ARGOUML

AS GC CDSBP CC LGC LZC LM LPL MC RPB SG SAKF NoAP
AS 0.415 0.037 0.163 0.029 0.054 0.000 0.138 0.048 0.050 0.033 0.016 0 0.012
GC 0.010 0.269 0.055 0.149 0.193 0.000 0.146 0.053 0.086 0.008 0.011 0 0.015
CDSBP 0.059 0.071 0.378 0.054 0.071 0.001 0.144 0.018 0.1 0.069 0.008 0 0.022
CC 0.010 0.192 0.054 0.235 0.237 0.000 0.124 0.041 0.077 0.001 0.008 0 0.014
LGC 0.014 0.193 0.055 0.182 0.265 0.000 0.131 0.063 0.067 0.002 0.010 0 0.013
LZC 0.000 0.000 0.009 0.000 0.000 0.705 0.009 0.000 0.073 0.170 0.018 0 0.013
LM 0.021 0.078 0.058 0.051 0.069 0.002 0.473 0.061 0.118 0.033 0.008 0 0.023
LPL 0.022 0.091 0.023 0.055 0.106 0.000 0.182 0.394 0.082 0.020 0.002 0 0.016
MC 0.012 0.068 0.062 0.046 0.053 0.007 0.177 0.039 0.428 0.053 0.008 0 0.041
RPB 0.011 0.007 0.060 0.000 0.000 0.038 0.073 0.014 0.076 0.610 0.064 0 0.043
SG 0.019 0.049 0.027 0.029 0.044 0.014 0.061 0.004 0.039 0.233 0.445 0 0.029
SAKF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000

that the anti-pattern classes have gone through their life time
is essential to understand how and why a system has reached
its current state. In the same context, we believe that spotting
the causes of anti-patterns mutation is a key knowledge for
maintenance activities, because it allows us to detect the
critical parts of the system that represent the starting point
for a maintenance process.

2) Method: To determine the cause of anti-pattern muta-
tions detected in RQ1, we query the SVN/CVS of each system,
on the date of publication of the release considered in this
study, using diff, a tool that compares files and generates a
list of differences between them. This method is simple to
implement, because it is easy to extract the deltas from a
versioning control systems, such as CVS or SVN. Next, we
record lines of code that have been added, deleted, or changed,
as reported by diff. Then, we verify if changed lines of code
concern attributes and methods. Finally, we report the kind of
changes responsible for anti-pattern mutations. In this study,
we are interested in structural changes [22], which are changes
that transforms an object-oriented element.

3) Results: Table III summarizes the most frequent kind
of changes detected in anti-pattern mutations among the three
analyzed systems. For lack of space we cannot present all the
result in this paper, we are planning to extend our work in
another paper to discuss more results but the complete results

could be deduced from our data available on the Web9 and
the code source of the analyzed open source system publicly
available. We study whether classes participating in anti-
patterns mutation undergo more (or less) structural changes
(addition/removal/change of/to attributes, addition/removal of
methods, or changes to the methods signatures) than non-
structural changes, i.e., addind/deleting/changing lines without
changing the structure of the class. We found in the the
three analyzed systems that anti-patterns classes are usually
subject to structural changes impacting their interface and,
thus, possibly their states. For example, we observe that
MessageChains, which are complex anti-patterns and provide
or call too many classes, are more likely to undergo structural
changes as shown in Table III. In Rhino, the developers of the
version 1.5.R2 added methods and attributes to Importer-
TopLevel.java (a MessageChains anti-pattern’s class) but
they forgot to verify that all the data used in this class are
private. Thus, this class mutated to a new anti-pattern’s state:
ClassDataShouldBePrivate. The result of such changes is often
the creation of new anti-pattern occurrences or the refactoring
of an anti-pattern, by breaking code apart into more logical
pieces. This observation confirms previous results by Khomh
et al. [7] who found that structural changes are more frequent
on classes participating to anti-patterns.

9http://www.ptidej.net/downloads/replications/qsic14/



TABLE III
THE MOST FREQUENT ANTI-PATTERNS MUTATIONS IN ARGOUML, MYLYN AND RHINO

Transition Proportion The kind of changes
All anti-patterns − > AntiSingleton 72% adding global variable or adding a long list of variables
All anti-patterns − > LargeClass 68% adding long methods
All anti-patterns − > ClassDataShouldBePrivate 66% adding attributes and methods violating encapsulation�

�
�
�

We conclude that structural changes occur more often
on mutated anti-patterns than other changes.

C. Are anti-patterns equally fault-prone at every mutation?

1) Motivation: In RQ1, we observed that anti-patterns
frequently mutate in other types of anti-patterns during the
evolution of the system. In this research question, we aim
to determine whether these transitions are risky in terms
of fault-proneness. On the one hand, we will determine if
mutated anti-pattern are more fault-prone than non-mutated
anti-pattern. On the second hand, we will detect the most
risky mutation among anti-patterns. Knowing the location of
anti-patterns and the fault-proneness of anti-patterns mutations
could help development teams better target classes that should
be reviewed carefully in order to ensure a good maintainability
of the software system and reduce the risk for faults.

2) Method: For each system, we identify if anti-patterns
undergo faults after their mutation. We use Fisher’s exact
test [23] to check whether the difference in fault proneness
between mutated anti-patterns and non-mutated anti-patterns is
significant. We also compute the odds ratio [23] that indicates
the likelihood for a fault to occur. The odds ratio is defined as
the ratio of the odds p of an event occurring in one sample,
i.e., the odds that mutated anti-pattern classes experience a
fault in the future (experimental group), to the odds q of the
same event occurring in the other sample, i.e., the odds that
other anti-pattern classes experience faults (control group):
OR = p/(1−p)

q/(1−q) . An odds ratio of 1 indicates that the event
(i.e., a fault) is equally likely in both samples. An odds ratio
greater than 1 indicates that the event is more likely in the
first sample, while an odds ratio less than 1 indicates that it
is more likely in the second sample.

We verify the null hypothesis that we state as follows:
• HRQ30: There is no statistically significant difference

between proportions of faults carried by mutated anti-
pattern classes and non-mutated anti-pattern classes in
ArgoUML, Mylyn, and Rhino.

If we reject the null hypothesis HRQ30 , then we explain the
rejection as follows:

• HRQ31: There is a statistically significant difference
between proportions of faults carried by mutated anti-
pattern classes and non-mutated anti-pattern classes.

Then, we create Markov chains that describe the fault-
proneness of all specific mutations (e.g., from Blob to Com-
plexClass).

3) Results: Table IV presents a contingency table for Ar-
goUML, Mylyn and Rhino that reports the number of (1)
mutated anti-pattern cases that are identified as fault-prone; (2)

TABLE IV
CONTINGENCY TABLE AND FISHER TEST RESULTS IN ARGOUML,

MYLYN, AND RHINO FOR ANTI-PATTERN MUTATION AND NON MUTATION
CORRELATED WITH FAULT BETWEEN TWO SUCCESSIVE RELEASES

Faulty Clean
Anti-pattern mutations cases in ArgoUML 2211 25186
Anti-pattern non mutation cases in ArgoUML 514 1578
Fisher’s test for ArgoUML 2.2e-16
Odds-ratio for ArgoUML 3.710
Anti-pattern mutations cases in Mylyn 70 14332
Anti-pattern non mutation cases in Mylyn 31 353
Fisher’s test for Mylyn 2.2e-16
Odds-ratio for Mylyn 17.967
Anti-pattern mutation cases in Rhino 346 2881
Anti-pattern non mutation cases in Rhino 197 65
Fisher’s test for Rhino 2.2e-16
Odds-ratio for Rhino 25.190
The Sum of anti-pattern mutation cases 2627 42399
The Sum of anti-pattern non-mutation cases 742 1996
Fisher’s test for the three systems 2.2e-16
Odds-ratio for the three systems 6

mutated anti-pattern cases that are identified as clean; (3) non-
mutated anti-pattern cases that are identified as fault-prone;
and, (4) mutated non anti-pattern cases that are identified as
non anti-patterns. The result of Fisher’s exact test and odds
ratios when testing HRQ30 are significant. The p-value is
less than 0.05 and the odds ratio for fault-prone non-mutated
anti-patterns is six times higher than for fault-prone mutated
classes.

Thus, we can answer to RQ3 as follows: we showed that
mutated anti-patterns are significantly less fault-prone than
non-mutated anti-patterns. We can explain this finding by
relating it with previous observations in RQ2 and [7]. In fact,
according to [7], anti-pattern classes are more change prone.
The non-mutated anti-patterns were not mutated because they
evolved without showing a new anti-pattern, and not because
they didn’t evolve at all, i.e., new changes happened to
anti-patterns but without changing their structures. Indeed,
structural changes that may cause anti-pattern mutations are
less risky than the fact of not maintaining anti-patterns or
performing other simples change on them. Thus, the result
imply that anti-patterns with structural changes tend to be less
buggy and that anti-patterns evolved without structural changes
tend to be more buggy.

In addition to this statistical analysis of the relation between
mutated anti-pattern and fault-proneness, we compute the
fault-proneness of all specific mutations. For example, Figure
3 presents the fault-proneness of anti-pattern in the different
analyzed releases of Mylyn modeled by a Markov chain.
We notice that the Markov chain shows that non-mutated
anti-patterns (anti-patterns that preserve the same symptoms
among different releases and are not subject to structural



changes) are more fault-prone than mutated anti-patterns. We
observe this fact in all analyzed anti-patterns and especially
for RefusedParentBequest and LongMethod.�
�

�
�

Non-mutated anti-patterns are more fault-prone than
mutated anti-patterns.

V. DISCUSSIONS

We now discuss some observation from our results. Then,
we discuss the threats to validity of our study.

First of all, we notice that different software systems can
have different anti-pattern evolution behaviors. This observa-
tion is not surprising because these systems have been de-
veloped in three unrelated contexts, under different processes.
Thus, their entities undergo different kind of changes and by
consequence, their anti-patterns follow different mutations.

Second, some of the studied anti-patterns are never mutated,
they remain in the same state all through their evolution his-
tory. This was the case for org.mozilla.javascript-
.Node. This class was detected as a LargeClass in all the
analyzed releases of Rhino. Indeed, this class declare long
methods with no parameters, and using global variables for
processing. Thus, org.mozilla.javascript.Node is
difficult to reuse and to maintain while it does not take advan-
tage of object-orientation mechanisms such as polymorphism
and inheritance. This exploratory study provides, within the
limits of its validity, evidence that classes participating in
anti-pattern mutations are more less fault-prone than anti-
pattern classes not participating in such mutation. Further
investigation, devoted to mine change logs, mailing lists, and
issue reports, is desirable to seek evidence of causeeffect
relationships between the mutation of anti-patternsor the need
to remove themand the class change- and fault-proneness. For
example, a fault may be in a part of the code that didn’t really
play a role in the original or the new anti-pattern or both. It just
happened to be in a class that belongs to both anti-patterns.

We found also that LargeClass anti-patterns, were the most
fault-prone entities. In fact, this anti-pattern defines a class
that “knows too much or does too much” and centralizes
many functionalities. A LargeClass precisely corresponds to a
large controller class that depends on data stored in surround-
ing data classes. Thus, LargeClass entities, such as org.-
mozilla.javascript.Context and org.mozilla-
.javascript.Parser in Rhino, are hard to change and
to modify, and when they are modified, they could present a
huge risk of fault.

One of the most risky anti-pattern mutation was the modifi-
cation of some anti-patterns to the state of MessageChain. This
anti-pattern is a bad structure from a dependencies point of
view. Ideally, objects should only interact with a small number
of direct collaborators (a design principle known as the Law
of Demeter). The MessageChain anti-pattern arises when a
particular class is highly coupled to other classes in chain-like
delegations. We think that many anti-patterns could mutate to
MessageChain while developers try to fix them. It was the case

in Mylyn for classes such as TaskEditorAttachment-
Part and TaskEditorCommentPart.

We also observed cases of anti-pattern mutations into design
patterns. For example, we found that some Blobs are mutated
into Abstract Factory, Adapter, Observer, and Prototype. The-
oretically, anti-patterns and design patterns are unrelated by
their contradiction definition. However, developers often use
design patterns to refractor or wrap anti-patterns [10], [24].
After such refactoring activities, previous anti-pattern entities
become a part of design patterns. In future work, we plan to
investigate anti-patterns to design patterns and design patterns
to anti-patterns mutations more extensively.

Markov chains prove to be a good model for several reasons.
First of all, a Markov model is a discrete-time stochastic
process that describes the state of a system at successive
points in time. Thus, Markov chains allow us to provide both
researchers and developers a simplified but accurate picture of
the anti-pattern mutations, precisely because they are simple
and we believed suitable for the purpose of visualization.
Second, it is a tractable stochastic process and a good basis
for statistical testing. There is a rich body of theory, analyt-
ical results, and mutation models. In this paper, we present
an exploratory study on anti-pattern mutations and we use
Markov chain to model them. Our future work also include
performing an exhaustive stochastic study based on our actual
results to predict anti-pattern mutations and fault-proneness in
future releases.

A. Threats to Validity

We now discuss in details the threats to the validity of our
results, following the guidelines provided in [25].

Construct validity threats concern the relation between
theory and observation. In our context, they are mainly due
to errors introduced in measurements. We are aware that the
detection technique used includes some subjective understand-
ing of the definitions of the anti-patterns. For this reason, the
precision of the anti-patterns detection is a concern that we
agree to accept. We preprocessed the inconsistent anti-patterns
to eliminate false positives. This preprocessing reduces the
chances that we could answer our research questions wrongly.
In case that anti-pattern specifications are variants of the
specification used by DECOR, some anti-patterns may be
missed during the detection phase. Although the sample of
detected anti-patterns can be considered large enough to claim
our conclusions, further investigations are desirable to further
verify our findings. Another concern that can impact the result
is the renaming of files among different releases of a system.
Indeed, during the evolution of the system, several classes can
be renamed or divided into two files with different names. To
mitigate such cases, we identified class renamings and class
structural changes using a previous approach ADvISE [26]
[27]. ADvISE identifies class renamings using the structure-
based and the text-based metrics, e.g., their common methods,
attribute types, and relationships, which assess the similarities
between original and renamed classes. Last but not least, the
fact that anti-pattern is a multiclass problem, we can find a



Fig. 3. Anti-pattern mutations and fault-proneness in Mylyn

class that has at the same time the specification of two different
anti-patterns. In our study, we manually validate such cases to
verify if the class represents many anti-patterns and we keep
it in our analysis by calculating and adding all its mutations.

Conclusion validity threats concern the relation between the
treatment and the outcome. We paid attention not to violate
the assumptions of the statistical test that we used, i.e., the
Fisher’s exact test, which is a non-parametric test.

Reliability validity threats concern the possibility of replicat-
ing this study. Moreover, both ArgoUML, Mylyn, and Rhino
source code repositories are publicly available, as well as the
anti-pattern detection tool used in this study. We also make all
the data used in this study available on the Web10.

Threats to external validity concern the possibility to gener-
alize our observations. First, we performed our study on three
systems belonging to different domains and with different sizes
and histories. However, we cannot assert that our results and
observations are generalizable to any other systems. Second,
the facts that all the analyzed systems are in Java and open-
source may also reduce the generalizability of our findings.
Future work includes replicating our study with other systems.

VI. RELATED WORK

During the past years, different approaches have been de-
veloped to address the problem of detecting design patterns,
specifying anti-patterns, and spotting their impacts on fault
proneness. This section discusses the literature that aims at
investigating these problems.

A. Anti-patterns Definition and Detection

The first book on “anti-patterns” in object-oriented devel-
opment was written in 1995 by Webster [4]. In this book, the
author reported that an anti-pattern describes a frequently used
solution to a problem that generates ineffective or decidedly
negative consequences. Brown et al. [13] presented 40 anti-
patterns, which are often described in terms of lower-level
code smells. These books provide in-depth views on heuristics,
code smells, and anti-patterns. They are the basis of all the
approaches to detect anti-patterns.

10http://www.ptidej.net/downloads/replications/qsic14/

The study presented in this paper relies on the anti-pattern
detection approach DECOR [14]. However several other ap-
proaches have been proposed in the past. For example, Van
Emden et al. [19] developed the JCosmo tool, which parses
source code into an abstract model (similar to the Famix
meta-model). JCosmo used primitives and rules to detect the
presence of smells and anti-patterns. It could visualize the code
layout and display anti-patterns locations to help developers
assess code quality and perform refactorings. Marinescu et al.
developed a set of detection strategies to detect anti-patterns
based on metrics [20]. They defined history measurements
which summarize the evolution of the suspects parts of code.
Then, they showed that the detection of God Classes and Data
Classes can become more accurate using historical information
of the suspected flawed structures. Settas et al. explored the
ways in which an anti-pattern ontology, a representation of
anti-pattern specification in the form of a set of concepts, can
be enhanced using Bayesian networks [28]. Their approach
allowed developers to detect anti-patterns using Bayesian
networks, based on probabilistic knowledge in the anti-pattern
ontology. The Integrated Platform for Software Modeling and
Analysis (iPlasma) described in [21] can be used for anti-
patterns detection. This platform calculates metrics from C++
or Java source code and applies rules to detect anti-patterns.
The rules combine the metrics and are used to find code
fragments that exceed some thresholds.

We share with all the above authors the idea that anti-
patterns detection is a powerful mechanism to asses code
quality, in particular to study whether the existence of anti-
patterns and their evolutions make the code more difficult to
maintain. Indeed, previous work significantly contributed to
the specification and detection of anti-patterns. The approach
used in this study, DECOR, builds on these work to offer a
method to specify and automatically detect anti-patterns.

B. Software Evolution

Object-oriented programs evolve continuously, requiring
constant maintenance and development [29]. Thus, they un-
dergo changes throughout their lifetimes as features are added
and faults are fixed. When evolution occurs in an uncontrolled



manner, the programs become more complex over time and
thus, harder to maintain [30][31].

Chatzigeorgiou and Manakos [9] presented the results of a
case study that investigated the evolution of three bad smells
throughout successive releases of two open-source systems.
The results indicate that in most cases, bad smells persist up
to the latest examined release accumulating as the project
matures. Moreover, a significant percentage of bad smells
were introduced at the time when the method in which they
reside was added to the system. Our work differs from this
previous work in that we analyze twelve anti-patterns and we
define their mutations. Given this differences between our two
studies, we claim that our study is the first detailed analysis
of anti-patten mutations, its causes, and its impacts. Vaucher
et al. [10] used a Bayesian approach to detect the presence of
God Classes in software systems and determine how they are
introduced, removed, and how they evolved. The authors noted
that God Classes remain relatively untouched from release to
release and that the correction of a God Class may also move
the problem to a different class. In this paper, we propose a
more general analysis of the evolution of well known anti-
patterns and we provide a simplified but accurate picture
of anti-pattern genealogies by observing the causes of their
mutations and their impacts on fault-proneness. Aversano et
al. [32] presented results from an empirical study aimed at
understanding the evolution of design patterns in three open-
source programs, namely JHotDraw, ArgoUML, and Eclipse-
JDT. The study analyzed the frequency of the modification
of patterns, the type of changes that patterns undergo and
classes that co-change with patterns. Results suggested that
developers should carefully consider pattern usage when this
supports crucial features of the systems. Such patterns will
likely undergo frequent changes and be involved in large
maintenance activities, that would be highly affected by wrong
pattern choices. While Aversano et al. focused on design
patterns, our study analyzes the evolution of anti-patterns to
determine the impact of mutating from one type of anti-
patterns to another. In our previous work published on [8],
we conducted an empirical study, performed on three object-
oriented systems, which provided empirical evidence of the
negative impact of dependencies with anti-patterns on fault-
proneness. In fact, we found that having static relationships
with anti-patterns can significantly increase fault-proneness.
In addition, classes having co-change dependencies with anti-
patterns are more fault prone than other classes in the analyzed
systems. We investigated the impact of anti-patterns on classes
in object-oriented systems by studying the relation between the
presence of anti-patterns and the change- and fault-proneness
of the classes. The authors showed that in almost all releases
of the four systems, classes participating in anti-patterns are
more change and fault-prone than others.

C. Fault-proneness

The most studied and traditional approach for fault predic-
tion is to relate software faults to the size and complexity
[33], [34]. Chidamber and Kemerer [35] proposed a suite of

object-oriented design metrics which has been substantiated
by several theoretical and empirical studies [36], [37]. Results
show that (1) the more complex the code is, the more faults
exist in it, and (2) size is one of the best indicators for
fault proneness. Hassan and Holt [38] proposed heuristics to
analyze fault proneness. They found that recently modified
and fixed classes were the most fault-prone. D’Ambros et
al. [39] reported that there was a correlation between change
coupling and defects which is higher than the one observed
with complexity metrics. Further, defects with a high severity
seem to exhibit a correlation with change coupling which, in
some instances, is higher than the change rate of the com-
ponents. They also enriched bug prediction models based on
complexity metrics with change coupling information. Marcus
et al. [40] used a cohesion measurement based on Latent
semantic indexing (LSI), an indexing and retrieval method to
identify patterns in the relationships between the terms and
concepts contained in an unstructured collection of source
code. LSI is based on the principle that words that are used in
the same contexts tend to have similar meanings. The author
used LSI for fault prediction and they stated that structural and
semantic cohesion directly impacts the understandability and
readability of the source code. Ostrand et al. [41], Bernstein
et al. [42] , and Neuhaus et al. [43] predict faults in systems,
using change and fault data. While Moser et al. [44] used
metrics (e.g. code churn, past faults and refactorings, etc.) to
predict the presence/absence of faults in files of Eclipse.

D. Summary

These previous works raised the awareness of the commu-
nity towards the impact of anti-patterns on software devel-
opment and maintenance activities. In this paper, we build on
these previous works and analyze the existence and the impact
of anti-patterns mutations. We aim to understand if the nega-
tive effects of anti-patterns on fault-proneness can propagate
among the different releases of object-oriented systems.

VII. CONCLUSION

The paper presents an empirical study to discover new
knowledge about evolution anti-patterns: the mutation of anti-
patterns and their impacts. Our motivation is to help software
developers in non-trivial tasks related to code evolution anal-
ysis by modeling anti-pattern mutations.

This paper reports a preliminary results of predicting the
mutations of anti-patterns in three open-source systems. We
showed that anti-patterns mutate to represent others form
of more complicated anti-patterns. Results showed also that
mutated anti-pattern classes are significantly less fault-prone
than non-mutated classes. We calculated also the risks that an
anti-pattern undergoes a fault fixing change after the mutation
and we reported these risks by using a Markov Chain.

Further improvements are foreseen. We plan to apply this
approach to analyze the genealogies of a more complete anti-
pattern list. We want also to develop a more sophisticated
analysis of fault-proneness, so that it contains more informa-
tion about the developers and their activities that could be



the cause of faults after anti-pattern mutations. Among other
things, we want to enrich our approach with information about
the duration of evolution period as well as the duration and
frequency of appearances of anti-pattern mutations.
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