The State of Practice on Virtual Reality (VR)
Applications: an Exploratory Study on Github and
Stack Overflow

Naoures Ghrairi, Segla Kpodjedo
ETS Montreal
Montreal, Canada
{naoures.ghrairi.1, segla.kpodjedo}@etsmtl.ca

Abstract—Virtual Reality (VR) is a computer technology that
holds the promise of revolutionizing the way we live. The release
in 2016 of new-generation headsets from Facebook-owned Oculus
and HTC has renewed the interest in that technology. Thousands
of VR applications have been developed over the past years, but
most software developers lack formal training on this technology.
In this paper, we propose descriptive information on the state
of practice of VR applications’ development to understand the
level of maturity of this new technology from the perspective of
Software Engineering (SE). To do so, we focused on the analysis
of 320 VR open source projects from Github to determine which
are the most popular languages and engines used in VR projects,
and evaluate the quality of the projects from a software metric
perspective. To get further insights on VR development, we also
manually analyzed nearly 300 questions from Stack Overflow.
Our results show that (1) VR projects on GitHub are currently
mostly small to medium projects, and (2) the most popular
languages are JavaScript and C#. Unity is the most used game
engine during VR development and the most discussed topic on
Stack Overflow. Overall, our exploratory study is one of the
very first of its kind for VR projects and provides material that
is hopefully a starting point for further research on challenges
and opportunities for VR software development.

Index Terms—Virtual Reality, state of practice, Software Qual-
ity, empirical study

I. INTRODUCTION

“The good news is that virtual reality is here. The
bad news is that something is still missing."
— Mychilo Stephenson Cline —

Virtual reality (VR) is a new medium that allows users to
experience fully immersive experiences. It provides users with
the ability to be transported to other places virtually, but with
realistic sensations, paving the way for previously unimagined
interaction and communication means. For a long time, virtual
reality was out of reach for the average consumer. Thanks
to recent advances by Google, Facebook-owned Oculus, and
HTC, this is no more the case. Virtual reality is now present
in many aspects of our life, and experts are predicting that
its impact will be similar to the introduction of television, the
Internet, or the smart phone.

With the commercial release in 2016 of major pioneering

Amine Barrak, Fabio Petrillo, Foutse Khomh
Polytechnique Montreal
Montreal, Canada

{amine.barrak, fabio.petrillo, foutse.khomh}@polymtl.ca

products such as the Oculus Rift and the HTC Vive, devel-
opment of VR applications presents an interesting case of a
possibly disruptive technology going from a few developers
toying with Software Development Kits (SDKs) to a growing
number of technology start-ups and independent developers.
VR has been proven to be a potential boon for small devel-
opment teams: e.g., the game Holoball (a sort of VR Pong)
admittedly developed by a small team of two developers in a
2-3 weeks period of time was a best seller on Steam (around
30k sales)!. Given the relatively low maturity of the field and
the slow (but steady) pace of involvement from the big game
studios, opportunities abound for developers and standards and
best practices are still to be observed and set.

This reality is not lost on some of the gaming industry
heavy-weights as they make aggressive moves to position
their products as the top choice for VR development. We are
witnessing a rapid growth of the number of software that can
create and display consumer virtual reality. Frameworks like
Unity3D and Unreal game engines, which are popular tools for
desktop and mobile games developments, are also becoming
the tools of choice for VR developers. On the web side,
the powerful features offered by WebGL and 3D JavaScript
frameworks (e.g., Three.js) are boosting the development of
browser-based virtual reality applications.

These developments are worth analyzing and studying and
this is what this paper sets out to do: as VR is about to go
mainstream, what can we observe from a software engineering
perspective: teams, releases, languages, engines, quality. Par-
ticularly interesting in this context is open source material,
whose pioneering effect and standard setting potential is
certainly greater than in most mature industries, especially
given the mostly small companies that are trying to make a
name in the game. In other words, we believe that, since VR is
a nascent industry, open source work will be quite influential
for (and reused by) a great number of developers trying to
complete projects in VR.

In this preliminary work, we collect and analyze VR projects
provided by the hosting and control version service “Github".

!data from http://steamspy.com/app/457320

We provide a mapping of existing VR projects in terms of
Github properties, development environment, file distribution,
etc. Since this area is not mature enough, and developers are
still in the testing and exploration phase of these technologies,
an evaluation of the design and code quality of the projects is
also performed to draw a picture of the state of VR applica-
tions development. Additionally, we conduct a complementary
study on Stack Overflow to identify the main themes that are
of interest or represent challenges for VR developers.

Our study investigates four research questions correspond-
ing to four layers of analysis:

(RQ1) What is the profile of VR projects on Github?

(RQ2) What are the most popular languages and game
engines used in VR projects?

(RQ3) What is the quality of the projects from a
perspective of software metrics?

(RQ4) As mined from StackOverflow, what are the main
topics of interest for VR developers?

The remainder of this paper is organized as follows. Section
II provides background information about Virtual Reality, de-
scribes the most popular virtual reality development platforms,
and introduces the software metrics used in our study. Section
III presents the design of our study, discussing the ratio-
nale behind our selection of VR projects and StackOverflow
questions. Section IV presents and discusses the results of
our exploratory study. Section VI discusses the limitations of
our study. Section VII reports about related works. Finally,
Section VIII concludes the paper and sets our perspectives.

II. BACKGROUND

In this section, we give background information for our
study. First, we briefly describe VR and some main VR
devices. Then, we discuss popular VR development platforms
and finally, introduce the software quality metrics used in this

paper.
A. Virtual Reality

Virtual reality or computer-simulated reality refers to com-
puter technologies that use software to produce realistic
images, sounds and other sensations that replicate a real
environment. Ideally, a VR experience will involve its user
to the point that he feels physical presence through the
ability to look and move around in the artificial world,
and interact (sometimes with haptic feedback) with virtual
elements displayed on a screen or in goggles. Although virtual
realities can be displayed on computer monitors or projector
screens, VR is much more compelling when experienced
through virtual reality headsets (also called head-mounted
displays or HMD) that succeed in creating an illusion of
three-dimensional depth. In these settings, the user’s vision
is entirely confined within the virtual reality, making for
very immersive simulations. Virtual Reality has thus been
defined as “...a realistic and immersive simulation of a three-
dimensional environment, created using interactive software
and hardware, and experienced or controlled by movement
of the body” [1] or as an “immersive, interactive experience

generated by a computer” [2]. Applications of the technology
seem limitless and range from primarily video games to fields
such as medicine, entertainment, military, education, etc.

Recent years have seen a real surge in interest in VR,
following the (pre- and actual) releases of groundbreaking
(i.e., consumer-ready and affordable) HMDs like the Google
Cardboard (and its plethora of clones), the Oculus headsets
(SDK1, SDK2 and ultimately the Rift), the Vive from HTC,
and the Samsung Gear VR from a partnership between Sam-
sung and Oculus. In this regard, 2016 has been a pivotal
year with the official commercial release of most of these
HMDs. In particular, in this era of new-generation HMDs,
March 28th, 2016 is an important date as it marks the official
release of the first-to-market Oculus Rift in the defining
category of consumer-grade computer-hooked HMDs. Next to
this category of high-end VR devices, are even more popular
(because cheaper and less computationally demanding) devices
that run on smartphones.

B. Virtual reality development platforms

Different kinds of software are available to create VR
applications. Developers can directly rely on the native soft-
ware development kits (SDKs) or take advantage of the many
capabilities offered by game engines and frameworks. Another
interesting avenue for VR development is offered by new web
browsers intended for VR [3].

Native software development kits (SDKs) which are device
drivers and software libraries provide direct interactions with
the operating system. Although it is possible to rely solely on
these SDKs, most developers will use game engines to handle
3D graphics, physics and, if applicable, game behaviors. These
frameworks often have strong cross-platform support, and
usually come with very helpful tools like level editors or
integrated development environments (IDEs). The best known
in this category are the Unity engine and the Unreal engine
(not only for VR development, but also for AR development,
2D, etc.). On the web side, Web browsers are arguably very
much in sync with new technologies for VR development.
Technologies like HTMLS5, WebGL, and JavaScript allow
developers to create cross-platform VR applications. Finally,
360 degree, stereoscopic video captured from the real world
(then possibly enhanced) can make for particularly realistic
experiences, even though they are not fully interactive in the
way that a 3D virtual environment can be.

In the next subsections, we summarily present key dominant
game engines.

1) Unity Game Engine: Unity is a multi-platform game
engine (smart-phone, Mac, PC, video game consoles and web)
developed by Unity Technologies. It is offered under a free
license and another professional paid one. It offers rapid
prototyping and a possibility to deploy developed applications
on different VR devices. It allows easy generation’> of VR
applications for most popular OS (including Windows, iOS,
Android), most major gaming consoles, and the web. In

2For simple projects, it is as easy as clicking on a VR checkbox

addition, it supports several 3D formats and various audio and
video resources. All this makes it one of the most popular en-
gines on the market. There are more than 250,000 subscribers
on the Youtube channel “Unity" who follow tutorials, expla-
nations, compilations of the best games and demonstrations
of performance and capabilities offered by the Unity game
engine. Another channel “Unity asset store” focuses on the
best assets® published and realized with Unity and has more
than one million subscribers.

2) Unreal Game Engine: Unreal is developed by Epic
Games (an American video game development studio). Cur-
rently it is free and in its fourth version. It is a multi-
platform game engine that contain programming guides (best
programming practices), demos and video tutorials, etc. The
Unreal application market exposes various paid applications
and free demos. To submit an application for sale in this
market repository, the Epic Games team requires a certain level
of quality and provides a detailed report of the process in a
submission guide. In addition, it requires paying 5% of the
gain for each application sale.

C. Software quality metrics

Mordal-Manet et al. [4] proposes to measure variables such
as project size, complexity, cohesion, coupling and inheritance,
to understand the quality characteristics of software projects.
To measure these attributes, one needs to measure metrics
associated with each attribute. There are two types of metrics
to consider: primitive metrics related to the basic properties
of the source code (such as the number of lines of code, the
cyclomatic complexity, and so on) and design metrics that
determine whether good practices and design principles were
followed during the development of the project, e.g., whether
a low coupling and a high cohesion is maintained.

To estimate a software quality attribute, for example the
code reusability, which is defined as “the ability of software
to integrate new implementations" [ISO 9126] [5], we should
compute a set of metrics such as the number of Source Lines
Of Code (SLOC), the Cyclomatic Complexity (CC), the num-
ber of methods per class and the Depth of the Inheritance Tree
(DIT), which are necessary to estimate the code reusability [4].
Since VR applications are not all developed using object-
oriented programming languages, we also use the number of
functions to capture projects size.

Several tools have been created to automate the com-
putation of metrics [6], [7], [8]. Among these tools, we
selected Understand [9] which is a multi-platform tool for
code analysis that support a large number of programming
languages, including C, C++, C#, Java, Python, Objective C,
PHP, and JavaScript. Using this tool, we are able to measure
size, complexity, coupling, cohesion, and inheritance. Also,
the level of documentation and comprehensibility of the code
can be assessed by measuring the number of comment lines.
In summary, the metrics and attributes that are considered in

3An asset file is a file containing textures, shaders, and other related data
for 3D models. These files are created when a new game project is compiled.

this study are the metrics proposed by Ammar et al. [10],
with consideration to the limits of the used tool. Table I
summarizes the relation between the quality attributes and the
metrics collected using the software Understand to evaluate
the quality of VR projects. We provide the definition of each
of our studied metrics below.
1) Primary metrics :
a) Size,

i) Number of Lines Of Code (LOC),

ii) Number of Classes,

iii) Number of Methods,

iv) Number of Functions,

v) Number of Code files,

b) Complexity,

i) Cyclomatic Complexity (CC),
2) Design Metrics :
a) Inheritance,

i) Depth of Inheritance Tree (DIT),
ii) Number Of Children in Tree (NOC),

b) Coupling,
i) Number of coupled classes,
¢) Cohesion,
i) Percentage of lack of cohesion (LCOM),
3) Documentation and comprehensibility :

a) Number of comments lines,

III. STUDY DESIGN

In this paper, we perform an exploratory study on open
source VR projects from GitHub, which is the largest code
repository hosting site in the world [2], in order to answer our
research questions.

Additionally, we complement the study with an analysis of
VR-related Stack Overflow questions, leading to

RQ4: As mined from StackOverflow, what are the main
topics of interest for VR developers?

A. GitHub Analysis

Our main focus is on the exploration, from both project and
source code perspectives, of virtual reality projects. To do this,
we follow the systematic approach recommended by Basili et
al. [11].

In the first step, we filtered and collected VR open source
projects that matched the keywords “Virtual Reality" and
“VR" using the search tool of GitHub. To separate the signal
(repositories containing engineered software projects) from the
noise (e.g., home work assignments) on GitHub repositories,
we adopted a stargazers-based classification [12], and only
considered projects with GitHub szars greater or equal to three
(stars :>= 3). In short, we used the threshold stars >= 3
to filter out toy projects, following Munaiah’s ef al.[12] obser-
vation that only a very small percentage (=~ 11%) of scored
GitHub repositories contain engineered software projects.

Table T
RELATIONSHIP BETWEEN QUALITY ATTRIBUTES AND METRICS

Property/Attribute | Size | Coupling | Cohesion | Inheritance | Complexity
Flexibility X
Maintainability X X X X
Comprehensibility X X X
Reusability X X X X
Filtari.nv - -
RQ1
= Geathing — ——
G1L1:L1.t1> repmﬂcmes .| GithubVE apps
repositoriss It - | Profiles
Categorizad into -
"
Download RQ2
sl
Sovrcacodz of | oo . -
VR apps Software analysis Quahry
metrics
RQ2
| 5| R
e | ™ [aE = s [
Stackrerflow | Quastions Getting +| VE questions
Queastions | Tt - | profiles

Figure 1.

As a second criterion, we considered the status of the
projects i.e., whether they are active or not after March
28th, 2016, which is the release date of the first commercial
version of a computer-hooked HMD. Projects without new
submissions after March 28th, 2016 were removed®.

After these filters (stars :>= 3 & pushed :>= 2016 —
03 — 28), we analyzed the projects’ description as expressed
in their “README.md” files to keep only actual VR applica-
tions. We eliminated redundancies in the lists of projects ob-
tained using the two queries (“Virtual Reality” & stars :>=
3& pushed :>= 2016 — 03 — 28 and “V R” & stars :>=
3 & pushed :>= 2016 — 03 — 28). Finally, we categorized the
projects as VR applications, frameworks, tutorials or out of
scope. As a result of this process, we obtained a final sample
of 320 VR applications.

The analysis of the obtained sample of projects was con-
ducted as follows. First, we sought some insights about the
GitHub profile of each project and collected for each project,
its number of watchers, stars, forks, issues, pull requests, com-
mits, branches, releases, and contributors. A second analysis
was focused on determining which game engines were the

4Note that we ended our collection of VR projects on September 30th,
2017

Overview of our research approach.

most used. A third analysis was conducted at the file level: it
consisted in collecting data on files’ type (source code, images,
audio, video, and others) and aimed at revealing the most used
programming languages in VR applications. The final analysis
on Github VR projects focused on evaluating the quality of
VR projects through the metrics discussed in Section II and
obtained using the Scitools Understanding® analysis tool.

B. Stack Overflow study

To understand issues faced by VR developers, we queried
the Question and Answer (Q&A) website Stack Overflow
(S80O), seeking questions and answers exchanged by developers
working on VR applications. We selected this Website because
it is the dominant technical Q&A platform for software
developers, with 49.2 million monthly unique visitors® (as of
October 2017). We queried SO for questions that are tagged
“VR” and “virtual-reality” using the search engine of SO. As
additional filtering criteria, we only retained questions that
have at least one answer and a score of at least one. This
filtering is important to ensure that the retrieved questions are
relevant for the VR community. The first query (“virtual —

5 Available on https:/scitools.com
Shttps://www.quantcast.com/stackoverflow.com\#/

reality & answers :>= 1& score :>= 1") returned 193
questions while the second query (“vr& answers :>=
1& score :>= 1") gave us 1024 questions. Following the
same filtering date criteria for GitHub, we took only in con-
sideration questions asked on SO between March 28th, 2016
and September 30th, 2017. Finally, we manually analyzed the
descriptions of all the obtained questions and eliminated the
questions that were not related to virtual reality’. We collected
the following SO properties for each question in our final
data set: associated tags, score, number of views, number of
answers, date of the question.

IV. RESULTS

In this section, we report and discuss the results of our
study; answering our four research questions.

A. RQI: What is the profile of VR projects on Github?

We computed the metrics described in Section II-C on the
320 VR projects downloaded from GitHub. For each project,
we also extracted: (1) the project’s proprieties as exposed on
Github (number of stars, commits, forks, pull requests, issues,
releases, contributors, watchers, and branches); and the (2)
distribution of files by type (as discussed in Section III-A).

Table IT
NUMBER OF VR PROJECTS PER PROPERTY OF GITHUB. READING
EXAMPLE: 57 ANALYSED PROJECTS HAD EXACTLY | FORK (LINE
"FORKS", COLUMN "1").

tterval 1o |1] jia0) | 1100y | >100
Property
Forks 80 57 139 43 1
Pull request 291 21 7 1
Issues 212 46 43 19
Commits 0 4 104 159 53
Releases 260 18 31 11 0
Branches 0 | 201 110 9 0
Stars 0 0 184 124 12
watchers 5 57 197 59 2
Contributors 0 | 189 128 3 0

Table II summarizes the results about GitHub properties.
Overall, we can conclude that in VR projects:

1) Projects are mostly developed individually: 59% of
projects have only one contributor. Interestingly, com-
pared with the numbers (67-72%) reported in [2], this
would suggest that VR projects on Github are actually
slightly more collaborative than the average Github
project.

2) Pull requests, which are arguably the preferred way to
submit contributions to a Github project, are quite rare:
only 9% of the projects. This is still three times more

7A majority of questions with the vr tag were unsurprisingly not about
virtual reality

160
140
120
100

=
L
=4

126

45

Figure 2. Programming languages used in VR projects (JavaScript is the top
language: 137 projects)

than the roughly 3% reported overall for Github projects
in [2].

3) Most projects are immature : 81% of VR projects have
no release.

4) Projects are developed mostly in one branch: 63% of
projects have a single branch.

5) The most common commits range is between 11 and
100 commits (signaling a low-to-moderate development
intensity): about 50% of projects hold a number of
commits in that interval.

A second layer of our analysis of VR projects on GitHub
focuses on the kind of files (source code, asset, image, audio,
video or others) contained in the projects. We found that (1)
VR projects contain 15% of source code files; (2) 7% of files
are images; (3) 2% of files are assets; (4) 2% of files are audio
or video, and (5) 74% are others such as JSon files, XML
configuration files, HTML files, shader and texture files, etc.

Overall, our results show that most VR projects
hosted on GitHub are developed by lone developers
working in a single branch of development. A number
of other observations, such as the rarity of Pull
Requests and issue filing, may stem from that fact. The
projects have a small number of releases, commits,
watchers and forks. We found only three projects with
more than 10 contributors.)

B. RQ2: What are the most popular languages and game
engines used in VR projects?

We analysed the number of projects by programming lan-
guage. Our results, presented in Figure 2 show that JavaScript
and C# are the most popular languages for VR development
(82% of projects). Javascript is used in 43% (137/320) of
projects, followed by C# in 39% (126/320) of projects. It
should be noted that both languages can be used in Unity.
In particular, C# is the main language of Unity users.

Finally, we analysed the projects to identify the number of
projects that use the two popular game engines (Unity and

Unreal). We found that 33% of projects use Unity and only
3% use Unreal.

Our results show that the most popular languages are
JavaScript and C#, and Unity is the most used game
engine during VR application development.

C. RQ3: What is the quality of the projects from a perspec-
tive of software metrics?

To answer this research question, we resorted to analyzing
software metrics from seven perspectives (size, complexity,
inheritance, coupling, cohesion, comprehension) in order to get
some insights about the quality of VR projects — at least from
a source code point of view. Using the Understand software
static analysis tool, we were able to analyze 297 projects out
of 320; 23 of the 320 projects could not be analyzed because
they were developed using programing languages that are not
supported by the tool. We summarize our key findings below.

1) Project size: To evaluate VR projects’ size on GitHub,
we computed the Source Lines Of Code (SLOC) metric. In
order to classify the project sizes, we used the classification
proposed by Boehm [13] which categorizes a size of KLOCs
(Thousand Lines Of Code) as small, intermediate, medium,
wide and very wide. Based on this categorization, our intervals
will be expressed in KLOC as follows :

e Small from O to 2

o Intermediate from 2 to 8

o Medium of 8 to 32

o Wide from 32 to 128

e Very wide from 128 to 512

o Extremely wide if it exceeds 512

Results on Table III show that 27% (79/297) of projects
are small projects that have less than 2 KLOC. 15% (44/297)
of projects have an intermediate size of SLOC. A significant
number of projects are medium to wide sized projects, i.e.,
20% of projects are of a medium size, 23% are of wide size,
and 13% of projects are of very wide size. Only six projects
are considered as extremely wide.

Table 11T

OVERVIEW OF TSLOC INTERVAL AND VR PROJECT SIZES
Categorisation Interval of TSLOC | Number of projects
Small [0..2] 79
Intermediate 12..8] 44
Medium 18..32] 60
Wide 132..128] 70
Very wide 1128..512] 38
Extremely wide |]128..512] 6

Another approach to measure the size of VR projects is
to count the number of classes, methods and functions per
project. Table IV summarises the number of classes, methods
and functions in the studied projects.

Table IV
NUMBER OF PROJECTS PER INTERVAL OF FUNCTIONS, METHODS AND
CLASSES
Interval/Number | Number of | Number of | Number of
projects by | projects by | projects by
interval of | interval of | interval of
classes method function
[0...10] 111 4 111
[11...100] 94 85 45
[101..500] 62 47 41
[501...1000] 15 22 36
[1001...10000] 15 123 61
>10000 0 16 3

Analyzing our results, we observe that most of the projects
are small: (1) 37% (111/297) of projects have ten or less
classes; (2) 35% have 100 or less methods; (3) only 5% of the
projects present more than 10 000 functions and they generally
followed the Functional development paradigm in JavaScript.

4 I
Our results on the size of VR projects corroborate

our previous observation that the majority of VR
projects on GitHub are small to medium projects.
Furthermore, bigger projects do not use the Object
Oriented paradigm. They adopt Procedural or Func-
tional paradigms in JavaScript.
o 4
2) Project complexity: We computed the McCabe’s Cyclo-
matic Complexity (CC) [14] in order to assess the complexity
of VR projects. Although not an absolute requisite, a CC
below 10 is generally recommended. We analyse the extracted
complexity metrics through that lens. Table V shows the distri-
bution of projects with CC>10. We found that 30% (91/297)
of projects do not have a method with CC>10. In total,
projects that have at least 11 methods with CC>10 account
for 47% (139/297). These results would suggest that a slight
majority of the VR projects exhibit acceptable complexity.

Table V
NUMBER OF PROJECTS PER METHOD INTERVAL WITH CC>10

Interval / Number of methods .
Number of projects
or function with CC>10

0 91
[1..10] 67

1 10..100] 100
] 100..1000] 39

3) Projects inheritance: In this study, inheritance is mea-
sured by two metrics: the Number Of Children in Tree (NOC)
and the Depth of Inheritance Tree (DIT).

For NOC, we found that 43% of projects exceeded the limit
of 10 children [15] in a class (misuse of sub-classifications),

with numbers of children ranging from 11 to 1705 (Figure 3)8.
For the DIT, which indicates the balance between reusability
and complexity of the class, we found that most of VR projects
have a DIT less or equal to 4 (respect of encapsulation). Only
5 projects exceed this number with 8 as a maximum value.

150
92

100

0 40

m_ :
0 T T T T
™
S t@\ J\FQ
&

@\ QQQ
"‘9 -;rr\’

\..\'Q

Figure 3.
Interval

Number of VR Projects per Number Of Children in Tree (NOC)

Table VI
NUMBER OF PROJECTS PER MAXIMUM COUPLED CLASSES(MCC) IN A
PROJECT INTERVAL

Interval / Number of .
Number of projects
maximum coupled classes

0 118
[1..10] 49

1 10..100] 130
>100 0

4) Projects coupling: Coupling metrics capture the degree
of interdependence between the classes/modules of a project.
It is desirable to maintain a low coupling in a project since a
high level of coupling is reported to have a negative impact
on software maintenance [16]. Results returned by Understand
about the Maximal Coupled Classes (MCC) per project (Table
VI) indicate that approximately 40% (118/297) of VR projects
do not have coupled classes. Sixteen% of the VR projects
exhibit a reasonable maximum coupling, ranging from 1 to
10 but another 44% presents potentially problematic levels of
coupling (up to a MCC of 89).

5) Projects Cohesion: Cohesion refers to the degree to
which the elements of a module belong together [17]. The
level of cohesion of a class is considered problematic if the
class has more than 10 methods with a LCOM greater than
80% and possess at least 10 variables. In our dataset we found
95 projects (31% of projects) having at least one problematic
class. The worst project, with respect to this metric, has 11
classes with problematic levels of cohesion.

6) Projects comprehension: The metric chosen to measure
the level of code documentation is the number of comment
lines. Table VII shows that 74% (219/297) of VR projects have

81n the figure, we can see that there are 40 projects with NOC between 10
and 100, 2 projects with NOC between 101 and 1000, and one project with
NOC>1000 (exact number being 1705).

less than 20% comments, which is a commonly recommended
threshold.

Table VII
NUMBER OF VR PROJECTS PER PERCENTAGE OF COMMENTS LINES

Percentage of comments | Number of projects
[0...20%] 219
[20%...40%] 60
>40% 18

Most of the current GitHub VR projects are small to
medium projects. They can be somewhat complex and
do not always have enough comments to ensure good
comprehensibility. However, most of the projects make
a proper use of inheritance and have a good level
of cohesion. More than half of the projects have a
reasonable level of coupling. Hence, we conclude that
current VR projects on GitHub are of decent quality.

D. RQ4: As mined from StackOverflow, what are the main
topics of interest for VR developers?

We identified a total of 297 VR-related questions on Stack
Overflow. For each of these questions, we collected data
pertaining to the date on which the question was asked, the
question score, its number of views and answers, and its
associated tags. In this research question, we are interested
in understanding issues faced by VR developers. Hence, we
first grouped the questions according to their tag. Tags are
used in SO to capture the topics of questions and answers.

1) Dominant Tags: We computed the number of questions
in each tag category and found the number one tag to be
unity (122 mentions), followed by android (83 mentions)
and javascript (76 mentions). These are followed by Google-
related tags such as google-cardboard (68) and google-vr
(64). There is a significant co-occurrence between the google-
related tags google-cardboard and google-vr, making issues
about google-related technologies the dominating theme about
VR developers, i.e., 156 questions in total. VR developers
also asked multiple questions about JavaScript frameworks
like aframe (36) and webvr (34) and the language c# (33).
Additional details on dominant tags for VR questions on SO
can be found in Table VIII

Another way to look at the collected data is to regroup
tags according to their types. We considered the following
categories: frameworks, languages, operating systems and plat-
forms, HMDs, technology companies. Tags that did not fit in
any category, typically terms related to aspects that are less
focused on software engineering, were labeled as “Others”.
Table IX summarizes our findings. We can observe that unity,
javascript, android, google-cardboard and google largely dom-
inate their respective categories. On frameworks, it should be
noted that javascript-based frameworks are collectively almost
as important as unity; unreal is barely mentioned, with only 3
questions with that tag. Company-wise, Google is a dominant

Table VIII
DOMINANT TAGS IN VR-RELATED QUESTIONS ON SO — SORTED BY THE
NUMBER OF MENTIONS

Tag Occurrences | Score | Views
unity 122 208 | 61,682
android 83 178 | 34,015
JavaScript 76 135 | 28,428
cardboard 68 117 | 36,878
google-vr 64 143 | 38,774
aframe 36 53 10,010
webvr 34 69 18,041
c# 33 54 | 19,227
oculus 27 45 8,105
ios 23 36 6,898
react 21 52 3,801
gear-vr 15 25 4,884
three.js 14 20 4,165
daydream 13 22 3,974
video 12 18 5,348
vive 10 18 3,613

player, with Android and Cardboard being clearly relevant to
VR developers. Apple technologies are taking a back seat
with ios and objective-c clearly behind in their respective
categories.

2) Trend Analysis: To further understand the gathered data,
we grouped it per quarter, starting from April 2016° and
ending on September 30th, 2017. We then study the results
obtained on the 6 quarters: Q1 grouping the first three months
(April to June 2016) and Q6 the last three months (August to
September 2017).

First, we looked at the numbers, just on the basis of the
number of questions asked, their cumulative score and views.
Table X presents data about VR-related questions on SO
through quarters 1 to 6. A first observation is that the last
quarter (Q6) presents significantly lower numbers. Whether
this previews declining interest for VR or signals maturing
VR technologies (with more documentation and tutorials) is
up to debate. In any case, we considered that last quarter as
an outlier and focused our analysis on quarters 1 to 5. As a
general observation for those quarters, except for views (which
were at their peak just after the launch of the new generation
PC-hooked HMDs), there is a relative stability in the numbers.

Next, we considered individual tags through Quarters 1
to 5 in a bid to determine which tags are trending up and
which ones are trending down. Table XI presents data about
these trends for tags with enough mentions throughout the
quarters. In the framework/engine category, questions on unity
and google-vr appear relatively stable. Trending up are webvr
(from 3 at QI to 12 at Q5) and react, which relevance for

9including results from March 28, 2016

VR shot up to 15 mentions in Q5 (from only 3 questions
throughout Q1 to Q4), with the release of the Facebook
and Oculus-backed framework React-VR. Also trending up
is three.js (from an average of 2 questions in quarters 1-4 to
7 in Q5).

Language wise, JavaScript definitely trends up from 5 in
QI to 35 in Q5 while C# appears to be trending down. As
for the other languages, there is not enough data to speculate
either way. On operating systems, Android appears slightly
down while iOS is stable. Device-wise, the cardboard appears
somewhat down from its peak in Q1 (22) to only 12 in QS5,
possibly due to the emergence of the Daydream, the newer
Google VR device. Other devices like the Gear VR and the
HTC Vive appear stable. Finally, company-wise, Google is
consistently the biggest player, Oculus appears slightly down
and Apple appears stable.

V. DISCUSSIONS

To the best of our knowledge, our report is one of the first
to analyse VR projects in a Software Engineering perspective.
Our results show that most open source VR projects today
are developed by lone individuals. Although code sharing and
issues’ resolutions are usually done nowadays through pull
requests (in order to have an agreement before integrating
new pieces of code), this practice is mostly absent in VR
projects, We found that only 29 projects contain from 1 to 14
pull requests. A large number of VR projects have a number
of forks that vary between 1 and 10, which could be a hint
that very few code reuse activities occur during VR project
developments. JavaScript and, to a lesser extent, C# are the
dominant languages for the development of VR applications.

VR open source developers have a strong preference for the
game engine Unity over Unreal. This dominance is explained
by different reasons. First, Unity offers the possibility of cod-
ing, among others, in C# and JavaScript languages. Moreover,
previous analysis of the programming languages used in the
selected VR applications show that programmers have more
interest in coding in JavaScript followed by the C# language,
while Unreal Engine 4 uses only the C++ language. Addition-
ally, Unity’s asset store appears to be broader and richer than
Unreal store. It provides developers with functionalities from
simple and intuitive animation, up to providing GUI generators
and motion capture software .

The metrics of Understand analysis tool confirm that the
majority of projects have small to medium size according
to Lines of codes (only 38% of projects are considered
as wide to extremely wide). Cyclomatic complexity metrics
show that close to half of the VR projects have at least one
complex method. However, the levels of coupling and cohesion
are reasonable. Of concern is the relatively weak level of
commenting, with 74% of projects presenting at most 20%
of comments in their souurce code.

The complementary study on Stack Overflow reinforces
the above observations. On game engines, Unity is indeed a
major topic in VR while Unreal is much less asked about. As
for languages, Javascript is the dominant and growing topic

Table IX
DOMINANT TAGS IN SO, BY CATEGORY AND SORTED BY DESCENDING ORDER OF MENTIONS

Frameworks Languages OS/Platform Devices Company Others

unity (122) javascript (76) | android (83) cardboard (68) | google (156) | video (12)
google-vr (64) | c# (33) ios (23) gear-vr (15) oculus (27) panorama (8)
aframe (36) java (7) chrome (5) daydream (13) | apple (25) camera (6)
webvr (34) objective-c (4) | windows (3)[*] | vive (10) htc (10) -

react (21) swift (3) - - - -

three.js (14) - -

Table X
STACK OVERFLOW - TRENDS FOR VR RELATED QUESTIONS
Ql Q2 Q3 Q4 Q5 | Q6 | Total
Mentions 55 54 49 52 56 29 295
Score 101 106 87 106 103 40 543
Views 50K | 24K | 22K | 21K | 14K | 2K | 132K
Table XI

STACK OVERFLOW - VR RELATED TAGS TRENDS (MENTIONS)

Ql | Q2 | Q3 | Q4 | Q5
google 37 30 24 27 31
unity 23 18 | 23 | 27 | 23
android 21 17 13 13 15
javascript 5 12 10 11 35
cardboard | 22 14 11 7 12
google-vr 12 13 12 17 10
aframe 1 10 6 5 14
webvr 3 5 7 6 12
c# 5 3 5 11 6
oculus 8 6 3 4
apple 6 5 3 5 4
javascript 2 3 4 2 11
ios 5 4 3 5 4
react 1 1 0 1 15
gear-vr 3 3 2 4 2
three.js 0 2 2 3 7
daydream 0 0 6 3 4
vive 0 0 2 4 4

followed by C#, which is a distant second. Other languages are
barely mentioned. The SO study provides additional insights
as to the dominant target OS (android) and device (cardboard),
both pointing to a clear dominance of Google technologies.

VI. LIMITATIONS

The main limitation of this work relates to the fact that data
used in the reported exploratory study was gathered from only
GitHub. Open source projects on GitHub represent a partial

sample of the VR project population. In fact, commercial and
closed source VR projects may follow different development
practices than open source VR projects. Unfortunately they
are intrinsically inaccessible for researching at the moment.
Furthermore, selected criteria reduced the sample to only a
fraction of the existing projects on Github. New projects that
were not stargazed yet were ignored. These limitations are
somewhat mitigated by the addition of a complementary study
on Stack Overflow. However, that study also makes use of
filtering criteria that could skew its results as questions with a
score of 0 or no answers may contain more than pure noise.

There is an internal validity threat related to our use of the
Understand static analysis tool to calculate metrics and assess
code quality. This tool does not support all programming
languages and some relevant quality metrics are not provided.
More analysis should be conducted with other tools.

Nevertheless, we believe that the results reported in this pa-
per will contribute to raise the awareness of the SE community
about the needs of VR software developers. Further analysis
with other open and close source projects are necessary to
deepen our understanding of the state of practice of VR appli-
cations development. We provide with this report a repository
10 containing the raw data used for this study.

VII. RELATED WORK

In this section, we discuss related work that investigated
Virtual Reality projects as well as works conducted on Stack
Overflow and GitHub.

A. Virtual Reality

Despite the fact that Virtual Reality has been a research
topic for decades, to the best of our knowledge, there is
only one other preliminary study that investigated the software
engineering aspects on VR software development. Rodriguez
and Wang [18] proposed an empirical study of VR projects
from Unity List, a repository of projects built using Unity 3D.
They found that there is a growing number of VR projects,
with a pace picking up significantly first on Quarter 4 of
2015, and then from Quarter 2 of 2016 (which is the starting
period of our study). pic the number of open source VR
software projects are steadily growing. Other findings are that
some large projects are starting to emerge while games and

10https://github.com/empirical VR/GITSO1

development on Oculus seemed dominant. Differently from
[18], our study is not limited to Unity projects and also
integrates a study of StackOverflow questions.

Similarly to [18], we propose a study aiming to high-
light software engineering issues relevant, not neccesarily
exclusively, for VR projects. In this perspective, three other
studies are worth presenting. Pausch et al[19] presented a
detailed discussion about VR project development (‘“Alladin”),
discussing challenges and providing suggestions to software
engineers, producers, and authors. Capilla and Martinez [20]
examined the use of architectural patterns to improve the
development of complex VR systems. They also proposed new
patterns proper to the VR domain. Finally, Elliott et al.[21]
described a vision of affordances offered by VR, exploring
some benefits of VR to support software engineering activities
and discussing future work, open questions, and the challenges
of VR.

B. Stack Overflow and GitHub

Q&A websites like Stack Overflow provide users with a
platform where they can exchange knowledge and expertise.
Since the introduction of Stack Overflow in 2008, a plethora
of studies have examined knowledge sharing activities on this
Q&A website, designed for developers. Anderson et al. [22]
proposed models to predict the long-term value of Stack
Overflow questions and answers. They also proposed models
to determine whether a Stack Overflow question requires a
better answer. Barua et al. [23] explored topics and trends
on Stack Overflow and observed a significant growth of the
share of questions related to mobile application development.
They also observed a decline of questions regarding the .NET
framework. Vasilescu et al. [24] investigated the interplay
between Stack Overflow and the repository hosting website,
GitHub. They observed that active Github committers ask
fewer questions on Stack Overflow than other users. They also
observed that questions on Stack Overflow are often associated
to GitHub repositories.

Gousios et al. [25] explored the mechanisms of pull-based
software development in GitHub and report that the pull
request model offers a fast turnaround, quick code integration
times, and more opportunities for community engagement (for
example to the code review process). However, the results of
our analysis in this paper show that VR developers on GitHub
do not take advantage of these opportunities. They do not
follow the pull request model.

VIII. CONCLUSION

In this work, we analyzed 320 Virtual Reality open source
projects in a Software Engineering perspective. Our main
contribution is unveiling the state of practice of open source
VR application development, using Github’s project profile
attributes and software quality metrics. Additionally, we tried
to reveal topics of interest of VR developers by analyzing
Stack Overflow VR questions.

Our results show that most VR projects are developed by
lone developers working in a single branch of development,

10

and almost without pull request. VR projects on GitHub have
a small number of releases, commits, watchers and forks. It is
remarkable that only three projects have more than 10 contrib-
utors. Moreover, we observe that the most popular languages
are JavaScript and C#, and Unity is the most used game
engine during VR applications developments. Nevertheless,
almost all the studied VR projects comply with recommended
levels of inheritance and cohesion. More than half of the
projects have a reasonable level of coupling between classes.

Our work shows that despite its potential to improve crit-
ical domains such as medicine, engineering, education and
entertainment, the Virtual Reality Software Engineering is not
yet matured. Modern engines (such as Unity 3D or Unreal)
provide some directions and guidelines, but future works have
to be performed to understand the true needs and requirements
of VR software engineers. In the future, we plan to continue
analyzing VR projects as well as Augmented Reality (AR)
projects to deepen our understanding of developers’ needs and
enable the development of tools and techniques to assist them.
In particular, there is a need for specific tools that can analyse
the quality of VR applications, to verify if best practices of
VR development are established and enforced.

REFERENCES
(1]
(2]

“Dictionary.com unabridged,” Oct 2017. [Online]. Available: http:
/Iwww.dictionary.com/browse/virtual-reality

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 92-101.

T. Parisi, Learning Virtual Reality: Developing Immersive Experiences
and Applications For Desktop, Web and Mobile, 2nd ed. Gravenstein
Highway North, Sebastopol, CA: O’Reilly Media, Inc., 2016.

K. Mordal-Manet, J. Laval, and S. Ducasse, “Modeles de mesure
de la qualité des logiciels,” in Evolution et rénovation des systémes
logiciels, Hermes, Ed. Hermes, Nov. 2011. [Online]. Available:
https://hal.inria.fr/hal-00639279

“Software engineering - product quality, ISO/IEC 9126-1,” International
Organization for Standardization, Tech. Rep., 2001.

B. Baldassari, “Squore: a new approach to software project assessment.”
in International Conference on Software & Systems Engineering and
their Applications, 2013.

P. Cousot, “The role of abstract interpretation in formal methods,”
in Fifth IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2007), Sept 2007, pp. 135-140.

N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding
tools for java,” in Software Reliability Engineering, 2004. ISSRE 2004.
15th International Symposium on. 1EEE, 2004, pp. 245-256.
SciTools, “Software understand,” https://scitools.com/, 2017.

S. R. Ragab and H. H. Ammar, “Object oriented design metrics and
tools a survey,” in Informatics and Systems (INFOS), 2010 The 7th
International Conference on. 1EEE, 2010, pp. 1-7.

V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in
software engineering,” IEEE Transactions on Software Engineering, vol.
SE-12, no. 7, pp. 733-743, July 1986.

N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub
for engineered software projects,” Empirical Software Engineering, pp.
1-35, 2017.

B. W. Boehm, “Software engineering economics,” IEEE Transactions
on Software Engineering, vol. SE-10, no. 1, pp. 4-21, Jan 1984.

T. J. McCabe, “A complexity measure,” I[EEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308-320, Dec 1976.

C. Metzner, L. Cortez, and D. Chacin, “Using a blackboard architecture
in a web application.” Issues in Informing Science & Information
Technology, vol. 2, 2005.

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(1]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

A. B. Binkley and S. R. Schach, “Validation of the coupling
dependency metric as a predictor of run-time failures and maintenance
measures,” in Proceedings of the 20th International Conference
on Software Engineering, ser. ICSE '98. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 452-455. [Online]. Available:
http://dl.acm.org/citation.cfm?id=302163.302212

E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of
a Discipline of Computer Program and Systems Design, 1st ed. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1979.

I. Rodriguez and X. Wang, “An empirical study of open source virtual
reality software projects,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2017,
Toronto, ON, Canada, November 9-10, 2017, 2017, pp. 474-475.
[Online]. Available: https://doi.org/10.1109/ESEM.2017.65

R. Pausch, J. Snoddy, R. Taylor, S. Watson, and E. Haseltine, “Disney’s
aladdin: First steps toward storytelling in virtual reality,” in Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’96. New York, NY, USA: ACM, 1996,
pp. 193-203.

R. Capilla and M. Martinez, Software Architectures for Designing
Virtual Reality Applications. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 135-147. [Online]. Available: https://doi.org/10.

11

[21]

[22]

(23]

[24]

[25]

1007/978-3-540-24769-2_10

A. Elliott, B. Peiris, and C. Parnin, “Virtual reality in software engi-
neering: Affordances, applications, and challenges,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2,
May 2015, pp. 547-550.

A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Discov-
ering value from community activity on focused question answering
sites: a case study of stack overflow,” in Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2012, pp. 850-858.

A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? An analysis of topics and trends in Stack Overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619-654, 2014.

B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in Proceedings of the International Conference on Social Com-
puting (SocialCom). 1EEE, 2013, pp. 188-195.

G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 345-355. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568260

