
An Empirical Study of the Fault-Proneness of
Clone Mutation and Clone Migration

Shuai Xie1, Foutse Khomh2, Ying Zou1
1 Department of Electrical and Computer Engineering, Queen’s University, Canada.

{shuai.xie, ying.zou}@queensu.ca
2 SWAT, École Polytechnique de Montréal, QC, Canada.

foutse.khomh@polymtl.ca

Abstract—When implementing new features into a software
system, developers may duplicate several lines of code to reuse
some existing code segments. This action creates code clones in
the software system. The literature has documented different
types of code clone (e.g., Type-1, Type-2, and Type-3). Once
created, code clones evolve as they are modified during both the
development and maintenance phases of the software system. The
evolution of code clones across the revisions of a software system
is known as a clone genealogy. Existing work has investigated
the fault-proneness of Type-1 and Type-2 clone genealogies. In
this study, we investigate clone genealogies containing Type-3
clones. We analyze three long-lived software systems APACHE-
ANT, ARGOUML, and JBOSS, which are all written in JAVA.
Using the NICAD clone detection tool, we build clone genealogies
and examine two evolutionary phenomena on clones: the mutation
of the type of a clone during the evolution of a system, and
the migration of clone segments across the repositories of a
software system. Results show that 1) mutation and migration
occur frequently in software systems; 2) the mutation of a clone
group to Type-2 or Type-3 clones increases the risk for faults; 3)
increasing the distance between code segments in a clone group
also increases the risk for faults.

Index Terms—Types of clones; clone genealogy; clone migra-
tion; fault-proneness.

I. INTRODUCTION

Two or more code segments are considered to be clones
when they have a high similarity or they are exactly the same.
A clone pair consists of two code segments that are clones. A
clone group is a set of cloned code segments, where any two of
them can form a clone pair. A clone group is also called clone
class. Two kinds of similarities are considered when defining
code clones: textual similarity and functional similarity. Two
code segments are considered similar when their program texts
are similar or when their functionalities are similar. Based on
the textual and functional similarity of code segments, clones
have been classified in four types [1]:

• Type-1: Identical code segments except for variations in
whitespace, layout and comments.

• Type-2: Syntactically identical segments except for varia-
tions in identifiers, literals, types, whitespace, layout and
comments.

• Type-3: Copied segments with further modifications such
as changed, added or removed statements, in addition to
variations in identifiers, literals, types, whitespace, layout
and comments.

• Type-4: Code segments that perform the same computa-
tion but that are implemented through different syntactic
variants.

Developers often introduce clones either through copy and
paste actions, or inadvertently. This code duplication is done
within or between files contained in the same directory or
across multiple directories. As developers duplicate code
segments across parts of the system, many cloning styles
emerge. For example, a developer may decide to restrict code
duplication within a directory, while another may duplicate
code across multiples directories. After a code duplication, the
resulting clones are often modified during subsequent revisions
of the system. A change to a clone group is considered
consistent when the similarity between the code segments is
preserved. Otherwise the change is inconsistent. Therefore,
a consistent change on a clone group preserves the clone
relationship between the code segments, but can change the
type of the clone group (e.g., a Type-1 clone group can become
a Type-2 clone group as the result of a consistent change). We
refer to this phenomenon as clone mutation.

The evolution of code clones across the revisions of a soft-
ware system is known as a clone genealogy. This genealogy
captures the creation, the propagation, and the evolution of
code clones by developers [2]. The location in the source
code directory structure of a clone segment can change during
software evolution. We refer to this phenomenon as clone
migration.

Many studies have investigated clone genealogies [3], [4].
However, very few have analyzed the impact of clone muta-
tion and clone migration on the fault-proneness of software
systems. In our study, we investigate the fault-proneness of
genealogies containing mutated or migrated clones. We want
to identify risky mutations and migrations of clones to warn
development teams and guide their review and testing efforts.

In this work, we analyze clone genealogies containing Type-
1, Type-2, and Type-3 clones, extracted from three large open
source software systems written in JAVA, i.e., ARGOUML,
APACHE-ANT, and JBOSS. We do not work on Type-4 clones
because to the best of our knowledge, no existing tool can suc-
cessfully detect Type-4 clones [5]. We address the following
three research questions:

RQ1: Do clone mutation and clone migration occur fre-
quently in software systems?

We observe that clone mutation and clone migration affect
respectively 31% and 48% of clone genealogies in JBOSS,
61% and 56% of clone genealogies in APACHE-ANT, and 40%
and 68% of clone genealogies in ARGOUML. Overall, the two
evolution phenomena affect an important number of clones and
are therefore worth investigating further.

RQ2: Are some clone mutations more fault-prone than
others?

We analyze whether clone groups migrated to certain types
of clones are more fault-prone than others. Results show that
clone genealogies predominated by Type-2 or Type-3 clones
are more prone to faults than clone genealogies predominated
by Type-1 clones. The mutation of Type-1 clones to Type-2
or Type-3 clones increases the risk for faults. However, when
all the clone types in a clone genealogy are equally frequent,
the risk for faults is reduced.

RQ3: Are some clone migrations more fault-prone than
others?

We use the metric proposed by Kamiya et al. [6] to measure
the distance between every two code segments (contained
in a clone group) and identify different migration patterns
followed by clone groups. We analyze whether clone groups
following certain migration patterns are more fault-prone than
others. Results show that in general, clone groups involved in
migration patterns characterized by an increase of the distance
between cloned code segments, are more fault-prone than
others. Globally, a modification of the location of cloned code
segments during the revisions of a software system increases
the risk for faults in the system.

The rest of this paper is organized as follows. Section II
discusses the related literatures on clone genealogies. Section
III discusses the phenomena of mutation and migration, as
well as our patterns of clone genealogies. Section IV explains
the design of our study. Section V analyzes the results of our
study. Section VI discusses threats to the validity of our study.
Finally, Section VII concludes the paper and outlines some
avenues for future research.

II. RELATED WORK

The first study on clone genealogies is proposed by Kim
et al. [2]. They analyze the clone groups, known as clone
classes, and define patterns of clone evolution. Using two JAVA
systems and the CCFINDER clone detection tool, they perform
a case study of the evolution of clones in software systems and
conclude that at least half of clones in a software system are
eliminated within eight check-ins after their creation. However,
they do not consider the types of the clones in their study.

Our work strives for a deeper understanding of the evolution
of different types of clones. We aim to identify risky clone
evolution patterns in order to help developers better focus their
maintenance efforts.

Barbour et al. [7] investigate late propagation genealogies
in two open source software systems. They identify eight
types of late propagation, which they classify in three groups
based on the propagation of changes among the cloned code

 Revision 1

Revision 3

Revision 2

Revision 4

g<1> g<1, 2, 3>

 Type-1 Type-2 Type-3

Figure 1. Example of Clone Genealogy

segments. They also analyze the fault-proneness of the eight
types of late propagation and conclude that they are not
equally risky. Only some late propagation genealogies require
monitoring; in particular the late propagations involving no
propagation are riskier than others. A late propagation clone
pair is considered as involving no propagation when the clone
pair is diverged and then reconciled without changes to the
other clone segment in the pair.

Aversano et al. [8], examine clone genealogies in two
software systems to understand how clones are maintained.
They select a specific stable snapshot of each of their studied
systems and trace the evolution of cloned codes over time.
They observe that about 18% of the clones exhibit a late
propagation behavior. Out of the 17 instances of bug fixes
in their data set, 7 occur during a late propagation. These
founding suggest that late propagation genealogies are risky.
In the same line, Thummalapenta et al. [3] perform a study
on four open source C and JAVA systems and found that late
propagation genealogies occur in a maximum of 16% of clone
genealogies. They observe that clones with a late propagation
genealogy are more prone to faults than others.

These studies are limited to Type-1 and Type-2 clones.
Our work investigates clone genealogies in general, including
genealogies containing Type-3 clones.

Zibran et al. [9], analyze the evolution of near-miss clones
(i.e., Type-2 and Type-3 clones) in software systems at release
level using the NICAD clone detection tool. They conclude
that the number of clones in a software system increases with
the number of methods, but there is no relationship between
clone density and the number of method. Our work also use the
NICAD clone detection tool to identify clones but at revision
level. We examine the likelihood of faults in clone genealogies
containing Type-1, Type-2, and Type-3 clones at revision level.

III. CLONE GENEALOGIES

Code clones are often modified during subsequent revisions
of a system. During these revisions, the type of a clone can
change, we refer to this phenomenon as clone mutation. For
example, a group of Type-1 clones can become Type-2 clones.
Figure 1 presents the example of two clone genealogies.

Revision 1 Revision 2 Revision 3

Directories

 A B

 Clone Segment

A

B F

EE
 D C A B D C

 C

D

 E

Figure 2. Example of Clone Migration

Table I
CATEGORIES OF CLONE GENEALOGIES

Categories List of clone types in the genealogy
G<1> Type-1
G<2> Type-2
G<3> Type-3
G<1, 2> Type-1, Type-2
G<1, 3> Type-1, Type-3
G<2, 3> Type-2, Type-3
G<1, 2, 3> Type-1, Type-2, Type-3

For the clone genealogies G<1>, the type of the clone is
remained unchanged during four consecutive revisions, while
for the genealogy G<1, 2, 3>, the type of the clones is
transitioned from Type-1 to Type-2 at revision 2, from Type-2
to Type-3 at revision 3, and then back to Type-1 at revision
4. Considering clone mutation, we organize clone genealogies
in seven categories as presented in Table I. Each category of
clone genealogy is characterized by the list of clone types
involved in the genealogy. For example, G<1, 2> represents
the category of clone genealogies where clones are transitioned
from Type-1 to Type-2 or reciprocally, during the evolution of
the system.

The location of a clone can also change during the revisions
of the system. We refer to this phenomenon as clone migration.
Figure 2 presents an example of clone migration. In this
example, the clone segment D is moved to a parent directory
at revision 2. D is still a clone of A, B, and C, but is
now contained into a file located in a different directory. At
revisions 3, the clone segments D and C are moved to newly
created directories and two new code segments E and F ,
similar to A, B, C, and D are added to the clone group.
To capture the migration of clones across the directories of a
software system, we compute the distance between every two
clone segments in the code directory structure as defined by
Kamiya et al. [6].

For two clone segments A and B belonging to the clone
group G, if f1 and f2 are the files containing A and B.
The distance between A and B, ddir(A,B) is ddir(f1, f2).
So ddir(A,B) is the value of the highest (first) level in the
smaller (shorter) one of two paths have a different folder. The
value of the level is counted in the smaller path, where the
first folder in the directory is considered as highest level. The
lowest level for a path of a file is 1 (e.g., If A and B are

Table II
CLONE MIGRATION PATTERNS.

Pattern
Description

Evolution trend of the
median distance of the
clone group size of the clone group

Constant Constant Constant

Wave Stable Constant
Increase, Decrease, Wave
Increase, or Wave
Decrease

Wave Constant
Constant, Increase,
Decrease, Wave Increase,
or Wave Decrease

High Density
Strong Up Increase Increase or Wave

Increase
Low Density
Strong Up Increase Constant, Decrease, or

Wave Decrease
High Density
Wave Up Wave Increase Increase or Wave

Increase
Low Density
Wave Up Wave Increase Constant, Decrease, or

Wave Decrease
High Density
Strong Down Decrease Decrease or Wave

Decrease
Low Density
Strong Down Decrease Constant, Increase or

Wave Increase
High Density
Wave Down Wave Decrease Decrease or Wave

Decrease
Low Density
Wave Down Wave Decrease Constant, Increase or

Wave Increase

included in the same file, ddir(A,B) = 0).
Based on the variation of the size of a clone group and the

variation of the median distance between the code segments in
the clone group, during the evolution of the software system,
we have identified 10 migration patterns described in Table II.

Each row in Table II presents the name of a migration
pattern and a description of the pattern in terms of variations
observed respectively on the median distance among all code
segments in a clone group and on the size of the clone group.
For example, the fourth row of Table II presents the High
Density Strong Up migration pattern which is observed when
the median distance among all the code segments in a clone
group and the number of code segments (i.e., the size) in a
clone group increases continuously during the evolution of a
software system.

At Row 5, the median distance between the code segments
of a clone group experiencing the Low Density Strong Up
migration pattern also increases continuously, while the size
of the clone group either decreases or remains constant. The

term “Wave” is used to describe a sequence of increase and
decrease. A “Wave Increase” (respectively Decrease) is a
sequence of increase and decrease where the final value is
greater (respectively lower) than the initial value.

IV. STUDY DESIGN

This section presents the design of our case study, which
aims to address the aforementioned three research questions.

The goal of this study is to assess the risk for faults
when mutating and migrating Type-1, Type-2, and Type-3
clones. The quality focus is the increase in maintenance effort
and cost due to the presence of these clones in software
systems. The perspective is that of researchers, interested in
studying the risk of faults caused by the mutation and the
migration of Type-1, Type-2, and Type-3 clones, during the
evolution of software systems. The results of this study can
also be of interest to developers, who perform development
or maintenance activities and need to take into account and
forecast their effort, and to testers, who need to know which
code segments are important to test.

A. Data Collection

In this study, we analyze the change history of three
software systems, ARGOUML, APACHE-ANT, and JBOSS
which have different sizes, are written in same programming
languages but belong to different domains. Table III presents
some descriptive statistics of the systems.

Table III
CHARACTERISTICS OF THE SYSTEMS

System # LOC # Revisions # Group Genealogies
JBoss 1.6M 109K 1.7K
Ant 2.3M 1.0M 23 K
ArgoUML 3.1M 18K 15.6K

JBOSS is a Java-based open source application server. It
was created in 1999 and is still developed as a division of
Red Hat. JBOSS has 1.7M LOC and about 109K revisions in
its software repository. We study code snapshots in the period
from April 2000 to December 2010.

APACHE-ANT is a JAVA library and a tool to compile,
assemble, test and run JAVA, C and C++ applications. The
project started in January 2000 and is still active. It is written
in JAVA and has over 2.3M LOC and 1.0M revisions in its
revision history. We study code snapshots from the period of
January 2000 to November 2010.

ARGOUML is a UML-modelling application for forward
and reverse engineering of source code. It provides a user
with a set of views and tools to model systems using UML
diagrams, to generate the corresponding code skeletons, and
to reverse-engineer diagrams from existing code. The project
started in January 1998 and is still active. It is written in
JAVA and has over 3.1M LOC and 18K revisions in its
software repository. We study code snapshots from the period
of January 1998 to November 2010. ARGOUML has been
used in previous studies on code clone evolution [7], [8].

B. Data Processing

Figure 3 shows an overview of our data processing ap-
proach. We follow the same steps as in our previous work
[4] to build clone genealogies. More specifically, we use the
tool J-REX [10] to mine the source code repository of each
JAVA subject system. The tool J-REX identifies the revisions
that modify each JAVA file and outputs a snapshot of the files
at those revisions. Revisions corresponding to fault fixes are
marked during the process. Next, we remove test files and
perform clone detections on the systems using the NICAD
clone detection tool. We map the obtained clones across the
revisions to create clone genealogies. Finally, we categorize
clone genealogies based on clone types as described in Section
III. The remainder of this section elaborates more on these
steps.

1) Mining Version Control Systems to Identify Faults: We
use J-REX to extract snapshots of our subject systems at each
revisions. For each snapshot, we flag all the methods that have
been modified since the last revision of the system. Again us-
ing J-REX, we analyze each commit message to identify fault
fixing commits. J-REX implements the heuristics proposed
by Mockus et al. [11] to identify fault fixing changes. The
accuracy of J-REX was reported to be 87% [7]. An empirical
study conducted with professional developers by Hassan [12]
reported that the ability of J-REX to recognize fault fixes is
comparable to that of a professional developer. The correlation
between J-REX and these professional developers was found
to be > 0.8.

2) Removing Test Files: For the same reasons as Barbour
et al. [7], we remove test files from our study. In fact, test
files are only used to test the functionalities of the system.
They are often copied and changed to test different execution
scenarios, and consequently contain many clones that are not
involved in normal executions of the system.

3) Detecting Clones: After removing the test files, we
process the snapshots of all remaining files to extract the
methods. We save each method snapshot in an individual file
and submit to the NICAD clone detection tool. Similar to Göde
et al. [13] and Barbour et al. [7], we exclude package and
import statements, which may produce clones that are not
interesting for developers. We also enforce hard boundaries
between methods to avoid clones beginning in one method
and ending in another; such clones are syntactically incorrect.

NICAD [14] is a flexible TXL-based hybrid language-
sensitive and text comparison software clone detection tool
capable of handling C, C-SHARP, JAVA, PYTHON and WSDL
languages. Roy et al. [14] report that NICAD can detect both
exact (i.e., Type-1) and near-miss (i.e., Type-2 and Type-3)
clones with high precision and recall. We select NICAD for
our study because it is fast and consume very little memory.
We need to parse all the revisions in one shot. Abstract syntax-
based tools, such as CLONEDR 1, require extensive memory
and computation powers. Hence, they have limitations when
scanning the entire history of a system.

1http://www.semdesigns.com/Products/Clone/

Software

Repositories

System

Snapshots

Bug Fix

Revisions

RQ2

RQ1

RQ3

Mine the SVN
 (J-Rex, C-Rex)

Remove Test
Files

Detect Clones
(NiCad)

Build Clone
Genealogy

Figure 3. Overview of the Analysis Process

Table IV
NICAD’S PARAMETERS

Clone Types Identifier Renaming Similarity Threshold
Type-1 None 100%
Type-2 Blind-rename 100%
Type-3 Blind-rename 80%

NICAD has been used in a previous study on clone ge-
nealogy (i.e., [9]). To allow our results to be comparable to
those of previous studies, we configure NICAD using the same
parameters as Zibran et al. [9]. Table IV shows the parameters
of NICAD for this study. We use the 80% as the similarity to
identify Type-3 clones, but we also check the results for other
similarities. We use the latest version 3.4 of NICAD. We post-
process the results of the clone detection to identify any clones
that co-exist within the same revision. This approach is similar
to [7], [15].

4) Building Clone Genealogies: Before building clone ge-
nealogies, we remove all unchanged clones. We also remove
clones where all code segments belong to the same method,
since these are invalid clones. After this cleaning step, we
map all the clones reported by NICAD across the revisions
of the system following our approach described in [7]. This
approach consists the following steps: First, we query the
output of J-REX to obtain the list of all the revisions where
the methods containing the clones were modified. For each
modified method, we identify if the contained clones were
changed. We repeat the entire process for each revision in the
revisions list, until all the revisions are visited.

C. Statistical Analysis Method

We use the Chi-Square test [16] to determine if there are
non-random associations between a particular type of clone
genealogy and the occurrence of future bugs. We use the 5%
level (i.e., p-value <0.05) to identify significant results of the
Chi-square test. We also compute odds ratio (OR) [16] which
indicates the likelihood of an event to occur (i.e., a fault fixing
change) in one sample (i.e., experimental group), to the odds q
of the event to occur in the other sample (i.e., control group):
OR = p/(1−p)

q/(1−q) . An OR = 1 indicates that the event is equally
likely in both samples; an OR > 1 shows that the event is
more likely in the experimental group while an OR < 1

indicates the opposite, i.e., the event is more likely in the
control group.

V. CASE STUDY RESULTS

This section presents and discusses the results of our re-
search questions. For each research question, we present the
motivation behind the question, the analysis approach and a
discussion of our findings.

RQ1: Do clone mutation and clone migration occur frequently
in software systems?

Motivation. This question is preliminary to RQ2 and RQ3.
It aims at providing quantitative evidences of the occurrence
of clone mutation and clone migration in our studied systems.
If these two phenomenons are very frequent, then they are
worth studying in more details in order to advise developers
and managers about potential side effects resulting from them.
Approach. We address this question by extracting clone
genealogies from our subject systems following the method
described in Section IV-B4, and classifying the genealogies
using the categories described in Table I (for mutation) and
Table II (for migration). For each category of clone genealogy,
we report the number of occurrences in the systems.

Table V
NUMBER OF CLONE GROUPS THAT UNDERWENT A MUTATION

Categories JBoss Apache-Ant ArgoUML
number % number % number %

G<1> 71 4.27 2565 11.17 251 1.61
G<2> 587 35.34 1994 8.68 5706 36.54
G<3> 492 29.62 4497 19.59 3348 21.44
G<1,2> 195 11.74 7189 31.31 5193 33.25
G<1, 3> 184 11.08 3632 15.82 471 3.02
G<2, 3> 120 7.22 1999 8.71 459 2.94
G<1, 2, 3> 12 0.72 1085 4.73 188 1.20
Total 1661 100 22961 100 15616 100

Findings. Table V lists the seven categories of clone genealo-
gies identified in Section III and the proportion of their occur-
rences for each of our subject systems. For each system and
for each category, we presents the number and the percentage
of genealogies in that category. Table VI presents for each of
the systems, the proportion of clone genealogies that followed
one of the ten migration patterns identified in Section III.

As summarized in Table V, 30.77% of clone genealogies
in JBOSS experienced a clone mutation (i.e., G<1, 2>, G<1,

Table VI
NUMBER OF CLONE GENEALOGIES THAT FOLLOWED ONE OF THE TEN MIGRATION PATTERNS

Migration patterns JBoss Apache-Ant ArgoUML
number % number % number %

Constant 865 52.08 10107 44.02 4921 31.51
Wave Stable 317 19.08 5401 23.52 5543 35.50
High Density Strong Up 44 2.65 220 0.96 28 0.18
Low Density Strong Up 182 10.96 66 0.29 57 0.37
High Density Wave Up 40 2.41 1751 7.63 2118 13.56
Low Density Wave Up 173 10.42 506 2.20 216 1.38
High Density Strong Down 4 0.24 1682 7.33 558 3.57
Low Density Strong Down 23 1.38 515 2.24 48 0.31
High Density Wave Down 0 0.00 1617 7.04 298 1.91
Low Density Wave Down 13 0.78 1096 4.77 1829 11.71
Total 1661 100 22961 100 15616 100

3>, G<2, 3>, or G<1, 2, 3>). In APACHE-ANT, 60.56%
of clone genealogies are concerned by a clone mutation, and
in ARGOUML, 40.41% of clone genealogies are concerned
by a mutation. The most frequent form of clone mutation is
between Type-1 and Type-2 clones (i.e., G<1, 2>).

For clone migration, during the evolution of JBOSS, the
directory of at least one clone segment was changed during
the evolution of 48% of the clone groups. In APACHE-ANT
and ARGOUML, respectively 56% and 68% of clone groups
experienced a migration. The most frequent migration pattern
is the Wave Stable pattern.

Overall, we conclude that mutation and migration are
two phenomena that affect an important number of
clones in software systems.

In the next two research questions, we examine these two
phenomena in more detail to determine if some types of
mutation and migration are more risky than others.

RQ2: Are some clone mutations more fault-prone than others?
Motivation. Development teams are interested in identifying
areas in their software systems that are more likely to contain
faults. Cloned code have been reported to contain more faults
than non-cloned code [3], [7], [8]. Because a software system
can contain up to 20% of cloned code [5], it can be very
expensive to monitor all cloned code in a software system.
Therefore, it will be interesting for development teams to
identify clones that are most at risk of faults, in order to
allocate their limited testing and review resources towards
these clones. A change that modifies the type of a clone group
(i.e., a mutation) could affect the ability of developers’ to
keep track of all related clone segments in the clone group.
Developers may also have trouble propagating changes to
all clone segments in the group consistently; resulting in
an increased risk for faults. In this research question we
examine the mutation of clones during software evolutions.
More precisely, we analyze the fault-proneness of the seven
categories of clone genealogies identified in Section III. We
aim to identify risky types of clone mutations that should be
highlighted for monitoring.
Approach. For each system, we build clone genealogies
following our method described in Section IV-B4. Next, we

classify clone genealogies based on the types of the clones
involved, as in Table I. For each system and each category,
we compute the number of fault-containing and fault-free
genealogies. We use the Chi-square test and compute Odds
ratio to test the following null hypothesis2: H02: Each category
of clone genealogy has the same proportion of clones that
experience a fault fix. When computing Odds ratios, we select
the category of clone genealogies containing only Type-1
clones (i.e., G<1>), as the control group. We form one
experimental group for each of the remaining categories. We
perform the Chi-square test using the 5% level (i.e., p-value
< 0.05).

Because our detection of Type-3 clones is done with a
selected similarity threshold of 80% (see Table IV). We
perform a sensitivity analysis to assess the impact of this
chosen threshold on the results. Precisely, we repeat the
detection of Type-3 clones using similarity threshold values of
respectively 95%, 90%, 85%, 75% and 70%. For each of these
similarity thresholds, we build clone genealogies, classify them
following the categorization described in Table I, and repeat
the testing of H02 using the Chi-square test and Odds ratios.
Findings. Table VII shows the results of the Chi-square test
and lists ORs for the seven categories of clone genealogies
described in Table I. For each system, the control group is
the category of clone genealogies containing Type-1 clones
only. The Chi-square test is statistically significant for JBOSS,
APACHE-ANT and ARGOUML. Figure 4 presents the results
of the sensitivity analysis. All the results presented on Figure 4
are statistically significant. Overall, we can reject H02.
Genealogies G<1>, G<2>, or G<3>: For JBOSS and AR-
GOUML, results show that clone genealogies containing only
Type-2 clones (i.e., G<2>) are more prone to faults than clone
genealogies containing either Type-1 or Type-3 clones only.
For APACHE-ANT, clone genealogies containing only Type-
3 clones (i.e., G<3>) are more fault-prone. All these results
are confirmed by the sensitivity analysis, with the exception
of ARGOUML, where genealogies G<3> containing Type-3
clones, detected with the 70% similarity threshold are more
fault-prone than G<2> genealogies
Genealogies G<1, 2>: ORs for genealogies containing Type-

2There is no H01 because RQ1 is exploratory

Table VII
CONTINGENCY TABLE AND CHI SQUARE TEST RESULTS FOR THE CATEGORIES OF CLONE GENEALOGIES

Genealogies JBoss Apache-Ant ArgoUML

Categories Most Frequent
Clone Type

of Genealogies with ORs # of Genealogies with ORs # of Genealogies with ORsFaults No Faults Faults No Faults Faults No Faults
G<1> Type-1 21 50 1 364 2201 1 115 136 1
G<2> Type-2 293 294 2.37 745 1249 3.61 3355 2351 1.69
G<3> Type-3 224 268 1.99 2159 2338 5.58 1550 1798 1.02

G<1, 2>
Type-1 3 0 - 186 723 1.56 34 23 1.75
Type-2 50 3 39.68 1091 1091 6.05 1649 2157 0.90

Type-1, Type-2 95 44 5.14 890 3208 1.68 573 757 0.90

G<1, 3>
Type-1 6 0 - 28 86 1.97 9 10 1.06
Type-3 73 14 12.41 1447 1078 8.12 177 135 1.55

Type-1, Type-3 41 50 1.95 261 732 2.16 64 76 1

G<2, 3>
Type-2 2 1 4.76 55 120 2.77 38 19 2.37
Type-3 25 29 2.05 480 648 4.48 117 89 1.55

Type-2, Type-3 24 39 1.46 267 429 3.76 93 103 1.07

G<1, 2, 3>

Type-1 0 0 - 15 30 3.02 4 0 -
Type-2 0 0 - 24 50 2.90 21 37 0.67
Type-3 8 0 - 283 454 3.77 39 36 1.28
Type-1,

Type-2, Type-3
4 0 - 70 159 2.66 25 26 1.14

p-values <0.05 <0.05 <0.05

Table VIII
RESULTS OF THE CHI-SQUARE TEST FOR THE TEN MIGRATION PATTERNS

Migration patterns JBoss Apache-Ant ArgoUML
Faults # No Faults ORs # Faults # No Faults ORs # Faults # No Faults ORs

Constant 370 495 1.00 3709 6398 1.00 2986 1935 1.00
Wave Stable 156 161 1.30 1991 3410 1.01 2939 2604 0.73
High Density Strong Up 30 14 2.87 95 125 1.31 16 12 0.86
Low Density Strong Up 110 72 2.04 25 41 1.05 38 19 1.30
High Density Wave Up 39 1 52.18 755 996 1.31 876 1242 0.46
Low Density Wave Up 152 21 9.68 192 314 1.05 111 105 0.69
High Density Strong Down 1 3 0.45 301 1381 0.38 209 349 0.39
Low Density Strong Down 3 20 0.20 146 369 0.68 18 30 0.39
High Density Wave Down 0 0 - 506 1111 0.79 226 72 2.03
Low Density Wave Down 8 5 2.14 645 451 2.47 444 1385 0.21
p-values <0.05 <0.05 <0.05

1 and Type-2 clones are in general higher than ORs for
genealogies containing either Type-1 or Type-2 clones only;
meaning that the mutation of a clone from Type-1 to Type-
2 or conversely increases the risk for faults. For JBOSS
and APACHE-ANT, G<1, 2> genealogies predominated by
Type-2 clones are more risky. For ARGOUML, G<1, 2>
genealogies predominated by Type-1 clones are more risky.
When Type-1 and Type-2 clones are equally frequent in a
G<1, 2> genealogy, this risk for fault is reduced. This finding
is confirmed by the sensitivity analysis.
Genealogies G<1, 3>: Similar to G<1, 2>, ORs for ge-
nealogies containing Type-1 and Type-3 clones are in general
higher than ORs for genealogies containing either Type-1 or
Type-3 clones only; implying that the mutation of a clone
from Type-1 to Type-3 or conversely increases the risk for
faults. G<1, 3> genealogies predominated by Type-3 clones
are more risky. For JBOSS and ARGOUML, when Type-1 and
Type-3 clones are equally frequent in a G<1, 3> genealogy,
this risk for fault is reduced. This finding is confirmed by the
sensitivity analysis for all cases, but the case of ARGOUML,
when Type-3 clones are detected using either 70% or 75%

similarity threshold.
Genealogies G<2, 3>: For JBOSS and ARGOUML, ORs
for genealogies containing Type-2 and Type-3 clones are in
general higher than ORs for genealogies containing either
Type-2 or Type-3 clones only, suggesting that in these two
systems, mutations between Type-2 and Type-3 increase the
risk for fault. In JBOSS and ARGOUML, G<2, 3> genealo-
gies predominated by Type-2 clones are the most risky. For
APACHE-ANT, mutations of clones from Type-2 to Type-3 or
conversely, reduced the risk for fault. G<2, 3> genealogies
predominated by Type-2 are the less risky for APACHE-ANT.
These results are confirmed by the sensitivity analysis, with
the exception of JBOSS and ARGOUML, when Type-3 clones
are detected with the 95% similarity threshold.
Genealogies G<1, 2, 3>: In genealogies containing Type-1,
Type-2, and Type-3 clones, when Type-1, Type-2, and Type-3
clones are equally frequent, the risk for faults is reduced. G<1,
2, 3> genealogies that are predominated by Type-3 clones are
the most risky. The sensitivity analysis confirms this result
for APACHE ANT. For ARGOUML, G<1, 2, 3> genealogies
where Type-1, Type-2, and Type-3 clones are equally frequent

0

5

10

15

20

25

30

35

40

45

Type-1 Type-2 Type-3 Type-1 Type-2 Type-1,
Type-2

Type-1 Type-3 Type-1,
Type-3

Type-2 Type-3 Type-2,
Type-3

G<1> G<2> G<3> G<1, 2> G<1, 3> G<2, 3>

O
R

s

Categories

70 75 80 85 90 95

(a) JBoss

0

10

20

30

40

50

60

70

80

90

100

Type-1 Type-2 Type-3 Type-1 Type-2 Type-1,
Type-2

Type-1 Type-3 Type-1,
Type-3

Type-2 Type-3 Type-2,
Type-3

Type-1 Type-2 Type-3 Type-1,
Type-2,
Type-3

G<1> G<2> G<3> G<1, 2> G<1, 3> G<2, 3> G<1, 2, 3>

O
R

s

Categories

70 75 80 85 90 95

(b) Apache Ant

0

1

2

3

4

5

6

7

Type-1 Type-2 Type-3 Type-1 Type-2 Type-1,
Type-2

Type-1 Type-3 Type-1,
Type-3

Type-2 Type-3 Type-2,
Type-3

Type-1 Type-2 Type-3 Type-1,
Type-2,
Type-3

G<1> G<2> G<3> G<1, 2> G<1, 3> G<2, 3> G<1, 2, 3>

O
R

s
Categories

70 75 80 85 90 95

(c) ArgoUML

Figure 4. Sensitivity Analysis for Clone Mutation in JBoss, Apache-Ant, and ArgoUML

are the most risky, when Type-3 clones are detected using
either 70%, 75%, 85%, 90% or 95% similarity threshold.

To examine the potential effect of LOC (line of code)
on our results, we computed and compared the LOC of all
clones (i.e., Type-1, Type-2, and Type-3 clones) contained in
the genealogies extracted from our three subject systems. We
observed that, except in the case of JBOSS, where Type-1
clones are smaller than Type-2 and Type-3 clones, in general,
there is no significant difference between the sizes of the
clones. Consequently, we conclude that size alone cannot
explain the results obtained in Table VII and Figure 4.

Overall, we conclude that the mutation of clone groups
to Type-2 or Type-3 clones increases the risk for fault.

RQ3: Are some clone migrations more fault-prone than others?

Motivation. When performing modifications on cloned parts
of a software system, developers should be aware of all the
code segments involved in the clone groups. A developer over-
looking a cloned code segment is at risk of introducing a fault
in the software system. The purpose of this research question
is to investigate the potential impact on fault-proneness of the
migration of cloned code segments across the directories of a
software system. The clones in a group can be changed, so the
directories of those clones in that group can also be changed.
More specifically, we want to verify using the ten migration
patterns described in Table II, if some displacements of cloned
code segments during maintenance and evolution activities are
likely to increase the risk for faults in a system.
Approach. For each clone group G, from the clone genealo-

0

10

20

30

40

50

60

Constant Wave
Stable

High
Density

Strong Up

Low
Density

Strong Up

High
Density

Wave Up

Low
Density

Wave Up

High
Density
Strong
Down

Low
Density
Strong
Down

O
R

s

Patterns

70

75

80

85

90

95

(a) JBoss

0

2

4

6

8

10

12

Constant Wave
Stable

High
Density
Strong

Up

Low
Density
Strong

Up

High
Density

Wave Up

Low
Density

Wave Up

High
Density
Strong
Down

Low
Density
Strong
Down

High
Density
Wave
Down

Low
Density
Wave
Down

O
R

s

Patterns

70

75

80

85

90

95

(b) Apache Ant

0

1

2

3

4

5

6

7

Constant Wave
Stable

High
Density
Strong

Up

Low
Density
Strong

Up

High
Density

Wave Up

Low
Density

Wave Up

High
Density
Strong
Down

Low
Density
Strong
Down

High
Density
Wave
Down

Low
Density
Wave
Down

O
R

s

Patterns

70

75

80

85

90

95

(c) ArgoUML

Figure 5. Sensitivity Analysis for Clone Migrations in JBoss, Apache-Ant,
and ArgoUML

gies extracted in Section V, and for each two code segments
A, B in G, we compute the distance ddir(A,B) between A
and B following the definition presented in Section III. We
also compute the size of G. Based on the variation of the
size of G and the variation of the median distance between
the code segments in G, we identify the migration patterns
(e.g., High Density Strong Up) of all the genealogies using the
criteria described in Table II. We classify the clone genealogies
according to the migration patterns.

For each migration pattern, we compute the number of
fault-containing and fault-free genealogies and formulate the

following null hypothesis: H03: the proportion of clone groups
that experience fault fixes is the same for all the ten clone
migration patterns. We use the Chi-square test and compute
Odds ratio to test H03. When computing Odds ratios, we
select the Constant migration pattern as the control group. We
form one experimental group for each of the remaining nine
migration patterns. We perform the Chi-square test using the
5% level. We also perform a sensitivity analysis to assess the
effect that a similarity threshold used to detect Type-3 clones
can have on our results.
Findings.Table VIII shows the result of the Chi-square test
and lists ORs for the ten migration patterns described in Table
II. The results are statistically significant for all three systems,
i.e., APACHE-ANT, ARGOUML and JBOSS. Overall, we can
reject H03.

High Density Strong Up, Low Density Strong Up, High
Density Wave Up, and Low Density Wave Up patterns are
more fault-prone than the Constant pattern in JBOSS and
APACHE-ANT. In ARGOUML, the Low Density Strong Up
pattern is also more fault-prone than the Constant pattern.
These results suggest that when the distance between the code
segments in a clone group is increased, the risk for fault
increase. Dispersing and regrouping duplicated code segments
(i.e., Wave) is also risky, as suggested by the ORs of the High
Density Wave Down pattern in ARGOUML (i.e., 2.03) and the
OR of the Low Density Wave Down pattern in JBOSS (i.e.,
2.14) and APACHE-ANT (i.e., 2.47). Globally, these findings
are corroborated by the results of the sensitivity analysis
illustrated on Figure 5. If possible, development teams should
avoid changing the location of cloned code during maintenance
and evolution activities.

In sum, we conclude that clone migration is risky.
Increasing the distance between code segments in a
clone group increases the risk for fault.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our study
following common guidelines [17] of empirical studies.

Construct validity threats concern the relation between the-
ory and observation. In our study these threats are mainly from
the reliability of the tools used for clone detection. To reduce
the possibility of misclassifying code segments as clones, we
choose to use a mature clone detection tool that has been used
in previous studies (i.e., NICAD). NICAD can detect both exact
and near-miss clones with high precision and recall [14].

Another treat to construct validity concerns the accuracy
of J-REX which uses the same algorithm as previous studies
by Hassan et al. [18] and Mockus et al. [19]. Hassan [12]
has compared a classification of commit messages based on
the algorithm to a manual evaluation of commit messages
by six professional developers from the industry and found
a correlation σ > 0.8. The ability of J-REX to recognize fault
fixes is then comparable to that of a professional developer.

Threats to internal validity do not affect this study, as it
is an exploratory study [17]. We cannot claim causation, we

simply report observations and correlations, although we try
to explain these observations in our discussions.

Conclusion validity threats concern the relation between the
treatment and the outcome. We are careful to acknowledge the
assumptions of each statistical test used in our study. We used
non-parametric tests that do not require making assumptions
about the data set distribution.

Reliability validity threats concern the possibility of repli-
cating this study. We provide all necessary details needed to
replicate our study. All our three subject systems are publicly
available for study.

Threats to external validity concern the possibility to gen-
eralize our results. We examine three large Java open source
software systems. Both of them use a plug-in architecture.
However they are from different domains and have different
sizes. More studies on other systems are necessary to further
validate our findings.

VII. CONCLUSION

In this study, we examine the mutation and migration of
clone groups in software systems. We identify seven categories
of clone genealogies and ten clone migration patterns, which
we study in detail to identify the most frequent clone mutation
and clone migration. We also investigate the fault-proneness
of the different clone genealogies and clone migration patterns
to identify the most risky types of clone mutation and clone
migration. Results show that the most frequent form of clone
mutation is between Type-1 and Type-2 clones. The most
frequent migration pattern is the Wave Stable pattern, which
is a pattern where the distance between the code segments in
the clone group increases and decreases by the same amount
throughout the evolution of the software system.

When clone groups are mutated to either Type-2 or Type-
3 clones, the risk for faults is increased. Clone genealogies
predominated by Type-2 clones are generally most fault-prone.
However, when all the clone types in a clone genealogy are
equally frequent, the risk for faults is reduced.

Clone groups involved in migration patterns characterized
by an increase of the distance between cloned code segments
are more prone to faults than others. Globally, a modification
of the location of cloned code segments during the evolution
of a software system increases the risk for faults in the system.

From this study, we can conclude that the different types
of clone mutation and clone migration are inconsistently risky.
Only some clone mutations and migrations require monitoring.
Especially, development teams should be careful when mutat-
ing Type-1 clones to either Type-2 or Type-3 clones. Also,
special attention should be granted to clone groups where the
location of code segments is modified during a revision of

the system. In the future, we plan to expand this study to
include more software systems written in other programming
languages. We also plan to use other clone detection tools to
further validate our findings.

REFERENCES

[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Trans. Software
Eng., pp. 577–591, 2007.

[2] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” in Proceedings of the 10th European
software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering, ser.
ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 187–196.

[3] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An
empirical study on the maintenance of source code clones,” Empirical
Software Engineering, vol. 15, pp. 1–34, 2010.

[4] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software
clones,” in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on, sept. 2011, pp. 273 – 282.

[5] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” 2007.

[6] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
Software Engineering, IEEE Transactions on, vol. 28, no. 7, pp. 654 –
670, jul 2002.

[7] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software
clones,” in ICSM’11, 2011, pp. 273–282.

[8] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are maintained:
An empirical study,” in 11th European Conference on Software Main-
tenance and Reengineering, 2007, pp. 81 –90.

[9] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy, “Analyzing
and forecasting near-miss clones in evolving software: An empirical
study,” in ICECCS’11, 2011, pp. 295–304.

[10] W. Shang, Z. M. Jiang, B. Adams, and A. Hassan, “Mapreduce as a
general framework to support research in mining software repositories
(msr),” in 6th IEEE International Working Conference on Mining
Software Repositories, May 2009, pp. 21 –30.

[11] A. Mockus and L. Votta, “Identifying reasons for software changes
using historic databases,” in Proceedings. International Conference on
Software Maintenance, 2000.

[12] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 78–88. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070510

[13] N. Göde and J. Harder, “Clone stability,” in 15th European Conference
on Software Maintenance and Reengineering, May 2011.

[14] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in ICPC’08, 2008, pp. 172–181.

[15] G. M. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, and
Y. Zou, “Studying the impact of clones on software defects,” Working
Conference on Reverse Engineering, pp. 13–21, 2010.

[16] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Fourth Edition. Chapman & Hall/CRC, Jan. 2007.

[17] R. K. Yin, “Design and methods third edition, 3rd ed.” in ICSM’00,
2002.

[18] A. E. Hassan and R. C. Holt, “Studying the evolution of software
systems using evolutionary code extractors,” in IWPSE’04, 2004, pp.
76–81.

[19] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” in ICSM’00, 2000, pp. 120–130.

