
Improving Bug Localization using Correlations in
Crash Reports

Shaohua Wang
School of Computing

Queen’s University
Kingston, ON, Canada
shaohua@cs.queensu.ca

Foutse Khomh
SWAT Lab, DGIGL

École Polytechnique de Montréal
Montréal, QC, Canada

foutse.khomh@polymtl.ca

Ying Zou
Electronical and Computer Engineering

Queen’s University
Kingston, ON, Canada
ying.zou@queensu.ca

Abstract—Nowadays, many software organizations rely on
automatic problem reporting tools to collect crash reports directly
from users’ environments. These crash reports are later grouped
together into crash types. Usually, developers prioritize crash
types based on the number of crash reports and file bugs for the
top crash types. Because a bug can trigger a crash in different
usage scenarios, different crash types are sometimes related to
a same bug. Two bugs are correlated when the occurrence of
one bug causes the other bug to occur. We refer to a group of
crash types related to identical or correlated bugs, as a crash
correlation group.

In this paper, we propose three rules to identify correlated
crash types automatically. We also propose an algorithm to locate
and rank buggy files using crash correlation groups. Through an
empirical study on Firefox and Eclipse, we show that the three
rules can identify crash correlation groups with a precision of
100% and a recall of 90% for Firefox and a precision of 79%
and a recall of 65% for Eclipse. On the top three buggy file
candidates, the proposed bug localization algorithm achieves a
recall of 62% and a precision of 42% for Firefox and a recall of
52% and a precision of 50% for Eclipse. On the top 10 buggy file
candidates, the recall increases to 92% for Firefox and 90% for
Eclipse. Developers can combine the proposed crash correlation
rules with the new bug localization algorithm to identify and fix
correlated crash types all together.

Keywords-Bug Localization; Bug Correlation; Crashes; Crash
Reports; Stack Traces; Automatic Problem Reporting Tools.

I. INTRODUCTION

Nowadays, many big software vendors such as Microsoft1

embed automatic problem reporting tools in their software
systems. Whenever the software crashes (i.e., terminates un-
expectedly) in a user’s environment, the automatic problem
reporting tool collects information about the crash and sends
a detailed crash report to the software vendor. A crash report
usually contains the stack trace of the failing thread and other
runtime information. A stack trace is an ordered set of frames;
each frame referring to a method signature. Crash reports are
used by several stakeholders such as developers fixing crashes
and product managers allocating development resources. Using
crash reports, Microsoft developers were able to fix 29% of
the bugs found in Windows XP SP1, and more than 50% of
the Office XP SP2 bugs [1]. The automatic collection of crash
reports helped Mozilla developers to improve the reliability of
Firefox by 40% from November 2009 to March 2010 [2].

Built-in automatic crash reporting tools often collect large
amounts of crash reports. For example, Mozilla Firefox re-
ceives 2.5 million crash reports every day [3]. To reduce the
amount of crash reports to handle, similar crash reports are
identified and grouped together based on the similarity of their
stack traces. We refer to a group of similar crash reports as
a crash type. The signature of a crash type is usually the top
method signature of the stack traces. The crash types are sorted
based on the number of crash reports and developers usually
file bugs for the top crash types, i.e., crash types with high
numbers of crash reports. Later, stack traces from the failing
threads, contained in crash reports, are used by developers to
diagnose and fix the bugs.

A bug can frequently trigger crashes in different usage sce-
narios, causing different crash types to be linked to the same
bug. Also, a crash type can be linked to multiple duplicate or
correlated bugs. A duplicate bug report describes a problem
already filed. Two bugs are considered to be correlated if the
occurrence of one bug causes the other bug to occur. We refer
to a group of crash types related to identical or correlated
bugs, as a crash correlation group (CCG). A crash type can
belong to one or several crash correlation groups. For example,
if a crash type CT1 shares a bug with a crash type CT2 and
another bug with a crash type CT3. CT1 belongs to two crash
correlation groups, i.e., {CT1, CT2} and {CT1, CT3}.

Many studies have been performed on the use of stack
traces in crash reports to locate and fix bugs. Schroter et
al. [4] examined stack traces in bug reports and found that
bugs are fixed faster when their reports contain at least one
stack trace. Brodie et al. [5] proposed a method based on
a comparison of stack traces to identify similar bugs using
historical information on known bugs. Dhaliwal et al. [6]
examined the use of stack traces for bug fixing and identified
some limitations in the crash grouping process of Mozilla
Firefox. They also proposed a grouping approach for crash
reports, based on a comparison of failing stack traces using
the Levenshtein distance [7]. Despite this body of work, to
the best of our knowledge, no previous study has proposed
a method to identify correlated crash types, i.e., crash types
belonging to a same crash correlation group.

1. http://www.microsoft.com/en-ca/default.aspx

In this paper, we investigate the possibility to identify
correlated crash types using stack traces. The identification of
crash correlation groups can help developers fix bugs more
efficiently; crash types in a crash correlation group should
be analyzed together when fixing bugs. Crash correlation
groups provide a diversity of crashing scenarios that could help
developers identify the root cause of the bugs more efficiently.

We conduct our study using Firefox and Eclipse stack traces
and address the following three research questions:

RQ1) Can an analysis of crash signature help identify
correlated crash types?

We examine the signatures of crash types and generate a rule
to identify crash correlation groups automatically. The rule
does not require a detailed analysis of failing stack traces and
can identify crash correlation groups with a precision of 100%
and a recall of 68% for Firefox. On Eclipse, the rule achieves
a precision of 69% and a recall of 46%.

RQ2) Can a detailed analysis of stack traces improve the
identification of correlated crash types?

To improve on the results of RQ1, we examine failing stack
traces and propose two additional rules to detect correlated
crash types automatically. When executed together, our three
rules identify crash correlation groups in Firefox with an
average precision of 100% and an average recall of 90%. On
Eclipse, the three rules achieve an average precision of 79%
and an average recall of 65%. The average execution time of
the three rules is in the order of 128 seconds. The scalability
is preserved.

RQ3) Can an analysis of correlated crash types help identify
buggy files?

We propose an algorithm, using our proposed crash correlation
group identification rules, to locate and rank suspicious files
using the stack traces of correlated crash types. When consid-
ering only the top three buggy file candidates, our algorithm
achieves a recall of 62% and a precision of 42% on Firefox;
and a recall of 52% and a precision of 50% on Eclipse. The
top ten candidate files reported by our algorithm can recover
up to 92% of buggy files in Firefox and up to 90% of buggy
files in Eclipse.

The rest of this paper is organized as follows. Section II
presents an overview of the Mozilla Crash Reporting System.
Section IV introduces the experimental setup. Section V
presents and discusses the results of our study. Section VI
discusses threads to the validity. Section VII summarizes the
related literature. Finally, Section VIII concludes the paper and
outlines some avenues for future work.

II. CRASH REPORTING

Many software organizations use a bug tracking system
(e.g., Eclipse’s Bugzilla) to store and track bugs. When a crash
occurs on a user’s machine, the software generates a failing
stack trace that developers can use to fix bugs related to the
crash. Users usually file bug reports in bug tracking systems
to report these failing stack traces as well as other information
that can help developers to reproduce and fix the bugs.

However, not all users file bugs or report failing stack traces.
To ensure that developers get the necessary information to
fix bugs, more software organizations now ship their product
to users with an embedded problem reporting tool that can
collect failing stack traces automatically (e.g., the Mozilla
Crash Reporter embedded in the Firefox browser). When a
crash occurs, the failing stack trace is automatically collected
by the problem reporting tool and a crash report containing
information related to the crash is sent to a crash report repos-
itory (e.g., the Mozilla Socorro crash report server) maintained
by the software organization. A crash report usually contains
a signature, the stack trace of the failing thread, some runtime
information such as the crash time, and information about the
user environment, e.g., the operating system, the version, and
the install time. Crash reports are grouped into crash types and
ranked based on their frequency of occurrence. We discuss
the grouping of crash reports in Section III. For the top crash
types, bug reports are created in a bug tracking system and
linked to their corresponding crash type. Multiple bug reports
can be filed for a single crash type and multiple crash types can
be associated with the same bug report. A bug report contains
detailed semantic information about a bug, such as the bug
open date and the bug status. Some bug reports also contain
stack traces (e.g., Eclipse’s bug reports). Bugs are triaged and
assigned to developers for fixing.

III. STACK TRACES AND CRASH TYPES

A stack trace is an ordered set of frames 〈 F1, F2, . . . , Fn 〉.
Each frame Fi is composed of a method signature which we
denote by methSign and a fully qualified file name which we
denote by qfileName. Fi = methSigni|qfileNamei, where
i ∈ {1 . . . n} is the position of the frame Fi in the stack trace,
and n is the total number of frames in the stack trace. F1 is
the top frame of the stack trace. Figure 1 presents an example
of stack trace extracted from a crash report of Firefox.

Fig. 1: Example of Stack Trace from Firefox

On the Mozilla Socorro server, crash reports are grouped
into crash types based on the similarity of the top frames (i.e.,
F1) of their stack traces [6]. The top frames of all the stack
traces in a crash type are identical. The method signature (i.e.,
methSign) from the common top frame is used as the signature
of the crash type. In the following, we refer to the top frame
common to all the stack traces of a crash type as the top frame
of the crash type. However, the subsequent frames in a stack
trace might be different for different crash reports in a crash
type.

A crash type signature S has the following structure:
S = P1|P2|. . .|Pn, where each element Pi is composed
of 〈File〉〈Op〉〈Method〉〈Parameter〉〈Memory location〉.
File, Op, Method, and Parameter are respectively the name
of a file, an operator, a method, and a parameter.

In a crash type signature, at least one Pi should be
6= NULL. In a Pi, the attributes File, Op, Method, and
Parameter can be NULL. However, a Pi cannot be formed
using only the name of an operator (i.e., Op). The value of
Op depends on the programming language, e.g., for a system
written in C++, Op is generally either the scope operator “::”
or . Figure 2 shows an example of signature from the Mozilla
Socorro server. This signature is composed of two elements. In
the first element, Op, Method, and Parameter are NULL
while in the second element only the memory location is
NULL.

Fig. 2: Example of Crash Type Signature from the Mozilla Socorro
server

The format in which Eclipse’s stack traces are reported is
different from the format of Firefox’s stack traces. Figure 3
presents the example of a stack trace extracted from Eclipse’s
bug reports and Figure 4 describes the structure of each frame.

Fig. 3: Example of Stack Trace from Eclipse

Fig. 4: Structure of a Frame in an Eclipse’s Stack Trace

On this Figure 4, Exception is the name of a Java exception
(e.g., org.eclipse.core.commands.ExecutionException), Mes-
sage is the description of the exception (e.g., While
undoing the operation, an exception occurred), qfilePath
is the path in the file directory structure, of the
method Method in which the exception was raised (e.g.,
org.eclipse.jface.text.projection.internalAdd), File is the name
of the file that caused the exception (e.g., ProjectionDoc-
ument.java), and Line is the exact location in File where
the exception was triggered. A stack trace from Eclipse

is mapped to the format of Firefox’s stack traces as fol-
lows: methSign = 〈Exception|Message|Method〉 and
qfileName = 〈qfilePath|File〉. If Exception = NULL,
the methSign = Method.

We regroup Eclipse’s stack traces with similar top
frames into crash types using as signature the concatenation
〈File|Method〉 from their common top frame. This approach
is similar to the grouping of Firefox’s crash reports in the
Mozilla Socorro server.

IV. EXPERIMENTAL SETUP

This section discusses our data collection and processing.

A. Data Collection

We conduct our study using stack traces from two different
software systems: Firefox (written mainly in C/C++) and
Eclipse (written in Java). Firefox is an open-source Web
browser developed by the Mozilla Corporation. It is currently
the third most widely used browser, with approximately 24%
usage share worldwide [8]. Eclipse is an open-source inte-
grated development environment. It is a platform used both in
the open-source community and the industry.

We analyze 7 beta versions of Firefox, i.e., Firefox-4.0b1
to Firefox-4.0b7. For each beta version, we download the
summaries of all related crash types stored in the Socorro
server. We select the crash types for which at least one bug
report is filed. For each selected crash type, we download the
latest 100 crash reports ranked based on the crashing time. For
crash types with less than 100 crash reports, we download all
the crash reports. In total, we obtained 1,256 crash types. For
all the bugs filed for our selected crash types, we retrieve their
reports from Bugzilla. We download the Firefox change logs
to extract a list of files changed to fix a bug.

To the best of our knowledge, only the Mozilla Foundation
has opened the crash reports of its products to the public.
To verify the replicability of our study on other systems,
we downloaded the MSR Mining Challenge 20082 data set
containing 213,000 Eclipse bug reports filed between October
2001 and December 2007.

B. Data Processing

Figure 5 shows an overview of our data processing ap-
proach. First, we process Firefox crash reports and Eclipse bug
reports to extract failing stack traces and the IDs of bugs filed
for the crashes. Then, we identify crash correlation groups
(CCGs) defined by developers. Next, we parse Firefox and
Eclipse change logs to identify bug fixes locations and, we map
these bug fixes locations to the stack traces. The remainder of
this section elaborates on each of these steps.

1) Extraction of Failing Stack Traces and Bug IDs: We
now discuss in details the extraction of stack traces and bug
IDs for Firefox and Eclipse.
Firefox: For each crash types selected for our study, we use a
Perl script to extract the list of crash reports of the crash type
and the failing stack traces contained in the crash reports. We

2. http://msr.uwaterloo.ca/msr2008/challenge/

Fig. 5: Overview of our approach to study correlations between crash types. CCG represents Crash Correlation Group.

also extract the IDs of all the bugs filed for the crash types.
We obtain a mapping linking each crash type to the list of its
crash reports and the list of bug IDs filed against the crash
type.
Eclipse: Using our Perl script, we parse the 213,000 bug
reports contained in the 2008 MSR Mining Challenge data
set and extract all comments posted for each bug. We process
the comments using regular expressions to extract the failing
stack traces of the bugs in a similar way as Betttenburg et
al. [9]. More specifically, we search for keywords “java”,
“Exception”, and “org” in the comments. We obtain 22,379
bug reports containing at least one stack trace. Because some
bug reports contain more than one stack trace, we obtain
29,874 stack traces that we link to their corresponding bug
IDs. We verify all the stack traces manually to ensure that
they are correct.

2) Identification of Developers Defined CCGs: We identify
developers defined CCGs by grouping together crash types
that are linked to the same bugs. We creates groups containing
at least two crash types. The links between crash types and
bugs are established by developers during the triaging and
debugging of crash types. These links are updated during the
bug fixing process, therefore we are confident that the crash
types collectively linked together to a bug are correlated.

Overall we obtain 144 developers defined CCGs containing
a total of 792 crash types from Firefox dataset and 1306
developers defined CCGs containing 2837 crash types from
Eclipse dataset. In this study, we use developers defined CCGs
as our gold standard to evaluate the performance of our
crash type correlation identification rules. For each developers
defined CCG, we maintain the list of bugs filed for the group.

3) Identification of Bug Fixes Locations: We parse Firefox
and Eclipse change logs and apply the heuristics by Sliwersky
et al. [10] to identify bug fixes locations. Precisely, we parse
commit log messages using a Perl script and extract bug IDs
and specific keywords, such as “fixed” or “bug” to identify
bug fixing commits. For each bug fixing commit, we extract
the list of files that were changed to fix the bug. In the
following, we use the two lists of files obtained for Firefox
and Eclipse as our gold standard to evaluate the performance
of our bug localization algorithm and refers to them as Bug
Fixing Location Mapping.

V. EXPERIMENTAL RESULTS

This section presents and discusses the results of our re-
search questions. For each research question, we present the
motivation behind the question, the analysis approach and a
discussion of our findings.

RQ1: Can an analysis of crash signature help identify
correlated crash types?

Motivation: Schroter et al. [4] observed that when mul-
tiple failing stack traces are available, developers fix the
bugs quickly. Therefore, the identification of crash correlation
groups early in the debugging process will not only help
developers fix groups of correlated crash types all together,
but it will also help them fix the bugs faster. The identification
of crash correlation groups can also help development teams
to better manage their resources, for example, by assigning
correlated bugs to experienced developers and increasing their
priority. Crashes are reported continuously by users until they
are fixed. Therefore, by fixing groups of correlated crash types
early, development teams can reduce the amount of incoming
crash reports. In this research question, we aim to provide
developers with a simple rule that can be used to identify
crash correlation groups automatically. We strive for building
a rule requiring only an analysis of crash types signatures. In
this way, development teams would be able to process large
amount of crash types efficiently since no deep analysis of the
content of crash reports will be required.

Approach: In the following we introduce a rule for
the identification of crash correlation groups. This rule was
derived from a manual analysis of 40 Firefox’s crash types
selected randomly. The rule identifies similarities between the
signatures of correlated crash types.

We define a contains relation between crash
signature elements as follows. Given a crash type
signature S = P1|P2|. . .|Pn, for two elements
Pi = 〈filei〉〈opi〉〈methi〉〈parami〉〈memloci〉 and
Pj = 〈filej〉〈opj〉〈methj〉〈paramj〉〈memlocj〉 of S,
if (filei = filej) ∧ {opi,methi, parami} ⊆
{opj ,methj , paramj} then Pj contains Pi.

We also define a binary relation ⊂ on the set of all crash
types signatures S.

Lets SA and SB be two crash types signatures where,
SA = PA

1 |PA
2 |. . .|PA

n and SB = PB
1 |PB

2 |. . .|PB
m , with

PA
i = 〈fileAi 〉〈opAi 〉〈methA

i 〉〈paramA
i 〉〈memlocAi 〉,

PB
j = 〈fileBj 〉〈opBj 〉〈methB

j 〉〈paramB
j 〉〈memlocBj 〉,

i ∈ {1 . . . n}, j ∈ {1 . . .m}, and m ≥ n.
SA ⊂ SB if ∀ PA

i , i ∈ {1 . . . n}, ∃ j ∈ {1 . . .m} |
PB
j contains PA

i . Table I presents some examples of compar-
ison of crash types signatures using ⊂.

TABLE I: Example of the Comparison of Crash Type Signatures

nsContentUtils::CanCallerAccess
⊂ nsContentUtils::CanCallerAccess(nsPIDOMWindow*)
nsStyleContext::Release()
⊂ nsStyleContext:: nsStyleContext
nvumdshim.dll@0x1845c
⊂ nvumdshim.dll@0x1b115
nsDiskCacheStreamIO::FlushBufferToFile()
⊂ strstr |nsDiskCacheStreamIO::FlushBufferToFile()

Rule 1: Crash Signature Comparison. Given two crash types
CTA and CTB with signatures SA and SB respectively, CTA

and CTB are correlated if SA ⊂ SB or SB ⊂ SA.
Rule 1 compares the strings of the signatures of two crash

types and uses the contains relation to decide if they are
correlated.

To assess the performance of the proposed rule we proceed
as follows: First, we filter out from our data set, all the 40
crash types that were used to discover the rule. Next, we
rank the remaining Eclipse and Firefox’s crash types based
on their creation date. The creation date of a crash type
from Firefox is the date on which the first crash report was
received. For Eclipse crash types it is the date on which the
oldest stack trace in the crash type was reported in a bug
report. Finally, we apply the rule incrementally on the crash
types to identify crash correlation groups. We compare the
obtained crash correlation groups to developers defined CCGs
and compute the precision and the recall of the rule using
respectively Equation (1) and Equation (2). The precision
value measures the fraction of retrieved crash correlation
groups that are correct, while the recall value measures the
fraction of correct crash correlation groups that are retrieved.

precision =
|{correct CCGs}

⋂
{retrieved CCGs}|

|{retrieved CCGs}|
(1)

recall =
|{correct CCGs}

⋂
{retrieved CCGs}|

|{correct CCGs}|
(2)

Findings: We obtain a precision of 100% and a recall of
68% for Firefox. All the crash correlation groups of Firefox
retrieved using the proposed rule (i.e., Rule 1) are correct.
For Eclipse, the rule achieved a precision of 69% and a recall
of 46%. We attribute the low recall observed for Eclipse to
missing information in crash types signatures; indeed Eclipse
crash type signatures contain neither parameters nor memory
locations information. However, achieving a 69% precision
with a simple rule like Rule 1 is already a good result.
Moreover, Rule 1 identifies crash types correlation groups very
efficiently. We were able to process 752 Firefox crash types in
4.53 seconds and 2797 Eclipse crash types in 22.32 seconds

on a Lenovo Thinkpad laptop with an Intel Core i7-2620M
CPU 2.7CHz processor and 8GB RAM.

RQ2: Can a detailed analysis of stack traces improve the
identification of correlated crash types?

Motivation: In this research question, we investigate if a
detailed analysis of stack traces can improve the identification
of crash correlation groups. We aim to improve the 68% recall
obtained for Firefox and the 46% recall obtained for Eclipse
using RQ1. A higher recall will enable the discovery of more
crash correlation groups, resulting in further improvements of
the bug fixing process and the management of resources.

Approach: We manually analyzed 400 stack traces ex-
tracted from 400 Firefox’s crash reports. The crash reports
were selected randomly from 40 crash types which were
also selected randomly. From this analysis, we derived the
following two additional rules for the identification of crash
correlation groups.
Rule 2: Top Frame Comparison. Given two crash types CTA

and CTB with top frames FA
1 = methSignA

1 |qfileNameA1
and FB

1 = methSignB
1 |qfileNameB1 , respectively. CTA and

CTB are correlated if qfileNameA1 = qfileNameB1 . We
remove file extensions when comparing fully qualified file
names qfileNameA1 and qfileNameB1 .

Rule 2 can be applied on the following example
from Firefox 4.0b1. The top frames of the crash types
js GetGCThingTraceKind and js IsAboutToBeFinalized are
respectively js GetGCThingTraceKind|js/src/jsgc.h
and js IsAboutToBeFinalized|js/src/jsgc.cpp. These
two crash types are correlated and linked to the bug 514819.

As illustrated by the above example, Rule 2 compares the
fully qualified file names of the top frames of two crash types to
verify if the crash types are correlated. When two crash types
have the same fully qualified file name in their top frame, the
two crash types are correlated.

We also analyze the other subsequent frames in the stack
traces of a crash type to further improve the identification of
crash types correlations. We introduce the concept of closed
ordered sub-sets of frames for crash types.

Lets ST be a set of stack traces {T1, T2, . . . , Tp}, where p
is the number of stack traces in the set, Ti = 〈 Fi

1, Fi
2, . . .,

Fi
ni
〉, Fi

j = methSigni
j |qfileNameij , j ∈ {1, . . . , ni}, ni

is the number of frames in Ti, and i ∈ {1, . . . , p}. Figure 1
shows an example of stack trace. Each frame in the stack trace
has a method signature (e.g., OnWriteSegment for F1) and a
fully qualified file name (e.g., http/nsHttpConnection.cpp
for F1).

Given an ordered set of frames SubF = 〈 G1,. . ., Gm 〉,
For each Ti, i ∈ {1, . . . , p}, if ∃k, l, with 1 < k ≤ l ≤ ni |
(G1=qfileNameik)∧ . . .∧(Gm=qfileNameil), then SubF is
an ordered sub-set of frames of Ti. The value of each frame
in SubF is a Fully Qualified File Name.

Whenever ∃i ∈ {1, . . . , p} | SubF is an ordered sub-set of
frames of Ti, we denote SubF as an ordered sub-set of frames
of ST . SubF is a closed ordered sub-set of frames of ST if

there is no other ordered sub-set of frames of ST containing
SubF .

The absolute support of SubF is the number of i ∈
{1, . . . , p} | SubF is an ordered sub-set of frames of Ti.
The relative support of SubF is the absolute support/p.
This relative support is the frequency of SubF in ST . We
consider an ordered sub-set of frames as frequent if its
relative support > 0.5.

We mine all the stack traces of each crash type and extract
frequent closed ordered sub-sets of frames (FCSF), using the
BIDE pattern mining algorithm proposed by Wang and Han
[11]. We chose the BIDE algorithm because it scales very
well in the number of frequent closed patterns. In fact, BIDE
does not require the maintenance of a set of candidate closed
patterns. BIDE performs a strict depth first search and can
output frequent closed patterns on the fly.

Rule 3: Frequent Closed Ordered Sub-Set Comparison.
Given two crash types CTA and CTB with stack traces
STA = {TA

1 , TA
2 , . . . , TA

p } and STB = {TB
1 , TB

2 , . . . , TB
q },

respectively. If SSub
A (respectively SSub

B) is the set of frequent
closed ordered sub-sets of frames of STA (respectively STB),
SSub
A

⋂
SSub
B 6= ∅ ⇒ CTA and CTB are correlated.

Rule 3 examines the FCSFs of two crash types. If two
crash types have a common FCSF, they are correlated. Rule 3
can be applied to the following example from Firefox 4.0b7.
The stack traces of crash types RtlIntegerToUnicodeString
and SEH prolog have in common the closed ordered sub-
set of frames presented in Table II. The frequency of this
sub-set of frames is 0.96 in RtlIntegerToUnicodeString and
0.90 in SEH prolog. Both RtlIntegerToUnicodeString and

SEH prolog are correlated and linked to the bug 591599.

TABLE II: A Frequent Closed Ordered Sub-Sets of Frames Common
to RtlIntegerToUnicodeString and SEH prolog

gfx/src/thebes/nsThebesDeviceContext.cpp
gfx/src/thebes/nsThebesGfxFactory.cpp
obj-firefox/xpcom/build/GenericFactory.cpp
xpcom/components/nsComponentManager.cpp
obj-firefox/xpcom/build/nsComponentManagerUtils.cpp

To assess the performance of Rule 2 and Rule 3, we proceed
in a similar way as in RQ1: First, we filter out from our data
set, all the 40 crash types that were used to discover the rules.
Next, we rank the remaining Eclipse and Firefox crash types
based on their creation date and apply successively Rule 2
and Rule 3 to the crash types one by one. Older crash types
are processed first. The obtained crash correlation groups are
compared to developers defined CCGs and precision and recall
are computed using Equation (1) and Equation (2).

Rule 3 is dependent on the threshold 0.5 that is used during
the identification of frequent closed ordered sub-sets of frames.
Therefore we perform a sensitivity analysis to measure the
impact of threshold selection on the results. Precisely, we
repeat the evaluation of Rule 3 using thresholds 0.1 to 1 by
step 0.1. Rule 3 is also dependent on the number of stack
traces that are processed for each crash type. We repeat the

evaluation of Rule 3 using 10, 20, 30, 40, 50, and 100 first
crash reports in each crash type.

Findings: Table III shows that when the threshold used to
identify frequent closed ordered sub-sets of frames is ≥ 0.5,
Rule 2 and Rule 3 increase significantly the recall obtained
with Rule 1 without decreasing the precision. For both Firefox
and Eclipse, the best precision and recall are obtained with a
threshold value of 0.5.

Table IV shows that our three rules does not required the
analysis of a large number of crash reports. High precisions
and recalls (i.e., ≥ 0.68) are achieved with as little as 10
stack traces per crash types on both Firefox and Eclipse stack
traces. No significant improvement is observed when analyzing
more crash reports per crash types. This result is particularly
important since software organizations receive millions of
incoming crash reports every day. Using our rules, they can
identify crash correlation groups efficiently by analyzing only
the first 10 incoming crash reports of every crash types.

RQ3: Can an analysis of correlated crash types help identify
buggy files?

Motivation: With the growing complexity of software
systems, the demand for efficient techniques to identify sus-
picious source code fragments that may contain bugs have
increased. However, locating bugs in software systems is not
an easily automatable process. Although many bug localization
techniques have been proposed in the literature, there is no
particular technique that is suitable for every software systems
[12]. Moreover, most techniques require both failing and
successful test cases to be effective. Consequently, when only
failing stack traces are available, developers usually apply only
intuitive techniques, such as the inspection of the top 10 frames
of failing stack traces. Previous work [4] have shown that
buggy files are often in the top 10 frames of failing stack
traces.

In this research question we aim to propose a technique
to automatically locate buggy files that need to be corrected
to fix bugs. We intend to build a technique that can rank
suspicious buggy files effectively, reducing the effort required
to examine the files. The proposed technique should also
leverage knowledge of crash correlation groups in order to
help debugging teams fix correlated crash types all together.

Approach: Similar to RQ1 and RQ2, we randomly sam-
pled 40 Firefox crash types with a resolved fix. For each
Firefox crash type we randomly selected 10 crash reports
and extracted the contained stack traces. In total, we obtained
400 stack traces. We manually examined these stack traces
and derived the bug localization method Buggy Files Finder
(BFFinder) presented below. BFFinder analyzes correlations
between crash types and builds a Bayesian Belief Networks
(BBN) [13] to compute the probability that a file appearing in
a failing stack trace is buggy. We apply BFFinder on Firefox
and Eclipse separately. Figure 6 depicts the steps of BFFinder.
In the following, we elaborate more on these steps.

Step 1: Extraction of frequent closed ordered sub-sets
of frames. The BIDE pattern mining algorithm is

TABLE III: Precision and Recall of Rule 2 and Rule 3 for Different Thresholds. P stands for Precision, and R stands for Recall

Threshold
Rule 1 Rule 1 + Rule 2 Rule 1 + Rule 2 + Rule 3

Firefox Eclipse Firefox Eclipse Firefox Eclipse
P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)

0.1 100 68 69 46 100 83 75 58 86 84 70 58
0.2 100 68 69 46 100 83 75 58 86 84 70 58
0.3 100 68 69 46 100 83 75 58 86 85 75 63
0.4 100 68 69 46 100 83 75 58 94 90 79 65
0.5 100 68 69 46 100 83 75 58 100 90 79 65
0.6 100 68 69 46 100 83 75 58 100 89 79 65
0.7 100 68 69 46 100 83 75 58 100 87 77 62
0.8 100 68 69 46 100 83 75 58 100 84 77 62
0.9 100 68 69 46 100 83 75 58 100 83 75 58
1 100 68 69 46 100 83 75 58 100 83 75 58

TABLE IV: Precision and Recall of Rule 2 and Rule 3 for Different Number of Crash Reports. NCR stands for Number of Crash Reports,
P stands for Precision, and R stands for Recall

NCR
Rule 1 Rule 1 + Rule 2 Rule 1 + Rule 2 + Rule 3

Firefox Eclipse Firefox Eclipse Firefox Eclipse
P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)

10 100 68 69 46 100 83 75 58 100 90 79 65
20 100 68 69 46 100 83 75 58 100 91 80 67
30 100 68 69 46 100 83 75 58 100 92 80 70
40 100 68 69 46 100 83 75 58 100 92 80 65
50 100 68 69 46 100 83 75 58 100 89 80 65
100 100 68 69 46 100 83 75 58 100 86 75 58

Fig. 6: Overview of the steps of BFFinder; CCG stands for Crash Correlation Group

applied on each crash type to extract its set of
frequent closed ordered sub-sets of frames.

Step 2: Identification of crash correlation groups. Rule
1, Rule 2, and Rule 3 are applied successively on the
signatures of the crash types and their stack traces
to identify crash correlation groups.

Step 3: Extraction of frequently failing files. For each
crash correlation group, the list of files appearing in
all the failing stack traces of the crash correlation
group is created. In case of crash types not involved
in any correlation group, the list of files appearing in
all the failing stack traces of the crash type is created
instead. We refer to this list as the list of frequently
failing files.

Step 4: Construction of vectors of characteristics for
files. Each file appearing in a failing stack trace is
mapped into a feature vector of four dimensions.

• The first dimension captures the event of the file

appearing in a frequent closed ordered sub-sets
of frames, i.e., it counts the number of times that
the file appeared in a FCSF.

• The second dimension captures the event of the
file appearing in a closed ordered sub-sets of
frames common to all the stack traces of crash
types in a crash correlation group. i.e., it counts
the number of times that the file appeared in a
FCSF common to all the stack traces in a crash
correlation group. If a file is not involved in a
crash correlation group, this dimension captures
the appearance of the file in a FCSF that is
common to all the stack traces of its crash type.

• The third dimension captures the failure fre-
quency of the file, i.e., the number of appearance
of the file in a list of frequently failing files.

• The fourth dimension captures the number of
times that the file appeared in the top ten frames
of a stack trace.

Step 5: Construction of a Bayesian Belief Networks to
rank files. The vector of characteristics obtained in
Step 4 are used to structure a BBN. The input nodes
of this BBN correspond to the four dimensions of a
vector of characteristics, while the output node is the
probability of a file being buggy.

Step 6: Creation of a corpus to train the BBN. The
vectors of characteristics of Firefox files extracted
from the 400 Firefox stack traces examined manually
are used to calibrate the BBN; we have knowledge
of buggy files for these stack traces. Given the vector
of characteristics of any other file, the trained BBN
is executed to compute the probability that the file is
buggy.

Step 7: Ranking of files based on the probability of
containing a bug. For each crash correlation group,
the files extracted from all the stack traces are ranked
based on the probability that they contain a bug. High
rankings are assigned to files with high probabilities.
Files appearing on the stack traces of crash types that
are not involved in any crash correlation group are
ranked using the same criteria.

The construction of BFFinder is guided by the following
observations made during the manual examination of Firefox
sample of 40 crash types with 400 stack traces:

• Observation 1: 75% of Firefox files changed to fix bugs
related to a crash type (respectively a crash correlation
group) appear in all the stack traces of the crash type
(respectively the crash correlation group), i.e., they are
frequently failing files.

• Observation 2: Whenever there are FCSFs for a crash
type, 80% of files changed to fix bugs related to this
crash type appear among the frames of a FCSF.

• Observation 3: As reported by previous studies (e.g., [4])
on Eclipse stack traces, we found that approximately 65%
of bugs in our Firefox sample were located in the files
from the top 10 frames of the failing stack traces.

To assess the performance of BFFinder, we proceed as
follows: First, we filter out from our data set, all the 40
Firefox crash types that were used to derive BFFinder. We
also remove crash types that are associated to unfixed bugs.
Then, we randomly selected 40 Eclipse crash types to train
BFFinder for Eclipse stack traces. Next, we execute Step [1–
4] of BFFinder to build the vector of characteristics of all
the files that appeared in a stack trace of the remaining crash
types. For each obtained vector, we run the BBN of BFFinder
to compute the probability that the corresponding file is buggy.
We apply Step 7 to rank Eclipse and Firefox files in our
data set. Using the two lists of buggy files (from Eclipse and
Firefox) extracted from change logs as our gold standard (i.e.,
see Section IV-B3), we compute the k-precision and the k-
recall of BFFinder following Equation (3) and Equation (4).

k − precision =
of buggy files in top k results

k
(3)

k − recall =
of buggy files in top k results

|{buggy files}|
(4)

Because the performance of machine learners, such as
BBNs, is generally impacted by the quality of the training
corpus, we perform a further evaluation to measure the im-
pact of the size of our training corpus on the performance
of BFFinder. Precisely, for each system (i.e., Eclipse and
Firefox), we create different training corpus containing respec-
tively 50%, 60%, 70% and 80% of all crash types from the
systems and compute different k-precisions and k-recalls. We
use our Bug Fixing Location Mapping (see Section IV-B3)
to identify buggy files in the different training corpus and to
evaluate the results of BFFinder.

Findings: On average, BFFinder achieves a recall of 72%
for Firefox and 84% for Eclipse on the top 10 files reported
as buggy. These high recalls suggest that BFFinder can be
used efficiently with a short history of past bug locations,
since the BBN was trained using only 40 Firefox crash types
for Firefox and 40 Eclipse crash types for Eclipse. When the
training corpus is increased to 80% of all crash types for each
system, BFFinder achieves a recall of 92% for Firefox and
a recall of 90% for Eclipse on average, on the top 10 files
reported as buggy. These top 10 files represent only 5.5%
of Firefox files and 3.8% of Eclipse files contained in the
failing stack traces. Therefore, using BFFinder, debugging
teams can recover respectively 92% and 90% of Firefox and
Eclipse buggy files by examining only 5.5% of potential buggy
candidates in Firefox and 3.8% of potential buggy candidates
in Eclipse.

Table V shows results of precision and recall for top 3,
top 4 and top 5 frames respectively, using different training
corpus. These results show that precisions and recalls increase
with the size of the training corpus. Meaning that when more
information about the location of past bugs is available, the
precision and the recall of BFFinder can be improved. When
looking at precision and recall on the top 3 files, we observe
that BFFinder can achieve a recall of 62% for Firefox and
52% for Eclipse. Hence, by only looking at 3 files reported
by BFFinder as buggy, debugging teams can recover 62% of
Firefox bugs and 52% of Eclipse bugs. Moreover, BFFinder
allows them to fix correlated bugs all together.

VI. THREATS TO VALIDITY
This section discusses the threats to validity of our study

following the guidelines for case study research [14].
Construct validity threats concern the relation between the-

ory and observation. In this work, the construct validity threats
are mainly due to measurement errors. We extract stack traces
by parsing the HTML Firefox crash reports and analyzing the
comments section of Eclipse bug reports. To identify bug fix
locations, we mine Mercurial logs and CVS logs, and apply the
heuristics by Sliwersky et al. [10]. We map bug fix locations
to stack traces using string matching. Although this technique
may not be a hundred percent accurate, it has been used
satisfactorily in many previous studies, e.g., [4], [6], [10].

TABLE V: Precision and Recall of Top 3, Top 4, and Top 5 Frames Candidate Reported by BFFinder for Different Training Corpus. STC
stands for Size of the Training Corpus, P stands for Precision, and R stands for Recall

STC(%)
Top 3 Top 4 Top 5

Firefox Eclipse Firefox Eclipse Firefox Eclipse
P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)

50 26 45 38 40 16 48 36 44 11 55 33 58
60 32 54 42 44 20 57 40 48 16 65 37 60
70 38 60 47 48 26 62 43 54 18 72 40 64
80 42 62 50 52 32 68 48 60 24 78 44 70

Threats to internal validity concern our selection of subject
systems, tools, and analysis method. We use the stack traces
posted by users in Eclipse bug reports and form Eclipse
crash signatures following the same approach as the Mozilla
Firefox team. The stack traces may not be complete and the
relationship between Eclipse crash types may not be complete.

Reliability validity threats concern the possibility of repli-
cating this study. We attempt to provide all the necessary
details to replicate our study. The Mercurial repository of
Firefox is publicly available to obtain commit logs. The
Socorro crash server is also available publicly [15], to obtain
the same data for the same releases. Eclipse bug reports from
the 2008 MSR Mining Challenge are also publicly available.

VII. RELATED WORK

In this section, we summarize the related work on field crash
reports, bug correlation, and analysis of stack traces.

A. Analysis of Field Crash Reports

Many techniques have been proposed to prioritize groups
of similar crash reports during debugging activities. Podgurski
niet al. [16] introduced a failure clustering approach to group
similar crash reports together in order to fix the larger groups.
Kim et al. [17] introduced a machine learning technique
to predict crash reports that will become top crashers and
which they claim should be fixed in priority. Khomh et al
[18] analyzed the entropy of field crashes and proposed an
entropy based approach for the triaging of field crash reports.
The approach assigns high priorities to crashes with high
entropies and high frequencies, i.e., crashes affecting a large
number of users frequently. The bug localization method
presented in this paper (i.e., BFFinder) can be combined with
the aforementioned techniques to help development teams to
correct high priority bugs efficiently.

B. Bug Correlation and Localization

Bug correlation and bug localization have been researched
extensively. Lee and Soffa [19] proposed a bug correlation
algorithm to identify causal relationships among bugs in a
software system. Libit et al. [20] studied predicate patterns
in correct and incorrect executions traces and proposed an
algorithm to identify the predictors of a bugs. Ball et al.
[21] developed a localization technique for error traces from
a model checker. This technique identifies transitions that
only appear in failing traces (but not in correct traces). Jones
et al. [22], [23] proposed a visualization based technique
named Tarantula to aid developers to, locate errors and bugs

in software systems, by diagnosing the execution traces of
successful and fail test cases. Nessa et al [24] developed a
fault localization algorithm based on N-gram analysis, to rank
the executable statements of a software system by their level of
suspicion. The above techniques emphasize the importance of
crashing threads for bug localization. However, none of them
can be used to analyze crashing threads from crash reports.
These techniques rely highly on instrumentation, predicates,
and coverage reports, or successful traces, which limits their
applicability.

C. Analysis of Stack Traces

The use of stack traces by developers during bug fixing
activities has been investigated to a great extent. Schroter et al.
[4] examined bug fixing activities in Eclipse and observed that
when failing stack traces are available, developers fix the bugs
faster. Moreover, the bugs are fixed in files from the top 10
frames of the failing stack traces. Dhaliwal et al. [6] analyzed
the use of stack traces by Firefox developers and outline some
limitations in the crash grouping process of Mozilla. They
proposed a crash reports grouping approach based on failing
stack traces comparisons using the Levenshtein distance [7]
within a crash type. Brodie et al. [5] proposed an approach
to identify similar bugs using stack trace comparisons and
historical data of previous bugs. Some visualization techniques
have also been proposed by Chan et al. [25] and Kim et
al. [26] to assist development teams in the identification of
relations between crashes. Although many of these approaches
have investigated similarities between stack traces, none has
attempted to identify crash correlation groups for crash types.
In this paper we propose three rules to identify crash correla-
tion groups using an analysis of failing stack traces.

VIII. CONCLUSION AND FUTURE WORK

The analysis of crash reports for bug fixing is a very chal-
lenging task that require a large amount of manual work from
developers. In this study, we propose three rules to identify
correlated crash types automatically. We also propose a bug
localization method called Buggy Files Finder (BFFinder)
to locate and rank buggy files from the stack traces in
crash reports. BFFinder uses our three rules: Crash Signature
Comparison (i.e., Rule 1), Top Frame Comparison (i.e., Rule
2) and Frequent Closed Ordered Sub-Set Comparison (i.e.,
Rule 3) to identify correlated crash types. Using a Bayesian
Belief Networks, BFFinder computes and ranks files from
stack traces based on their probability to be buggy.

We conducted a case study using Firefox and Eclipse stack
traces and found that when applied together, the three rules
achieve a precision of 100% and a recall of 90% for Firefox,
and a precision of 79% and a recall of 65% for Eclipse. We
obtain a precision of 100% and a recall of 68% for Firefox,
and a precision of 69% and a recall of 46% for Eclipse when
using only Rule 1. Our three rules do not require the analysis
of a large number of crash reports. High precisions and recalls
(i.e., ≥ 68%) are achieved with as little as 10 crash reports
per crash types.

Our case study also shows that with a training corpus
containing only 40 Firefox crash types, BFFinder achieves a
recall of 72% on the top 10 files reported as buggy. When
trained on 80% of the corpus, the recalls of BFFinder are 92%
for Firefox and 90% for Eclipse, on the top 10 files reported
as buggy. These results suggest that BFFinder can be used
efficiently with little information about the location of past
bugs. When more information on the location of past bugs is
available, the precision and recall of BFFinder is improved.
Using BFFinder, debugging teams can recover 92% of buggy
files by examining only 5.5% of all the files contained in
Firefox’s stack traces and 90% of buggy files by examining
only 3.8% of all the files contained in Eclipse’s stack traces.
BFFinder allows debugging teams to locate and fix correlated
bugs all together. In future work, we plan to implement our
proposed rules and our bug localisation method BFFinder into
a tool to assist development teams during the triaging of crash
reports and the fixing of bugs.

ACKNOWLEDGMENT

The authors would like to thank Tejinder Dhaliwal and
Feng Zhang, of Queen’s University, for his help during data
collection and for his many useful comments on this work.

REFERENCES

[1] Connecting with customers. http://www.microsoft.com/mscorp/execmail-
/2002/10-02customers.mspx, last accessed on March 27,2012.

[2] Firefox Stability Improvement. http://blog.mozilla.com/metrics/2010/04-
/08/dramatic-stability-improvements-in-firefox/, last accessed on March
22, 2012.

[3] Socorro: Mozilla’s Crash Reporting Server.
http://blog.mozilla.com/webdev/2010/05/19/socorro-mozilla-crash-
reports/, last accessed on March 22, 2012.

[4] Adrian Schroter, Nicolas Bettenburg, Rahul Premraj.Do stack Traces
Help Developers Fix Bugs?. MSR 2010: 7th IEEE Working Conference
on Mining Software Repositories, pp. 118-121,2010.

[5] M.Brodie, S.Ma, L.Rachevsky and J. Champlin. Automatic Problem
Determination Using Call-Stack Matching, Journal of Network and
System Management, Vol 13, No 2, June 2005.

[6] Tejinder Dhaliwal, Foutse Khomh, Ying Zou. Classifying Field Crash
Reports for Fixing Bugs: A Case Study of Mozilla Firefox, Proc. the
27th IEEE international Conference on Software Maintenance(ICSM),
September 25-30, 2011, Williamsburg, VA, USA. IEEE.

[7] J.B.Kruskal. An Overview of Sequence Comparison:Time Warps, String
Edits, and Macromolecules, SIAM Review. Vol. 25, No. 2. pp.201-237.
April 1983.

[8] Web browsers (Global marketshare), Roxr Software Ltd. Retrieved on
January 12, 2012, http://bit.ly/81klgi.

[9] N. Betttenburg, R. Premraj, T.Zimmermann, and S. Kim, Extracting
structual information from bug reports, in Proceedings of the interna-
tional working conference on Mining software repositories 2008, May
10-11, 2008, Leipzig, Germany.

[10] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, pp. 1-5, May 2005.

[11] Jianyong Wang and Jiawei Han. BIDE:Efficient Mining of Frequent
Closed Sequences, In ICDE ’04: Proceedings of the 20th International
Conference on Data Engineering (2004), pp. 79-90.

[12] W. Eric Wong and Vidroha Debroy, A Survey of Software Fault Lo-
calization, Technical Report UTDCS-45-09, Department of Computer
Science, The University of Texas at Dallas, November 2009.

[13] D.Michie, D.J.Spiegelhalter, and C.C. Taylor, Machine Learning, Neural
and Statistical Classification. Prentice Hall, 1994.

[14] R.K.Yin, Case Study Research:Design and Methods-Third Edition, 3rd
ed. SAGE Publications, 2002.

[15] Mozilla Crash Reporting Server. http://crash-
stats.mozilla.com/products/Firefox, last accessed on March 22,
2012.

[16] A. Podgurski, D.Leon, P.A. Francis, W.Masri, M.Minch, J.Sun, and
B. Wang. Automated Support for Classifying Software Failure Reports,
Proc. 25th International Conference on Software Engineering, pp.465-
475, 2003.

[17] Dongsun Kim,Xinming Wang, Sunghun Kim, Andreas Zeller, S.C. Che-
ung and Sooyong Park, Which Crashes Should I Fix First?:Predicting
Top Crashes at an Early Stage to Prioritize Debugging Efforts, IEEE
Transactions on Software Engineering. VOL.37. NO.3. June 2011.

[18] Foutse Khomh, Brian Chan, Ying Zou, Ahmed E. Hassan. An Entropy
Evaluation Approach for Triaging Field Crashes: A Case Study of
Mozilla Firefox, Proc. the 18th Working Conference on Reverse En-
gineering(WCRE), October 17-20, 2011, Lero,Limerick, Ireland. IEEE
Computer Society.

[19] W.Le and M. L. Soffa, Path-Based Fault Correlation, Proceeding of
the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering (FSE ’10), Santa Fe, New Mexico, USA,
November 2010.

[20] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I.Jordan, Scalable
Statistical Bug Isolation, Proc. of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 15-26,
Chicago, Illinois, USA, June 2005.

[21] T.Ball, NM. Naik, and S.K.Rajamani. From symptom to cause:localizing
errors in counterexample traces, In Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, 2003.

[22] J. A. Jones and M.J.Harrold, Empirical Evaluation of the Tarantula
Automatic Fault-localization Technique, IEEE/ACM Conference on Au-
tomated Software Engineering, December, 2005.

[23] J. Jones, M.J.Harrold, and J.Stasko. Visualization of test information to
assist fault localization, In Proceedings of the International Conference
on Software Engineering. pages 467-477,Orlando, Florida, May 2002.

[24] S.Nessa, M. Abedin, W. Eric Wong, L. Khan, and Y. Qi. Software Fault
Localization Using N-gram Analysis, WASA 2008, LNCS, pp.548-559,
2008.

[25] B.Chan,Ying Zou, A.E.Hassan and A.Sinha. Visualizing the Results of
Field Testing, International Symposium on Software Reliability Engi-
neering, Mysuru, India, November 2009.

[26] Sunghun Kim, Thomas Zimmermann, Nachiappan Nagappan. Crash
Graphs: An aggregated view of multiple crashes to improve crash triage,
Dependable Systems and Networks (DSN),, pp. 486-493, 2011.

