
Empirical Software Engineering (2018) manuscript No.
(will be inserted by the editor)

Getting the Most from Map Data Structures in Android

Rubén Saborido1 · Rodrigo Morales1 ·
Foutse Khomh1 · Yann-Gaël Guéhéneuc1 ·
Giuliano Antoniol1

Received: June 2017 / Accepted: –

Abstract A map is a data structure that is commonly used to store data as key–value
pairs and retrieve data as keys, values, or key–value pairs. Although Java offers differ-
ent map implementation classes, Android SDK offers other implementations supposed
to be more efficient than HashMap: ArrayMap and SparseArray variants (SparseArray,
LongSparseArray, SparseIntArray, SparseLongArray, and SparseBooleanArray). Yet,
the performance of these implementations in terms of CPU time, memory usage, and
energy consumption is lacking in the official Android documentation; although saving
CPU, memory, and energy is a major concern of users wanting to increase battery life.

Consequently, we study the use of map implementations by Android developers in
two ways. First, we perform an observational study of 5,713 Android apps in GitHub.
Second, we conduct a survey to assess developers’ perspective on Java and Android
map implementations. Then, we perform an experimental study comparing HashMap,
ArrayMap, and SparseArray variants map implementations in terms of CPU time,
memory usage, and energy consumption. We conclude with guidelines for choosing
among the map implementations: HashMap is preferable over ArrayMap to improve en-
ergy efficiency of apps, and SparseArray variants should be used instead of HashMap
and ArrayMap when keys are primitive types.

Rubén Saborido
ruben.saborido-infantes@polymtl.ca

Rodrigo Morales
rodrigo.morales@polymtl.ca

Foutse Khomh
foutse.khomh@polymtl.ca

Yann-Gaël Guéhéneuc
yann-gael.gueheneuc@polymtl.ca

Giuliano Antoniol
giulio.antoniol@polymtl.ca

1 Département de génie informatique et génie logiciel, École Polytechnique de Montréal,
Québec, Canada

2 Empir Software Eng (2018)

Keywords Android · Map data structure · Map implementations · CPU usage ·
Memory usage · Energy consumption

1 Introduction

Android is a popular open-source operating system developed by Google for mobile
devices. Android is successful in part due to the availability of hundreds of thousands
of apps written using the Android Software Development Kit (SDK) and Java.

Google has recently mentioned, during the Google I/O Developers Festival in May
2017, that there are two billion active Android devices in the world1. Developers should
manage resources mindfully because emerging markets own a significant share of this
installed base; for example, there are more Android users in India than in the United
States of America. However, many of the devices sold in emerging markets are resource
constrained. To mitigate these factors, Google has also announced Android Go, which
is a lightweight version of the operative system that is optimized for low-cost devices
with less than one gigabyte of memory. Hundreds of millions of people around the world
are making their way on-line for the first time, and Google wants to create a better
experience for them. The new Android experience will ship in 2018 for all Android
devices that have up to one gigabyte of memory. Google recommends taking a look
at the Building for Billions2 to learn about the importance of offering a useful offline
state, reducing apk size, and minimizing memory and battery usages.

Previous empirical studies indicated that software engineers can help reduce energy
consumption by considering the energy impacts of their design and implementation
decisions, e.g., using dark colors in their graphical user interfaces (Li et al. (2014)),
considering the performance of different data structures (Manotas et al. (2014)), or
removing anti-patterns in Android apps (Morales et al. (2017)). Hasan et al. (2016)
showed that the Java implementations of various data structures differ significantly
in terms of energy consumption, depending on the operations (insertions, iterations,
and queries). They made developers aware of the consequences of their decisions. e.g.,
while List and Set collections consume about the same energy for the same opera-
tions, HashMap is the most energy-efficient Java map implementation. A map is a data
structure used to store and retrieve data as key–value pairs, each key being unique.

Android SDK offers specialized map implementations and a series of video tuto-
rials discussing performance issues3. The Android developers’ reference documenta-
tion states that “ArrayMap is designed to be more memory efficient than a traditional
HashMap”4. When keys are defined as integer primitive types, the documentation also
states that “SparseArray is designed to be more memory efficient than HashMap to
map integers to objects”5. The same is stated about LongSparseArray and long primi-
tive types used as keys6. When keys are defined as integer primitive types and values
are defined as integer, long, or boolean primitive types, the documentation also states

1 https://youtu.be/Y2VF8tmLFHw
2 https://developer.android.com/topic/billions/index.html
3 https://developer.android.com/topic/performance/index.html
4 https://developer.android.com/reference/android/util/ArrayMap.html
5 https://developer.android.com/reference/android/util/SparseArray.html
6 https://developer.android.com/reference/android/util/LongSparseArray.html

Getting the Most from Map Data Structures in Android 3

that SparseIntArray7, SparseLongArray8, and SparseBooleanArray9, respectively,
are designed to be more memory efficient than a traditional HashMap. In addition to
the previous, Android Studio, the official Android integrated development environ-
ment (IDE), warns “Use new SparseArray instead new HashMap<Integer,Object>()
for better performance” (a similar warning is also given for SparseArray variants).
Hence, ArrayMap and SparseArray variants should be preferred over HashMap, at least
for maps containing up to hundreds of elements according to Android developers’ refer-
ence documentation. For ArrayMap and SparseArray variants the documentation claims
that “this implementation is not intended to be appropriate for data structures that may
contain large number of items. It is generally slower than a traditional HashMap”.

Yet, the documentation is vague because (1) it does not provide supporting ev-
idence and quantitative information about efficiency and (2) although it discourages
their use in maps containing large number of elements, it does not provide more precise
numbers (e.g., performance information and–or threshold levels to consider). Conse-
quently, although the current documentation raises the awareness of developers about
the advantages and limitations of map implementations, it does not provide concrete
evidences that could be used to make informed decisions about the implementations
that are the most suitable for their apps. Expressions such as “large number” and
“generally slower” are vague and they do not help developers at all. In addition to
the previous, the documentation says nothing about energy consumption and neither
about performance for different map-related operations and data sizes.

In this paper, we study the performance of the map implementations ArrayMap
and SparseArray variants provided by Android in comparison to HasHMap and provide
guidelines for developers to make informed decisions. First, we perform the largest ob-
servational study on the use of map implementations in mobile apps. We analyze all of
the Android apps hosted on GitHub and available in the official Android marketplace,
Google Play10, as of November 23, 2016 (i.e., 5,713 apps). We report that (1) HashMap
is the most used map implementation, (2) ArrayMap and SparseArray variants are
rarely used, and (3) HashMap is often adopted even if SparseArray variants seem to be
more appropriated. Second, we survey the Android developers of the analyzed apps to
understand their perspective with respect to map implementations. We contacted 656
developers and received 118 (18%) completed surveys. We report that developers are
moderately familiar with the implications of different Android map implementations,
and they use HashMap because it is well-known. However, most developers (86%) would
replace HashMap if they had more concrete information about the performance of other
implementations. Consequently, we perform an empirical study of the CPU and mem-
ory usages and energy consumption of HashMap, ArrayMap, and SparseArray variants
map implementations. We find that ArrayMap is less energy efficient and slower than
HashMap, although the former is a bit better in terms of memory use than the latter.
We estimate that HashMap is, on average, 13% faster and consumes 16% less energy
than ArrayMap. However, ArrayMap uses less memory (6%) than HashMap. If keys are
primitive types, we find that SparseArray variants are more efficient than HashMap
for all performance metrics and most operations. The average incurred cost of using
HashMap instead of SparseArray variants is 25% more CPU time, 62% more memory,

7 https://developer.android.com/reference/android/util/SparseIntArray.html
8 https://developer.android.com/reference/android/util/SparseLongArray.html
9 https://developer.android.com/reference/android/util/SparseBooleanArray.html

10 https://play.google.com/store/apps

4 Empir Software Eng (2018)

and up to 6% more energy. The incurred cost of using ArrayMap instead of SparseArray
variants follows a similar trend than HashMap.

We conclude that Android developers prefer HashMap because they are reluctant
to adopt Android implementations by speculating on possible gains in efficiency. Al-
though using Android map implementations can really save CPU and memory usages
and reduce energy consumption. For most common map-related operations we provide
guidelines for choosing among different map implementations taking into account their
performance. We thus make the following contributions:

– A quantitative analysis of the use of map implementations in all the 5,713 apps
Android apps available in GitHub on December, 2016.

– A survey of 118 Android developers on their knowledge and usage of the different
map implementations.

– A quantitative analysis of the impact of using HashMap, ArrayMap, or SparseArray
variants on performance metrics.

We ensure the replicability of our study by making available, in a replication pack-
age11, our survey, all Android apps and test cases developed, and scripts and collected
data.

In the following, Section 2 discusses Java and Android implementations of map
data structures. Section 3 describes our observational study on the usage of map im-
plementations in Android apps. Section 4 presents the survey of Android developers.
Section 5 summarizes our experiments to assess the performance of the map imple-
mentations. Section 6 offers guidelines to developers. Section 7 warns about threats to
the validity of our results. Section 8 summarizes related work. Section 9 concludes with
future work.

2 Background

Java offers three general-purpose map implementations in the package java.util:
HashMap12, LinkedHashMap13, and TreeMap14. HashMap is an array of HashMap.Entry
instances; i.e., pairs of non-primitive keys and values. When a key–value pair is put in a
HashMap, a hash-code of the key is calculated and used to obtain the index of the Entry
in the array. LinkedHashMap is a hash table and linked list combined to implement a
Map with predictable iteration order. Contrary to HashMap, LinkedHashMap maintains
a doubly-linked list of all its entries, which defines the iteration ordering. TreeMap is
another implementation that uses tree to store key–value pairs in sorted order, allowing
rapid retrieval.

Constructors of HashMap and LinkedHashMap have two optional parameters that
affect their performances: capacity and load factor. The default load factor is 0.75
which, regarding the official documentation, offers a “good” trade-off between CPU
and memory usages. The default capacity is the number of buckets in the hash table at
the time the hash table is created, 16: resizing will occur when 16×0.75 = 13th element
is inserted. The drawback of these map implementations is in the use of non-primitive
types. (Auto-)Boxing is required for primitive types, which creates extra objects at

11 http://www.ptidej.net/downloads/replications/ese17a/
12 https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
13 https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
14 https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

Getting the Most from Map Data Structures in Android 5

insertion. Finally, entries must be rearranged each time the array underlying the maps
is compacted or expanded and both implementations must store both keys and their
hash-codes to avoid collisions but increasing memory usage.

Android offers its own map implementations. The implementation ArrayMap is sup-
posed to be more memory-efficient than HashMap. ArrayMap keeps its mappings in an
array using an integer array of hash codes for each item and an Object array of the
key–value pairs. Thus, it avoids creating extra objects for every entry put into the map
and control the growth of the sizes of its arrays more aggressively (growing them only
requires copying the entries in the array, not rebuilding a hash map). Although this
implementation was designed to be more memory-efficient than HashMap, ArrayMap still
does not solve the problem of (auto-)boxing given that its put method still takes two
Objects as parameters.

If the key is an integer, Android suggests to use SparseArray that maps integers
to Objects. SparseArray is intended to be more memory-efficient than HashMap. It
avoids (auto-)boxing keys and its implementation does not add the extra overhead of
an entry object for each mapping. Android provides different variants of SparseArray
that map to different primitive types: LongSparseArray that maps long type keys to
objects, and SparseIntArray, SparseLongArray, and SparseBooleanArray that map
integers to objects for keys and different primitive types to objects for values.

Both ArrayMap and SparseArray variants are located in the package android.util
available from the Android API, but ArrayMap is only available from the Android API
level 19 (KitKat) and higher. An alternative implementation of ArrayMap is located
in the package android.support.v4.util, for older versions of Android. We study
both implementations but only report the results of the implementation located in the
package android.util because apps targeting the Android API 19 and later will run
on more than 90% of the devices that are active on the Google Play Store15.

3 Observational Study

We study usage patterns of Android developers of Java map implementations and
the Android map implementations ArrayMap and SparseArray variants. We conduct
this study to analyze the prevalence of map implementations. We define the following
research question, which we answer through an observational study of Android apps
available on GitHub.

RQ1. What map implementations do Android developers use?

3.1 Objects

We selected from GitHub (repository queried and accessed December, 2016) all the
projects that advertised to be available in the official Android marketplace as Android
apps; i.e., all the projects that contained a link to the Google Play marketplace in
their README.md file. We chose open-source apps to study the prevalence of map
implementations in the source code.

15 https://developer.android.com/about/dashboards/index.html

6 Empir Software Eng (2018)

3.2 Procedure

We developed a Python script to select and download, automatically, the zip file con-
taining the source code of each existing Android project from GitHub. Thus, we ob-
tained 5,713 Android apps. We also developed a Bash script to process the source code
of all the apps looking for occurrences of general-purpose Java map implementations
(HashMap, LinkedHashMap, and TreeMap) as well as the Android map implementations
(ArrayMap and SparseArray variants). This script produces a comma-separated values
(CSV) file. For each Android app and map implementation, the file contains a boolean
value to specify if an app has one or more occurrences of a map implementation in its
source code.

3.3 Results

We obtain that, over 5,713 apps, 1,713 (30%) apps have at least one occurrence of any
Java map implementation. For ArrayMap and SparseArray variants, 419 (7%) apps
have one or more occurrences of these map implementations. In total, over 5,713 apps,
2,132 (37%) use any of the studied map implementations. From now on, in this section,
percentages are given with respect to this number.

We find that HashMap is the most used Java map implementation with 1,640
apps (77%) while the others are used less often. We obtain that 282 (13%) apps use
LinkedHashMap and 179 (8%) use TreeMap. Note that different map implementations
can be used in the same app. Concerning Android map implementations, we find that
ArrayMap and SparseArray variants are rarely used by Android developers. Only 19
(1%) and 413 (7%) apps use ArrayMap or any variant of SparseArray, respectively.

Table 1 shows the number and the percentage of apps that have one or more occur-
rences of any combination of the Java and Android map implementations. The second
column shows the number and percentage of apps that have one or more occurrences
of ArrayMap and one or more occurrences of a Java map implementation. The third
column is similar to the previous one but for SparseArray variants. The last column
shows the number and percentage of apps that have one or more occurrences of both
ArrayMap and any variant of SparseArray map implementations and one or more oc-
currences of a Java map implementation. We observe that ArrayMap and SparseArray
variants are used in combination with HashMap. This is expected for SparseArray vari-
ants, because these map implementations are used when keys are primitive types while
HashMap can be used to store non-primitive types as keys and–or values. However,
ArrayMap could be used as a replacement for HashMap but we find that only five (0.23%
over 2,132 or 0.30% over the 1,640 apps using HashMap) apps use exclusively ArrayMap
instead of HashMap.

The Android documentation claims that SparseArray variants have a better mem-
ory performance than HashMap and, for this reason, Android Studio suggests to replace
HashMap by SparseArray variants. Because we find that HashMap is the most used
map implementation we also study whether Android developers adopt the HashMap
implementation when keys are defined as primitive types. We develop another script
to process the source code of apps looking for usages of the HashMap implementa-
tion using primitive types as keys. This script produces a CSV file containing for
each Android app a boolean value that indicates whether an app uses this map im-
plementation. From the 1,640 apps using the HashMap implementation, 332 (20%) of

Getting the Most from Map Data Structures in Android 7

Table 1 Number and percentage of Android apps having one or more occurrences of any
combination of the Java and Android map implementations.

Android map implementation
Java map implementation ArrayMap SparseArray variants Both

TreeMap 3 (<1%) 46 (2%) 2 (<1%)
LinkedHashMap 4 (<1%) 100 (5%) 3 (<1%)
HashMap 14 (<1%) 314 (15%) 8 (<1%)

these apps use integers as keys, 64 (4%) use longs as keys, 89 (5%) use integers as
keys and values, 12 (<1%) use integers as keys and longs as values, and 13 (<1%)
use integers as keys and booleans as values. However, in these cases, Android rec-
ommends to replace HashMap with SparseArray, LongSparseArray, SparseIntArray,
SparseLongArray, and SparseBooleanArray, respectively, for better memory perfor-
mance.

3.4 Discussion of the Observational Study

From the observational study we answer RQ1 (What map implementations do Android
developers use?) concluding the following:

– HashMap is the most used Java map implementation in Android apps.
– ArrayMap and SparseArray variants map implementations are rarely used in An-

droid apps.
– Although ArrayMap is designed by Android to be more memory efficient than a

traditional HashMap, less than 1% of Android apps use ArrayMap as a replacement
for HashMap.

– Although the Android documentation and Android Studio highly suggest to re-
place HashMap by SparseArray variants when keys are primitive types, Android
developers are not following this practice.

We think that HaspMap is the most used map implementation since Android apps
are mainly usually written in Java and most Android developers are likely used to
this programming language. Because of this, we believe that Android specific map
implementations are not always well-known and taken into account. We also think
that SparseArray variants are much more used than ArrayMap in Android apps because
Android Studio warns about using variants of SparseArray instead of HashMap with
primitive type keys. As we show in Section 4, most developers of the analyzed apps
use Android Studio as IDE.

4 Developers’ Perspective

We are interested to know why developers mostly select the Java map implementation
HashMap instead of ArrayMap and SparseArray. Particularly, in the cases where the
Android documentation advises the opposite. We assume that this lack of use is due to
developers’ reluctance to try new implementations. But it is also probably due to their
lack of knowledge about the possible advantages in terms of performance of switching

8 Empir Software Eng (2018)

to ArrayMap or SparseArray. We define the following research question, which we
answer by conducting an on-line survey. All questions were optional and the survey
was anonymous to encourage developers to participate (Tyagi (1989)).

RQ2. What is the developers’ perspective with respect to map implementations?

4.1 Subjects

We considered the 1,744 apps that use HashMap, ArrayMap, and–or any variant of
SparseArray. We contacted those project’s owners who that made their email address
publicly available in GitHub. The total amount of emails sent was 656. We surveyed
these 656 developers and 118 (18%) responded to our survey. This rate is considerably
larger than the typical 5% answer rate obtained in questionnaire-based software engi-
neering surveys (Singer et al. (2008)). The survey was available on-line from December
2016 to January 2017.

Participants in our survey were from 35 different countries around the world. The
majority of them was from USA (17, 14%), India (15, 13%), and Spain (seven, 6%).
Of all 118 participants: 93 (79%) had up to four years of experience developing mobile
apps, 101 (86%) participants declared to use Java as primary programming language,
and 97 (82%) participants declared to use Android Studio as IDE.

4.2 Instrument

The on-line survey contained 14 questions: four on the usage of map implementations,
five on the participants’ familiarity with Android map implementations, one about
the importance of performance metrics, and four on the participants’ background and
experience.

All the questions had a closed set of answers from which a participant selects, while
two of them included an additional field for open comments. None of the questions were
mandatory and participants were allowed to drop out at any time.

The survey consisted of four different sections asking about the use of map imple-
mentations, the familiarity with map implementations offered by Android, the impor-
tance of different performance metrics, and participants’ profile. We accept answers
using a dichotomous scale (yes/no) or Likert scales with values from 1 (never) to
5 (every time). When the question was related to importance magnitude we used a
similar scale with values from 1 (not important) to 5 (very important). For questions
about familiarity we used the same scale with values from 1 (not at all familiar) to 5
(extremely familiar).

The survey was designed to be completed within approximately 5-8 minutes. In
order to automatically collect the answers, we hosted the survey using the web app
Google Forms. We allowed developers to complete the questionnaire in multiple rounds.

4.3 Results

Demographic and experience information about participants was reported previously
but results for the other three sections are presented next. For Likert scale questions

Getting the Most from Map Data Structures in Android 9

we use diverging stacked bar charts to show the frequency of responses (in percentage).
Replies are positioned horizontally, so “low” responses are stacked to the left of a vertical
baseline and “high” responses are stacked to the right of this baseline. We consider as
baseline or “neutral response” the midpoint of the scale (value 3). For each stacked bar
we also add the percentage of low, neutral, and high responses. In addition, on the right,
we also show the total number of participants who answered each of the questions. In
all the questions we obtained more than 110 responses (over 118 participants).

Use of Map Implementations

We asked participants the frequency of usage of the Java map implementations TreeMap,
LinkedHashMap, and HashMap. Figure 1 summarizes the participants’ responses. As it is
shown, HashMap is the most often used Java map implementation (80% of participants
responded almost every time or every time).

67%

52%

2%

5%

12%

80%

27%

36%

18%

113

115

116

−100 −50 0 50 100

TreeMap

LinkedHashMap

HashMap

Percentage

Response never almost never occasionally almost every time every time

Fig. 1 Participants’ responses about the usage of most popular Java map implementations.

Concerning map-related operations (insertion, iteration, random query, and dele-
tion), we asked participants to rate them according to their importance in their codes.
Figure 2 summarizes the participants’ responses. For insertion, iteration, and random
query operations, more than 70% of the participants responded moderately important
or very important. For the deletion operation, 52% of the participants considered it an
important operation while 27% of the participants had a neutral opinion about it.

Regarding the iteration operation we asked developers about the way of iterating
through map structures. We received 118 responses from participants: 94 (80%) of these
participants selected for-Each loop instead of the Iteration pattern, which was selected
by 24 (20%) participants. In addition to this, we asked if the iteration is used over
the key–value pairs, the set of keys, or the set of values. We received 118 responses:
59 (50%) participants selected key–value pairs, 41 (35%) chose the set of keys because
they get the value mapped to each key using the get method, and 18 (15%) selected
the set of values because they are not usually interested in keys.

Familiarity with Android Map Implementations

In the second section of the survey, we asked about the familiarity of developers
with the Android map implementations ArrayMap and SparseArray. We focused on

10 Empir Software Eng (2018)

21%

15%

9%

8%

52%

71%

73%

74%

27%

15%

19%

19%

117

117

117

118

−100 −50 0 50 100

Deletion

Query

Iteration

Insertion

Percentage

Response not important slightly important neutral moderately important very important

Fig. 2 Participants’ responses about the importance of map-related operations.

SparseArray and not on the other variants because they are used less often. Figure 3
summarizes the participants’ responses. For ArrayMap, 55% of participants responded
moderate familiar or extremely familiar. For SparseArray, 27% of participants re-
sponded moderate familiar or extremely familiar. Half of the participants responded
that they were not at all familiar or slightly familiar with SparseArray.

50%

35%

27%

55%

23%

10%

118

118

−100 −50 0 50 100

SparseArray

ArrayMap

Percentage

Response not at all familiar slightly familiar somewhat familiar moderate familiar extremely familiar

Fig. 3 Participants’ responses about familiarity with Android map implementations.

Since ArrayMap was introduced in the Android API 19, developers from early ver-
sions of Android or even those who want to provide compatibility backwards may opt
for not switching to this implementation. To counter effect this issue, Android offers a
utility class android.support.v4.util that allows to use ArrayMap in early Android
versions. We asked developers to share whether they were aware of this class. 118
participants answered this question, from whom 49 (42%) were aware. The rest, 69
participants (58%), could hesitate to use it if they want to bring compatibility back to
previous versions, like one respondent said: “My app is an uncommon case, I support
all the way back to API level 8... I do however use SparseArray map, as it is available
since API 1 ”.

With respect to SparseArray, we asked participants if they knew that it is designed
to be more efficient than HashMap when keys are integers. 118 participants answered
this question, from whom 52 (44%) confirmed this fact. The rest, 66 participants (56%),
answered no.

Getting the Most from Map Data Structures in Android 11

We asked participants if they were willing to replace HashMap with any of the map
implementations provided by Android, if they offer better performance. 118 partici-
pants answered this question, from whom 102 (86%) answered yes. To the 16 (14%)
remaining participants, we asked why they chose no. In general, they answered that
they use what they know and they fear learning or incorrectly using new structures.
Another respondent said that (s)he is concerned by the size of the app’s apk, because
adding the Android library would increase its size. In addition, another respondent was
worried about portability of code when Android libraries are included. We were more
concrete and we also asked if they were willing to substitute HashMap with SparseArray
when integers are used as key in map data structures. 118 participants answered this
question, from whom 107 (91%) said yes and 11 (9%) no. When we asked about the
reason, one participant said that “the replacement effort may be huge because they have
different interfaces”.

Importance of Performance Metrics

Finally, we asked participants to rank performance metrics (CPU time, memory usage,
and energy consumption) according to the weight that they give when choosing a map
implementation. Figure 4 summarizes the participants’ responses. As it is shown, more
than 70% of the participants responded moderately important or very important for
CPU time and memory usage. About energy consumption, 43% of the participants
responded that this performance metric is important while 27% of the participants
had a neutral opinion about it.

30%

9%

9%

43%

78%

74%

27%

13%

17%

116

116

116

−100 −50 0 50 100

Energy

Memory

CPU

Percentage

Response not important slightly important neutral moderately important very important

Fig. 4 Participants’ responses about importance of performance metrics when choosing a map
implementation.

4.4 Discussion about Developer’s Perspective

Based on the results obtained from the survey, we answerRQ2 (What is the developers’
perspective with respect to map implementations?) concluding the following:

– We confirm what we found in our observational study (Section 3): HashMap is the
most popular map implementation and developers are moderately familiar with

12 Empir Software Eng (2018)

Android map implementations. In addition, we also confirm that most Android
developers use Java as primary programming language.

– Developers are not aware of the overhead incurred when selecting an inappropriate
map implementation and that is why they stick with the well-known HashMap.

– Participants accepted to be more familiar with ArrayMap than with respect to
SparseArray. However, in our observational study (Section 3) we found that the
Android map implementation SparseArray was used in more apps than ArrayMap.
According to our survey, most developers use Android Studio as IDE. Hence, we
could suggest that ArrayMap is not typically used by them because Android Studio
does not suggest it as an alternative to HashMap. However, Android Studio warns
about using SparseArray instead of HashMap with integer keys.

– The most important map-related operations for Android developers are insertion,
iteration, and random access.

– Most developers iterate through map data structures over key–value pairs, and they
prefer to do that using a for-Each loop.

– When Android apps developers choose a map implementation, CPU time and mem-
ory usage are more important metrics than energy consumption. Even if battery life
is a main concern for mobile device users, this metric is less important for develop-
ers than CPU time and memory usage. Energy is more difficult to measure because
specific knowledge and software tools or–and specific hardware could be required.
We believe that CPU time and memory usage are more important performance
metrics for developers because they can easily measure both of them.

5 Experimental Study

In our observational study we found that HashMap is the most used map implementa-
tion. From the survey we concluded that developers are not aware of the cost of selecting
map implementations. For this reason, developers are reluctant to use new map im-
plementations and they use what they know that works. We believe that if developers
are provided with concrete results about the performance of maps in terms of critical
performance metrics (e.g., CPU time, memory usage, and energy consumption), they
will be able to make informed decisions. Consequently, we define the following research
question.

RQ3. What is the performance of HashMap and ArrayMap?

We answer this question through an experimental study about the performance of
HashMap, the most popular Java map implementation, and ArrayMap, a map implemen-
tation proposed by Android as a replacement for HashMap.

In addition, as we found in our observational study, 20% of the apps using HashMap
use integers as keys, 4% use longs as keys, 5% use integers as keys and values, <1% use
integers as keys and longs as values, and <1% use integers as keys and booleans as val-
ues. For these cases, Android map implementations SparseArray, LongSparseArray,
SparseIntArray, SparseLongArray, and SparseBooleanArray are suggested by An-
droid to be more efficient map implementations. This is the rational that led us to
define the following research question.

RQ4. What is the cost of adopting HashMap instead of SparseArray variants?

Getting the Most from Map Data Structures in Android 13

We answer this research question by studying the performance of the SparseArray
variants map implementation.

Although Android proposes SparseArray variants as a replacement for HashMap,
nothing is said about the usage of ArrayMap for primitive types. For this reason we
also define the following research question.

RQ5. Is ArrayMap as efficient as SparseArray variants?

Therefore, we answer these three research questions by analyzing the performance of
HashMap, ArrayMap, and SparseArray variants in terms of CPU time, memory usage,
and energy consumption. We analyze these map implementations for different data
sizes and for the four most important operations: insertion, iteration, random query,
and deletion.

5.1 Design

We ran experiments with HashMap, ArrayMap, and SparseArray variants considering
30 different data sizes in the range [1, 80000]. The Android documentation says that
ArrayMap and SparseArray variants are not intended to be appropriate for data struc-
tures that may contain large numbers of items. Because “large” is a vague quantity,
we use as upper bound for data size a quantity 15 times larger than the one used by
Hasan et al. (2016). Thus, we want to know how the performance of map implemen-
tations is affected when up to 80,000 elements are used in map data structures. For
all the map implementations we used the default initial capacity and the default load
factor value of 0.75 for HashMap, as it is proposed in the Java documentation.

Because SparseArray variants are designed to be used with specific primitive type
keys, we compare them with respect to HashMap and ArrayMap setting the same prim-
itive types. Additionally, we also compare HashMap and ArrayMap implementations
using objects (strings) as keys, instead of primitive types. Thus, we analyze 17 dif-
ferent map implementations. They are shown in Table 2. The first column contains
the specific types used as keys and values for the map implementations shown in the
second column. The third column contains the syntax for the declaration of each map
implementation.

In our experiments, we used four different operations over these map implemen-
tations. For each of the 30 data sizes used, map implementation, and operation, we
collected performance metrics. We now explain in detail each of the four operations:

– Insertion. We created the data structure and we filled it by inserting the number
of elements desired. The insertion was done using the put method of the map
implementations.

– Iteration. We created the data structure and we filled it by inserting the number
of elements desired. After that, we iterated, with a for-Each loop, over each Entry
using the entrySet method of the HashMap and ArrayMap implementations. We
used this approach to iterate over the elements of map data structures because, as
observed in our survey, it is extensively used by developers. However, SparseArray
variants do not offer an entrySet method. We iterated over these implementations
by modifying the index between zero and the number of elements. We obtained the
key and value from each indexed key–value mapping using the methods keyAt and
valueAt of SparseArray variants, respectively.

14 Empir Software Eng (2018)

Table 2 Subject map implementations for the experimental study.

Types for keys and values Map implementation Declaration
String keys and integer values HashMap HashMap<String,Integer>()

ArrayMap ArrayMap<String,Integer>()
Long keys and integer values HashMap HashMap<Long,Integer>()

ArrayMap ArrayMap<Long,Integer>()
LongSparseArray LongSparseArray<Integer>()

Integer keys and integer values HashMap HashMap<Integer,Integer>()
ArrayMap ArrayMap<Integer,Integer>()
SparseArray SparseArray<Integer>()
SparseIntArray SparseIntArray()

Integer keys and long values HashMap HashMap<Integer,Long>()
ArrayMap ArrayMap<Integer,Long>()
SparseArray SparseArray<Integer,Long>()
SparseLongArray SparseLongArray()

Integer keys and boolean values HashMap HashMap<Integer,Boolean>()
ArrayMap ArrayMap<Integer,Boolean>()
SparseArray SparseArray<Integer,Boolean>()
SparseBooleanArray SparseBooleanArray()

– Random query. We created the data structure and we filled it by inserting the
number of elements desired. Then, using the get method of the map implementa-
tions, we returned the values to which the specified key of N random elements was
mapped. Here, N is the data size of the data structure. To make a fair comparison,
the same seed was used for all the data structures. Therefore, the same sequence
of random numbers was always generated.

– Deletion. We created the data structure and we filled it by inserting the number of
elements desired. Then, we iterated over the data structure removing one element
at time. We removed elements (accessing by key) using the remove method of
the HashMap and ArrayMap map implementations, and the delete method of the
SparseArray variants.

Next, we explain the way CPU time, memory usage, and energy consumption were
collected. For each of these performance metrics we used a different approach and
various scripts developed by us. We used a LG Nexus 4 Android phone equipped with
a quad-core Krait CPU@1500MHz, a 4.7-inch screen, and running Android Lollipop
(version 5.1.1, Build number LMY47V). We believe that this phone is representative
of the current generation of Android mobile phones. Nexus mobile phones are pure
Android devices designed by Google and manufactured by one of the most important
mobile companies to provide the best user experience.

CPU Time

We created an Android app for each map implementation which runs the four oper-
ations while it collects execution traces using the Android profiler. Execution traces
were used to get the CPU time associated to each operation. We ran the experiments
in an automatic way using a Python script. This script uses as input a text file speci-
fying, on each line, the map implementation and the data size to use. Considering the
first parameter, the map implementation, the script runs the corresponding Android
app, which receives as a parameter the data size. When a tap event is detected on

Getting the Most from Map Data Structures in Android 15

the screen, the Android app runs the insertion, iteration, random query, and deletion
operations while the app is profiled using the Android debugger. After these actions
are completed, the resulting execution traces are saved on the phone and then trans-
ferred to a server for backup and processing. Algorithm 1 shows the pseudo-code of our
approach to measure CPU time of map implementations. Because we were analyzing
17 map implementations and 30 data sizes, we ran 510 (17 × 30) experiments to get
CPU measurements.

forall map implementation and data sizes in input file do
Install app of the current map implementation (using adb).
Start app passing the data size as parameter (using adb).
Wait to load the app completely.
Touch the screen to run the experiment (using adb).
Wait until experiment is finished.
Download execution traces from the phone (using adb).
Remove execution traces from the phone (using adb).
Stop the app (using adb).
Clean the app data (using adb).
Uninstall the app (using adb).

end
Algorithm 1: Collection of CPU time for different map implementations, operations,
and data sizes.

For each data size and map implementation, we obtained one execution trace per
operation (insertion, iteration, random query, and deletion). Using a Bash script and
the Android dmtracedump command, we processed execution traces to generate a CSV
file containing the CPU time of each independent experiment. Execution traces gener-
ated by the Android profiler show both the inclusive and exclusive CPU times (as well
as the percentage of the total time). Exclusive time is the time spent in the method. In-
clusive time is the time spent in the method plus the time spent in any called functions.
We use inclusive CPU time as CPU usage.

Memory Usage

We created an Android app for each map implementation to measure memory usage.
Each app runs insertion operations over the corresponding map data structure and
reports the memory difference before and after the insertion of elements. The Android
app does the following: (1) get the amount of memory (in bytes) used by the Java
Virtual Machine, (2) create and fill the corresponding data structure, (3) get the current
amount of memory (in bytes) used by the Java Virtual Machine (using the methods
freeMemory and totalMemory offered by the class Runtime), (4) calculate the difference
between both memory values, and (5) save the resulting amount of memory in a text file
on the phone. Thus, the generated file contains the memory used by the data structure,
expressed in bytes. We used a Python script to collect memory usage of the studied
map implementations automatically. This script uses as input a text file specifying,
in each line, the map implementation to use and the data size. Considering the first
parameter, the map implementation, the script runs the corresponding Android app
that receives as parameter the data size of the map data structure. Algorithm 2 shows
the pseudo-code of our approach to measure memory usage of map implementations.

16 Empir Software Eng (2018)

We were analyzing 17 map implementations and 30 data sizes, so we ran 510 (17×30)
experiments.

forall map implementation and data sizes in input file do
Install app of the current map implementation (using adb).
Start app passing data size as a parameter (using adb).
Wait to load the app completely.
Touch the screen to run the experiment (using adb).
Wait until experiment is finished.
Download the file with information about memory usage (using adb).
Stop the app (using adb).
Clean the app data (using adb).
Uninstall the app (using adb).

end
Algorithm 2: Collection of memory usage for different map implementations and
data sizes.

Energy Consumption

We designed a parametrized Android test suite for each map implementation with four
Android test cases, one for each operation. The data size was considered as a parameter
of each test case. We measured energy consumption in a real phone while we ran these
test cases. Using Android test cases allowed us run experiments turning the screen
off (which removes the impact on energy consumption from the screen) and stop the
measurement process automatically when a test case finished. We ran automatically
these Android test cases using a Python script. This script reads an input text file
specifying, on each line, a test case to be run. A test case is defined by the name of a
map implementation, the operation to run, and the data size. Thus, a line “ArrayMap
INSERTION 1000" means that the test case inserts 1,000 elements in an ArrayMap
data structure. We measured energy consumption using a digital oscilloscope TiePie
Handyscope HS516. TiePie offers the LibTiePie SDK, a cross platform library for using
TiePie engineering USB oscilloscopes through third party software. This SDK allowed
us to communicate with the oscilloscope in our script. Algorithm 3 shows the pseudo-
code of our approach to measure energy consumption of map implementations. We
analyzed 17 different map implementations, four different operations, and we used 30
different data sizes. In total we ran 2,040 (17× 4× 30) different test cases.

forall Android test cases in input file do
Compose test case name.
Start oscilloscope to measure energy consumption.
Run Android test case (using adb).
Stop oscilloscope.

end
Algorithm 3: Collection of energy consumption for different map implementations,
operations, and data sizes.

16 http://www.tiepie.com/en/products/Oscilloscopes/Handyscope_HS5

Getting the Most from Map Data Structures in Android 17

The mobile phone was powered by a power supply. Between both we connected,
in series, a uCurrent17 device. It is a precision current adapter for multimeters that
converts the input current I proportionally to the output voltage Vout. Knowing I and
the voltage supplied by the power supply Vsup, we used Ohm’s law to calculate the
power usage P as P = Vsup · I. The resolution of the oscilloscope was set up to 16 bits
and the frequency to 125kHz; therefore, a measure was taken each eight microseconds.
We calculated the energy associated to each sample as E = P · T = P · (8 · 10−6)s,
where P is the power of the smart-phone and T is the period sampling in seconds. The
total energy consumption is the sum of the energy associated to each sample.

We connected the phone to an external power supplier that was connected to the
phone’s motherboard to avoid any kind of interference with the phone battery in our
measurements. Figure 5 shows the connection diagram.

power

supply

+
-

uCurrent

input

output

+-

+ -

+
-

battery

+
-

phone

1
4

Fig. 5 Connection between the power supply, the uCurrent device, and the LG Nexus 4 phone.

The phone was connected via USB to the PC to send and receive data. However,
using an Android app that we developed, we disabled18 the USB charging on the
device to avoid any interference in our measurements. This application is free and it is
available for downloading19 in Google Play.

5.2 Data analysis

Experiments were run 20 times to obtain statistical confidence. Hence, we ran 20, 400
(510× 20× 2) experiments for collecting both CPU time and memory usage. We ran
40, 800 (2, 040×20) Android test cases for energy measurements. Overall, the collection
of performance metrics took around 800 hours (over five weeks) of continuous execution
time and resulted in over 600 GB of raw data.

A Wilcoxon rank sum test was carried out to check if the difference observed be-
tween the values of the performance metrics was significant. In this case, the null
hypothesis was that the distribution of performance metrics of the HashMap implemen-
tation and performance metrics of ArrayMap or SparseArray variants differed by a
location shift of µ (the average value). We considered the difference to be significant
if the obtained p-value was lower than α = 0.05. In addition, when the comparison
was significant, we computed the effect size using Cliff’s Delta function from the R
software20.

17 http://www.eevblog.com/projects/ucurrent/
18 The mobile phone has to be rooted first.
19 https://play.google.com/store/apps/details?id=ruben.nexus4usbcharging
20 https://cran.r-project.org/web/packages/effsize/

18 Empir Software Eng (2018)

5.3 Results

Figure 6 shows the distribution of values of each performance metric for each map im-
plementation and map-related operation. CPU time is expressed in milliseconds (ms),
memory usage in kilobytes (kB), and energy consumption in Joules (J). The deletion
operation is omitted because performance metric values are much higher for this oper-
ation and some map implementations. Later we discuss this fact. Given a performance
metric and a map-related operation, we compute for each data size the median value of
each performance metric over the 20 runs. Figures 7, 8, 9, 10, and 11 show the median
CPU time, memory usage, and energy consumption for each map implementation, data
size, and operation. In addition, for each pair of map implementations we compute the
average difference of the median values previously computed for each data size. We
do this for each performance metric and map-related operation. We use all of this
information to answer RQ3, RQ4, and RQ5.

RQ3. What is the performance of HashMap and ArrayMap?
To answer this research question, first, we compare both map implementations with

object keys and primitive type values. Then, we compare HashMap and ArrayMap with
primitive type keys and primitive type values.

Object keys and primitive type value

HashMap is faster than ArrayMap for iteration, random query operations, and deletion
operations, but ArrayMap seems a bit faster than HashMap for insertion operations.
We observe that ArrayMap is, on average, 31 ms (1%) faster for insertion operations.
However, HashMap is, on average, 246 ms (13%), 422 ms (4%), and 5,516 ms (22%) faster
than ArrayMap for iteration, random query, and deletion operations, respectively.

Concerning memory usage, ArrayMap is a bit more efficient than HashMap. We find
that ArrayMap uses, on average, less memory (6%) than HashMap.

In terms of energy efficiency, HashMap consumes less energy than ArrayMap for all
the operations (on average 7%, 6%, 6%, and 45%, for insertion, iteration, random query,
and deletion operations, respectively).

The Wilcoxon statistical test concludes that differences in CPU time and memory
usage are significant and the effect size is large for any data size. Differences in energy
consumption are significant and the effect size is large when the data size is greater than
or equal to 2,000 for insertion, iteration, and random query operations. For deletion
operations, differences in energy consumption are significant when the data size is
greater than 1,000 elements.

Primitive type keys and values

ArrayMap is faster than HashMap for insertion operations, but ArrayMap is slower for
iteration, random query, and deletion operations. We observe that ArrayMap is, on
average, 648 ms (19%) faster for insertion operations. However, HashMap is, on average,
239 ms (12%), 434 ms (12%), and 5,518 ms (47%) faster than ArrayMap for iteration,
random query, and deletion operations, respectively.

Concerning memory usage, there is no clear trend and we consider that both im-
plementations are memory efficient. However, ArrayMap uses, on average, less memory
(5%) than HashMap.

In terms of energy efficiency, ArrayMap consumes less energy than HashMap for all
the operations (on average 4%, 4%, and 2%, for insertion, iteration, and random query

Getting the Most from Map Data Structures in Android 19

CPU Memory Energy

insertion iteration random query insertion insertion iteration random query
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000

0

5000

10000

15000

20000

25000

30000

35000

HashMap<String,Integer> ArrayMap<String,Integer>

●

●●
●

●

●

●

●

●

●
●

●●
●

●

●

●

CPU Memory Energy

insertion iteration random query insertion insertion iteration random query
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0

2000

4000

6000

8000

10000

12000

14000

HashMap<Long,Integer> ArrayMap<Long,Integer> LongSparseArray<Integer>

●

●
●

●

●

●

●
●
●

●
●

●
●

●
●
●
●

●●

●

●

●
●

●
●

●

CPU Memory Energy

insertion iteration random query insertion insertion iteration random query
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0

2000

4000

6000

8000

10000

12000

14000

HashMap<Integer,Integer> ArrayMap<Integer,Integer> SparseArray<Integer> SparseIntArray

●

●
●●

●

●●

●

●

●

●●●
●

●

●
●
●●

●
●

●

●

●
●

●●

CPU Memory Energy

insertion iteration random query insertion insertion iteration random query
0.8

0.9

1.0

1.1

1.2

1.3

1.4

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0

2000

4000

6000

8000

10000

12000

14000

HashMap<Integer,Long> ArrayMap<Integer,Long> SparseArray<Long> SparseLongArray

●
●

●●

●●

●

●

●●

●●
●

●●

●

●●

●
●●●
●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●

●●●
●●●

●●

●

●

CPU Memory Energy

insertion iteration random query insertion insertion iteration random query
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

2000

4000

6000

8000

10000

12000

HashMap<Integer,Boolean> ArrayMap<Integer,Boolean> SparseArray<Boolean> SparseBooleanArray

Fig. 6 Performance metrics of map implementations and map-related operations over 20 runs.
CPU time, memory usage, and energy consumption are in ms, kB, and J, respectively.

20 Empir Software Eng (2018)

CPU

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0
5000

10000
15000
20000
25000
30000

0
1000
2000
3000
4000
5000
6000
7000

0
5000

10000
15000
20000
25000
30000
35000

0
10000
20000
30000
40000
50000

Memory

insertion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0

2000

4000

6000

8000

10000

Energy

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

1.0

1.2

1.4

1.6

1.0

1.2

1.4

1.6

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

0

10

20

30

40

HashMap<String,Integer> ArrayMap<String,Integer>

Fig. 7 Performance metrics of map implementations using string keys and integer values, by
map-related operation and data size. CPU time, memory usage, and energy consumption are
in ms, kB, and J, respectively.

operations, respectively). However, ArrayMap consumes, on average, much more energy
(45%) than HashMap for deletion operations.

The Wilcoxon statistical test concludes that differences in CPU time and memory
usage are significant and the effect size is large when the data size is greater than or
equal to 100. Differences in energy consumption are significant and the effect size is
large when the data size is greater than or equal to 20,000, for insertion and iteration
operations. For random query operations, the statistical test reports that differences in
terms of energy consumption are significant when the data size is greater than or equal
to 30,000. For deletion operations, differences in energy consumption are significant
when the data size is greater than 1,000 elements.

RQ4. What is the cost of adopting HashMap instead of SparseArray variants?
To answer this research question, we focus on the cost of adopting HashMap with

primitive type keys instead of using SparseArray variants.
We find that SparseArray variants are faster than HashMap for insertion and ran-

dom query operations. This trend also applies for deletion operations and SparseArray
and LongSparseArray. Regarding iteration operations, HashMap is a bit faster than any
SparseArray variant. We observe that SparseArray and LongSparseArray are, on av-
erage, 1,040 ms (27%), 1,503 ms (42%), and 1,746 ms (63%) faster for insertion, random
query, and deletion operations, respectively. For iteration operations, HashMap is, on
average, 79 ms (<1%) faster than SparseArray and LongSparseArray. Concerning
SparseIntArray, SparseLongArray, and SparseBooleanArray, they are, on average,

Getting the Most from Map Data Structures in Android 21

CPU

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0
2000
4000
6000
8000

10000
12000
14000

0
1000
2000
3000
4000
5000
6000
7000

0
2000
4000
6000
8000

10000
12000

0
5000

10000
15000
20000
25000
30000
35000

Memory

insertion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0

1000

2000

3000

4000

5000

6000

Energy

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0.9

1.0

1.1

1.2

0.9
1.0
1.1
1.2
1.3

0.9
1.0
1.1
1.2
1.3
1.4

0

10

20

30

40

HashMap<Long,Integer> ArrayMap<Long,Integer> LongSparseArray<Integer>

Fig. 8 Performance metrics of map implementations using long keys and integer values, by
map-related operation and data size. CPU time, memory usage, and energy consumption are
in ms, kB, and J, respectively.

1,768 ms (45%) and 725 ms (21%) faster for insertion and random query operations,
respectively. However, HashMap is 782 ms (25%) faster for iteration operations. Regard-
ing the deletion operation, we observe that SparseIntArray, SparseLongArray, and
SparseBooleanArray are, on average, 63 ms (28%) faster than HashMap for data sizes
lower than 20,000 elements. From 20,000 elements, HashMap is, on average, 5,569 ms
(40%) faster for deletion operations.

In terms of memory usage, SparseArray variants are more efficient than HashMap
for all data sizes. They use, on average, 1,025 kB (62%) less than HashMap.

Regarding energy consumption, SparseArray variants consume less energy than
HashMap for insertion, iteration, and random query operations. This trend also ap-
plies for SparseArray and SparseLongArray and deletion operations. We find that
SparseArray and LongSparseArray consume, on average, 6%, 4%, 7%, and 6% less en-
ergy than HashMap for insertion, iteration, random query, and deletion operations, re-
spectively. Concerning SparseIntArray, SparseLongArray, and SparseBooleanArray,
they consume, on average, 8%, 6%, and 8% less energy than HashMap for insertion, iter-
ation, and random query operations. However, HashMap consumes 42% less energy than
SparseIntArray, SparseLongArray, and SparseBooleanArray for deletion operations.
Regarding the deletion operation, we observe that SparseIntArray, SparseLongArray,
and SparseBooleanArray consume, on average, 2% less energy than HashMap for data
sizes lower than 2,000 elements. However, for 2,000 or more elements, HashMap con-
sumes, on average, 66% less energy for deletion operations.

22 Empir Software Eng (2018)

CPU

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0
2000
4000
6000
8000

10000
12000

0
2000
4000
6000
8000

0
2000
4000
6000
8000

10000
12000

0
5000

10000
15000
20000
25000
30000
35000

Memory

insertion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0

1000

2000

3000

4000

5000

6000

Energy

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0.9

1.0

1.1

1.2

0.9

1.0

1.1

1.2

0.9
1.0
1.1
1.2
1.3

0

10

20

30

40

HashMap<Integer,Integer> ArrayMap<Integer,Integer> SparseArray<Integer> SparseIntArray

Fig. 9 Performance metrics of map implementations using integer keys and integer values, by
map-related operation and data size. CPU time, memory usage, and energy consumption are
in ms, kB, and J, respectively.

The Wilcoxon statistical test concludes that differences in CPU time and memory
usage are significant and the effect size is large for all data sizes. Differences in energy
consumption are significant and the effect size is large for most data sizes.

RQ5. Is ArrayMap as efficient as SparseArray variants?
To answer this research question we evaluate the cost of adopting ArrayMap with

primitive type keys instead of using SparseArray variants.
We find that SparseArray variants are faster than ArrayMap for insertion, random

query, and deletion operations. This also holds for iteration operations and SparseArray
and LongSparseArray. We obtain that SparseArray and LongSparseArray are, on av-
erage, 393 ms (10%), 160 ms (13%), 1,938 (49%), and 7,264 ms (80%) faster than
ArrayMap for insertion, iteration, random query, and deletion operations, respectively.
Concerning SparseIntArray, SparseLongArray, and SparseBooleanArray, they are,
on average, 1,118 ms (32%), 1,165 ms (31%), and 3,112 ms (47%) faster than ArrayMap
for insertion, random query, and deletion operations, respectively. However, ArrayMap
is 543 ms (14%) faster for iteration operations.

In terms of memory usage, SparseArray variants are more efficient than ArrayMap
for all data sizes. They use, on average, 952 kB (60%) less than ArrayMap.

Regarding energy consumption, SparseArray variants consume less energy than
ArrayMap for all the operations. We find that SparseArray variants consume, on aver-
age, 4%, 2%, 6%, and 32% less energy than ArrayMap for insertion, iteration, random
query, and deletion operations, respectively.

Getting the Most from Map Data Structures in Android 23

CPU

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0
2000
4000
6000
8000

10000
12000
14000

0
2000
4000
6000
8000

0
2000
4000
6000
8000

10000
12000

0
5000

10000
15000
20000
25000
30000
35000

Memory

insertion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0

1000

2000

3000

4000

5000

6000

Energy

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

0.9

1.0

1.1

1.2

0.9
1.0
1.1
1.2
1.3

0

10

20

30

40

HashMap<Integer,Long> ArrayMap<Integer,Long> SparseArray<Long> SparseLongArray

Fig. 10 Performance metrics of map implementations using integer keys and long values, by
map-related operation and data size. CPU time, memory usage, and energy consumption are
in ms, kB, and J, respectively.

The Wilcoxon statistical test concludes that differences in CPU time and memory
usage are significant and the effect size is large for all operations and data sizes. Differ-
ences in energy consumption between ArrayMap and SparseIntArray, SparseLongArray,
and SparseBooleanArray are also significant and the effect size is large for all oper-
ations and most data sizes. For ArrayMap and SparseArray and LongSparseArray,
differences in energy consumption are significant for most data sizes for random query
and deletion operations. However, for insertion and iteration operations, differences are
not always significant.

5.4 Discussion about the Experimental Study

We partially agree with the Android developers’ reference documentation: ArrayMap
is generally slower than HashMap since lookups require a binary search. However, it is
not true for insertion operations for which we found that ArrayMap is faster no matter
the number of elements. We also confirm that ArrayMap consumes, on average, less
memory than HashMap (up to 6%). Although ArrayMap is more energy efficient than
HashMap when keys are primitive types, we found that ArrayMap consumes more energy
than HashMap for all the operations when keys are objects. The larger the number of
elements, the larger the difference. We also observed that ArrayMap is highly ineffi-
cient for deletion operations. As it was shown in Figures 7, 8, 9, 10, and 11, while for
insertion, iteration, and random query operations CPU time and energy consumption
grew up linearly with respect to data size, for the deletion operation the growth was

24 Empir Software Eng (2018)

CPU

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0
2000
4000
6000
8000

10000

0
1000
2000
3000
4000
5000
6000
7000

0
2000
4000
6000
8000

10000
12000

0
5000

10000
15000
20000
25000
30000
35000

Memory

insertion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0

1000

2000

3000

4000

5000
Energy

insertion
iteration

random
 query

deletion

0
10

00
0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0

0.85
0.90
0.95
1.00
1.05
1.10

0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

0.9
1.0
1.1
1.2
1.3

0

10

20

30

40

HashMap<Integer,Boolean> ArrayMap<Integer,Boolean> SparseArray<Boolean> SparseBooleanArray

Fig. 11 Performance metrics of map implementations using integer keys and boolean values,
by map-related operation and data size. CPU time, memory usage, and energy consumption
are in ms, kB, and J, respectively.

exponential. The reason is that ArrayMap shrinks its array as items are removed from
it. However, when an element is removed in a HashMap, the corresponding node in
the entry set table is set to null. This means that HashMap does not shrink its entry
set in deletion operations. This aggressive shrinking behavior for deletion operations
in ArrayMap is justified in the Android developers’ reference documentation to better
balance memory use. Even if this fact is true, the impact of this decision on CPU time
and energy consumption is not negligible.�

�
�
�

We recommend to use HashMap instead of ArrayMap
when keys are objects to improve the energy efficiency
of Android apps.

If keys are primitive types, Android proposes SparseArray variants. SparseArray
and LongSparseArray are faster than SparseIntArray, SparseLongArray, and SparseBooleanArray
for iteration, random query, and deletion operations. The formers are also more en-
ergy efficient for deletion operations. However, SparseIntArray, SparseLongArray, and
SparseBooleanArray use less memory than SparseArray and LongSparseArray, they
are faster for insertion operations, and they are more energy efficient for insertion, it-
eration, and random query operations. Concerning deletion operations, we found that
SparseIntArray, SparseLongArray, and SparseBooleanArray are inefficient. As it was
shown in Figures 8, 9, 10, and 11, while for insertion, iteration, and random query op-
erations CPU time and energy consumption grew up linearly with respect to data

Getting the Most from Map Data Structures in Android 25

size, for the deletion operation the growth was exponential. The reason is that dele-
tions require removing entries in the array of these map implementations. Conversely,
SparseArray and LongSparseArray include an optimization when removing keys to
help with performance. Instead of compacting its corresponding array immediately, it
leaves the removed entry marked as deleted. The entry can then be re-used for the
same key, or compacted later in a single garbage collection step of all removed entries.
Considering our experiments, this optimization seems to make the difference between
these map implementations for the deletion operation. However, we think that Google
made this decision prioritizing memory usage over CPU time and energy consumption.�

�

	

We advice to modify the implementation
of SparseIntArray, SparseLongArray, and
SparseBooleanArray to include the same opti-
mization used by SparseArray and LongSparseArray,
to improve their performance when deleting elements.

We confirm what is claimed by the Android developers’ reference documentation
when primitive types are used as keys: SparseArray and LongSparseArray are more
efficient than HashMap in terms of memory usage. But we also extend this fact to energy
consumption. Contrary to the documentation, we found that HashMap is faster than
SparseArray and LongSparseArray but only for iteration operations. For insertion and
random query operations, they are faster than HashMap no matter the number of ele-
ments. We also observed that the higher the numbers of elements, the higher the differ-
ences in the three performance metrics in favor of SparseArray and LongSparseArray
(except for the iteration operation for which HashMap is slightly faster). The same
holds for SparseIntArray, SparseLongArray, and SparseBooleanArray if values are
also primitive types, excepting that these map implementations are faster than HashMap
for iteration operations and they are less efficient than HashMap for deletion operations.�

�

�

�

We recommend SparseArray and LongSparseArray
over HashMap when keys are primitive types to improve
the performance of Android apps. If values are also
primitive types, and deletion operations are not usual,
we recommend SparseIntArray, SparseLongArray,
and SparseBooleanArray as a more efficient alterna-
tive to SparseArray and LongSparseArray.

Android proposes SparseArray variants as a replacement for HashMap when keys
are primitive types for better performance. We confirmed that this proposition also
holds for ArrayMap. Thus, ArrayMap should be replaced by SparseArray variants if
primitive types are used as keys.�

�

	

If primitive types are used as keys, we discourage the
use of ArrayMap because SparseArray variants are
more efficient. We strongly recommend that Android
Studio suggests replacing ArrayMap by SparseArray
variants when keys are primitive types.

26 Empir Software Eng (2018)

To know whether performance differences are perceivable by end users when a more
efficient map implementation is used, we conducted a new experiment. We randomly
selected an app from our subject apps which contained occurrences of HashMap with
primitive types as keys and values. Our guidelines suggest to use SparseIntArray as a
more energy efficient alternative to HashMap. We selected the app SudokuIsFun because
we could compile and run it on our phone. This is a simple Sudoku game with a sim-
ple user interface. We carried out an experiment comparing, for 30 independent runs,
the energy consumption of the original version and the refactored one (by replacing
HashMap<Integer,Integer> with SparseIntArray). We used a Python script to collect
energy measurements automatically while we played a scenario that simulated the user
interaction with the app. For each run, our script launched the app, played a scenario,
and stopped the app. We used the monkeyrunner21 Android tool to define the scenario
that taps “NEW GAME”, taps “Easy Puzzle #1”, introduces five numbers in the first
square of the Sudoku board, taps “Menu”, and taps “Solve Puzzle*”. Because both ver-
sions use exactly the same GUI, we consider that the delta in our energy measurements
is due to the existing difference between these two versions of the app: the usage of
SparseIntArray instead of HashMap. In 30 runs of this simple scenario that introduced
some values and solved the Sudoku, the refactored version consumed less energy (me-
dian of 0.38 mJ). Regarding the voltage (3.8 V) and electric charge (2100 mAh) of the
Nexus 4 phone battery, this reduction means that, if the battery is fully charged and a
user repeats this scenario until the battery is over, the refactored version allows users
to play two minutes and forty-nine seconds more. Therefore, replacing HashMap with
SparseIntArray extended battery life by 0.81%. Although the improvement may seem
rather marginal, it might be important enough for some developers to rethink their
choices.

6 Guidelines

In our study, we observed that HashMap is the most used map implementation since
most Android developers came from a Java developing background. Hence, Android
specific map implementations are not always well-known and, because of that, they are
not taken into account by developers. However, most developers are willing to replace
HashMap with any of the map implementations provided by Android if they offer better
performance. Figure 12 is a choice matrix summarizing our findings to help developers
choose a map implementation. Green shades identify improvements in an operation and
performance metric while yellow and orange shades mean worsening. We consider that
an improvement/worsening is high/low if differences between map implementations
and values of a performance metric are, on average, greater or equal/lower than 25%.
A row with stronger shades of green is likely to be more efficient on average. We
also specify a threshold in data size indicating whether our findings hold for more
elements than a specific threshold. The symbol – indicates that, even if on average a
map implementation is better than the other, there is no threshold for which this is
always true.

21 https://developer.android.com/studio/test/monkeyrunner/index.html

Getting the Most from Map Data Structures in Android 27

CPU Memory Energy

Insertion Iteration Query Deletion Insertion Insertion Iteration Query Deletion

HashMap
(objects) any size any size any size >= 2,000 >= 2,000 >= 2,000 >= 1,000

ArrayMap
(objects) any size any size

HashMap
(primitive types) any size any size any size any size

ArrayMap
(primitive types) any size -- >= 15,000 >= 20,000 >= 30,000

HashMap
(primitive types)

any size

SparseArray
and
LongSparseArray

any size any size any size any size any size any size any size any size

HashMap
(primitive types) any size >= 20,000 >= 2,000

SparseIntArray
SparseLongArray
SparseBooleanArray

any size any size >= 20,000 any size any size any size any size >= 2,000

ArrayMap
(primitive types)

SparseArray
and
LongSparseArray

any size any size any size any size any size -- -- -- > 600

ArrayMap
(primitive types) any size

SparseIntArray
SparseLongArray
SparseBooleanArray

any size any size any size any size any size any size any size any size

High improvement (≥25%) Low improvement (<25%) Low worsening (<25%) High worsening (≥25%)

Fig. 12 Color map showing the comparison between each pair of map implementations, op-
eration, and performance metric. Green colors identify more efficient implementations. The
greener the color, the better.

7 Threats to Validity

Threats to construct validity concern relationship between theory and observation and
the extent to which the measures represent real values. For the observational study,
we selected apps from GitHub because it is one of the most popular repositories with
more than 14 million users and millions of open source projects. We focused on open
source projects available in GitHub which had a link in the readme file to the official
Android marketplace Google Play. We did that to select real Android apps. For the
experimental study, we used a Nexus 4 phone which was used in other papers (Linares-
Vásquez et al. (2014); Sahin et al. (2014); Huang et al. (2016); Saborido et al. (2016);
Sahin et al. (2016)). Concerning CPU time, results were obtained using the execution
traces generated by the Android profiler. As it is said in the Android documentation22,
because interpreted code runs more slowly when profiling is enabled, it is not correct to
generate absolute timings from the profiler results. The times are only useful in relation
to other profile outputs, and this is what we did for CPU time in our experiments. We
chose the profiler rather than simple timers because we were not interested in real time
but CPU time. Real time is the wall clock time, which would include time spent doing
I/O and also time of other threads. CPU time is the time where a function is actually
running. It does not include waiting on I/O or the time used by other threads that got
CPU quantum. We used the Android profiler to record precisely CPU time. Regarding
memory usage, we believe that our approach of measuring is precise. Although we

22 https://developer.android.com/studio/profile/traceview.html

28 Empir Software Eng (2018)

cannot control the garbage collector (GC) invocation, we think that the impact of this
on our measurements is low since: (1) we ran 20 times and we took the median value and
(2) the execution time of each experiment was small and it was unlikely the execution
of the GC. In terms of energy, our measurement environment offered a higher or the
same number of sampling bits as previous studies. In addition, our sampling frequency
was one order of magnitude higher than past studies.

Threats to internal validity concern factors, internal to our study, that could have
influenced our results. For the observational study, a Bash script that uses the grep
command to search for occurrences of the map implementations under study. We man-
ually validated the results and we found four different types of false positives: (1) apps
that defined a data structure named ArrayMap which implements the Map interface, (2)
apps that used a third-party library named ArrayMap, (3) apps that contained one or
more strings containing text matching our patterns, and (4) apps that contained com-
ments with text matching our patterns. We have manually checked true positives (TP),
false positives (FP), and false negatives (FN) for each map implementation and projects
under study. We obtained that, on average, the precision

(
TP

TP+FP

)
was 93.46% and

the recall (TP
TP+FN) 100%. Thus, we consider that our Bash script performed well for

our observational study, concerning the apps under study. Regarding the survey, it
operated on a self-selection principle. This means that the results might be skewed to-
wards developers who were willing to answer the survey, but avoiding the self-selection
principle is not feasible in practice. Question-wording effect might have biased respon-
dents towards one object if there was insufficient context when comparing different
objects under the same conditions. To counteract the possible question-wording effect,
we took care to make questions as specific and concrete as possible and used votes
among the authors of this work to discard leading, loaded, or double-barreled ques-
tions. Considering the experimental study, we computed performance metrics using
well-known techniques. In addition, we replicated several times our measures to ensure
statistical validity.

Threats to external validity concern the generalization of our findings. For the ob-
servational study, we analyzed a big data set of Android apps but we limited our study
to open source apps. Because of this, our findings could have been biased given that de-
velopers of selected apps could not be representative enough of Android developers. In
order to increase the generality of our results, we encourage the research community to
replicate this study regarding close source Android apps. This could be done processing
their apk files and extracting and analyzing their bytecode. Concerning the survey, our
selection of participants was constrained to the owner of the Android projects existing
in GitHub. However, more than one developer could be involved in the development
of an app. All of them could also be considered for surveyed to get a full view of the
picture.

Threats to conclusion validity concern the relationship between experimentation
and outcome. Analyses related to the use of map implementations in real Android
apps and about performance metrics are supported by appropriate statistical proce-
dures. However, our findings are based on the apps analyzed and on the data collected,
which were limited to open source apps, from a unique source (GitHub), to the Nexus 4
phone, and to the Android version Lollipop23. We chose this Android version because
it introduced one of the most significant changes in Android: the shift to the rela-
tively new way of executing apps called Android Runtime (ART) that improves the

23 https://developer.android.com/about/versions/android-5.0-changes.html

Getting the Most from Map Data Structures in Android 29

CPU usage and energy consumption of Android apps (Chen and Zong (2016)). From
Android Lollipop, ART is the default runtime environment. Starting from Android
Marshmallow24, Android introduced two power-saving features that extend battery
life for users by managing how apps behave when a device is not connected to a power
source: (i) Doze, which reduces energy consumption by deferring background CPU and
network activity for apps when the device is unused for long periods of time and (ii)
App Standby, which defers background network activity for apps with which the user
has not recently interacted. Android Nougat25 brought further enhancements to Doze
by applying a subset of CPU and network restrictions while the device is unplugged
with the screen turned off. Android Oreo26 limits certain behaviors by apps that are
not running in the foreground to improve device performance. From the observations,
we conclude that most performance optimizations in Android Marshmallow and later
versions are oriented towards background tasks and, usually, when the device is un-
used for long periods of time. Yet, we cannot guarantee the generalization of our results
for all Android versions although we have no reason to believe that our findings and
claims would not be valid for Android Marshmallow, Android Nougat, and Android
Oreo. Considering the information provided by Android Studio, by targeting Android
Lollipop and later versions, apps will run on approximately 71.3% of the devices that
are active on the Google Play Store (as of January 2018). For all the previous reasons,
we think that our findings are valid for most of active devices. However, further val-
idation on different phones is desirable to make our findings more generic. But there
exist different factors (each one with several possible levels) to control, due to the frag-
mentation problem of Android. There are hundreds of different devices with different
hardware configurations, more than 10 different versions of Android OS, and different
ways of executing apps (Dalvik vs. ART).

Chen and Zong (2016) observed that Android apps developed in Java run much
faster in ART and also consume much less energy than in Dalvik. Based on this, our
claims for CPU time and energy consumption of map implementations could be con-
sidered as a lower bound in Dalvik. However, in that work, nothing is said about the
impact of Dalvik and ART on memory usage. Consequently, we carried out additional
experiments on a Samsung Galaxy S2 phone (running Android Jelly Bean and Dalvik)
and measured the memory usage of map implementations for 10 runs. These experi-
ments allowed us to compare the memory usage of map implementations for the Nexus
4 phone (running Android Lollipop and ART) and the Samsung Galaxy S2. We ob-
served the same trend for both devices but differences were more notifiable, in favor of
the Android map implementations, for the Samsung Galaxy S2. In general, ArrayMap
used, on average, less memory than HashMap for any data type and data size. We
concluded that our findings and claims are also applicable for older devices that use
Dalvik instead of ART. Nevertheless, to complete the study, we should do a factorial
experiment design taking into account all possible combinations of these levels across
all factors, which seems unfeasible.

24 https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
25 https://developer.android.com/about/versions/nougat/android-7.0-changes.html
26 https://developer.android.com/about/versions/oreo/android-8.0-changes.html

30 Empir Software Eng (2018)

8 Related Work

There are several works on the energy consumption of mobile apps. Liu et al. (2015)
empirically studied the optimization space of application-level energy management
from the data-oriented perspective. The energy optimization space is explored through
multiple dimensions, ranging from data access pattern, data organization and repre-
sentation, data precision, and data input/output intensity. Banerjee et al. (2014) de-
fined an automated test generation framework that detects energy hotspots in An-
droid apps. Each test input captures a sequence of user interactions that leads to a
scenario that causes smart-phones to consume abnormally high amounts of energy
in an app. Developers can focus on these hotspots to improve the energy-efficiency of
their apps. Cuervo et al. (2010) proposed an approach that enables fine-grained energy-
aware offload of mobile code to the infrastructure. Their approach decides at runtime
which methods should be remotely executed, driven by an optimization engine that
achieves the best energy savings possible under the mobile device’s current connectiv-
ity constraints. Other works aimed at understanding the impact of users’ choices on
energy consumption (Zhang et al. (2014)) or energy consumption and network usage
(Saborido et al. (2016)).

In addition to energy consumption, other performance metrics have also been
studied. Chen and Zong (2016) conducted a comprehensive study on the impact of
languages, compilers, Android runtimes, and implementations on the performance of
Android apps in terms of energy consumption and CPU usage. Some studies also quan-
tified the impact of ads on energy consumption, but also on CPU, memory, and network
usages on Android apps (Gui et al. (2015); Saborido et al. (2017)).

Hasan et al. (2016) created detailed profiles of the energy consumed by common
operations done on Java list, map, and set implementations. They also explored the
memory usage of list implementations but they did not analyze the CPU usage. Other
works studied the collection API of Java. Chameleon (Shacham et al. (2009)) is an au-
tomatic tool that assists developers in choosing the appropriate collection implemen-
tation for their apps. During program execution, it collects traces and computes heap-
based metrics on collection classes to generate a list of suggested collection adaptation
strategies. It is focused on CPU and memory usages. SEEDS (Manotas et al. (2014)) is
the first known framework for helping developers make decisions regarding the energy
consumption of their apps. It automatically optimizes Java apps by selecting the most
energy efficient library implementations for Java’s Collections API.

Although performance metrics of Java collections have been studied, none of the
previous works has considered Android map implementations. We drew inspiration
from this to perform an observational study and conduct a survey about Android
map implementations. From this we concluded that Android map implementations
are rarely used because of a lack of information about performance metrics for these
implementations. This fact motivated our empirical study and, therefore, this research.

9 Conclusion

The Android API offers different implementations of the map data structure. These im-
plementations are supposed to be improvements over the Java implementation HashMap.
However, the Android developers’ reference documentation does not provide precise in-

Getting the Most from Map Data Structures in Android 31

formation of the improvements (if any) in terms of CPU time, memory usage, and–or
energy consumption.

We performed an observational study, conducted a survey, and carried out an ex-
perimental study. First, we analyzed 5,713 Android apps in GitHub and available in
Google Play. We did that to study the use of Java and Android map implementations
on real Android apps. Second, we conducted a survey to assess developers’ perspective
about Java and Android map implementations. Finally, we performed an experimental
study on the CPU time, memory usage, and energy consumption of HashMap, ArrayMap,
and SparseArray variants, for different data sizes and operations.

HashMap is the most used map implementation while ArrayMap and SparseArray
variants are rarely used. Developers are moderately familiar with Android map imple-
mentations. However, they use HashMap because they are more familiar with it and
because there is a lack of information about the Android map implementations and
their performance.

We partially agree with the Android developers’ reference documentation that
ArrayMap is more memory efficient and generally slower than HashMap. However, for in-
sertion operations, ArrayMap is faster than HashMap no matter the number of elements.
Nevertheless, ArrayMap is less efficient than HashMap in terms of energy consumption.
We recommend to use HashMap instead of ArrayMap to improve the energy efficiency
of Android apps.

HashMap is often adopted with primitive type keys. In that cases, the official Android
IDE, Android Studio, warns about replacing HashMap with SparseArray variants for
better performance. HashMap with primitive type keys is less efficient than SparseArray
variants in terms of memory usage. This fact is already claimed by the Android de-
velopers’ reference documentation. However, we extend this to CPU time and energy
consumption.

ArrayMap with primitive type keys is also less efficient than SparseArray variants.
Thus, we recommend that Android Studio also warns about replacing ArrayMap by
SparseArray variants when keys are primitive keys.

Although SparseArray variants are efficient alternatives to HashMap and ArrayMap,
we advise to review the implementation of SparseIntArray, SparseLongArray, and
SparseBooleanArray, which are highly inefficient when removing elements in compar-
ison to SparseArray and LongSparseArray.

Overall, developers fail to follow Android recommendations due to the lack of pre-
cise information about performance. We suggest Google to complement the documen-
tation of ArrayMap and SparseArray variants including more precise information about
their CPU time, memory usage, and energy consumption for different operations. This
will allow Android developers to make informed decisions about the map implementa-
tions that are the most suitable for their apps. We also encourage Android developers
to follow our guidelines to adopt Android map implementations in their apps.

Future work includes assessing the feasibility of proposing semi-automated refac-
toring tools to detect uses of HashMap and–or ArrayMap implementations replacing
them by SparseArray variants. We plan to study the impact of parameters capacity
(of HashMap, ArrayMap, and SparseArray variants) and load factor (of HashMap) on
performance metrics. We also want to use our guidelines to adapt Android apps, allow-
ing them to dynamically decide which implementation to use depending on available
resources (CPU speed, memory, and–or battery).

32 Empir Software Eng (2018)

References

Banerjee A, Chong LK, Chattopadhyay S, Roychoudhury A (2014) Detecting Energy
Bugs and Hotspots in Mobile Apps. In: Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ACM, New York,
NY, USA, FSE 2014, pp 588–598, DOI 10.1145/2635868.2635871, URL http://doi.
acm.org/10.1145/2635868.2635871

Chen X, Zong Z (2016) Android App Energy Efficiency: The Impact of Lan-
guage, Runtime, Compiler, and Implementation. In: 2016 IEEE International
Conferences on Big Data and Cloud Computing (BDCloud), Social Com-
puting and Networking (SocialCom), Sustainable Computing and Communica-
tions (SustainCom) (BDCloud-SocialCom-SustainCom), pp 485–492, DOI 10.1109/
BDCloud-SocialCom-SustainCom.2016.77

Cuervo E, Balasubramanian A, Cho Dk, Wolman A, Saroiu S, Chandra R, Bahl P
(2010) MAUI: Making Smartphones Last Longer with Code Offload. In: Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
ACM, New York, NY, USA, MobiSys ’10, pp 49–62, DOI 10.1145/1814433.1814441,
URL http://doi.acm.org/10.1145/1814433.1814441

Gui J, Mcilroy S, Nagappan M, Halfond WGJ (2015) Truth in Advertising: The Hidden
Cost of Mobile Ads for Software Developers. In: Proceedings of the 37th International
Conference on Software Engineering (ICSE)

Hasan S, King Z, Hafiz M, Sayagh M, Adams B, Hindle A (2016) Energy Profiles of
Java Collections Classes. In: Proceedings of the 38th International Conference on
Software Engineering (ICSE), Austin, TX, US, pp 225–236

Huang P, Xu T, Jin X, Zhou Y (2016) DefDroid: Towards a More Defensive Mobile OS
Against Disruptive App Behavior. In: Proceedings of the The 14th ACM Interna-
tional Conference on Mobile Systems, Applications, and Services, Singapore, Singa-
pore, DOI 10.1145/2906388.2906419, URL http://doi.acm.org/10.1145/2906388.
2906419

Li D, Hao S, Gui J, Halfond WGJ (2014) An Empirical Study of the Energy Con-
sumption of Android Applications. In: Proceedings of the International Conference
on Software Maintenance and Evolution (ICSME)

Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Oliveto R, Di Penta M, Poshyvanyk
D (2014) Mining Energy-greedy API Usage Patterns in Android Apps: An Empirical
Study. In: Proceedings of the 11thWorking Conference on Mining Software Reposito-
ries, ACM, New York, NY, USA, MSR 2014, pp 2–11, DOI 10.1145/2597073.2597085,
URL http://doi.acm.org/10.1145/2597073.2597085

Liu K, Pinto G, Liu YD (2015) Data-Oriented Characterization of Application-Level
Energy Optimization. In: Egyed A, Schaefer I (eds) Fundamental Approaches to
Software Engineering: 18th International Conference, FASE 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp 316–331, URL https://doi.org/10.1007/978-3-662-46675-9_21,
dOI: 10.1007/978-3-662-46675-9_21

Manotas I, Pollock L, Clause J (2014) SEEDS: A Software Engineer’s Energy-
optimization Decision Support Framework. In: Proceedings of the 36th Interna-
tional Conference on Software Engineering, ACM, New York, NY, USA, ICSE 2014,
pp 503–514, DOI 10.1145/2568225.2568297, URL http://doi.acm.org/10.1145/
2568225.2568297

http://doi.acm.org/10.1145/2635868.2635871
http://doi.acm.org/10.1145/2635868.2635871
http://doi.acm.org/10.1145/1814433.1814441
http://doi.acm.org/10.1145/2906388.2906419
http://doi.acm.org/10.1145/2906388.2906419
http://doi.acm.org/10.1145/2597073.2597085
https://doi.org/10.1007/978-3-662-46675-9_21
http://doi.acm.org/10.1145/2568225.2568297
http://doi.acm.org/10.1145/2568225.2568297

Getting the Most from Map Data Structures in Android 33

Morales R, Saborido R, Khomh F, Chicano F, Antoniol G (2017) Earmo: An energy-
aware refactoring approach for mobile apps. IEEE Transactions on Software Engi-
neering PP(99):1–1, DOI 10.1109/TSE.2017.2757486

Saborido R, Beltrame G, Khomh F, Alba E, Antoniol G (2016) Optimizing User Ex-
perience in Choosing Android Applications. In: Proceedings of the 23rd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER)

Saborido R, Khomh F, Antoniol G, Guéhéneuc YG (2017) Comprehension of Ads-
supported and Paid Android Applications: Are They Different? In: Proceedings
of the 25th International Conference on Program Comprehension (ICPC), IEEE,
Buenos Aires, Argentina, pp 143–153, DOI 10.1109/ICPC.2017.25

Sahin C, Tornquist P, Mckenna R, Pearson Z, Clause J (2014) How Does Code Obfus-
cation Impact Energy Usage? In: ICSME’14, pp 131–140

Sahin C, Pollock L, Clause J (2016) From Benchmarks to Real Apps: Exploring
the Energy Impacts of Performance-directed Changes. Journal of Systems and
Software pp –, DOI http://dx.doi.org/10.1016/j.jss.2016.03.031, URL http://www.
sciencedirect.com/science/article/pii/S0164121216000893

Shacham O, Vechev M, Yahav E (2009) Chameleon: Adaptive selection of collec-
tions. SIGPLAN Not 44(6):408–418, DOI 10.1145/1543135.1542522, URL http:
//doi.acm.org/10.1145/1543135.1542522

Singer J, Sim SE, Lethbridge TC (2008) Software engineering data collection for field
studies. In: Guide to Advanced Empirical Software Engineering, Springer, pp 9–34

Tyagi PK (1989) The effects of appeals, anonymity, and feedback on mail survey
response patterns from salespeople. Journal of the Academy of Marketing Sci-
ence 17(3):235–241, DOI 10.1007/bf02729815, URL http://dx.doi.org/10.1007/
BF02729815

Zhang C, Hindle A, German DM (2014) The Impact of User Choice on Energy Con-
sumption. IEEE Software 31(3):69–75, DOI http://doi.ieeecomputersociety.org/10.
1109/MS.2014.27

http://www.sciencedirect.com/science/article/pii/S0164121216000893
http://www.sciencedirect.com/science/article/pii/S0164121216000893
http://doi.acm.org/10.1145/1543135.1542522
http://doi.acm.org/10.1145/1543135.1542522
http://dx.doi.org/10.1007/BF02729815
http://dx.doi.org/10.1007/BF02729815

34 Empir Software Eng (2018)

Rubén Saborido received his BS. degree in Computer En-
gineering and his MS. in Software Engineering and Artificial In-
telligence from University of Malaga (Spain), where he worked
for three years as a researcher. In 2017, he received a Ph.D.
in Computer Engineering from Polytechnique Montréal and his
thesis was nominated for best thesis award. Rubén research fo-
cuses on search based software engineering applied to perfor-
mance and energy optimization of mobile devices. He is also
interested in the use of metaheuristics to solve complex multi-
objective optimization problems and in the design of algorithms

to approximate a part of the whole Pareto optimal front taking into account user
preferences. He has published seven papers in ISI indexed journals, and conference
papers in MCDM, SANER, and ICPC. He co-organized the International Conference
on Multiple Criteria Decision Making, in 2013.

Rodrigo Morales earned his BS. degree in Computer Sci-
ence in 2005 from Polytechnic of Mexico. In 2008, he earned his
MS. in Computer Technology from the same university, where
he also worked as a professor in the Computer Science Depart-
ment for five years. He has also worked in the bank industry as
a software developer for more than three years (2009-2012). He
received a Ph.D. in Computer Engineering from Polytechnique
Montréal, and his thesis was nominated for best thesis award
2017. His research interests include software design quality, anti-
patterns, and automated-refactoring, mobile software engineer-
ing. He has published several papers in ISI indexed journals and

different conference papers. He is on the program committees of ICPC 2018 and ICSME
2018.

Getting the Most from Map Data Structures in Android 35

Foutse Khomh is an associate professor at Polytechnique
Montréal, where he heads the SWAT Lab on software analytics
and cloud engineering research (http://swat.polymtl.ca/). He re-
ceived a Ph.D. in Software Engineering from the University of
Montréal with the award of excellence. His research interests
include software maintenance and evolution, cloud engineering,
empirical software engineering, and software analytic. He has
published more than 100 papers in international conferences and
journals, and his work has received one Most Influential Paper

Award, three Best Paper Awards and multiple nominations for Best Paper Awards.
He has served on the program committees of several international conferences and re-
viewed for top international journals such as EMSE, TSE and TOSEM. He is on the
Review Board of EMSE. He is program chair for Satellite Events at SANER 2015,
program co-chair of SCAM 2015 and ICSME 2018, and general chair of ICPC 2018.
He is one of the organizers of the RELENG workshop series (http://releng.polymtl.ca)
and has been guest editor for special issues in the IEEE Software magazine and JSEP.

Yann-Gaël Guéhéneuc is full professor at the Depart-
ment of Computer Science and Software Engineering of Con-
cordia University since 2017, where he leads the Ptidej team on
evaluating and enhancing the quality of the software systems,
focusing on the Internet of Things and researching new theo-
ries, methods, and tools to understand, evaluate, and improve
the development, release, testing, and security of such systems.
Prior, he was faculty member at Polytechnique Montréal and
Université de Montréal, where he started as assistant professor
in 2003. In 2014, he was awarded the NSERC Research Chair
Tier II on Patterns in Mixed-language Systems. In 2013-2014,
he visited KAIST, Yonsei U., and Seoul National University, in

Korea, as well as the National Institute of Informatics, in Japan, during his sabbati-
cal year. In 2010, he became IEEE Senior Member. In 2009, he obtained the NSERC
Research Chair Tier II on Software Patterns and Patterns of Software. In 2003, he
received a Ph.D. in Software Engineering from University of Nantes, France, under
Professor Pierre Cointe’s supervision. His Ph.D. thesis was funded by Object Technol-
ogy International, Inc. (now IBM Ottawa Labs.), where he worked in 1999 and 2000.
In 1998, he graduated as engineer from École des Mines of Nantes. His research in-
terests are program understanding and program quality, in particular through the use
and the identification of recurring patterns. He was the first to use explanation-based
constraint programming in the context of software engineering to identify occurrences
of patterns. He is interested also in empirical software engineering; he uses eye-trackers
to understand and to develop theories about program comprehension. He has pub-
lished papers in international conferences and journals, including IEEE TSE, Springer
EMSE, ACM/IEEE ICSE, IEEE ICSME, and IEEE SANER. He was the program co-
chair and general chair of several events, including IEEE SANER’15, APSEC’14, and
IEEE ICSM’13.

Giuliano Antoniol received his Laurea degree in electronic
engineering from the Universita’ di Padova, Italy, in 1982. In
2004 he received his Ph.D. in Electrical Engineering at Poly-
technique Montréal. He worked in companies, research institu-
tions and universities. In 2005 he was awarded the Canada Re-

36 Empir Software Eng (2018)

search Chair Tier I in Software Change and Evolution. He has
participated in the program and organization committees of nu-
merous IEEE-sponsored international conferences. He served as
program chair, industrial chair, tutorial, and general chair of in-
ternational conferences and workshops. He is a member of the
editorial boards of four journals: the Journal of Software Testing
Verification & Reliability, the Journal of Empirical Software En-

gineering and the Software Quality Journal and the Journal of Software Maintenance
and Evolution: Research and Practice. Dr Giuliano Antoniol served as Deputy Chair
of the Steering Committee for the IEEE International Conference on Software Main-
tenance. He contributed to the program committees of more than 30 IEEE and ACM
conferences and workshops, and he acts as referee for all major software engineering
journals. He is currently Full Professor at Polytechnique Montréal, where he works in
the area of software evolution, software traceability, search based software engineering,
software testing and software maintenance.

	Introduction
	Background
	Observational Study
	Developers' Perspective
	Experimental Study
	Guidelines
	Threats to Validity
	Related Work
	Conclusion

