
Experience Report: An Empirical Study of API
Failures in OpenStack Cloud Environments

Pooya Musavi, Bram Adams and Foutse Khomh
Polytechnique Montreal, Quebec, Canada

{pooya.musavi,bram.adams,foutse.khomh}@polymtl.ca

Abstract—Stories about service outages in cloud environments
have been making the headlines recently. In many cases, the
reliability of cloud infrastructure Application Programming In-
terfaces (APIs) were at fault. Hence, understanding the factors
affecting the reliability of these APIs is important to improve
the availability of cloud services. In this study, we mined bugs
of 25 modules within the 5 most important OpenStack APIs to
understand API failures and characteristics. Our results show
that in OpenStack, only one third of all API-related changes are
due to fixing failures, with 7% of all fixes even changing the
API interface, potentially breaking clients. Through qualitative
analysis of 230 sampled API failures we observed that the
majority of API related failures are due to small programming
faults. Fortunately, the subject, message and stack trace as well
as reply lag between comments included in these failures’ bug
reports provide a good indication of the cause of the failure.

I. INTRODUCTION

An Application Programming Interface (API) is a set of
public methods [1] that is meant to be used by other software
applications. For example, cloud APIs are provided by a cloud
platform to enable applications in the cloud to interact with,
deploy or manage on the platform [2].

However, too often, developers experience API call failures
that threaten the reliability and availability of their cloud apps.
Failures of cloud apps generally result in big economic losses
as core business activities now rely on them [3]. This was
the case in December 24, 2012 when a failure of Amazon
web services caused an outage of Netflix cloud services for
19 hours. Hence, understanding factors affecting the reliability
of cloud APIs is important to improve the availability of cloud
services.

Lu et al. [4] investigated API failures of Amazon EC2
services and classified the causes in three categories of faults:
development, physical and interaction faults. There have
also been studies that have attempted to detect faults (e.g.,
[3] [5] [6]) responsible for these failures. To the best of our
knowledge, the analysis and characterization of the causes
(faults) of these failures have not been studied this far.

In this paper, we perform an empirical study on OpenStack
to see how often internal and external APIs changed and how
this was an API failure. We consider an API failure as any
run-time problem related to the interface or implementation of
an API, caused by API designers or implementers, eventually
causing an outage of a service. Additionally, we qualitatively
analyze the causes of API failures by mining the source code
the failures are originating from as well as their fixes. Our

empirical analysis focuses on OpenStack, which is a popular
open source cloud infrastructure platform.

In this study, we address the following research questions:

(RQ1) How often are APIs changed to fix API failures?
A quantitative study of the 25 most important modules in

OpenStack shows that a median of 23% of API changes are
related to the API interface, and a median of 7% of such
changes are due to the fixing of a failure. Of all the API
changes that do not alter the API interface, a median of 24%
are due to the fixing of a failure. Our observations demonstrate
that one third of changes to the API are due to fixing failures.

(RQ2) What are the most common types of API failures
and faults?

Based on our analysis of 230 randomly selected fixes, we
classify the causes of the API failures into seven categories
including: small programming faults (56%), major program-
ming faults (14%), configuration faults (14%), race conditions
(5%), deadlock conditions (5%), improper log message faults
(4%) and data format faults (3%). On the other hand, our
observation showed that db errors (16%), test errors (15%),
network errors (10%), deployment errors (4%) and security
errors (4%) are the most frequent symptoms of failures.

(RQ3) What are the bug fixing characteristics of the
different fault types?

The small programming faults are fixed by developers with
less developer activity in comparison to major programming
faults. We also found that there is no significant difference in
call distance between major programming faults and configu-
ration faults. We observed that small programming faults do
not take less time to fix in comparison to major programming
faults. Furthermore, there is no difference in developer expe-
rience between small programming, configuration and major
programming faults.

(RQ4) What are the main factors explaining the bug
fixing process of small programming faults?

We developed a composite model of a Naive Bayesian and
Decision Tree classifier that takes into account features such
as subject, message, stack trace and reply lag from issue
report. We noticed that the subject, message and stack trace
information, and the number of developers working on a fix
for a failure as well as reply lag are the most important
characteristics of failures caused by small programming faults.

API
(Git)

Change Extraction

Bug
Repo.

Bug Related To
API

API
Related
Failures

230
Samples

Random
Sampling

RQ2

RQ1

RQ3Mailing
List

Characteristic Extraction

Failure Extraction

Explanatory Model RQ4

Figure 1: Overview of our approach for answering RQ1, RQ2, RQ3 and RQ4

II. CASE STUDY SETUP

In this section, we describe the studied systems, and present
our data extraction and analysis approach. Figure 1 shows our
approach to answer the research questions.

A. Studied Systems

OpenStack is an open source cloud infrastructure project
launched by Rackspace Hosting and NASA in 2010. It is gov-
erned by a consortium of organizations who have developed
multiple components that together build a cloud computing
platform for ”Infrastructure As A Service”. This means that
users can deploy their own OS or applications on top of
OpenStack to virtualize resources like storage, networking and
computing.

OpenStack hosts its bug repository on launchpad 1. When
a bug is reported related to an API failure, a user would
normally put the stack trace of the exception into the bug
report message. Then, the bug would be triaged by a developer
in order to evaluate whether it is valid or not and a priority to
that bug would be assigned as well. At the end, when a patch
or a fix has been reviewed, a link to the corresponding git
commit is added to the corresponding bug report. We selected
OpenStack as the case study system based on the following
criteria:

Criterion 1: Accessibility Since OpenStack is an open
source project, its source code, bugs and stack traces are
available online 2. OpenStack is the most popular open source
cloud platform, rivaling commercial competitors like Amazon
and Microsoft in popularity and feature set.

Criterion 2: Traceability The bug repository is linked with
the review system through a hyperlink to the Gerrit review
environment, and it is also possible to link to the resulting bug
fix in the version control system (git). Since we want to do a
qualitative study on the files in which an API failure has been
fixed in order to understand the causes of the analyzed failures,
this well-established linkage is a must for our research.

1https://bugs.launchpad.org
2https://github.com/openstack

In order to select the most important APIs for our study,
we queried Amazon for the most popular books related to
OpenStack, resulting in 143 records. We reviewed the top
3 books [11] [12] [13] and concluded that Nova, Swift,
Heat, Neutron and Keystone are the five most significant APIs.
Books have been considered before in empirical studies on
SE [8], especially in cases where popularity, experience or
terminology of practitioners are required.

B. Data Extraction
In order to access the bug and source code change data

of OpenStack, we mined the official launchpad as well as
the data set provided by Gonzalez-Barahona et al. [9]. In
launchpad, we manually investigate the cause of the failures
(faults), while we use the data set of Gonzalez-Barahona et
al. [9] to perform our quantitative study such as exploring the
faults’ characteristics. This data set has 221671 commits from
2010-05 to 2015-02 in the scmlog table. Its most important
columns are revision (the hash id of the commit), committer id
(the id of the person that made the commit), date and the
message (the text that the developer writes at the time of
commit). It also has 55044 bug reports starting from 2010-07
to 2015-02. The most important columns of this table are issue
(the bug number), type (the decision status), summary (subject
of the bug), description, status (whether it is Fixed Release,
Invalid or etc.), priority (High, Low or etc.) and submitted on
(the date that is reported). Finally, there are 88842 emails
starting from 2010-11 to 2015-02. It has two most important
columns: subject and message body. Since recent data has a
lower chance of being fixed than older data, we limited the
data to 2015-02, in order to assure that we have more stable
resolved issues.

Change Extraction. For RQ1, we focus on the 5 most
important API git repositories; Nova, Swift, Heat, Neutron
and Keystone. For each API, we fetched the 5 most important
modules. The programming language in OpenStack is Python
and a module is a file (.py) containing Python definitions and
statements. We compared the differences between each pair of
consecutive commits of these modules to understand whether
any changes related to method signature occur or not, such as

Table I: Characteristics studied

Dimension Metric Unit Description & Rationale

importance talked in mailing list BOOLEAN Whether the developers have talked (mentioned the bug id) about this bug in the
mailing list or not. Such bugs likely are more important or complex to fix.

number of times bug
status changed NUMBER Number of times that the status of a bug has been changed. When a bug status

changes frequently it indicates difficulty for developers to make a decision on it.
severity NUMBER Shows how critical a bug is for a project.
number of people affected NUMBER Number of users affected by this bug.

fixing process developer experience NUMBER
The experience of the most recent developer who fixes the bug,
based on the number of commits that he has made before the current FIX.
More complicated defects might need more experienced developers.

developer activity NUMBER Number of commits that the developer has done across our whole data set.
Simple bugs might not need more active developers.

number of developer
working on bug NUMBER A bug might require several developers during its life cycle,

indicating its difficulty.
bug activation in days NUMBER number of days to close the bugs as fixed.

symptom subject message and stack trace String The subject, message left by the reporter and exception thrown by the API.
This characteristic indicates the symptoms of a failure.

call distance NUMBER The number of modules existing in an exception.
As this number increases, it might be more possible to have errors.

commenter experience NUMBER The more experienced in leaving comments, based on the number of comments
the more helpful a discussion could be, reducing the risk of defects slipping through.

comment count NUMBER The more comments are posted for an issue, the more risk might be involved.

comment length NUMBER The number of lines of comments on an issue may indicate that the discussed commit
has a high likelihood of introducing a bug.

reply lag NUMBER The average time in between comments can be related to the risk of a bug.
Normally, risky ones get faster replies to comments.

bug fix code churn NUMBER Size of bug fix.

ndev NUMBER Average number of developers that changed the fixed file before.
Different developers modifying the same file might lead to misunderstanding.

age NUMBER Average time (#days) since the last change.
More recent changes are more likely to be error-prone.

nuc NUMBER The number of unique changes to modified files.
more files have been changed, the more opportunities for defects.

removing or adding parameter or even a deleting method. If
yes, we then checked whether the change happened for fixing
a bug.

To know whether a commit is fixing a bug, we looked
for “bug”, “fix”,“defect” and “patch” keywords inside the
commit messages. A similar approach to determine defect-
fixing changes has been used in other work [19] [20].

Failure Extraction. For this aim, we first use the data
set of Gonzalez-Barahona et al. [9] to fetch all fixed bugs
for the year 2014. To further understand the causes of these
failures (“faults”), we then consider the subject, message and
stack traces of the thrown exceptions because they contain
symptoms (side effects) of the failure and help understand
better the causes. We manually studied some bugs related to
APIs and we understood that 90% of bug reports related to API
failures contain api and traceback keywords inside. Hence, we
performed a query to search for those bugs containing “api”
and “traceback” within the body of the bug messages. This
resulted in 923 reports related to 135 projects.

Because investigating all of these reports is a time con-
suming task, we performed a statistical sampling with a 95%
confidence level and a confidence interval of 5.5% to see how
many samples we need to study [14]. As such, we randomly
selected 230 samples out of the 923 reports. Through these
samples, we distinguished between bugs related to failures in
OpenStack APIs or client application programming failures.
We were conservative and we studied the developers’ and
commenters’ messages to ensure that a bug is relevant to an
OpenStack API failure. We removed any unrelated bug from
the list and randomly replaced it by another bug. In launchpad,
given the traceability between bug repository, review system

and version control system, we tracked each sampled bug’s
review and fixes to analyze the differences between the version
before and after fix. RQ2 and RQ3 concentrate on the failures
related to the APIs.

Characteristic Extraction. Table 1 shows the independent
metrics and the rationale why we select them to be used
in RQ3 and RQ4 to build an explanatory model of small
programming faults, which are the most common kind of
faults found in our analysis results. The table shows 4 different
dimensions of information available during the resolution of a
cloud API bug. We used bug, e-mail and source code reposito-
ries to extract the characteristics. Amongst these metrics, the
code churn, the number of developers working on a bug, ndev,
age, nuc and whether a bug is discussed in the mailing list are
not in the bug reports, but are extracted from source code and
mail repository. The Call distance represents the number of
modules (files) called between the calling module until and
API module raising a failure. Our definition for experience is
the number of commits that the developer has done before in
the control version system (git) before fixing the current bug
[10], while developer activity is the total number of commits
the developer has done across our whole data set.

C. Explanatory Model

In this section, we describe our approach for constructing
our explanatory model in RQ4 from the sample of 230 bugs.

Composite Data Mining Approach. While RQ2 analyzes
and classifies failures, RQ3 builds an explanatory model to
understand the important characteristics of the bug fixing
process of API failures caused by small programming faults
as opposed to other faults. Since a Decision Tree classifier

Training
Data

Test
Data

Naive Bayesian
Classifier

Subject and stack trace

Naive
Bayesian

Score

O
th

er ch
aracteristics

Decision Tree
Classifier

Adding score Naive
Bayesian

Score

Su
b

ject an
d

 stack
trace

Result

Adding score

B
aysian

 Sco
re an

d
 O

th
er

M
etrics

Classify

Apply trained
model

Figure 2: Overview of our approach for answering RQ4

does not have good support for the “String” data type and
we want to include textual subject, message and stack trace
content into our model, we use a Naive Bayesian classifier to
deal with these fields of a bug report.

As shown in Figure 2, we use a composite model, similar
to Ibrahim et al. [16], which involves two data mining
approaches. First, we apply a Naive Bayesian classifier (as
used by spam filters) [29] on the bug subject, message and
stack trace content to determine how much this information
is relevant to small programming faults. Second, we add the
calculated Bayesian score (probability) to the other character-
istics of Table 1 as the input to a Decision Tree classifier.

The Naive Bayesian classifier. Similar to a spam filter, this
classifier takes the subject, message and stack trace from the
training corpus. In fact, the Naive Bayesian classifier divides
the content into tokens and counts the occurrences of each
token. These counts are used to determine the probability of
each token to be an indicator of the fault type. Finally, it gives
a score indicating whether a whole string is relevant to small
programming faults. The closer the score is to 1, the higher
the probability that the content will be relevant.

The Decision Tree classifier. Our Decision Tree classifier
takes the bug subject, message and stack trace score from
the Naive Bayesian classifier algorithm as input instead of
the original string data, together with the other characteristics
discussed before. We use a Decision Tree classifier as a
machine learning algorithm, since this classifier offers an
explainable model explicitly showing the main factors that
affect a fault type, while many of the other machine learning
techniques produce black box models that do not describe their
classification decisions. We have used the C4.5 algorithm [18]

Table II: Confusion Matrix

classified as
Actual category Small fault Not small fault

Small fault a b
Not small fault c d

to create our Decision Tree.
Evaluation of the Model. To validate our model, similar

to the strategy used by Christian et al. [31], we use an 80-20
split. To this aim, we divide the studied bugs into two parts:
the training corpus-containing 80% of the data (randomly
selected) and the testing corpus-containing the remaining 20%.
The training corpus is used to build the classification model,
while the testing corpus is used to test the accuracy of the
model. This process is repeated 100 times to get more robust
measurements. To this aim, we build a confusion matrix at
each iteration to measure the performance of our model. The
confusion matrix looks like Table II:

Based on the confusion matrix, we evaluate our explanatory
model by the metrics below:

• Precision (P): Proportion of failures correctly classified
as small programming faults (a) over all failures classified
as small programming faults (a+c), i.e., p = a

a+c
• Recall (R): Proportion of failures correctly classified as

small programming faults (a) over all failures that are
caused by small programming faults (a+b), i.e., R = a

a+b
• F-Measure: The harmonic mean of precision and recall,

i.e., F = 2.precision−recall
precision+recall

• Area Under Curve (AUC): The range of AUC is [0,1],
with a large value indicating better model performance
than random guessing and a value of 0.5 indicates that
the classifier is no better than random guessing.

III. CASE STUDY RESULTS

In this section, we describe the results for each research
question.

(RQ1) How often are APIs changed to fix API failures?

Motivation. Due to different activities such as re-
engineering, refactoring [1] and bug fixing, libraries and
frameworks often need to change. In the simplest case, only
the implementation of API methods needs to be fixed. Such
changes are safe for API clients. However, changes to an API’s
signature would be problematic for the applications that are
consuming them. For example, consider a case in which a
client application is calling a public method from an API to
accomplish a transaction on a user’s account. If this method in
the API changes, a failure would be raised by the API noting
that this method does not exist within that API, which leads
the end-user of that service to suffer from the malfunctioning.
In the worst case, the end-user might even make a decision to
change his service provider.

Hence, this question aims to understand the rate of API
change for fixing failures in a popular cloud platform like
OpenStack. In this RQ, we investigate changes of both API
method signature and implementation.

Table III: Analysis of the 25 most important modules in OpenStack. TC:Total Commits, MSC: Method Signature Changes, NMSC: Non
Method Signature Changes, FB: Fixing Bugs. All percentages are relative to TC.

API Module Name TC MSC NMSC
All FB FB

Heat
(2012-2015)

engine/service.py 469 129 (27%) 60 (12%) 123 (26%)
engine/resource.py 433 139 (32%) 49 (11%) 79 (18%)
db/sqlalchemy/api.py 214 15 (7%) 9 (4%) 56 (26%)
api/openstack/v1/stacks 129 22 (17%) 5 (3%) 21 (16%)
common/wsgi.py 116 10 (8%) 5 (4%) 37 (31%)

Keystone
(2012-2015)

identity/core.py 212 71 (33%) 27 (12%) 55 (25%)
service.py 143 15 (10%) 12 (8%) 55 (38%)
assignment/backends/ldap.py 118 24 (20%) 7 (5%) 33 (27%)
common/utils.py 105 15 (14%) 3 (2%) 38 (36%)
common/controller.py 114 31 (27%) 15 (13%) 28 (24%)

Nova
(2010-2015)

compute/manager.py 2775 843 (30%) 195 (7%) 468 (16%)
db/sqlalchemy/api.py 1972 194 (9%) 23 (1%) 319 (16%)
compute/api.py 1867 664 (35%) 146 (7%) 268 (14%)
api/ec2/cloud.py 776 197 (25%) 23 (2%) 120 (15%)
virt/libvirt/driver.py 1803 472 (26%) 194 (10%) 343 (19%)

Neutron
(2012-2015)

db/db base plugin v2.py 204 58 (28%) 20 (9%) 76 (37%)
plugins/openvswitch/agent/
ovs neutron agent.py 197 47 (23%) 29 (14%) 74 (37%)

agent/l3/agent.py 129 34 (26%) 7 (5%) 34 (26%)
db/l3 db.py 120 32 (32%) 15 (12%) 47 (39%)
plugins/ml2/drivers/openvswi/
agent/ovs neutron agent.py 95 25 (26%) 11 (11%) 27 (28%)

Swift
(2010-2015)

common/utils.py 345 53 (15%) 13 (15%) 46 (13%)
obj/server.py 212 25 (11%) 9 (4%) 28 (13%)
proxy/controllers/obj.py 165 22 (13%) 12 (7%) 33 (20%)
container/server.py 140 11 (7%) 5 (3%) 19 (13%)
common/db.py 111 22 (19%) 8 (7%) 9 (8%)

Median 23% 7% 24%
Total Median 31%

Approach. We developed a Groovy 3 script and used the
JGit 4 library to calculate the following metrics for the 25
most important modules of the 5 most popular OpenStack
APIs: Total Number Commits, Number of Method Signature
Changes and Number of Method Signature Changes For Bug
Fixing. We then distinguished between changes affecting the
API signature and others.

Findings. In total, 31% (one third) of all commits fixes
API faliures. We found that a median value of 23% of
the sampled API changes is devoted to signature changes.
Table 3 shows that how this percentage fluctuates from 2%
(keystone/common/utils.py) to 15% (swift/common/utils.py).
A median value of 7% of all commits changes the method
signature during the resolution of an API failure. On the
other hand, the remaining 77% commits not changing method
signature have a median value of 24% for fixing failures as
well.

Our finding that 7% of API commits changes an API’s
signature to fix a failure confirms the result of Wu et al. [33],
who analyzed and classified API changes and usages from 22
framework releases in Apache and Eclipse ecosystems. Wu
et al. [33] found a median value of 11% for the changes of
API method signature, which they considered such changes as
rare. Our finding that one third of API changes are related to
(the fixing of) API failures prompts us to the next research
question.

3http://www.groovy-lang.org/
4http://www.eclipse.org/jgit/

(RQ2) What are the most common types of API failures and
faults?

Motivation. This RQ analyzes what API failures are the
most common, as well as what the most popular causes
(“faults”) of these failures are. This information is useful for
developers and clients alike to better understand the failures
that they are experiencing as well as to have an indication of
the possible fault responsible for the failures.

Approach. We conduct a qualitative study to manually
evaluate the bug reports as well as bug fixes of API failures
during the year 2014 in OpenStack projects. We adopted
a “Card Sorting” technique to classify the symptoms and
causes of the failures in 230 randomly selected reports (see
section 2.2). The “Card Sorting” technique [22] [23] is
an approach that systematically derives structured information
from qualitative data. This technique is commonly used in
empirical software engineering when qualitative analysis and
taxonomies are needed. For example, Bacchelli et al. [24]
used this technique to analyze code review comments, while
Hemmati et al. [25] used it to study survey discussions [27].
We used Google Keep 5 as a tool for this purpose, since it
allows to search through cards and can export them into a text
file.

To that end, we first read each bug report’s stack trace to
analyze the reported symptoms, i.e., the exception or main
error (e.g., “DbError Exception”). Second, the first author
analyzed the corresponding bug fix changes. For example,
when a developer added try-catch, he added this kind of
changes as a new card “adding try-catch”. We also added the

5http://keep.google.com

symptom of each bug in the same card as we classified its fault
(cause). After analyzing all sampled defect reports, we started
clustering the cards into related topics. We did one clustering
for the symptoms, and one for the faults.

As initial inspiration for the fault clusters, we used the
IEEE standard classification for software anomalies 6 and
Orthogonal Defect Classification (ODC) 7. However, we soon
realized that these classifications are too coarse-grained. For
instance, we found a race condition as a main cause of a
failure, which is a much more detailed category than the IEEE
Standard’s “logic fault” and “Timing/Serialization” category in
ODC. Hence, we started to classify the faults in as much detail
as possible.

Findings. We obtained almost 30 categories of API
faults, which we could group into 7 categories. However,
we noticed that in many cases, a bug fix only touches a couple
of lines in one file, making simple logic changes like inverting
logical conditions, fixing typos in variable names or adding a
new catch exception. Since such changes only touched one
file, and the changes were minor, we created one category
for this and called it “small programming faults”. To clarify
more, Figure 3 shows a sample of this fault type, where the
developer changes the default value of a variable to another
value.

Contrary to small programming faults, we observed that
many fixes involved several files and/or multiple parts of
files are touched by the developers. We created a category
for this and we called it “major programming faults”. We
include method signature changes (interface faults) into this
group as well. Figure 4 shows a sample of this kind of faults
where a developer changes the method signature by adding
more parameters. While enumerating the samples for major
programming faults, we separately counted the statistics for
method signature changes to see whether there exists any
aligned statistics with our previous result for RQ1 on the five
most important APIs.

“Configuration faults” is another category of causes of API
failures, where a wrong value is set in a configuration file.
Figure 5 shows a bug that is fixed by a correction to the value
in a configuration file.

As mentioned earlier, we faced “race condition faults”
where a variable is accessed concurrently by multiple threads.
Also, similar to this fault, we faced “deadlock condition faults”
where a process or thread locks an object and other processes
or threads are not able to access this object. Since these kinds
of faults are difficult to identify, we were conservative and we
read the commit messages to make sure what the cause of the
failure is exactly about. Figure 6 and 8 show these categories.

“Data format faults” cover situations in which an incorrect
data type was given to a method or the data was not in a
correct format. Figure 8 shows how a developer fixes defects
related to a data encoding issue.

6http://standards.ieee.org/findstds/standard/1044-2009.html
7http://researcher.watson.ibm.com/researcher/files/us-pasanth/ODC-5-2.pdf

Table IV: Prevalence of API fault types

Fault Type Percentage
Small programming fault 56%
Configuration fault 14%
Major programming fault 14%
Race condition 5%
Deadlock condition 4%
Improper log message 4%
Data format fault 3%

Table V: Prevalence of API failure types

Symptom Percentage
db error 16%
test error 15%
network error 10%
deployment error 4%
security error 4%
Other(vm error, volume error, task error, etc.) 56%

“Improper log message” corresponds to cases where a
wrong message or inappropriate log is sent to the users.
This makes problem diagnostics and resolution difficult for
users. Figure 9 shows that the developer tries to give a more
appropriate message by modifying data in the output text
string. Table 4 summarizes the different categories obtained.

As Table 4 shows, there are 7 major categories of fault
type in our findings: Small programming faults, configu-
ration faults, major programming faults, race condition,
deadlock condition, improper log message and data format
fault. Small programming faults are the most common
type of API faults, followed by major programming and
configuration faults.

In Table 4, we can see the proportion of each category. It
is clear that almost half of the causes are related to small
programming faults. In other words, the majority of API
failures were caused by a trivial programming mistake. The
next most common type of fault are major programming faults,
which are 4 times less common, but are caused by more
serious programming issues. Configuration faults typically are
easier to fix, depending on the understanding of the cloud
configuration.

Surprisingly, the number of method signature changes in our
sample data (part of major programming faults) is about 6%,
which is aligned with the median number of method signature
changes found in RQ1 for the 25 important modules, i.e., 7%.

The most common API failures are database and test
failures. Table 5 shows the different types of failures and their
percentages.

(RQ3) What are the bug fixing characteristics of the different
fault types?

Motivation. Understanding how different API fault types
are being fixed helps developers and managers be well pre-
pared for future API failures. In this RQ, we analyze possible
differences in characteristics of different fault types.

Approach. Using the tool that we developed to answer
RQ1, we find the commits that fix the failures studied in
RQ2. The characteristics that we investigate are described in
Table 1 and are obtained from bug reports, bug fix commits

Figure 3: Bug No.1362221-Small programming fault.

Figure 4: Bug No.1362985-Major programming fault.

Figure 5: Bug No.1354500-Configuration fault.

Figure 6: Bug No.1339235-Race condition.

and developer emails. Overall, we are interested in all char-
acteristics related to the resolution of faults, i.e., symptoms,
the importance of the failure, the fixing process and the
eventual fix. Because small programming, major programming
and configuration faults have more occurrences than the other
faults, we focus only on the differences of these three fault
types.

Findings. There is a significant difference in the activity
of developers fixing small and major programming faults.
It seems that small programming faults require less active
developers than major programming faults. A Mann-Whitney
u test [26], i.e., a non-parametric statistical test to validate
the null-hypothesis “There is no significant difference in the
activity of developers fixing small and major programming
faults”, we obtain a p-value of 0.001 (alpha value of 0.01)
which rejects the null-hypothesis, accepting the alternative
hypothesis that there is a significant difference between both

Figure 7: Bug No.1370191-Deadlock condition

Figure 8: Bug No.1333177-Data format fault

Figure 9: Bug No.1272114-Improper log message

distributions.
A related null hypothesis is about the amount of developer

experience of the developer attempting to fix an API failure.
In particular, we believed that developers with low experi-
ence fix small programming faults. Therefore, we created a
null-hypothesis “There is no significant differences between
developer experience in small programming and major pro-
gramming faults”. A Mann-Whitney U test with the p-value
= 0.22 was not able to reject. This implies that we found
no proof of significant difference in terms of experience
of developers who fix small faults and developers who fix
major faults. Figure 10 and Figure 11 show the boxplot of
experience and developer activity metrics.

As Figure 12 shows, we understand that there would be a
significant difference in the call distance between configuration
and major programming faults. However, a Mann-Whitney U
test with alpha value of 0.01 between major and configuration
faults is not able to reject the null-hypothesis (p-value=0.05),
hence, there exists no significant differences in terms of
call distance. This indicates that major programming faults
have no longer call distance in comparison to configuration
faults. The Mann-Whitney U statistical test did not show any
significant difference between small programming faults and
configuration faults either. This implies that any fault type can
occur in an API with any number of modules inside and there
is no correlation between this number and the occurrence of
a specific fault type.

As Figure 13 shows, the code churn of major pro-

small config major

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Figure 10: Developer activity (number of
commits in the whole data set).

small config major

0
5
0
0

1
0
0
0

1
5
0
0

Figure 11: Developer experience (number
of commits before fixing current fault).

small config major

0
1
0

2
0

3
0

4
0

Figure 12: Call distance (number of mod-
ules in the stack trace).

gramming faults is significantly higher than the other
two categories. This is expected, since in our fault type
classifications, we considered bug fixes involving larger code
changes as well as method signature changes as major faults.

Surprisingly, small programming faults do not take
significantly less time to be fixed than major program-
ming faults. According to Figure 14, we see no significant
differences between different kinds of faults, specifically the
small and major programming faults. One conjecture might be
that, despite the small sizes of bug fixes, small programming
faults can still be difficult to be detected and diagnosed.

small config major

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Figure 13: Code churn (size of fix).

small config major

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Figure 14: Bug activation in number of
days.

Precision Recall F-Measure AUC

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Figure 15: Performance measurements for
100 iterations.

(RQ4) What are the main factors explaining the bug fixing
process of small programming faults?

Motivation. Until now, we have found that almost half of
the causes of the failures are related to small programming
faults. We have gathered various characteristics of these faults
showing that despite requiring a simple fix, they might actually
take as long to be resolved as major programming faults. Now
we are interested to know the major factors in the bug fixing
process of such failures. If one would be able to predict for
a given reported bug, either right after the bug is reported
or during the bug fixing process (when more data becomes
available about the bug fixing process), that a bug likely is

Table VI: Decision tree top-node analysis score of metrics after 100
iterations.

Dimension Metric Score
talked in mailing list 55
number of times bug
status changed 0

severity 34importance

number of people affected 61
developer experience 0
developer activity 42
number of developer
working on bug 193fixing process

bug activation in days 35
subject message and stack trace 99
call distance 35
commenter experience 62
comment count 30
comment length 60

symptom

reply lag 124
code churn 53
ndev 40
age 64bug fix

nuc 46

due to a small programming fault, bug fixing could be planned
differently than in case a deadlock or major programming fault
is to be expected.

Unfortunately, we do not have sufficient manually classified
failures (see RQ2) to build and evaluate a prediction model.
Hence, we focus on an explanatory model.

Approach. First, we randomly select 80% of all 230 sam-
ples and we train the Naive Bayesian classifier based on it.
Since an imbalanced training set creates suboptimal results,
we examined two approaches to balance the data. We did
re-weighting and re-sampling (under-sampling and over-
sampling) by using Weka [17]. For re-weighting, we used
AdaBoostM1 algorithm. We compared the output of both
balancing techniques. The best results were obtained when
we did re-sampling using under-sampling. In that case, our
classifier was trained well and outperformed the other cases.

Second, we give the remaining 20%, i.e., test set, to the
Naive Bayesian trained model in order to generate the Naive
Bayesian score. Then we give the training set with the Naive
Bayesian score and the other characteristics to a Decision Tree
learner. Finally, we apply this model to the testing set. We
repeat these iterations 100 times. This type of validation has
been used in several studies, such as Pinzger et al [32].

In order to identify the most impactful variables in the
model, we use top-node analysis [28]. For each of our 100
iterations, we parse the Decision Tree and we create a hash
table of metrics for the nodes on levels 0, 1 and 2 of the tree.
For each level, we assign a weight starting from 3 to 1 for
levels 0 to 2 respectively, since a metric appearing at level
0 has the highest discriminatory power of all metrics. At the
end, we multiply the frequency of each metric in a level by
the weight of that level and we sum all the multiplications
to obtain the score for that metric. For example, out of 100
iterations, the metric “ndev” has appeared 9 times in level 0,
5 times in level 1 and 3 times in level 2. We calculate the
score for “ndev” like: 9*3 + 5*2 + 3*1 = 40. The higher the
resulting score, the more important the metric would be for
the explanatory models.

Findings. Our explanatory composite model shows that (1)
the number of developers working on a bug, (2) subject,
message and stack trace information, and (3) reply lag are
the main factors explaining small programming faults.

Table VI shows the most important metrics after run-
ning 100 times our model. It clearly shows that, the metric
number of developers working on bug is the most important
metric in the top-node analysis of the decision tree with a score
of 193. Our analysis on the tree showed that if the number of
developers working on a bug increases, the more likely the
fault type would be a major programming fault. Also, we can
see that the text variables (subject, message and stack trace) are
amongst the most important factors. It demonstrates that the
text content of a bug can be a good indicator to distinguish be-
tween small faults and other faults. Since the subject, message
and stack trace information is available from the moment a
bug is reported, this can open the door for actual prediction of
whether an API failure would be easy to fix. Furthermore, the
reply lag metric indicates that the average time between bug
report comments is another most important factor determined
by our model for small programming faults. We also observe
that the number of times bug status changed never appeared
in any iteration. The same goes for developer experience,
which confirms our findings in RQ3.

IV. THREATS TO VALIDITY

Construct validity threats concern the relation between
theory and observation. Our metrics might not reflect all
characteristics related to failures and we could include more
metrics specifically related to source code or even the review
process of bug fixes.

Internal validity threats concern other possible explana-
tions for some of our observations. Since this study contains
a qualitative study, there may be some human factors and
subjectivity in the categorization analysis. Even though the
first author performed the qualitative study, he frequently
checked cases with other authors to double-check when in
doubt. Moreover, in the fault categorization, the unknown and
unresolved issues were not taken into account, since such
issues are either not reproducible, not popular or important for
the OpenStack project as a whole, or just too simple (typos in
documentation, etc.).

In our quantitative study, our criteria to select the most
important modules is based on the most frequently changed
module, i.e, the most committed module file in git repository
is considered the most important one in each API. This raises
concerns that the most committed ones not necessarily reflect
the most important ones.

On the other hand, we used heuristics on bug report mes-
sages and keywords to identify stack traces related to the APIs.
One concern is that is not 100% reflecting all related API stack
traces. Another concern is related to the bug activation in days.
There are bugs that generally would be treated very soon but
are closed at a specific time of each month with other bugs.
Therefore, these days of the bug activation are not reflecting
a 100% correct time for fixing the failures.

Threats to external validity concern the possibility to
generalize our results. Since we have only studied one large
open source infrastructure in the cloud, we cannot generalize
our findings to other open and closed source (e.g., Google,
Amazon, and Microsoft) projects. Moreover, since Git is a
pliable version control system that can be used in various
installments, we also need to take care when extending our
results to other projects using Git. Therefore, more case studies
on other projects are needed.

V. RELATED WORK

API changes. Wu et al. [33] studied the Apache and Eclipse
open source projects to understand API changes and usages.
They found that missing classes and methods are the most
prevalent issues that affect the client programs in case of API
usage. They also found that interface faults occur rarely in
APIs and 11% of API changes have effects on the client
programs. In our study we did not investigate the effects of
API changes on the whole ecosystem of the OpenStack. Our
statistics for API interface faults is 7% and this is close to the
statistics presented by [33].

In other work, Dietrich et al. [34] studied the differences
between Java compile-time and link-time compatibility in the
Qualitas corpus and reported that such incompatibilities exist
but it merely affects other client applications.

Dig et al. [1] studied five well known open source systems
(Eclipse, Log4J, Struts, Mortgage and JHotDraw) in order to
understand the API changes. They found that changes that
break existing applications are not random and 80% of these
changes are due to refactorings.

API failure in cloud. The closest work that categorizes the
failures in the cloud environment is related to Lu et al. [4].
They studied nearly 900 issues related to API failures in the
Amazon EC2 forums. They classified the causes of failure into
three categories: development, physical and interaction. They
found that 60% of the failures are related to either stuck API
calls or unresponsive API calls. However, in their study they
did not go into more details into the actual root causes of those
failures.

Farshchian et al. [3] tried to detect anomalies in the cloud,
focusing on Amazon EC2, by injecting faults and detecting
them by using a regression based statistical modeling. Their
work addresses DevOps operations such as backup, redeploy-
ment, upgrade, customized scaling, and migration. However,
our work is different since we focused on the development
faults and its classification by using a qualitative study. In
fact, we extracted the actual bug fixes and analyzed them by
using composite statistical modeling.

Gunawi et al. [7] did a large bug study on seven popular
and important cloud systems (Hadoop, MapReduce, HDFS,
HBase, Cassandra, ZooKeeper and Flume). They reviewed
21,399 submitted issues in the issue repository and concluded
a set of detailed classifications from a variety of aspects such
as reliability, scalability, etc. and the percentage of related
issues in each category. In their work they also investigated the
software fault types. However, their systems under study are

not cloud infrastructure. Our study differs with them, in a way
that they just studied issue repositories, but we covered mail
and source code repositories as well. Their fault categories
include: Error handling, Configuration, Race condition, Hang,
Space and Load. The configuration, data race and even error
handling fault types overlap with our small programming
faults.

VI. CONCLUSION

In this paper, we conducted an empirical study to investigate
the API failures in a cloud environment such as OpenStack-an
open source cloud-infrastructure. First, we studied the source
code repository to find out the percentage of changes in the
APIs that were aimed for fixing bugs. We also included method
signature changes in our study since this type of modifications
to an API make it fragile and creates serious problems for
other projects. We conclude that a median value of 31% (one
third) of all changes fix API failures, where 24% includes non-
method signature changes and 7% include method signature
changes.

Second, during a qualitative study, on a random sample of
fixed bugs for a variety of OpenStack projects, we explored
the root causes of the failures by analyzing bug reports and
fixes. Based on our observation, we found seven categories
of causes (faults) for API failure: small programming faults,
major programming faults, configuration faults, race condi-
tions, deadlock conditions, data format faults and improper
log message faults. Our finding indicates that the majority of
the causes is due to small programming faults (56%), whereas
a) the developers who have fixed the bugs are less active in
the project in comparison to major programming faults, b) the
time to fix these kinds of faults does not differ to other types
of faults and c) the developer experience of these types of
faults does not differ to each other.

The major programming faults category comprises two
subcategories: method signature changes as well as changes
in which multiple files have been touched. Limited to our
samples, our statistics showed that major programming faults
are 14% of all existing fault types, whereas only 6% of these
major faults include method signature changes, confirming the
result of our quantitative study.

Third, our explanatory model showed that metrics such
as subject, message and stack trace information, number of
developers working on a fix for a failure and reply lag within
the comments are the main factors in small programming
faults. These results open the door for prediction of whether
a newly submitted API failure will be easy to fix.

We have to mention that we use Decision Trees to build
our models, but other techniques such as Support Vector Ma-
chines (SVM) and Logistics Regression should be studied and
compared. Also, additional characteristics should be explored
in our model, because they might improve the performance
of our model. Finally, we would like to collect more samples
and more metrics in order to predict API failures in the future
particularly for cloud environments.

REFERENCES

[1] Danny Dig, and Ralph Johnson. “How do APIs evolve? A story of
refactoring.” Journal of software maintenance and evolution: Research
and Practice 18.2 (2006): 83-107.

[2] Dana Petcu, Ciprian Craciun, and Massimiliano Rak. “Towards a cross
platform cloud API.” 1st International Conference on Cloud Computing
and Services Science. 2011.

[3] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber and John Grundy,
“Experience Report: Anomaly Detection of Cloud Application Opera-
tions Using Log and Cloud Metric Correlation Analysis,” Proceedings
of the 26th IEEE International Symposium on Software Reliability
Engineering (ISSRE ’15), IEEE, Gaithersburg, Maryland, November
2015

[4] Qinghua Lu, Liming Zhu, Len Bass, Xiwei Xu, Zhanwen Li, and
Hiroshi Wada. “Cloud API issues: an empirical study and impact.” In
Proceedings of the 9th international ACM Sigsoft conference on Quality
of software architectures, pp. 23-32. ACM, 2013.

[5] LZ Xiwei Xu et al. “Error diagnosis of cloud application operation
using Bayesianian networks and online optimisation.” 11th European
Dependable Computing Conference (EDCC). 2015.

[6] Min Fu et al. “Process-oriented recovery for operations on cloud applica-
tions.” Proceedings of the 4th annual Symposium on Cloud Computing.
ACM, 2013.

[7] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T.Do,
et al., “What bugs live in the cloud?: A study of 3000+ issues in cloud
systems,” presented at the Proc. of the ACM Symposium on Cloud
Computing, Seattle, WA, USA, 2014.

[8] Karan Aggarwal, Tanner Rutgers, Finbarr Timbers, Abram Hindle,
Russ Greiner, and Eleni Stroulia. “Detecting duplicate bug reports with
software engineering domain knowledge.” In 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), pp. 211-220. IEEE, 2015.

[9] Gonzalez-Barahona Jesus, Gregorio Robles, Daniel Izquierdo-Cortazar,
“The MetricsGrimoire Database Collection”, 12th Working Conference
on Mining Software Repositories, Florence, Italy, 2015

[10] Audris Mockus, and David M. Weiss. ”Predicting risk of software
changes.” Bell Labs Technical Journal 5.2 (2000): 169-180.

[11] Dan Radez, OPenStack Essentials, Demystify the cloud by building your
own private OpenStack cloud. Copyright c©2015 Packt Publishing.

[12] Kevin Jackson, Cody Bunch, Egle Sigler,OpenStack Cloud Computing
Cookbook Third Edition. Over 110 effective recipes to help you build
and operate OpenStack cloud computing, storage, networking, and
automation

[13] http://www.openstack.org
[14] G.Kalton, Introduction to survey sampling. Sage Publications, Inc,

September 1983.
[15] Tony A. Meyer, and Brendon Whateley. “SpamBayes: Effective open-

source, Bayesian based, email classification system.” CEAS. 2004.
[16] Walid M. Ibrahim et al. “Should I contribute to this discussion?.” Mining

Software Repositories (MSR), 2010 7th IEEE Working Conference on.
IEEE, 2010.

[17] Ian H. Witten, and Eibe Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[18] Quinlan, J. Ross. C4. 5: programs for machine learning. Elsevier, 2014.
[19] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,

and N. Ubayashi. A large-scale empirical study of just-in-time quality
assurance. IEEE Trans. Softw. Eng., 39(6):757-773, 2013

[20] S. Kim, E. J. Whitehead, and Y. Zhang. Classifying software changes:
Clean or buggy? IEEE Trans. Softw. Eng., 34(2):181-196, 2008

[21] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In Proc. Int’l
Conf. on Softw. Eng. (ICSE’13), pages 382-391, 2013

[22] M. B. Miles and A. M. Huberman, Qualitative data analysis : an ex-
panded sourcebook, 2nd ed. Thousand Oaks, Calif. : Sage Publications,
1994, includes indexes

[23] L. Barker, “Android and the linux kernel community,”
http://www.steptwo.com.au/papers/kmc whatisinfoarch/, May 2005

[24] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 712-721.

[25] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes,
and M. W. Godfrey, “The msr cookbook: Mining a decade of research,”
in Proceedings of the 10th Working Conference on Mining Software

Repositories, ser. MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013,
pp.343-352.

[26] M. Hollander, D. A. Wolfe, and E. Chicken. Nonparametric statistical
methods. John Wiley Sons, 3rd edition, 2013

[27] M. Shridhar, B. Adams, and F. Khomh, “A qualitative analysis of soft-
ware build system changes and build ownership styles,” in Proceedings
of the 8th International Symposium on Empirical Software Engineering
and Measurement (ESEM), Torino, Italy, September 2014

[28] A. E. Hassan and K. Zhang, “Using decision trees to predict the
certification result of a build,” proc. of the 21st Int. Conf. on Automated
Software Eng. (ASE), pp. 189-198, 2006

[29] T. A. Meyer and B. Whateley, “Spambayes: Effective open-source,
bayesian based, email classification system,” in Proc. of the First Conf.
on Email and Anti-Spam (CEAS), 2004

[30] R. Kohavi, “A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,” in Int. Joint Conf. on Artificial Intelligence
(IJCAI), 1995, pp. 1137-1145

[31] Christian Macho, Shane McIntosh, and Martin Pinzger. ”Predicting
Build Co-Changes with Source Code Change and Commit Categories.”
2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER). Vol. 1. IEEE, 2016.

[32] Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. “Can
developer-module networks predict failures?.” Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering. ACM, 2008.

[33] Wei Wu et al. “An exploratory study of API changes and usages based on
apache and eclipse ecosystems.” Empirical Software Engineering (2015):
1-47.

[34] Jens Dietrich, Kamil Jezek, and Premek Brada. “Broken promises: An
empirical study into evolution problems in java programs caused by
library upgrades.” Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE
Conference on. IEEE, 2014.

