
Factors Impacting Rapid Releases: An Industrial Case
Study

Noureddine Kerzazi
Dept. Research & Development, Payza.com

Montreal, Canada
noureddine@payza.com

Foutse Khomh
SWAT, École Polytechnique de Montréal

Montréal, Canada
foutse.khomh@polymtl.ca

ABSTRACT
Context: Software release teams try to reduce the time
needed for the transit of features or bug fixes from the de-
velopment environment to the production, crossing all the
quality gates. However, little is known about the factors
that influence the time-to-production and how they might
be controlled in order to speed up the release cycles.
Goal:This paper examines step by step the release process
of an industrial software organization aiming to identify fac-
tors that have a significant impact on the lead time and
outcomes of the software releases.
Method:Over 14 months of release data have been analyzed
(246 releases from the isolated source code branches to the
production environment).
Results:We discuss three dimensions under which a series
of factors could be addressed: technical, organizational, and
interactional. We present our findings in terms of implica-
tions for release process improvements.
Conclusions: Our analyzes reveal that testing is the most
time consuming activities (86%) along with the need for
more congruence among teams, especially in the context of
parallel development.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Empirical Software Engi-
neering, Release Engineering, Packaging, and Production.

General Terms
Software Release, Parallel Development, Rapid Release, Lead
Time

Keywords
Empirical Software Engineering, Release Management, Soft-
ware Process, Software Quality, Release Cycles, Lead Time.

1. INTRODUCTION
There is a trend to reduce the release cycle from months
to weeks or even days [10]. When the release process is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM ’14, September 18-19, 2014 - Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09...$15.00.

well controlled (i.e., repeatable) and smooth (i.e., automated
when possible), organizations can afford short release cycles.
The fact is more evident in the context of web based appli-
cations. However, the scope of release team activities is
large: activities range from source code merging between
branches, crossing all automated tests, building and packag-
ing the final application, coordinating with other individuals
(Database Administrators, Testers, etc.), and finally push-
ing the application to the production servers.

We have observed many times, team members bugging the
performance, security, or builds at the last minutes of a re-
lease sprint. For instance, integration of parallel changes
is error prone [18]. Release issues are not only affecting
the current release, but also blocking the upcoming releases,
which consequently decreases the capability of delivering val-
ues to the end users. Organizations have little information
available to assess the effectiveness of their release process.
Therefore, determining the factors that impede the release
process is one of the most challenging issue faced by the re-
lease engineering field today. Software organizations need
to understand the practices, tools, and teams’ coordination
strategies that are needed to improve the software delivery
process.

This paper reports on the results of a longitudinal study that
examined 246 releases of a large-scale web-based software
system. We analyzed data and observed the release team
in action in order to identify the kinds of problems they
face and the extent to which their release process can be
improved; our main goal was to empirically examine the key
factors impacting the software release process.

To this end, we have investigated the impact of technical,
organizational, and interactional factors on the lead time
of the software release process. Technical factors include
source code merging and integration, automated tests, and
packaging of the application. The organizational factors in-
clude the functional dependencies, the design of branching
structures, the planning of releases, and the management
of branches (syncing). Interactional factors concern aspects
such as (1) the coordination with developers to fix merge is-
sues, the coordination with architects to resolve performance
issues, with database administrators to run scripts at each
level reached by the code, and also the coordination with
the IT department; (2) and socio-technical congruence.

The rest of the paper is organized as follows: Section 2

Figure 1: Exemplified Branching Strategy.

presents the context of our study and describes the research
method used to collect data. Section 3 presents the results of
this study and summarizes the factors that have been found
to affect software release outcomes, in terms of lead time
and failures. Section 4 discusses the lessons learned and the
practical implications of our results. Section 5 outlines the
threats to validity of the study. Section 6 discusses related
work, and finally, Section 7 concludes the paper and presents
an outlook of future work.

2. STUDY DESIGN
This section describes the context, the workflow of activities
carried out to push the source code from the development
environment to the production, and the data of our study.

2.1 Context
The study takes place in a large industrial organization ded-
icated to the development of a web based financial system
used in 192 countries. We had the opportunity to be on site
for an extended period of time (i.e., more than 14 months).
The system was composed of 1.5 million lines of code, orga-
nized in 8,524 source code files. The development team is
distributed across two different sites located in Canada and
India, with a centralized release team.

2.2 Release Process Overview
This section presents an overview of the release process as it
is conducted in the company. As shown in Figure 1, the soft-
ware development is parallelized; teams of developers work
in parallel on code isolated within separate branches. The
branches are recurrently synchronized with the main branch
(Trunk). Once the development is completed and tested
within a branch, the release process starts. Typically. the
release team carries out a forward integration (FI) (see Fig-
ure 2) from Trunk to the branch aiming to resolve integra-
tion conflicts within the branch instead of Trunk. FI ensures
stability in the main stream branch. Following that step, the
release team runs a collection of integration tests that evalu-
ates the recent integrated features as well as regression tests.
It is worth noticing that in the meantime, the trunk is frozen.
After the successful completion of these tests (the green light
of the QA team is obtained), the release team carry out a
backward integration (BI), from the branch to the Trunk.
The code is stabilized within the Trunk branch and moved

Figure 2: source code Transit from branches to
production.

to the PreRelease branch. Figure 2 presents an illustration
of how the code transits through the trunk during a release.
In the PreRelease branch, the code is precompiled, packaged
and regression tests are triggered. The QA team then carries
out smoke tests on the staging environment characterized by
a set of configurations close to those used in the production
environment along with using real databases. Finally, the
packages are pushed to the production environment.

The release team does not release from Trunk because Trunk
is always unstable due to frequent integration works, and
also because the release team usually has to consolidate mul-
tiple packages and code coming from different branches be-
fore they can release.

2.3 Data Collection
We collected data based on information pertaining to 246 re-
leases recorded in the release calendar of the company. Fig-
ure 3 shows the distribution of the number of releases per
month. The collected data included timestamps, brief de-
scription of the content of releases, main list of features and
bugs within the tracking system, site location, and the revi-
sion tag in the Software Configuration Management system
(SCM). We have traced back (timestamp) each release from
the PreRelease branch to the branch where the changes oc-
curred. The data extraction process was automated thanks

Figure 3: Distribution of Releases by Month.

to the collaborative system in place, namely Microsoft TFS.
After mining data from the SCM, we decided to exclude 41
releases because the source code was modified directly within
the PreRelease branch and consequently considered as data
outliers that might skewed the Lead Time computation.

For each release, we have traced back the branch from which
the code was released and computed the diff between the
timestamp when moving the code from that branch towards
a releasable branch (PreRelease), crossing the Trunk branch
as shown in Figure 1. We also collected information about
the work items that were performed to fix bugs and test the
system. Using the collected data, we answer the following
research question.

RQ: What are the factors impacting the Lead Time
of releases?

3. CASE STUDY RESULTS
In this section, we present and discuss the answers to our
research question. First, we present the motivation behind
the question, then our analysis approach, and a discussion
on our findings.

3.1 RQ: What are the factors impacting the Lead

Time of releases?

3.1.1 Motivation
We set out to answer a question we were asked by the soft-
ware release management of the company: How can we
speed up the release process within a parallel development
context and how can we make it more predictable? To an-
swer this question we have to identify the factors that impact
the Lead Time of edits transits from branches to the pro-
duction environment, and then we will be able to suggest
guidelines for the release process improvement.

3.1.2 Approach
The first step of our investigation towards the identifica-
tion of factors that might impact the software releases refers
to the process point of view. We sought to identify the
breakdown list of release activities, involved roles, and in-
put/output artifacts. These activities range from the inte-
gration of code from an isolated branch, the transit of the
source code until the production environment, crossing all
the quality gates. One can observe that a number of re-
sponsibilities overlap. For instance, after merging an iso-

lated branch to the mainline, the release team must wait for
the results of the integration tests performed by QA team.
We have performed a reverse engineering of the releases and
extract the following factors based on their impact on the
duration of the release process:
A. Technical Factors
We investigate the following technical factors:

• Merges and Integration: merges and integration
workload depend on the magnitude of the release [8].
We define the magnitude of a release as the distance,
in terms of source code changes, between the trunk
and the branch to be released. This distance can be
expressed with: (1) the size of changes (measured with
Churn metrics [14]), and (2) the complexity of the
changes (measured with concentration of dependencies
[6]). While Churn metrics provide an idea about the
size of the release, it is not sufficient for predicting
the integration efforts and potential merge issues. For
instance, adding a large amount of new code is less
risky than changing a method signature. Hence, de-
pendency metrics are required to explore the amount
of effort necessary to integrate different pieces of source
code. We hypothesize that the magnitude of a release
influences the Lead Time as well as the product qual-
ity.

• Testing: test activities are time consuming. While
unit and regression tests are automated, we still do
have manual tests for the newly integrated features.
Even though most of test activities are carried out by
QA team, the release team should wait for the green
light before moving from a branch to another. Manual
testing is not supposed to be part of the release pro-
cess. However, when bugs are found during the release
sprint, QA members get involved to track these bugs
(through smoke tests). Furthermore, Technical depen-
dencies makes it difficult to trust partial tests of the
system. After each change (even small), the entire sys-
tem should be re-tested. Consequently, shorter release
cycles depend on shorter testing periods [10].

• Packaging the application: packaging refers to the
pre-compilation, bundling of binary resources, and the
preparation of configuration files. In contrast to the
normal compilation carried out by developers, the pre-
compilation aims to enhance the performance and se-
curity of the source code within the production en-
vironment. Pre-compilation is more restrictive than
a normal build, which might need code adjustment.
Bundling binary resources refers to installation of pack-
ages and APIs that the code depends on. These pack-
ages are generally available in a public binary reposi-
tory (e.g., NuGet, Artifactory). Finally, some releases
might need a specific setup which is prepared by the
release team.

B. Organizational Factors
We investigate the following organizational factors:

• Functional Dependencies: we have seen many times
release team releasing source code without knowing

what the code does. The link between technical ele-
ments, under the released and functional work items
(e.g., Projects, Features, and Bug fixes) should be de-
scribed in release notes.

• Design of an Adapted Branching Structure: while
developers construct parts of the application, release
engineers have to build the pipeline to deliver these
parts to the end-users. Thus, having an adequate
branching structure is crucial [2, 14, 20]. However,
there is no recipe for a good branching structure. We
extract a list of principles stated by the release team
in order to support the design of an effective branching
structure adapted to the context of the organization:

P1: Have a releasable branch at any time.

P2: All changes have to go through QA gates.

P3: Isolate the code not people.

P4: Source code must transit by merges never by copy/paste.

P5: Do not freeze the development.

In an ideal situation, a good organization of paral-
lel development try to align branching structure with
architectural components and then organize teams to
work in isolated manner on components within dedi-
cated branches [15]. However, this ideal situation is
not possible with layered systems such as web-based
systems. The changes, required to develop a new fea-
ture, could be scattered in different branches leading
to integration failures when it comes to releasing that
feature.

• Release Planning: releases planning is often under-
estimated. For instance, a feature can be offered as
part of a release only if all its necessary tasks are done
before the release date [17]. Hence, the importance of
a good release planning. We have observed cases of
releases that were blocked because of incomplete in-
terdependent technical elements.

C. Interactional Factors
We investigate the following interactional factors:

• Coordination: task dependencies drive the need to
coordinate work activities [5]. Coordination arises as
a response to those questions such as who should do
what, when is it required, what approval is requested
for which activity, and who should be informed [12].
The effect of coordination goes beyond the boundaries
of development teams. Yet, it is often overlooked or
neglected when analyzing the release processes. In our
context, coordination involves Database administra-
tors (DBA) who are responsible for running scripts in
databases related to each stage (e.g., branch, regres-
sion, staging, and production), Business analysts (BA)
who keep tracking on their ongoing projects, testers
(QA) who should be notified when edits have to be
tested on some branches, and finally developers who
should resolve merge conflicts or help figure out prob-
lematic situations in the production environment.

Figure 4: Repartition of the time consuming.

• Socio-Technical Congruence: socio-Technical Con-
gruence (STC) refers to the alignment between the
technical dimension of work and the social relation-
ship between team members [5]. It has been observed
that release engineers not only have to coordinate with
other teams, but also should exhibit matching skills
when interacting with other members. For instance,
resolving performance issues happening in production
needs STC with architects and DBAs. In this paper,
we only present an in-depth analysis of technical and
organizational factors because of the space limitation.

3.1.3 Findings
The Lead Time of the release process is largely impacted by
test activities. Although test activities are not supposed to
be part of the release process, these activities are included
in the process when computing the Lead Time because they
are performed after the transition of code from one branch to
another (e.g., integration test within the mainline branch).

Figure 4 shows that 86% of the release time is con-
sumed by both manual and automated tests. Test-
ing activities threaten to become the bottleneck of
the release process. In fact, because of the often poor
description of functional dependencies, release team usually
triggers all the regression test cases every time that a change
is performed. With a good knowledge of the functional de-
pendencies, the release team will be able to execute only a
subset of the test cases, which will considerably reduce the
testing time.

Moreover, the computation of the time spent on merge activ-
ities shows that merges account for only (6%) of the release
time, which is far less than the time spent on testing. We
also found that developers spend similar amount of time on
the stabilization of the code (i.e., 6%). Stabilization refers
to the code adjustments after merging the source code be-
tween two branches. We observed that the more the merge
effort is large, the higher is the stabilization effort. Packag-
ing activities represent 2% of the release time.

A. Impact of Technical Factors

Figure 5 shows the amount of files impacted by each release.
On average, 142 files (SD = 326.68) are changed for each
release. The duration of merges and integration de-
pends not only on the extent of changes made in
the isolated branch, but also on the flow of changes
crossing the main branch (i.e., Trunk). Further in-

Figure 5: Number of Files Impacted by the Releases.

Figure 6: Propagation of Changes between
Branches through Time.

vestigations into the concentration of dependencies provides
a more accurate estimation of the merge duration. Figure 6
illustrates a real example of the transition of churn metrics
between the Trunk and a branch. The example illustrates
3 forward merges; the first one containing 443 files with a
code churn of 14,306. After three forward merges that kept
the branch in relatively sync with the Trunk, a release hap-
pens. 76 files have been merged in Trunk with a code churn
equal to 3,454. Resulting in a large effort to keep the branch
synchronized. This effort is necessary to avoid teams facing
complex and risky big-bang merges afterwards. Excluding
20 min to run the unit tests plus 54 min to run regression
tests, the rest of the time is allocated to manual testing.
When tests are not conclusive, developers are involved in a
costly sequence of fixing/re-testing. The release team tries
to avoid this situation and recommends to always finish the
testing in the branches before moving forward to release.

Release team tried to speed up the process by cutting down
the effort of tests. To do so, the team attempted to consol-
idate a single package, within the Trunk branch, fed by the
code from different branches. The situation was worse than
the previous because the integration and code stabilization
took more time than expected respectively (15% for integra-
tion and 40% for stabilization), the pipeline of release was
blocked. The team went into a vicious circle of bugs’ identi-
fication, correction, and re-test. In other words, integration
tests of changes that come from different branches might be
a challenging task. Previous work indicated the importance
of the size of the changes on the product quality [13]. We
claim that in the context of parallel development,
it’s more valuable to release smaller and often. Fur-
ther analyses are required for more evidence.

B. Impact of Organizational Factors
We found that over 20% of the release time is al-
located to the organizational dimension. First, while
release team are dealing with source control ChangeSets and

versions, BA team deals with features and bugs. The release
team has to find efficient ways to map the ChangeSets to
features and bugs descriptions. Moreover, there is a need
to identify which parts of the system are affected by the re-
lease. Second, code can be committed in an isolated deep
branch. The release team has to move the code toward the
releasable branch taking care of its technical dependencies.
The branching structure has an impact not only on the tran-
sit time of the code, but also on the amount of errors injected
while merging. Third, daily strategic planning helps to set
priorities and ensure that members are working toward a
common goal.

C. Impact of Interactional Factors
Coordination in release activities is a crucial task [9].
From a process point of view, we observed that the
release team coordinates with other roles: Devel-
opers, Integrators, Testers, Database Administra-
tors, Architects, IT support, and Business Analysts.
These coordination activities are embodied in the release
process, and consequently, could affect the overall Lead Time
of releases. Due to space constraints, we focus only on the in-
teraction with testers. We consider two levels of interaction:
Direct and Indirect. For instance, direct interactions happen
between the release team and testers to get the green light
to move to the next step of the release process, while the
indirect interactions happen between testers and developers
for code stabilization. An analysis of indirect interactions
has revealed that the release team often loses control of the
process, making it harder to coordinate the back and forth
interactions between testers and developers. This finding
might explain the high amount of time attributed to testing
activities. In future work, we will perform a more detailed
analysis of a release team network to measure the effects
of emergent interactions on the release team’s productivity
and product quality.

4. LESSONS LEARNED
In this research work, we set out to identify bottlenecks in
software release processes, in order to enable release process
improvements. This section describes some of the insights
we gained over 14 months of observation and then discusses
several implications for software practitioners.

Defense in Depth test- We have observed that functional
dependencies due to cross-feature interactions have an im-
pact on the integration failures which in turn affect the en-
deavor of tests [4]. Bug tracking has to pass through multiple
layers of defenses (e.g., Compilers, Static analysis, Code Re-
view, Dynamic Analysis, Unit testing, Integration testing,
Regression testing, Dogfooding testing, etc.). For instance,
code review practices can prevent logical flaws that might
affect the system performance or cause security issues.

Continuous testing- promotes the same ideas of continu-
ous integration practices to test activities. Continuous test-
ing is intended to reduce the time and overhead to keep
source code well-tested, especially in the context of parallel
development [19]. We believe that continuous testing have
the potential to significantly reduce the overhead cause by
testing activities (that we reported in Section 3), hence we
recommend that, similar to continuous integration, auto-

mated regression tests be performed in the background, on
developers’ workstations after committing changes (i.e., con-
tinuous testing).

Automate or drown- When organizations grow and face
the scalability barrier, they have to adjust their release pro-
cess, so it is either Automate or drown. Automating de-
ployment makes the process predictable and lowers the risk
involved with each push. Unit and Regression testing must
not be only automated as much as possible, but optimized
to run in a reasonable time.

Enhance teams’ interaction beyond boundaries- We
have observed that a higher degree of interaction between
releasing, testing, and development teams is required. On
multiple occasions, we observed the release team losing con-
trol of the release process because of poor communications
between QA members and developers; this often resulted in
long delays in the release (from hours to days).

Design of collaborative tools- One aspect that we found
to impact release time is the lack of good overview of the
release process. To alleviate this aspect, we recommend that
release teams make use of tools that enable the visualization
of the release flow and increase the awareness of release team
members beyond the traditional boundaries.

5. THREATS TO VALIDITY
The internal validity threats of this study are related to the
data extraction process. While we have provided details
on the data extraction and filtering used in this study, our
results may be affected by issues related to time overlaps,
especially when the testers find bugs and assign them back
to developers. We validated our findings with the company
developers, testers, and release engineers by interviewing in-
dividuals from the company and received insights into their
perception of the release process [11]. Another limitation of
our work lies in the subjectivity inherent to our categoriza-
tion and classification of the studied factors. Nevertheless,
this taxonomy of factors was inspired by our previous anal-
ysis of the release process activities [9] and previous works
(e.g., [4]) about integration failures.
Since the results of this study are obtained from a single
company, we cannot assume the generalization of our find-
ings. Concretely, the release process activities in the con-
text of this company might be different to other contexts,
meaning that there is a possibility that the challenges faced
by the studied release team do not occur within other or-
ganizations. Nevertheless, we believe that these findings
constitute a significant addition to the body of knowledge
[1] about factors impacting the software release practices.
Data along with observations have been collected through-
out a long time interval (over 14 months) in a large industrial
company.

6. RELATED WORK
Previous research has suggested a number of factors that
can influence software release cycle and outcome.

Technical Factors- Brun et al. [3] studied the collabora-
tion conflicts (i.e., integration & merge issues) of nine open
source systems and reported that the conflicts are the norm
rather than the exception. Authors discovered that 16%

of merges required human effort to be resolved, that 33%
of merges that were assessed by the version control system
as non conflictual in fact contained higher-order conflicts,
and that on average conflicts persist for 10 days (median =
1.6 days). Furthermore, Cataldo and Herbsleb [4] examined
the impact of technical attributes (e.g., Churn metrics of
changes, concentration of changes, number of dependencies)
on the integration failures in a large scale global software de-
velopment project. The authors observed that the number
of architectural dependencies among the system components
impact the software quality. The higher number of architec-
tural dependencies, the higher the likelihood of integration
failures.

Organizational Factors- Existing research has found that
organizational structure can influence software quality. For
instance, Nagappan et al. [16] claim that organizational
complexity influence quality. Authors showed usage of or-
ganizational metrics, such as (i) organizational distance be-
tween developers and (ii) number of developers working on a
component, among others can be better predictors of defect
proneness than traditional metrics such as churn, complex-
ity, and dependencies.

We have explored the organizational dimension and found
that we are inline with the importance of organizational di-
mension. First, as stated by many authors [2, 20], branching
structure plays an important role in the development process
of large software. While branches allow source code isola-
tion and thus support the modification of different pieces
of code in parallel, they add more complexity to the code
integration and the transit of edits from a branch to the
production environment. Second, a feature can be offered
as part of a release only if all its necessary tasks are done
before the given release date [17]. This functional depen-
dency affects not only the planning, but also the test effort
because the overall system has to be re-tested after each new
feature integration. Third, the volatility of release planning
is a real problem [9]. Because of the inherent uncertainty,
it requires a daily meeting to negotiate and prioritize the
release flow. Releases planning and resources allocation are
time-consuming activities, which cannot be handled in iso-
lation.

Interactional Factors- In recent years, socio-technical co-
ordination and congruence aspect has attracted the atten-
tion of many researchers. In this relatively new field, re-
searchers emphasize the interactions between different roles
involved in a software development project. Cataldo et al.
[5] reported on their work on calculating the coordination
needs within development teams. They build on task depen-
dency and communication to define the coordination needs.
Authors also examined the impact of congruence on task
performance. In the same way, Gokpinar et al. [7] applied a
congruence technique and discovered that a large gap in co-
ordination leads to a larger number of bugs reported, which
means a decrease of the software quality. Since the release
management is about building a pipeline of software releases,
it obviously requires communication and coordination with
almost all the roles involved in the software production.

Despite the importance of socio-technical coordination dur-
ing software release processes (as shown by the results of

this study), so far, the academic research community has
given little attention to how to improve the specific coordi-
nation between release engineers and other actors involved
in the development process, and the extent to which we can
enhance the socio-technical congruence between them.

7. CONCLUSION AND FUTURE WORK
This study examines the factors impacting the software re-
lease engineering process in terms of Lead Time. The con-
tribution of this paper to the software engineering literature
is twofold. First, we set out the factors affecting the release
engineering field according to three dimensions: technical,
organizational, and interactional. Such structuring of the
factors allows for further analysis. For instance, there is
little research related to the collaboration of release teams
with other teams. Second, this longitudinal study provides
empirical evaluations of eight factors on the release time.

We identified 3 factors pertaining to the technical dimen-
sion: merges & integration; tests; and packaging. Three
factors related to the organizational dimension: functional
dependencies; branching structures; and release planning.
Our analyzes reveal that testing is the most time consuming
activities (86%). A lot of improvement has been done with
continuous builds, binary packages bundling, and regression
testing. Release engineers need more tools and practices to
implement smart automated tests in order to enhance the
Lead Time of software releases. This paper also illustrated
the need for more congruence among teams, especially in
the context of parallel development.

Finally, some challenges, such as test activities in parallel de-
velopment, need to be addressed and studied more closely.
We have received very positive feedback on the results of this
case study from the management of the company, which in-
vite us to focus, as further work, on examining modern test-
ing activities, upstream from the development activities such
as code review, the institutionalization of nightly regression
tests on the developers workstations or on branches and so
on. Moreover, as future work we shall replicate the analysis
of the release process in other contexts.

8. ACKNOWLEDGMENTS
The first author is working as Release Manager for a North
American company, developing a complex web-based solu-
tion for an online financial system. Thanks to Sandeep
Sandhu QA Team Lead, and Wilton Godinho development
Team Lead, for their useful inputs. This work has been
partially funded by the Natural Sciences and Engineering
Research Council of Canada.

9. REFERENCES
[1] V. Basili, F. Shull, and F. Lanubile. Building

knowledge through families of experiments. Software
Engineering, IEEE Transactions on, 25(4):456–473,
1999.

[2] C. Bird and T. Zimmermann. Assessing the value of
branches with what-if analysis. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, pages
45:1–45:11, New York, USA, 2012.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Proactive detection of collaboration conflicts. In

Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 168–178,
New York, NY, USA, 2011. ACM.

[4] M. Cataldo and J. D. Herbsleb. Factors leading to
integration failures in global feature-oriented
development: An empirical analysis. In Proceedings of
the 33rd International Conference on Software
Engineering, ICSE’11, pages 161–170, New York,
USA, 2011.

[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and
K. M. Carley. Identification of coordination
requirements: Implications for the design of
collaboration and awareness tools. In Proceedings of
the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work, CSCW ’06, pages
353–362, New York, USA, 2006.

[6] M. Eaddy, T. Zimmermann, K. D. Sherwood,
V. Garg, G. C. Murphy, N. Nagappan, and A. V. Aho.
Do crosscutting concerns cause defects? IEEE Trans.
Softw. Eng., 34(4):497–515, July 2008.

[7] B. Gokpinar, W. J. Hopp, and S. M. R. Iravani. The
impact of misalignment of organizational structure and
product architecture on quality in complex product
development. Manage. Sci., 56(3):468–484, 2010.

[8] A. Hassan and K. Zhang. Using decision trees to
predict the certification result of a build. In
Automated Software Engineering, 2006. ASE ’06. 21st
IEEE/ACM International Conference on, pages
189–198, Sept 2006.

[9] N. Kerzazi and P. Robillard. Kanbanize the release
engineering process. In Release Engineering
(RELENG), 2013 1st International Workshop on,
pages 9–12, May 2013.

[10] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Do
faster releases improve software quality? an empirical
case study of mozilla firefox. In Mining Software
Repositories (MSR), 2012 9th IEEE Working
Conference on, pages 179–188, June 2012.

[11] B. Kitchenham and S. Pfleeger. Personal opinion

surveys. In F. Shull, J. Singer, and D. SjÃÿberg,
editors, Guide to Advanced Empirical Software
Engineering, pages 63–92. Springer London, 2008.

[12] R. E. Kraut and L. A. Streeter. Coordination in
software development. Commun. ACM, 38(3):69–81,
Mar. 1995.

[13] A. Mockus, D. M. Weiss, and P. Zhang. Understanding
and predicting effort in software projects. In
Proceedings of the 25th International Conference on
Software Engineering, ICSE ’03, pages 274–284,
Washington, DC, USA, 2003. IEEE Computer Society.

[14] N. Nagappan and T. Ball. Using software
dependencies and churn metrics to predict field
failures: An empirical case study. In Proceedings of the
First International Symposium on Empirical Software
Engineering and Measurement, ESEM ’07, pages
364–373, Washington, USA, 2007.

[15] N. Nagappan, B. Murphy, and V. Basili. The influence
of organizational structure on software quality: An
empirical case study. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, pages 521–530, New York, USA, 2008.

[16] N. Nagappan, B. Murphy, and V. Basili. The influence
of organizational structure on software quality: An
empirical case study. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, pages 521–530, Leipzig, Germany, 2008.

[17] A. Ngo-The and G. Ruhe. Optimized resource
allocation for software release planning. IEEE Trans.
Softw. Eng., 35(1):109–123, 2009.

[18] D. Perry, H. Siy, and L. Votta. Parallel changes in
large scale software development: an observational
case study. In Software Engineering, 1998. Proceedings
of the 1998 International Conference on, pages
251–260, Apr 1998.

[19] D. Saff and M. D. Ernst. Reducing wasted
development time via continuous testing. In
Proceedings of the 14th International Symposium on
Software Reliability Engineering, ISSRE ’03, pages
281–291, Washington, DC, USA, 2003. IEEE
Computer Society.

[20] E. Shihab, C. Bird, and T. Zimmermann. The effect of
branching strategies on software quality. In
Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’12, pages 301–310, New
York,USA, 2012.

