
A Qualitative Analysis of Software Build System Changes
and Build Ownership Styles

Mini Shridhar1,2, Bram Adams1, Foutse Khomh2

1MCIS – 2SWAT, Polytechnique Montréal, Québec, Canada
{mini-maria.shridhar, bram.adams, foutse.khomh}@polymtl.ca

ABSTRACT
Context: Recent empirical studies have shown quantitatively
how software build systems, which are responsible for con-
verting software artifacts into an installable deliverable for
the end user, induce considerable overhead on software de-
velopers, taking away their focus from actual development.
Goal: Little, however, is known of what are the typical types
of changes that these developers need to make to build sys-
tems, the characteristics of these changes and whether de-
velopers work on these changes by themselves, or are co-
ordinated by build experts.
Method: This paper qualitatively investigates the build com-
mit history of 18 open-source projects from the Apache and
Eclipse eco-systems, over a period of fourteen months, using
manual tagging and classification of change types and build
system ownership styles.
Results: “Corrective”, “Adaptive” and “New Functionality”
build changes introduce considerably higher churn and are
more invasive, while many changes are identified by accident
during regular development. Having dedicated build experts
allows software projects to make more invasive “Adaptive”
changes.
Conclusions: Build system studies need to take into account
the type of build change, since not all build changes are
equal.

Categories and Subject Descriptors
D.2.9 [Management]: Software configuration management

General Terms
Documentation, Experimentation, Measurement

Keywords
Build System, Qualitative Analysis, Empirical Study, Soft-
ware Evolution

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM ’14 September 18–19, 2014, Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09 ...$15.00.

Build systems turn source code into executable programs
by orchestrating the execution of compilers, code generators
and other compilation tools. For this, the build system takes
as input the source code artifacts, the compilation tools and
dependencies between the software artifacts, then performs
the required actions to produce any required intermediate
artifact until the final project deliverable can be generated.

Build systems are the hub of the software development
process. Researchers have found that one in every four
source code changes, and almost one in every two test case
changes, require changes to build files [13]. Developers typ-
ically run builds several times a day, to check the impact of
their code changes on the software system. Similarly, test
engineers also run builds several times a day, to check the
impact of the developers’ code changes on the test suites.
The build system also includes the critical task of packaging
the software deliverables, ensuring packaging of components,
dependencies, data files and documentation in the right or-
der into the final software product to be delivered to the
end-user. All these activities are executed after each code
commit by continuous integration systems, driven by the
build system. In other words, without a robust build sys-
tem, many development tasks become tedious, complex and
slow, thereby impacting the entire software team.

Despite the critical role that build systems play through-
out the software development process, very little is known
about their maintenance. Previous empirical research has
shown how build system maintenance imposes considerable
overhead on the software development process [10, 2, 12, 13].
In an attempt to reduce this maintenance overhead, many
software projects like KDE [16] and MySQL [6] even have
switched to newer build technologies [21]. These prior stud-
ies considered each build change or error as having the same
complexity or priority, whereas similar studies on source
code changes have shown how the size and impact of changes
can differ significantly, and that it is important to consider
who is making those changes [18]. However, at present, no
concrete advice can be given to practitioners as to what kind
of changes to avoid or how to organize their build team [17].

Similar to categorization of source code changes [11, 7],
we believe that a qualitative categorization of individual
changes to build system code can provide practitioners with
tangible evidence of potential areas and means through which
build code can become non-maintainable and complex. How-
ever, since there is no existing categorization of typical build
code changes and who makes them (build expert or devel-
oper), a first step towards such tangible evidence is to iden-

tify the different categories of build changes, analyze the
typical invasiveness and size of the changes in each cate-
gory, and study which changes are more commonly done by
developers or by build experts. Therefore, this paper man-
ually investigates each build system-related commit of 13
Eclipse and 5 Apache projects (of varying sizes, histories
and build ownership styles) from the 1st of November 2012
until the 7th of January 2014, providing the following main
contributions:

• a categorization of the types of changes made to build
systems;

• an analysis of the amount of change (churn) and inva-
siveness introduced by these change categories;

• an evaluation of the characteristics of these change cat-
egories, taking into account the build system owner-
ship styles of the studied projects.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses background and how our work builds on
prior work. Section 3 describes research questions that we
address, our study setup and approach, while Section 4 dis-
cusses the results and findings of our study. Section 5 dis-
cusses the threats to validity, while Section 6 concludes the
paper.

2. BACKGROUND AND RELATED WORK
A build system typically performs two major tasks. First,

it enables configuration of the features that one wants to in-
clude in the generated project deliverable, as well as of the
specific version of compilers and libraries to use. Second,
the configured tools are used to compile and construct the
configured features and physically generate the project deliv-
erable. Configuration options and constraints typically are
expressed using dedicated tools like autoconf or Kconfig [5],
while the commands and dependencies used for construc-
tion are specified using well-known tools like GNU Make
(C/C++), Apache ANT/Maven (Java) or CMake. A typi-
cal large software system like the Linux kernel contains hun-
dreds of configuration and construction scripts, amounting
to thousands of lines of build-related code [1]. One mistake
can cause a build to break, potentially grinding the develop-
ment processes to a halt, since not just developers but also
testers and release engineers rely on the build system [9].

Given this risk, Kumfert et al. [10] argue that the need to
keep build system code (i.e., specifications of configuration
and construction) synchronized with source code imposes
significant overhead on the development process. They pro-
vide initial empirical indications that build system mainte-
nance is a hidden cost, which is usually not accounted for in a
project’s budget. McIntosh et al. [13] confirm these findings
through empirical analysis on ten large, long-lived systems.
They observed how one out of four source code changes and
two out of five test code changes require changes to the build
system, and how, despite their smaller size compared to the
source code, build systems change considerably more often.

Another line of research has been measuring the evolu-
tion of build systems across successive releases. McIntosh
et al. [12] show that the complexity of ANT build systems
grows over time, and co-evolves with source code complex-
ity. This corroborates earlier findings by Adams et al. [1]
on the GNU Make-based Linux build system. Apart from

quantitative measures, the latter study and earlier ones on
(amongst others) a closed source system and Quake 3 used
the MAKAO tool to visualize, query and compare the exe-
cution of Make-based build systems [2, 1]. Tu et al. [23] also
used a dynamic analysis-based approach to understand the
complexity of build systems.

What can build system developers do to reduce this com-
plexity? Smith’s practitioner-oriented book [20] provides a
list of recommendations to reduce complexity, focusing es-
pecially on simplifying the build system code and keeping
build dependencies synchronized with source code depen-
dencies. Tamrawi et al. [22] introduce SYMake, which stat-
ically analyzes Makefiles to enable build system refactorings
like renaming of variables or to detect build system smells.
MAKAO [2] instead uses dynamic analysis to identify smells
and propose refactorings. Some build system architectures
like recursive make also have been found to cause errors and
inconsistent build results [14]. Finally, Neitsch et al. [15]
and Seo et al. [19] qualitatively studied build system execu-
tion problems, proposing catalogues of (anti-)patterns and
possible solutions.

Our work builds on this prior work by performing a first
qualitative study of the kinds of changes practitioners make
to a build system. Whereas existing studies treat each change
as equal, we measure the size and invasiveness of each cat-
egory of changes to understand which changes are larger
(and possibly riskier) in nature than others. Furthermore,
building on the initial work of McIntosh et al. [13] and
Phillips et al. [17], we analyze which changes are more com-
monly performed by build experts (concentrated build own-
ership [13]) and which ones by developers (dispersed build
ownership [13]). This helps practitioners to understand what
kinds of changes (not) to expect when choosing one kind of
authorship or the other.

Our categorization of changes is based on that of Lientz
et al. for source code maintenance [11]. They proposed
four main categories of changes, i.e., corrective (fixing fail-
ures), adaptive (making the system work in newer environ-
ments), perfective (improving inefficiencies) and preventive
(improving future maintainability) changes. Later on, Hin-
dle et al. [8] and Amor et al. [3] extended this classifica-
tion with more detailed subcategories. However, since those
subcategories are specific to source code changes, we started
from Lientz et al.’s original classification, extending it where
needed.

3. CASE STUDY SETUP
This paper addresses the following three research ques-

tions:

RQ1 What are the typical types of build changes that are
performed in the studied software projects?

RQ2 How invasive and large are these build changes?

RQ3 How does the build ownership style of the project af-
fect the characteristics of these change types?

Since there is no existing benchmark for defining build
change categories, we manually analyzed the commit mes-
sages and changed build code of build system-related changes
in the version control system. The commit message provides
a developer’s intention for a change, which, similar to Lientz
et al. [11], is the level of granularity our change categories

Table 1: Subject Systems and their characteristics (1st of
November 2012 to the 7th of January 2014).

System
total # #build #build ownership

commits commits files style

A
p
a
ch

e

Hadoop-Common 2,666 136 57 Collective
Maven-Plugins 1,035 520 1,766 Dedicated

ANT 676 24 239 Strong
Maven-Core 394 129 347 Strong

Maven-Release 524 33 59 Strong

E
cl

ip
se

Equinox-Framework 406 45 113 Collective
Equinox-P2 365 58 158 Collective
LinuxTools 1397 162 355 Collective

PDE 57 23 74 Collective
BPEL 19 5 76 Dedicated
Mylyn 64 45 30 Dedicated

Platform 99 25 59 Dedicated
Platform-Releng 255 124 76 Dedicated

AJDT 113 43 58 Strong
CDT 1,085 50 334 Strong

JDT-Core 246 41 33 Strong
Orion-Client 2,403 68 32 Strong
Orion-Server 963 431 60 Strong

aim at. In other words, we are not interested in syntactical
changes like“ANT target is added”or“Maven library depen-
dency is removed”, since those are technology-dependent and
are just a mechanical means towards a specific intention. It
is that intention that we want to classify with our categories.
Furthermore, in the few cases where a build-related commit
message mentioned a specific bug report that was fixed, we
also analyzed the report to further improve our understand-
ing of the change’s intention. Given the low number of com-
mits for which this was possible, we additionally manually
inspected the actual changes done to the build files and any
coupled source files (inside a build commit) to cross-validate
the changes’ intention.

Below, we explain the data sources that we used, the ex-
traction process of our data, the change categories we based
our work on and the characteristics that we measured in the
catalogued changes.

3.1 Data Source Selection
For our qualitative study, we selected thirteen Eclipse

projects and five Apache projects. We chose these projects
based on the variation in build ownership style, number of
(build) commits and number of build files, as is shown in Ta-
ble 1. A build commit is a commit in which at least one build
file has been changed (possibly together with other build
or even source code files). Furthermore, having projects
from two ecosystems to a large extent reduces bias related
to different development guidelines or philosophies, since
Apache projects and (especially) Eclipse projects share com-
mon guidelines amongst each other. Finally, members of
both ecosystems helped us identify the projects with the
clearest specified build ownership, as discussed further be-
low.

We mainly analyzed projects with Maven- and ANT-based
build systems, since those technologies are the two most pop-
ular build languages for Java systems and belong to the top
build technologies overall. Many Eclipse projects recently
migrated from an ANT-based build system to a Maven-
based build system called “Tycho”, which is basically a set

of Maven plugins and extensions for building Eclipse plu-
gins and OSGi bundles. OSGi bundles are high-level Java
components that use their own metadata for expressing de-
pendencies or source folder locations, which overlaps with
data found in a regular Maven file.

We studied subprojects of the following Eclipse and Apache
projects: Eclipse AJDT provides tool support for aspect
oriented development in Java. Eclipse BPEL manages
WS-BPEL 2.0 processes of web services. Eclipse CDT
provides a fully functional C and C++ Integrated Devel-
opment Environment. Eclipse Equinox Framework is
an implementation of the OSGi R4 core framework specifi-
cation. Eclipse Equinox p2 is a sub-project of Equinox
that focuses on provisioning technology for OSGi-based ap-
plications. Eclipse JDT Core is the Java development in-
frastructure of the Java IDE. Eclipse LinuxTools extends
the CDT project even further with C and C++ IDE func-
tionality. Eclipse Mylyn is the task and application life-
cycle management framework for Eclipse (ALM). Eclipse
Orion is a browser-based open tool integration platform.
Eclipse PDE provides tools to manage Eclipse plug-ins
and their deployment. Eclipse Platform defines the com-
mon infrastructure below all Eclipse plugins and RCP ap-
plications. Eclipse Platform RelEng provides release en-
gineering services for the Eclipse Project team. Apache
ANT and Apache Maven are the two most popular build
system technologies for Java systems. Apache Hadoop-
Common is the set of common utilities that supports other
projects based on the Apache Hadoop distributed comput-
ing framework.

3.2 Data Extraction
Once data sources were chosen, we needed to identify the

build files of each project, then examine the metadata (com-
mit messages, author and committer names) of all commits
that touch build files. To get more context about build sys-
tem changes, we also analyzed all bug reports involving build
files as well as the build file changes themselves.

We first extract all commits from the version control sys-
tems of the studied projects over a period of fourteen months,
from the 1st of November 2012 to the 7th of January 2014.
We then used the same semi-automated method as McIntosh
et al. [13] to classify build files for each project. More specif-
ically, using regular expressions based on known file names
and extensions, we first filtered out test and source code
files as well as typical build file names like “build.xml” and
“pom.xml”. We did not take into consideration OSGi mani-
fest files as build files, since they do not contribute towards
actual compilation commands. Afterwards, we double-checked
the automated classification results to deal with ambiguous
file names, and manually classified the remaining files with
less common file extensions.

We then only kept the commits that touch at least one
build file, and called those commits “build commits”. For
each such commit, we automatically extracted the commit
log message, commit author and committer, and whether
the commit involved only build code changes, source code
changes or both. Furthermore, during our manual analysis
of the build commit log messages, we also looked for bug
identifiers, and extracted the corresponding build-related
bug reports from the bug repository of the system.

3.3 Identification of Change Categories

Table 2: Broad classification of build change categories.
Category Maintenance Class

Adaptive Change in environment
Corrective Fix to build code
Perfective Improvements to build behaviour

Preventive Improving future maintainability
New Functionality Addition of new features

Reflective Side-effect change

To identify the different categories of build changes, we
performed an exhaustive, manual analysis of each project’s
set of build files, build commits, commit comments and
bug information in Bugzilla. Similar to other qualitative
studies [4], we used a card sort-based approach, which is
a lightweight form of grounded theory to derive taxonomies
from textual data. Basically, the information of each textual
document (commit) is put on a (virtual) card, then cards are
analyzed by the first author and clustered together if their
content has the same intent. Finally, the identified clusters
are validated with the other authors. It is worth mentioning
that the first author has 12 years of experience as release
and build engineer working at multinationals like Broad-
com, Cisco, Nokia, and Motorola, and hence was the ideal
candidate for doing the initial categorization.

We made a small adaptation, in that we started with
four empty clusters for the four change categories identified
by Lientz et al. [11], i.e., “corrective”, “adaptive”, “perfec-
tive” and “preventive” changes (first four entries in Table 2).
Often, keywords like “fix”, “update”, “Adding”, “Refactor-
ing”, “CleanUp”, “Adapting”, “Correcting”, “Maintenance”
and “Porting” were helpful in determining the intent (and
hence category) of a build commit. If we found a build
change that did not fit in any of the pre-defined categories,
we added a new category. Frequently recurring terms in
the change logs and other text helped establishing a name
for such new categories. If we found a build commit that
could be in more than one category, we added it into the
more “dominant” category. Eventually, two new clusters
were identified, i.e., “reflective” and “new functionality”.

The resulting set of categories looks like this:

Adaptive changes that adapt to a new (build/deployment)
environment or to new functionality in the source files.
These can include, but are not limited to, changes in
the method of packaging a build, porting builds to a
new platform, or including new source code files in the
build.

Corrective changes that fix any kind of defect in the build
code.

Perfective changes that improve existing design or func-
tionality of builds and build system. Examples include
changes to enhance build performance and build effi-
ciency.

Preventive changes made exclusively to refactor build code,
with the aim of improving readability, cleaning up the
build code and removing existing build code smells. In
other words, preventive changes aim to improve future
maintainability of the build system.

New Functionality changes are made to meet new build
functionality requirements, such as addition of a new

target to the build, without corresponding source code
changes (otherwise the change would be adaptive). An
example would be adding version numbering of deliv-
erables or adding functionality that not just builds but
also packages and deploys a project deliverable.

Reflective changes performed on build code to reflect a
change (i.e., restructuring or refactoring) that hap-
pened on the source code. Contrary to the adaptive
change type, where a build needs to react to new func-
tionality in the source code, reflective change encom-
passes changes where an architectural restructuring,
design refactoring, or bug fix in the source code prop-
agates to the corresponding build code or at least in-
duces the developer to look at the corresponding build
code and change it.

3.4 Analysis of Change Categories
In order to quantitatively analyze the identified categories

of build commits, we computed the following metrics:

Build Commit Density is the percentage of all build com-
mits of a project that belongs to a specific category.
This allows to identify the most frequent change cate-
gory of a project.

Build Churn is the average amount of build churn per file
changed by the commits of a category. Churn is the
sum of the number of added and removed lines of code
in a build commit. We normalize this sum by the num-
ber of files of a project in order to compare the result-
ing number across projects.

Invasiveness is the median number of unique build files
modified by the build commits in a category. The
higher, the more invasive (and hence risky) build com-
mits are.

Apart from the churn and invasiveness of build commits,
we also want to learn who makes build changes. McIntosh
et al. identified two major build ownership styles, i.e., con-
centrated (dedicated build expert) and dispersed (no ex-
pert) [13]. Through contacts with Eclipse developers, we
obtained information about the build ownership styles of
projects related to the Eclipse Platform project. Further
analysis showed that these build experts could in fact be
identified by considering the top contributors to the build
system files (in the version control system) and in the build
system-related mailing list topics. Hence, for the Apache
projects, we used these approximations to determine the
build ownership of the extracted build changes.

Based on this analysis and Martin Fowler’s blog on “Code
Ownership Styles”1, we refined McIntosch et al.’s two own-
ership styles into 3 distinct ownership styles:

Dedicated Ownership where a software team has a ded-
icated build team or build expert who manages and
“owns” the build system. These build experts are the
only ones making changes to the build system (this
corresponds to McIntosh et al.’s concentrated owner-
ship).

Strong Ownership where one or more developers predom-
inantly make changes to build code and others seek

1http://martinfowler.com/bliki/CodeOwnership.html

Table 3: Build change categories with prototypical example.
Adaptive ’JVM used to run maven must now be

Java 1.6 or newer - can still compile and run
tests with Old JVM via toolchains’

Corrective ’Our plugin artifacts don’t seem to
have the correct groupId in any of the
streams. The general naming convention
is the groupID should be the first 3
segments of the plugin’

Perfective ’I would fully +1 any breaking change
if it means moving more towards best
practices’

Preventive ’I think we should try another effort
to replace this hard-coded value in each pom
with a variable and make the pom a ”real”
file... And while you are in that neighborhood,
please consider removing all those obsolete
modules’

New Funct. ’Add functionality for Hudson builds’
Reflective ’This requires a change in each

pom.xml file in your repository: for code
bundles and tests the change is the same’

their approval to make changes to build code, but no
one fully “owns” the build system by himself.

Collective Ownership where any developer can make changes
to the build system, and no one “owns” the build sys-
tem.

Once we established the build ownership styles in the stud-
ied projects, we studied the effect of these different build sys-
tem ownership styles on the change categories, by compar-
ing the churn and invasiveness metrics amongst authorship
styles.

4. CASE STUDY RESULTS
For each research question, we first provide a motivation,

followed by the approach and a discussion of the results.

RQ1. What are the typical types of build changes
that are performed in the studied software projects?
Motivation. Build system maintenance has a different im-
pact on different kinds of build system changes. For exam-
ple, small “Adaptive” updates of the copyright year intu-
itively seem less harmful or difficult to manage than large
“Preventive” refactorings or additions of Ant or Maven files.
Understanding the major change categories in a project would
show us the focus of build system maintenance and the as-
sociated effort and risk.
Approach. We used the build commit density to under-
stand the popularity of the six change categories of Table 2
in each project, and also provide examples of discussions in
bug reports on each category (Table 3). Finally, Table 4
shows the most common types of changes that we identified
in each change category during our qualitative analysis.
Findings.

“Corrective” and “Adaptive” changes are the most
popular, while “Preventive” changes are relatively
rare. The bold build commit density values in Table 5 in-
deed show that in both the Eclipse and Apache projects,

changes from the “Corrective” category occur the most, fol-
lowed by “Adaptive” changes and (to a lesser degree) “New
Functionality” changes. Even when “Corrective” changes are
not the most popular category, it does not lag behind much,
except for the “Adaptive” changes of the Eclipse BPEL,
Mylyn and (especially) Eclipse Orion-Server projects, with
differences of up to 85%. Conversely, “Preventive”, “Re-
flective” and (to some degree) “Perfective” changes are far
less common. Indeed, a Kruskal-Wallis non-parametric om-
nibus test, followed by post-hoc tests (with α value of 0.05)
showed how “Perfective” and “Preventive” changes have sta-
tistically significantly lower commit density values than the
other change categories.

The prototypical examples in Table 3 and the common
types of changes inside each category in Table 4 provide
more insight into the kinds of build changes encountered.
Now, we discuss some of the qualitative findings found for
each studied eco-system:

1. Apache ANT has many build-only commits involving
changes to build files like build.xml and pom.xml. Similarly,
in Apache Maven-Core and Apache-Maven-Release, we find
that most build commits predominantly involve build files
only, except in the “Corrective” category (Apache-Maven-
Release), where commits change other file types as well in
considerable numbers, along with build files.

On the other hand, changes to ivy.xml and other Apache
Ivy files (support library for Ant build systems to resolve
dependencies on 3rd party Java libraries, like Maven does),
in any change category almost always has accompanying
changes to other types of files like source files, test case files
and so on. This was found to be especially true for commits
in the “Adaptive”, “New Functionality” and “Perfective” cat-
egories, but not necessarily “Reflective”. In other words,
these library dependencies rather are updated to adapt to
a new environment, add new build/code features and opti-
mize the build, rather than in response to restructuring or
refactoring of the source code.

In Apache-Hadoop-Common, all change categories, except
for“Perfective”, had build commits that changed other types
of files too, in addition to build files. We attribute the dif-
ferences with Apache ANT, Apache-Maven and sub-projects
to the fact that the latter projects are themselves build tools
and hence have a large number of build files and many com-
mits changing build files. This is also explains the relatively
high percentage if “New Functionality” build changes com-
pared to the other projects. Apache-Hadoop-Common, on
the other hand, has fewer build files and changes to build
files, in comparison.

2. Apache Maven-Plugins exhibits a large percentage of
changes in the “New Functionality”, “Adaptive” and “Cor-
rective” categories. Interestingly, those changes seem to be-
long especially to release preparation commits, i.e., commits
preparing the next release. As such, these commits are re-
verted (i.e., undone) quite often, to include more changes,
until developers are satisfied that they have all the required
changes into the release and are ready for a fresh develop-
ment iteration. This seems to suggest (1) that some kind
of build tests would be interesting to know for sure that
a build change is complete, and/or (2) that build changes
might have (possibly hidden) dependencies that makes it
difficult to get things right the first time. Change impact
analysis techniques could possibly play a role here.

3. Eclipse AJDT does not change many build files, in nei-

Table 4: Most common types of build changes in each change category.
Adaptive Corrective Perfective Preventive New Functional-

ity
Reflective

Update Plugin
Versions

Fix for compile er-
rors

Shorten Build
Times

Remove un-
used/redundant
dependencies

Add new Build
Profile

Removal obsolete
source bundles
from compiling

Addition/Removal
of Plugin Depen-
dencies

Fix for wrong
paths

Improve Build
Performance

Remove dead
build code

Add new Targets Removal unused
jars (components)
from compiling

Addition of new
bundles to com-
pile

Add missing in-
cludes

Flag “circular de-
pendencies” as er-
rors

Remove hard-
coded values

Add new Goals/-
Tasks

Removal of
unused configura-
tions

Addition of prop-
erties/qualifiers

Fix for Group/Ar-
tifact IDs

Restrict warnings
thrown in build
log

Remove dupli-
cated build code

Add new Module
Build

Removal of un-
used include build
dependencies

Removal of inner
jars signing

Fix for version
mismatch

Make build out-
put less noisy

Improve Existing
Build System De-
sign

Change pub-
lish/archive
methods

Fix for Copyrights

Reorder update
sites

Fix for typos

Table 5: Values of build commit density, with the highest value for each project bolded.
Adaptive Corrective Perfective Preventive New Functionality Reflective Ownership Style

Apache Hadoop-Common 26.47 47.06 4.41 1.47 18.38 2.21 Collective
Apache Maven-Plugins 29.81 26.35 1.92 10 31.92 0 Dedicated
Apache ANT 12.5 45.83 8.33 8.33 25 0 Strong
Apache Maven-Core 31.01 26.36 11.63 2.33 26.36 2.33 Strong
Apache Maven-Release 39.39 36.36 0 0 24.24 0 Strong
Eclipse Equinox-Framework 26.67 57.78 0 0 13.33 2.22 Collective
Eclipse Equinox-P2 34.48 48.28 1.72 1.72 8.62 5.17 Collective
Eclipse LinuxTools 23.46 29.63 15.43 6.79 13.58 11.11 Collective
Eclipse PDE 47.83 47.83 0 4.35 0 0 Collective
Eclipse BPEL 60 0 0 0 40 0 Dedicated
Eclipse Mylyn 51.11 17.78 0 6.67 22.22 2.22 Dedicated
Eclipse Platform 32 56 8 4 0 0 Dedicated
Eclipse Platform-Releng 24.19 52.42 9.68 5.65 2.42 5.65 Dedicated
Eclipse AJDT 13.95 39.53 0 2.33 44.19 0 Strong
Eclipse CDT 30 38 0 0 32 0 Strong
Eclipse JDT-Core 24.39 73.17 0 0 2.44 0 Strong
Eclipse Orion-Client 7.35 44.12 7.35 1.47 30.88 8.82 Strong
Eclipse Orion-Server 89.33 4.64 0.46 0 4.18 1.39 Strong

ther of the categories. During the studied period, there was
substantial source code churn, but there were not as many
changes to build files as expected based on the other studied
projects. This can be attributed to the fact that most of the
new Eclipse features added to AJDT did not require more
than a new profile to the OSGi manifest files to include the
feature in the build system. Similarly, in Eclipse BPEL, we
noted that changes to build files are few and, if any, consist
more of version number updates and such. The same holds
for Eclipse-Equinox-Framework and Eclipse-Linuxtools. The
latter is a special case, since the number of changes in the
build commits is actually high, yet it only represents a tiny
portion of the overall changes, since this project integrates,
at set times, 3rd party code from various open source de-
buggers and other tools into its code base. Those integrated
changes outnumber the build changes. Eclipse-PDE also has
a small proportion of build changes, except for the “Cor-
rective” and “Adaptive” categories of changes, whose build

commits only change build files.
4. Eclipse CDT has a comparable number of changes to

build files across the three major change categories. It is
interesting to note that in this project, most build commits
fall in the “Corrective” category, since many build changes
consist of very simple fixes for typos and relative paths.

5. The other projects showed less clear trends.
“Corrective”changes to build files, especially those

that fix compilation errors, are done in 2-3 com-
mits, until the issue is fully fixed. This again hints
at the need for build tests or means to identify dependen-
cies between different build errors with a common cause. In
most projects, build changes (in general) appear together in
batches of commits, changing both source and build files.

Developers frequently happen upon maintenance
related issues in build code, by accident, when doing
other changes. We repeatedly spotted this phenomenon
in the analyzed commit messages and the bug discussions.

Some examples of how these maintenance issues are discov-
ered include sudden, perceivable large build times, or a bug
introduced into build code a long time ago, which is stum-
bled upon while doing some other type of build change.
When such symptoms are discovered and fixed (“Corrective”
change), they sometimes lead to on-the-spot “Preventive”
and “Perfective” types of changes. Developers somehow pre-
fer to immediately deal with build maintenance issues rather
than reporting them somewhere (e.g., in a bug report). This
confirms the fact that we hardly found any bug report ded-
icated to build system issues for the studied systems.

Build changes can cause source code changes, and
vice versa. We found evidence of some build changes that
cause source-code changes. Examples of these include cases
where developers find that an unused jar is still being com-
piled (“perfective” change). They then trace to the corre-
sponding source code files, then remove the dead code from
both the build and source code files. We also found ev-
idence of the inverse case, where developers change build
code as a side-effect of a change to source files. Such “re-
flective” changes were not that common though (as shown
in Table 5). A typical example of such a change is when
developers refactor source code and find that they have to
correspondingly change or correct the build code.�

�

�

“Corrective” and “Adaptive” changes are the most pop-
ular, while “Preventive” changes are rare. Many build
issues are identified accidentally while making other
changes, with “Corrective” changes being performed in
batch until an error is fixed. This could hint at quality
assurance issues with the build system.

RQ2. How invasive and large are these build
changes?
Motivation. Similar to the motivation of RQ1, the impact
of having a small change to a build system is different from
that of a large change. However, the kind of change also
plays a role, since a small “Corrective” change could be more
risky than a large “Reflective” change. Frequency of change
is another important factor, with many small build changes
potentially more harmful than few large changes. Therefore,
here we explore the invasiveness and size (churn) of each
change category.
Approach. We study the build churn, invasiveness and
commit density metrics of Section 3.4 in each build change
category. The commit density numbers were shown in Ta-
ble 5, whereas churn and invasiveness are shown in Table 6
and Table 7. Our intuition here is that a change category is
more “risky” if it involves frequent large changes (high com-
mit density and build churn) or if it makes large changes
across many build files (high build churn and invasiveness).
We also hypothesize that a lower invasiveness factor can
offset a high churn factor and vise versa, in terms of the
riskiness of the change category.
Results. The highest churn and most invasive changes
belong to the “Adaptive”, “New Functionality” and
“Corrective” change categories.

Those build commits affect many build files at once, and
make mostly changes to build files. For example, the “Adap-
tive category”of changes has a high invasiveness factor, since

this change category usually involves changes to many differ-
ent build files. This is contrary to the “Corrective” category
of changes, where, although the churn factor is high and
the invasiveness factor is moderate, the same sets of build
files are changed repeatedly (i.e., the fixed errors seem to
be focused in a small set of files). If we also consider the
popularity of change categories (RQ1), we observe that the
three most popular categories are also those that contain
the largest and most invasive changes, even though, for half
of the projects, the most popular category is not necessarily
identical to the category with the most invasive or largest
changes.

The popularity of large“Adaptive”changes in certain projects
like Eclipse Orion can be attributed to the process of mini-
fication of the Orion project, during the period of study.
Minification, especially in javascript, is the process of re-
moving all unnecessary characters from source code to make
downloading to browsers faster. The minification exercise in
Eclipse Orion alos includes minification of Orion builds and
Orion Continuous Builds in Hudson, which accounts for a
steep churn in the “Adaptive” category of build changes for
this project. However, the invasiveness of these minification
changes are low to moderate, indicating that builds were
constrained to only a limited number of build files (typically
1 for Orion).

The invasiveness factor for the “Perfective”, “Pre-
ventive” and “Reflective” categories is low, yet the
highest for 5 projects. This is confirmed by a Kruskal-
Wallis non-parametric omnibus test, followed by post-hoc
tests (with α value of 0.05), which showed how “Perfec-
tive”and“Preventive”changes have statistically significantly
lower build churn values than the other change categories.
In most projects, the “Preventive” category of changes only
touches build files, without involving co-changing files of
other types. Hence, the churn induced by this change cat-
egory in most cases purely boils down to build file churn.
In Eclipse Equinox and Mylyn, we found that the resulting
low churn for “Preventive” changes was due to the fact that
developers here often discover latent maintenance issues and
quickly fix these. Such issues are mostly discovered while do-
ing other changes to either build or source code, and hence
the “Preventive” maintenance fix is included in the same
commit as the originally intended “Corrective” fix. As such,
our categorization does not count this as “Preventive”, lead-
ing to low churn values. Although the Eclipse Platform’s
“Preventive” and “Perfective” build churn is not that much
higher than that for Equinox or Mylyn, we did find traces
there of more dedicated (i.e., non-accidental) maintenance
changes and improvements for build files.

The “Reflective” change category induces the least churn
and is the least invasive, among all the categories. The num-
ber of changes falling in this category are also quite low. A
similar Kruskal-Wallis non-parametric omnibus test as used
for commit density and build churn showed how “Reflec-
tive” changes have statistically significantly lower invasive-
ness values than the other change categories.

Finally, Eclipse Platform Releng couples a high churn for
new functionality with low invasiveness. This is due to the
fact that when new builds are added, typically the changes
for these are large but do not span across too many build
files.

Table 6: Values of build churn, with the highest value for each project bolded.
Adaptive Corrective Perfective Preventive New Functionality Reflective Ownership Style

Apache Hadoop-Common 28.63 19.60 22.77 0.39 2.18 1.37 Collective
Apache Maven-Plugins 1.44 5.86 0.07 4.85 1.41 0 Dedicated
Apache ANT 1.19 1.25 0.02 0.45 2.65 0 Strong
Apache Maven-Core 0.95 1.57 0.63 0.06 2.51 0.07 Strong
Apache Maven-Release 2.69 377.24 0 0 3.34 0 Strong
Eclipse Equinox-Framework 4.39 26.02 0 0 2.01 0.02 Collective
Eclipse Equinox-P2 7.40 4.28 0.01 0.03 1.46 0.51 Collective
Eclipse LinuxTools 4.67 2.37 1.47 1.41 4.30 2.32 Collective
Eclipse PDE 21.81 1.61 0 0.08 0 0 Collective
Eclipse BPEL 5.54 0 0 0 12.47 0 Dedicated
Eclipse Mylyn 26.73 14.4 0 1.37 20.37 0.13 Dedicated
Eclipse Platform 5.97 6.66 0.17 0.85 0 0 Dedicated
Eclipse Platform-Releng 12.32 21.54 4.34 2.89 1.03 1.62 Dedicated
Eclipse AJDT 0.60 9.41 0 0.76 29.97 0 Strong
Eclipse CDT 1.07 0.87 0 0 1.80 0 Strong
Eclipse JDT-Core 9.09 21.03 0 0 0.45 0 Strong
Eclipse Orion-Client 2.88 35 7.22 0.81 95.28 3 Strong
Eclipse Orion-Server 37.8 3.4 0.7 0 33.1 4.8 Strong

Table 7: Values for invasiveness, with the highest value for each project bolded.
Adaptive Corrective Perfective Preventive New Functionality Reflective Ownership Style

Apache Hadoop-Common 5 6 4 1 5 2 Collective
Apache Maven-Plugins 3 4 2 3 6 0 Dedicated
Apache ANT 25 6 1 3 25 0 Strong
Apache Maven-Core 1 2 2 1 13 1 Strong
Apache Maven-Release 1 4 0 0 3 0 Strong
Eclipse Equinox-Framework 3 4 0 0 24 1 Collective
Eclipse Equinox-P2 3 2 1 1 1 3 Collective
Eclipse LinuxTools 3 4 2 3 3 1 Collective
Eclipse PDE 1 1 0 2 0 0 Collective
Eclipse BPEL 30 0 0 0 4 0 Dedicated
Eclipse Mylyn 7 3 0 4 2 1 Dedicated
Eclipse Platform 6 2 1 2 0 0 Dedicated
Eclipse Platform-Releng 2 2 3 2 1 1 Dedicated
Eclipse AJDT 1 1 0 3 1 0 Strong
Eclipse CDT 1 1 0 0 3 0 Strong
Eclipse JDT-Core 7 3 0 0 2 0 Strong
Eclipse Orion-Client 1 2 2 1 3 1 Strong
Eclipse Orion-Server 1 1 2 0 2 2 Strong

�

�

	

“Adaptive”, “New Functionality” and “Corrective”
changes induce more churn and are more invasive.
The other categories are less invasive, partly because
they are more focused, and partly because they are per-
formed together with “Corrective” or other changes.

RQ3. How does the build ownership style of the
project affect the characteristics of these change
types?
Motivation. Finally, we want to study the impact of a par-
ticular kind of build system ownership on the kind of build
system changes performed. That is, we want to know for
example if “Corrective” changes happen frequently in collec-
tively owned systems (which might be risky since there is
less quality control), or if they only enter into the version
control system via a dedicated owner.

Approach. We study the effect of the build system own-
ership style on the characteristics of the build changes for
each category. Build changes are characterised using the
metrics from Section 3.4, i.e., commit density, churn and
invasiveness. More specifically, to analyze possible links be-
tween change categories and ownership, we discretize the
values of each of the three metrics across the 18 projects
into low/medium/high values using equal frequency binning
(3 bins). For example (if no overlapping metric values), the
six projects with the lowest density value for “Adaptive”
changes across all 18 projects are mapped to “low”, the six
projects with the highest density are mapped to “high”, and
the remaining six to “medium”. We do this for each change
category, and for each of the three metrics. For each metric
and (change category,ownership style) pair, we then perform
Pearson chi-squared tests (with α value of 0.05) with as null
hypotheses that the distribution of the (discretized) metric
for the change category is independent of build ownership.
Furthermore, Table 8 provides some qualitative examples of
decisions and discussions from bug reports for each owner-

Table 8: Build Ownership Styles with Example Discussions
from Bug Reports.
Dedicated In any case, seems the fewer relative paths

the better ... more modular, for future
I suppose if we wanted to spend time on re-
working how Ant launches / composes its
classpaths / handles class loading we
could probably do away with the support
jars completely, but to be honest, no one
has time to invest in that amount of work

Strong sdk adds source bundles which are not used
by the tests. Removing this should have some
minimal effect to reduce our already way too
long build time but we should still have a
recommended structure, so we’re consistent

Collective ’Or ... there are still 25 bundles without quite
the right relativePath or groupId, seems to
come from a range of projects If we are going
to make breaking changes like this then we
might as well stop providing the bundle
altogether Lets not ”improve” the bad practice’

ship style.
Findings.

Projects having strong and dedicated ownership
styles tend to make more invasive“Adaptive”changes
to adapt the builds to a new environment or source
code feature. Only the Pearson chi-squared tests for in-
vasiveness of “Adaptive” changes was able to reject its null
hypothesis (p-value of 0.01042). This shows that the “Adap-
tive” changes are not independent of build ownership, i.e.,
projects with strong and dedicated ownership styles tend to
be more thorough in their “Adaptive” changes.

We can attribute this to two reasons. In projects with col-
lective ownership, there is a distributed responsibility among
several developers to make the adaptive changes, and hence
these occur in a less concerted way, appearing dispersed.
Second, we often find in collective ownership projects that
developers need time to find all areas of the build code that
need to be modified for an “Adaptive” change. As such,
those changes are spread across multiple commits, each one
being less invasive. This appears to be due to unfamiliarity
with build code in such projects. We note this particularly
from commit messages and bug report exchanges for the
Eclipse Platform project, where the dedicated build expert
coordinates such large “Adaptive” changes across all other
(collectively owned) projects interacting with Eclipse Plat-
form.

However, we did not find a link between“Adaptive”changes
and build ownership styles for the commit density and build
churn metrics. This shows that although projects with col-
lective build ownership tend to make smaller “Adaptive”
changes over dispersed commits, the number and churn of
such “Adaptive” change commits does not differ significantly
compared to those of projects with strong and dedicated
build ownership styles.�

�

	
The invasiveness of “Adaptive” changes is affected by
the build ownership style. However, we do not find
a significant link between the other change categories
and the build ownership styles.

5. THREATS TO VALIDITY
The study is based on a pre-defined categorization of build

changes [11], extended with two new categories identified
during our study using a card sort approach [4]. There can
also be categories of build changes that have not been cat-
alogued here, simply because we did not encounter these in
the studied projects. In future work, we plan to improve this
catalogue, by performing a study of different build system
flavours, of different sizes, including for example make-based
systems.

We refined McIntosh et al.’s [13] original categorization of
build system ownership styles according to Martin Fowler’s
definition of source code ownership styles and based on our
discussions with Eclipse developers. However, it is possible
that certain software systems exhibit other types of owner-
ship styles, even though we cover the extreme cases. Also,
other factors like the software development methodology,
the programming language used, the software architecture
(blackboard vs. layered) and the experience level of the de-
velopers in the software system can affect the evolution of
build changes. Again, we intend to study these aspects by
mining projects with different characteristics.

Another factor that might impact our analysis of build
changes is the maturity of the subject systems. For ex-
ample, young systems might be more prone to “New Func-
tionality” changes (since they are starting from scratch) and
“Adaptive”changes (since their build technology or architec-
ture might not yet be set in stone). Mature systems on the
other hand might see more “Corrective” changes. However,
we could not find a direct link between maturity and build
system changes. For example, in the Apache ecosystem,
the Apache-Hadoop-Common project is one of the youngest
projects (although it as well is at least 8 years old), yet it
has less “New Functionality” changes than Apache Maven,
which is an older project. More work is needed to clear up
the impact of maturity.

For some Eclipse projects, the period of data that we stud-
ied also coincided with a migration from Ant-based builds to
Tycho-based builds. Hence, our data during this period for
these projects, which were still actively migrating to Tycho,
could be biased. However, only few Eclipse projects suffered
from this problem, while the Apache projects did not have
this problem at all.

To the best of our abilities, we tried to select projects with
a considerable number of build files and build code churn.
Furthermore, we opted for two ecosystems in order to make
our results comparable within the ecosystems. However, our
results may be different when we study commercial software
systems or systems with much higher build churn. We plan
to perform practitioner interviews to deal with this.

6. CONCLUSION
In this paper, our goal was to “unveil” what is going on

during build system maintenance, by mining the types of
changes being made to build files, their size, churn and in-
vasiveness, instead of just counting the number of changes.
We also studied these change types in light of the build own-
ership styles of the studied projects.

For this, we studied thirteen Eclipse projects and five

Apache projects with varied characteristics and ownership
styles. By grouping changes into six major categories of
changes (“Adaptive”,“Corrective”,“Perfective”,“Preventive”,
“New Functionality” and “Reflective”), we showed that the
“Corrective”, “Adaptive” and (to some extent) “New Func-
tionality” changes are the most common, and induce the
largest churn and invasiveness in the build system. Still,
most of these changes are found and made as part of other
build or code changes, and we noticed various occasions
where the completeness of a change was not guaranteed and
led to reverting of changes or many additional (batched)
changes. Measures should be investigated for assuring the
quality of build system changes (e.g., change impact analysis
or build tests).

Finally, we also discovered that for the “Adaptive” change
category the build ownership style plays a role in that more
daring, invasive build changes are being attempted for dedi-
cated/strong ownership compared to the weaker collective
ownership. Their larger build system know-how enables
projects with dedicated and strong ownership style to adapt
their build system quicker to new environments or source
code features.

We believe that our findings form a first step for practi-
tioners who perform build maintenance activities to under-
stand and name the different kinds of build changes, and how
they correlate to organizational characteristics of the build
system like build ownership. The next step will be to link
these changes to a measure of build system maintainability
to identify which changes are more risky or error-prone than
others.

Acknowledgements
We are grateful to Mrs. Kim Moir for her guidance in iden-
tifying the build ownership styles in Eclipse projects.

7. REFERENCES
[1] B. Adams, K. De Schutter, H. Tromp, and

W. De Meuter. The evolution of the linux build
system. Electronic Communications of the EASST, 8,
2008.

[2] B. Adams, H. Tromp, K. De Schutter, and
W. De Meuter. Design recovery and maintenance of
build systems. In Proc. of the IEEE Intl. Conf. on
Software Maintenance (ICSM), pages 114–123, 2007.

[3] J. J. Amor, G. Robles, J. M. Gonzalez-barahona, and
A. Navarro. Discriminating development activities in
versioning systems: A case study. In Proc. of the 2nd
intl. workshop on Predictor Models in Software
Engineering (PROMISE), 2006.

[4] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. of the 2013
Intl. Conf. on Software Engineering (ICSE), pages
712–721, 2013.

[5] T. Berger, S. She, R. Lotufo, A. W ↪asowski, and
K. Czarnecki. Variability modeling in the real: A
perspective from the operating systems domain. In
Proc. of the IEEE/ACM Intl. Conf. on Automated
Software Engineering (ASE), pages 73–82, 2010.

[6] L. Grimmer. Building mysql server with cmake on
linux/unix.

[7] A. Hindle, D. M. German, M. W. Godfrey, and R. C.
Holt. Automatic classication of large changes into

maintenance categories. In Proc. of the 17th IEEE
Intl. Conf. on Program Comprehension (ICPC), pages
30–39, 2009.

[8] A. Hindle, D. M. German, and R. Holt. What do large
commits tell us?: A taxonomical study of large
commits. In Proc. of the Intl. Working Conf. on
Mining Software Repositories (MSR), pages 99–108,
2008.

[9] L. Hochstein and Y. Jiao. The cost of the build tax in
scientific software. In Proc. of the Intl. Symp. on
Empirical Software Engineering and Measurement
(ESEM), pages 384–387, 2011.

[10] T. G. W. Kumfert and G. K. Epperly. Software in the
doe: The hidden overhead of “the build”. Technical
report, Lawrence Livermore National Laboratory,
2002.

[11] B. P. Lientz and E. B. Swanson. Software
Maintenance Management: a Study of the
Maintenance of Computer Application Software.
Addison-Wesley, August 1980.

[12] S. McIntosh, B. Adams, and A. E. Hassan. The
evolution of ant build systems. In Proc. of the 7th
IEEE Working Conf. on Mining Software Repositories
(MSR), pages 42–51, 2010.

[13] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and
A. E. Hassan. An empirical study of build
maintenance effort. In Proc. of the 33rd Intl. Conf. on
Software Engineering (ICSE), pages 141–150, 2011.

[14] P. Miller. Recursive make considered harmful.
AUUGN Journal of AUUG Inc, 19(1):14–25, 1998.

[15] A. Neitsch, K. Wong, and M. W. Godfrey. Build
system issues in multilanguage software. In Proc. of
the 28th IEEE Intl. Conf. on Software Maintenance
(ICSM), pages 140–149, 2012.

[16] A. Neundorf. Why the kde project switched to
cmake–and how (continued), 2010.

[17] S. Phillips, T. Zimmermann, and C. Bird.
Understanding and improving software build teams. In
Proc. of 36th Intl. Conf. on Software Engineering
(ICSE), pages 735–744, 2014.

[18] F. Rahman and P. Devanbu. Ownership, experience
and defects: A fine-grained study of authorship. In
Proc. of the 33rd Intl. Conf. on Software Engineering
(ICSE), pages 491–500, 2011.

[19] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and
R. Bowdidge. Programmers’ build errors: A case
study (at google). In Proc. of 36th Intl. Conf. on
Software Engineering (ICSE), pages 724–734, 2014.

[20] P. Smith. Software Build Systems: Principles and
Experience. Addison-Wesley Professional, 2011.

[21] R. Suvorov, B. Adams, M. Nagappan, A. Hassan, and
Y. Zou. An empirical study of build system migrations
in practice: Case studies on kde and the linux kernel.
In Proc. of the 28th IEEE Intl. Conf. on Software
Maintenance (ICSM), pages 160–169, 2012.

[22] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N.
Nguyen. Build code analysis with symbolic evaluation.
In Proc. of the 34th Intl. Conf. on Software
Engineering (ICSE), pages 650–660, 2012.

[23] Q. Tu and M. W. Godfrey. The build-time software
architecture view. In Proc. of the IEEE Intl. Conf. on
Software Maintenance (ICSM), pages 398–407, 2001.

