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ABSTRACT
Context: During software maintenance, people typically go
back to the original reviews of a patch to understand the ac-
tual design rationale and potential risks of the code. Whereas
modern web-based reviewing environments like gerrit make
this process relatively easy, the low-tech, mailing-list based
reviewing environments of many open source systems make
linking a commit back to its reviews and earlier versions far
from trivial, since (1) a commit has no physical link with
any reviewing email, (2) the discussed patches are not al-
ways fully identical to the accepted commits and (3) some
discussions last across multiple email threads, each of which
containing potentially multiple versions of the same patch.
Goal: To support maintainers in reconstructing the review-
ing history of kernel patches, and studying (for the first time)
the characteristics of the recovered reviewing histories.
Method: This paper performs a comparative empirical study
on the Linux kernel mailing lists of 3 email-to-email and
email-to-commit linking techniques based on checksums, com-
mon patch lines and clone detection.
Results: Around 25% of the patches had an (until now) hid-
den reviewing history of more than four weeks, and patches
with multiple versions typically are larger and have a higher
acceptance rate than patches with just one version.
Conclusion: The plus-minus-line-based technique is the best
approach for linking patch emails to commits, while it needs
to be combined with the checksum-based technique for link-
ing different patch versions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; D.2.9 [Software Engineering]: Manage-
ment—Software configuration management
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Figure 1: The reviewing and integration process of
a patch in the Linux kernel project (adapted from
[19]).
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1. INTRODUCTION
In November 2003, there was a suspected backdoor at-

tempt to taint the source code of the Linux kernel project
[23]. The Linux team noticed that a patch popped up in
the CVS copy of the version control system that never ap-
peared in the BitKeeper master copy. This patch pretended
to just check for errors, but actually contained a back door
that could render a system vulnerable. Up until today, it is
still not clear whether this code was inserted by a malicious
hacker, since there was (and still is) no explicit link from
a commit back to all emails reviewing that patch or earlier
versions of it. The recent “heartbleed” vulnerability [16] also
highlights the need to have traceability from commits in the
version control system to patches in the mailing list. Full
traceability would have made a quicker and more accurate
audit of the code possible. Apart from security audits, trace-
ability from submitted patches to accepted commits would
also benefit regular maintenance, as it will make it easy to
review the email messages around that patch which comprise
the reviewing and design discussions of the patches [2][5][25].

Although more and more open and closed source systems
are migrating towards modern, online reviewing environ-
ments like Gerrit, which consolidate all patch versions, dis-



cussions and links to commits in one location, many open
source ecosystems such as the Linux kernel and the Apache
Software Foundation still swear by low-tech reviewing envi-
ronments based on a mailing list [6]. Basically (Figure 1),
a contributor sends an email containing a patch, asking for
feedback. Other project members with the required exper-
tise then jump in to provide design- and code-related com-
ments. They either reject the patch up front (not an in-
teresting feature at all), they allow the responsible kernel
maintainer to commit the patch to the version control sys-
tem as is, or they request a new version with modifications.
In the latter case, the original patch submitter should send
a new patch version, hoping that this one will be successful.
This process continues until the patch is rejected, accepted
or the submitter gives up.

Although modern reviewing environments require the same
steps, the usage of a low-tech environment introduces three
major challenges for people to trace a commit back to the
original patch (and its reviews):

• Reviewing process detached from development
process. Patches and reviews are spread across email
messages in one or more mailing lists, while commits
are stored in a version control system like Git (see
Figure 1). Emails cannot reference the commit id of a
patch that has not been committed yet, while emails
do not have a universal identifier that can be referenced
by a commit.

• Accepted commits can differ significantly from
original, submitted patches. During the reviewing
process, the reviewers are likely to ask the developer
to revise it. Even after the maintainers integrate the
patch into a Git branch, maintainers can still mod-
ify a patch by changing the order of commits (“rebas-
ing”) or filtering out uninteresting changes from the
patch(“cherry-picking”).

• Patches evolve across multiple versions, possi-
bly submitted in multiple email threads. During
the reviewing process, a patch may evolve substan-
tially, yielding a series of patch versions. Such a ver-
sion can be sent in a reply to the original email thread,
or sometimes in a new email thread. In the best case,
such a sequel thread is announced in the subject of the
new thread, for example “[V2]Patch: remove the dead-
lock code in driver subsystem”, however this practice
is not enforced and typically only used by more expe-
rienced developers.

In this paper, we propose an approach to recover the full
reviewing history of a patch in a low-tech reviewing environ-
ment. This approach mainly consists of two parts: (1) link-
ing a commit to any email submitting the original patch (of-
ten the last patch version), and (2) linking all emails about
the same patch together to reach the first version. We used
three techniques of different strictness and granularity to
link commits to emails and emails to emails: (1) a checksum-
based technique (strictest, chunk level), (2) a novel plus-
minus-line-based technique (medium strict, line level), and
(3) the CCFinder clone detection tool (least strict, token
level). After tracing the commits to all emails up to their
very first patch version, we are then able to quantitatively
analyze (for the first time) the full reviewing history of a
patch sent to a mailing list.

repository&maintainerlinux-usblkml

Thread1 Thread2 Commit

Figure 2: The evolution process of a patch with mul-
tiple versions (“super-thread”).

We addressed the following three research questions:

RQ1) Can commits be linked accurately to emails contain-
ing the corresponding patch version?

Since emails and git commits are two different media,
we first analyze which technique works best to link
an email containing a patch to the accepted commit.
The checksum-based technique has the highest pre-
cision (97.9%±5%), while the plus-minus-line-based
technique has the highest relative recall (85.69%±5%).

RQ2) Can emails containing different patch versions be linked
accurately to each other?

Since different versions of a patch can be submitted
and reviewed across different email threads, we eval-
uate different techniques for linking related emails to
each other. The checksum-based technique again has
the highest precision (86.98%±5%), while the plus-
minus-line-based technique again obtains the highest
relative recall (68.68%±5%). Together, the checksum-
based and plus-minus-line-based techniques can dis-
cover more than 95%±5% of the correct patch pairs.

RQ3) What are the characteristics of the reviewing history
in a low-tech reviewing environment?

Given the means to link patch emails to each other
and to commits, we can now study the character-
istics of patches having multiple versions. we find
that around 25% of the patches have a full reviewing
history of more than four weeks. Patches that un-
derwent multiple versions have a higher chance to be
accepted and especially consist of bug fixes compared
to regular patches.

In the rest of the paper, we first introduce the three tech-
niques we applied (Section 2) and provide our case study
setup (Section 3), followed by the findings of our case study
(Section 4). We conclude with threats to validity (Section 5),
related work (Section 6) and the conclusion (Section 7).

2. THREE LINKING TECHNIQUES
In general, to recover the evolution process of a commit,

we need to (1) trace it back from its final version seen (the
accepted commit) to the email submitting the committed
version of the patch, then (2) link together all emails con-
taining different versions of the same patch until we reach
the first patch version. Since in both phases one tries to map
one version of a patch to another one, we use and evaluate
the same linking techniques for both. We do not consider the
textual content of the reviewing emails themselves, nor com-
mit metadata like the commit log message or author names,



since those contain natural language vocabulary, which is
known to be much more variable and hence harder to link
than source code [15].

Figure 3 shows an example committed patch in the git
format used by Linux and many other open source sys-
tems. The part above the “diff −−git” line consists of com-
mit metadata such as the commit id, author name, author
data and commit log message, whereas the bottom part con-
tains the actual patch. In this case, the patch describes the
changes to a file called “src/stash.c”, where on line 587 the
developer has removed the line starting with a minus sign
and replaced it by the lines starting with a plus sign. The
code lines that do not start with a plus or minus sign corre-
spond to the context of the patch, showing the surroundings
of the changed lines.

Patches can contain multiple bursts of plus/minus lines
(multiple changes to one file), and even multiple“diff −−git”
sections changes to multiple files. All changes to one file are
called a “chunk”. The difference between a committed patch
(like Figure 3) and a patch version in an email is that for
the latter the commit log message occurs as email body, the
author name and data correspond to the sender name and
date of the email, and there is no commit ID attached to the
email, since the patch is not yet committed.

2.1 Checksum-based Technique
The checksum-based technique is the strictest and most

coarse-grained technique[19]. It computes MD5 hash check-
sums for each chunk in a commit or email patch, then links
each chunk’s checksum to the most recent email patch chunk
with the same checksum. If an email patch has at least one
chunk that was linked to a commit or email chunk, we link
the patch as a whole to that commit or email. Finally, we
link two email threads together if they have at least one
linked email pair.

For each chunk, we first filtered out the unchanged code
lines (those without plus or minus sign), remove all white
space and capitalization, then concatenate all changed lines
(i.e., the lines starting with a + or - in Figure 3) into one line.
After prepending the relative path name of the file changed
by the chunk, we calculate the chunk’s MD5 checksum. We
perform the white space, capitalization and concatenation
processing to deal with small changes done to a patch be-
fore merging, and the path name prepending to reduce false
positive matches with similar changes to other files. We per-
form the same chunk-level procedure to the commits in the
Git repository.

Similar to Bird et al. [11], we did not directly link a whole
patch to a Git commit, but used the intermediate step of
chunks, because of “cherry-picking”. This is a common in-
tegration activity where an integrator only picks the inter-
esting parts of a patch and ignores the rest. Large patches
risk not being merged completely, or maybe not in one Git
commit. We link a whole patch to a commit, if at least one
of its chunks are linked to that commit.

2.2 Plus-Minus-Line-Based Technique
The plus-minus-line-based technique looks for patches con-

taining sufficient identical changed lines (instead of a whole
chunk), which is a compromise between both strictness and
granularity compared to the other two techniques. Hence,
the technique mainly focuses on the lines beginning with a
plus or minus sign in Figure 3.

commit 52c52737353a7ee7b653ab314d7b89ca6ddafe63
Author: Russell Belfer <rb@github.com>
Date:   Wed May 1 15:51:30 2013 -0700

    Clear error msg when we eat error silently

diff --git a/src/stash.c b/src/stash.c
index 355c5dc..19b29be 100644
--- a/src/stash.c
+++ b/src/stash.c
@@ -587,8 +587,10 @@ int git_stash_foreach(
 const git_reflog_entry *entry;
 
 error = git_reference_lookup(&stash, repo, 
GIT_REFS_STASH_FILE);
- if (error == GIT_ENOTFOUND)
+ if (error == GIT_ENOTFOUND) {
+ giterr_clear();
 return 0;
+ }
 if (error < 0)
 goto cleanup;
 
@@ -651,7 +653,7 @@ int git_stash_drop(
 const git_reflog_entry *entry;
 
 entry = 
git_reflog_entry_byindex(reflog, 0);
-
+
 git_reference_free(stash);
 error = git_reference_create(&stash, 
repo, GIT_REFS_STASH_FILE, &entry->oid_cur, 1);
 }

Figure 3: A commit patch example. The line with a
beginning of a plus sign “+” indicates an added line
while a minus “-” sign indicates a deleted line.
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Figure 4: The value of RSA where the tangential
line (blue) has the largest slope.

The linking algorithm consists of two steps. First, we
parse all the Git commits and extract the changed file name,
the changed line type (plus + or minus -) and the line con-
tent. We save all the information into an sqlite3 database in
chronological order. Then, we analyze all emails containing
a patch: for each line beginning with a plus “+” or minus
“-”, we query the database to find other emails or commits
containing the same changed line in order to compute the
proportion of matched lines with each later patch. Finally,
we rank the matched patches according to the proportion of
matched changed lines and output the matched patch with
the highest proportion. To avoid slight changes to the patch
during the reviewing process, we again remove all whites-
pace of each line (similar to the checksum-based technique).

2.3 Clone-Detection-based Technique
As our third technique, we use the popular CCFinderX

clone detection, which is a token-based clone detection tool
that can detect code clones in C, C++, Java, COBOL, and
other source files. It transforms the input source text into
tokens, then compares files token by token, and generates



pairs of token sequences (“clones”) that are found to be very
similar (according to some threshold). Since such a tech-
nique allows some tokens in the matched token sequences
to be different, this is the least strict and most fine-grained
technique of the three [10].

We create one file for each patch version and each commit,
then feed all files to CCFinderX. Afterwards (for email to
commit links), we remove pairs of clones belonging to two
emails from the output as well as unfeasible pairs where
a commit occurred before the email was sent. Note that
to enable CCFinderX to process patches instead of regular
source files, we took the changed lines, removed the plus
and minus characters, then put braces around the resulting
code, forcing CCFinderX to consider the changed lines as a
regular code block.

Since CCFinderX is known to produce false positives, we
need to filter out (email, commit) or (email, email) pairs
with just a few common clones. To help with this, CCFind-
erX computes some metrics about the analyzed input files
and clones, one of which is the RSA metric. This metric
indicates the similarity percentage between each file (based
on the number of common clones). If two files have an RSA
value close to 100%, then one of them is very likely to be a
copy of another file. To use the RSA value as a threshold
to filter out false positive pairs, we rank all the (email, com-
mit) or (email, email) pairs by their RSA value, see Figure 4,
then compute the delta in RSA value between each succes-
sive pair. We then define as threshold the RSA value of the
(email, commit) or (email, email) pair with the largest delta
in RSA, i.e., where the slope of the tangential line changes
the most in Figure 4. We filter out the clone pairs with a
value lower than the RSA threshold.

3. CASE STUDY SETUP
In this section, we present the details of the case study

that we performed on the Linux kernel data to evaluate the
three linking techniques.

3.1 Data Extraction
This paper uses the Linux kernel as representative ex-

ample of an open source project with a low-tech reviewing
environment. The Linux kernel reviewing and development
process is supported by the Git distributed version control
system, the main kernel mailing list (LKML) and more than
130 specialized subsystem mailing lists. These mailing lists
are archived online as textual mbox files. After download-
ing these files from 2009 to 2012, we imported their content
and metadata, e.g., subject and author, into a relational
database using MailMiner [9]. We ignore email attachments,
since the Linux kernel developer guidelines state that all
patches should be inlined into the email body.

To analyze those patches that are successfully integrated
into an official Linux release, we collect the commits of Li-
nus Torvalds’ repository from 2009 (start reviews data) un-
til 2012, which contains the commit information of accepted
patches Figure 3. Note that some emails of end 2012 will
not have had the chance of reaching Git, however this does
not impact our findings.

3.2 Evaluation of Linking Techniques
To evaluate the performance of the three techniques for

RQ1 and RQ2, we compute precision and relative recall for
each, and compute “real” recall for RQ2.

Figure 5: Example of precision and relative recall.

In both cases, we manually analyze precision. We sample
384 pairs from the results of each technique to obtain a confi-
dence level of 95% and confidence interval of 5% [18]. Then,
we run scripts to collect the Git log of a commit and the con-
tents of the email to which a commit has been mapped in
order to manually check attributes such as the title, author
and review comments to determine if the matched commit
and patch are really talking about the same patch.

Since pure recall is hard to compute due to the lack of
ground truth, we use the concept of relative recall in order
to measure the sensitivity of the three techniques. Such rel-
ative recall is defined as the number of correctly detected
(email, commit) or (email, email) pairs out of the union of
true positive pairs identified during our manual analysis for
precision of the three techniques. Although not identical to
pure recall, such a relative recall gives an indication of the
amount of false negatives in the results.

For example, Figure 5 shows how technique A detects 7
candidates, 4 of them being correct, and how technique B
detects 6 candidates, three of which are detected correctly.
In this case, the union of all correctly detected candidates is
6, 4 of which are detected by A while 3 are detected by B.
Then, the relative recall of technique A is 4 out of 6 (67%)
while the relative recall of technique B is 3 out of 6 (50%).

In the case of email to email linking, there is a partial
source of ground truth, which we also use to obtain a form
of real (i.e., non-relative) recall. Basically, some developers
reuse the same subject for different email threads, or add a
qualifier like “[v2]” or “[V 3]”. Using regular expressions, we
recovered such links between threads, then randomly sam-
pled 384 of them (confidence level of 95% and confidence
interval of 5%) as ground truth for calculating recall.

Finally, we also compare overlap between the results of
each technique to figure out if the techniques are comple-
mentary or subsume each other. The overlap is computed
by counting the number of detected pairs shared with the
other techniques. If two techniques are overlapping substan-
tially, it means that they detect almost the same pairs. On
the contrary, if they are not overlapping too much, they are
complementary to each other. In this case, one should prob-
ably use the union of their results for further analysis to
obtain the best precision and recall.

3.3 Analysis of the Reviewing Process
As a first application of the linking techniques, we are able

to analyze (for the first time) the reviewing history of kernel
commits back to the original submitted patch versions (de-
pending on the performance of the linking techniques). For
this analysis, we introduce the concept of “super-thread”,
which connects all patch versions of a commit to each other
chronologically. We call the sequence of all versions of a



Table 1: Overview of the reviewing history metrics and dimensions analyzed.
metric name type source explanation

R
ev

ie
w

thr_volume numeric thread Number of email messages between start of current thread and current patch version.

nr_reviews numeric thread Number of review messages of a patch version.

review_time numeric patch Time in seconds from current patch version to its last review message.

response_time numeric thread Time in seconds from current patch version to its first review message.

first_response_time numeric patch Time in seconds from first patch version in thread to its first review message.

P
a
tc

h

size numeric patch Patch churn (sum of number of added and removed lines).

spread numeric patch Number of files changed by current patch version.

spread_subsys numeric patch Number of subsystems changed by current patch version.

bug_fix boolean patch Does this patch version contain a bug fix (as opposed to a new feature or enhancement)?

accepted boolean commit Has this email patch version been accepted as a commit?

SS MS

MM

Ta Tb Tc
Ea Eb Ec

Figure 6: The three types of super-threads.

patch a “super-thread”, since the email patches could be
spread across one or more email threads. For example (Fig-
ure 6), if there are three emails patches Ea, Eb and Ec in
three different threads Ta, Tb and Tc, and we are able to
link Ea to Eb, and Eb to Ec, eventually we could link the
three threads Ta, Tb and Tc together. Figure 6 illustrates
the three different kinds of super-threads: SS (single patch
version, single thread), MS (multiple patch versions, single
thread) and MM (multiple patch versions, multiple threads).

We use the following steps to identify super-threads: (1)
mapping each email to its enclosing thread (based on the
mbox data), (2) lifting links between emails up to links be-
tween threads, (3) filtering out pairs within the same thread,
and (4) transitively chaining (thread, thread)-pairs together
if they have at least one thread in common.

We use the best of the three linking techniques to recover
the (email, commit) and (email, email) links. Especially
(relative) recall is important, however we also want to avoid
too many false positives. For this reason, we use one or two
techniques that together cover a large enough part of the
relative recall, but we also take additional measures to keep
precision high enough. We will discuss these for RQ3.

After recovering the super-threads, we performed quanti-
tative analysis to analyze the reviewing history and compare
important review characteristics. The characteristics that
we analyzed are listed in Table 1. These characteristics cover
two dimensions, i.e., “Review” and “Patch”. “thr volume”
measures the reviewing activity for a patch. A higher value
means that the patch is being discussed more, “nr reviews”
indicates the number of reviews on a patch version. “re-
view time” depicts the discussion time for a patch version.
The “response time” and “first response time” metrics mea-
sure the reaction of reviewers to a patch. “size” indicates
how large a patch is. “spread” and “spread subsys” metrics
depict the invasiveness of a patch. Finally “bug fix” and “ac-
cepted” indicate whether a patch version contains a bug fix
(i.e., contains the words “bug”, “fix” or “error” [20] in the

Table 2: Evaluation of three techniques of linking
(email, commit) pair.

technique precision relative recall F-score
Checksum 97.92% 47.68% 0.64

Plus-minus-line 85.16% 85.69% 0.85
Clone-detection 81.77% 37.40% 0.51

commit message) and whether it eventually was accepted as
a commit.

4. CASE STUDY RESULTS
In this section, we answer each research question and

present its motivation, approach and findings.

RQ1: Can commits be linked accurately to emails
containing the corresponding patch version?
Motivation: In a project like the Linux kernel, where the
development process and reviewing process are supported by
separate Git and mailing lists, there is no explicit link be-
tween the reviews of a patch and its corresponding commit.
Here, we analyze whether, despite the three challenges of the
introduction, the three linking techniques are still able to
link a commit to at least one of its patch versions. If so, the
techniques could be used to retrieve details and comments
about the design rationale of a commit from corresponding
emails.

Approach: We applied the three techniques to find the
correct (email, commit) pairs. We then calculate precision,
and relative recall of a representative sample of 384 (email,
commit) pairs, one such sample per technique (all percent-
ages need to be interpreted as having a 95% confidence level
± 5% confidence interval). Finally we also calculate the
overlapping results between the three techniques. The re-
sults of precision, relative recall and F-score are listed in
Table 2.

Findings: The checksum-based technique has the
highest precision in linking commits to emails. The
checksum-based technique detects 216,033 (email, commit)
pairs, while the plus-minus-line-based technique detects 531,381
and the clone-detection-based technique (CCFinderX) de-
tects 168,408 (after filtering with an RSA threshold of 0.4).
After manually validating 384 random samples, we obtained
a precision of 97.92% for the checksum-based technique (376/384),
85.16% for the plus-minus-line-based technique (327/384)
and 81.77% for the clone-detection-based technique (314/384).

The checksum-based technique has the highest precision
since it is the most strict, which means that it is very hard
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Figure 7: Overlap of (email, commit) pairs detected
by the three techniques.

to accidentally find two almost identical changes (chunks) to
the same file. The heuristic to match a commit to an email
patch as soon as they share one common chunk seems to
work well. On the other hand, the clone detection approach
makes the most errors since it is the most liberal of the three.

The plus-minus-line-based technique has the high-
est relative recall. Out of the 992 true positive (email,
commit) pairs identified across the three techniques (union
of unique true positives after manual analysis), 473 are de-
tected by the checksum-based technique, 850 by the plus-
minus-line-based technique and 371 by the clone-detection-
based technique. The relative recall for each technique is
47.68%, 85.69% and 37.40% respectively. Hence, relative
recall-wise the plus-minus-based technique is almost twice
as good as the other two techniques.

We also found that between 16.98% and 19.23% of the
techniques’ true positives mapped a commit to the last avail-
able version of a patch, while more than 80% mapped the
commit to earlier versions (which are more different and
hence harder to match). The low performance of the checksum-
based technique is due to activities like cherry-picking or
modifications below the chunk-level. Since checksums are
calculated per chunk (i.e., per changed file), a patch that is
modified before being committed just to fix a typo or some
other non-whitespace related reason will yield a different
checksum and hence not be linked correctly. This suggests
that the checksum-based technique likely needs to be refined
below the chunk level.

The plus-minus-line-based technique has the high-
est F-score in linking (email, commit) pair. Since
the highest precision and relative recall go to different tech-
niques, to verify which technique is the best one overall we
compute the F-score for each technique, which is a combi-
nation of precision and recall [26]. As expected based on
the recall results, the plus-minus-line-based technique has
the highest F-score (0.85), and hence works best for linking
commits to emails. It seems a good compromise between
strictness and granularity. Being less strict means that it
can avoid false negatives while its fine granularity still does
not concede too many false positives.

The plus-minus-line-based technique can link the
majority of (email, commit) pairs. Figure 7 shows the
overlap of results of the three techniques. Only 3.83% and
7.16% of the pairs are identified uniquely by the checksum-
based technique and the clone-detection-based technique re-
spectively, whereas the plus-minus-line-based technique is
the most effective technique for linking commits to email
patches.

For linking emails to commits, the plus-minus-line-based
technique has the highest relative recall and F-score, and
it covers most of the correct (email, commit) pairs.

RQ2: Can emails containing different patch ver-
sions be linked accurately to each other?
Motivation: In the context of low-tech reviewing environ-
ments, the reviewing process consists of replying to emails
containing a submitted patch, sent to a developer mailing
list. However, sometimes the contributor may start a new
thread to submit a new version of a patch, causing multi-
ple threads to exist that talk about the same patch (we call
this set of threads a super-thread), yet do not contain an
explicit link to each other and to the final commit. Hence,
people may regard one thread of a super-thread as the sole
reviewing thread of a certain patch and ignore other related
reviewing threads, which will cause underestimation of the
actual reviewing process and miss important design deci-
sions.

Approach: In order to recover the reviewing super-threads,
we apply the three linking techniques to search the emails
containing similar patches across different threads. We then
compute the precision and relative recall of the results of
each technique, as well as the overlap between techniques
(just like for RQ1). Contrary to email-to-commit linking,
we can also provide real recall based on threads containing
annotations in their subject. The results are listed in Ta-
ble 3. For CCFinderX we obtained a different RSA threshold
(0.6) than for RQ1.

Findings: The checksum-based technique has the
highest precision. The checksum-based technique detects
3,020,582 (email, email) pairs, while the plus-minus-line-
based technique detects 4,565,857 and CCFinderX detects
6,124,303, respectively. We again randomly select 384 sam-
ples from the results of each technique. After manually
validating the samples, we obtained a precision of 86.98%
(334/384) for the checksum-based technique, 51.82% (199/384)
for the plus-minus-line-based technique, and 70.83% (272/384)
for the clone-detection-based technique.

The checksum-based technique again has the highest pre-
cision, for similar reasons as for RQ1. However, the clone de-
tection technique and (especially) the plus-minus-line-based
techniques dropped in precision. The explosion in number
of patches available for linking makes the plus-minus-line-
based technique select incorrect patches.

The plus-minus-line-based technique has the high-
est relative and real recall. Out of union of 796 true pos-
itive (email, email) pairs, 424 are detected by the checksum-
based technique, 547 by the plus-minus-line-based technique
and 148 by the clone-detection-based technique. According
to our definition, the relative recall of the checksum-based
technique is 53.27%, of the plus-minus-line-based technique
68.72% and of the clone-detection-based technique 18.59%.

For email to email linking, we also have an actual ground
truth based on a convention in Linux kernel reviews where
the subjects of patch versions include tags like “V2” or “v3”.
Starting from the 463,697 subjects of the first email of each
thread, we used regular expressions to remove version tags
like “V2” or “v3”, then counted how many subjects become
identical (only difference was the tag). Only 1,912 subjects
(i.e., 0.41% of the threads) could be linked this way. Al-
though only few experienced contributors follow this con-
vention, we randomly selected 384 samples with confidence



Table 3: Evaluation of the three techniques for link-
ing (email, email) pairs.

technique precision rel. recall F-score real recall
Checksum 86.98% 53.27% 0.66 76.83%

Plus-minus-line 51.82% 68.72% 0.59 80.47%
Clone-detection 70.83% 18.59% 0.30 23.44%

21.08%

6.04%

5.25%

4.99% 39.37%

20.91%

2.36%

plus-minus-line-basedclone-detection-based

checksum-based

email-email

Figure 8: Overlap of (email, email) pairs detected
by the three techniques.

level of 95% and confidence interval of 5% as ground truth,
then checked how many of them are detected by each tech-
nique.

We found that the recall of the checksum-based technique
is 76.83%, of the plus-minus-line-based technique 80.47%
and the recall of the clone-detection-based technique is 23.44%.
Although the values are slightly higher than the relative re-
call, it follows the same trend. As in RQ1, the plus-minus-
line-based technique still has the highest (relative) recall,
but with a lower performance than for (email, commit) pairs.
The checksum-based technique does better than for email
to commit pairs, while the clone-detection-based technique
loses half of its relative recall compared to email to commit
pairs. Note that, similar to RQ1, most of the true positive
results were relatively hard to match: less than 8.72% of
the matched pairs of each technique consisted of patch ver-
sions sent in the same thread, all others were between patch
versions in different threads!

The checksum-based technique has the highest F-
score. Since the highest precision and relative recall again
belong to different techniques, we compute the F-score for
each technique, similar to RQ1. The highest F-score goes to
the checksum-based technique.

The checksum-based and the plus-minus-line-based
techniques are complementary. Using the ground truth
of 796 (email, email) pairs for relative recall, we can see
(Figure 8) that 21.08% of them are detected only by the
checksum-based technique, while 39.37% could only be found
by the plus-minus-line-based technique compared to 4.99%
by the clone-detection-based technique. The combination
of the checksum-based and the plus-minus-line-based tech-
niques together take up more than 95% of the ground truth.

To better understand the performance of each technique,
we randomly picked 10 pairs from the results of each tech-
nique that are only detected by itself to analyze their char-
acteristics: The patches only linked by the checksum-based
technique, typically range from 15 LOC to 3,334 LOC, with
an average size of 427.6 lines, compared to 3 LOC to 541
LOC (99.5 LOC on average) for the plus-minus-line-based
technique and 45 LOC to 7,844 LOC (1,196.7 LOC on av-
erage) for the checksum-based technique. This difference

m uq(75%)lq(25%) Utlt

outliers
scale

Figure 9: Boxplot indicating how to remove the out-
liers in our data.

stems from the fact that the checksum-based technique matches
full chunks instead of fine-grained lines or groups of tokens.
Furthermore, the plus-minus-based technique only matches
pairs of patches who have a majority of lines in common,
which makes it hard for patches with uncomparable size or
large patches to obtain a match. Finally, the very large
size of clone-detection-matches does not just come from the
minimum size threshold used by clone detection tools, but
rather from the many false positives amongst small clones.
Generic patch lines consisting just of an assignment or a for-
loop will be matched to many emails incorrectly, while large
sets of lines or whole files containing common lines have a
much higher chance of being uniquely distinguishable and
hence map only to the right patch.

For linking emails to emails, the checksum-based technique
overall performs the best, whereas it requires the plus-
minus-line-based technique to obtain a higher recall.

RQ3: What are the characteristics of the re-
viewing history in a low-tech reviewing envi-
ronment?
Motivation: Now that we have successfully evaluated algo-
rithms to link commits to their earlier email patches, we can
now (for the first time) study low-tech reviewing environ-
ments from a quantitative point of view. Similar to studies
on modern reviewing environments [2][4][27], one can now
study the following questions: How long do email-based re-
views take? How many reviewers and reviews are there?
Since this paper is the first to trace back from a commit to
the earliest emails containing patch versions, we also try to
understand why some patch versions are spread across mul-
tiple threads. Is this a bad situation for a submitter (lower
acceptance rate?) and reviewers (waste of time to review
later versions?), or rather a recipe for success (higher ac-
ceptance rate?)? What kind of patches (bug fixes, large vs.
small, etc.) typically have multiple versions?

Approach: To answer the above questions, we combine
the best and most complementary techniques for linking
emails to emails (the checksum-based and the plus-minus-
line-based) to obtain a linking technique capable of obtain-
ing a high precision and recall for recovering the super-
threads of commits on the full data set, not just on a sample
of 384 pairs.

Manual analysis of the resulting super-threads showed sev-
eral infeasible matches with emails more than ten years
apart. To filter out such matching results, we only keep
super-threads with a time duration below the upper tail (ut)
of the data set according to the following formula [27]:

ut = (uq − lq) ∗ 1.5 + uq

Among them, uq indicates the 75% quartile, while lq indi-
cates the 25% quartile of the data as shown in Figure 9. The



Table 4: Average value of characteristics in different
types of threads (including rejected patches).

metric name MM MS SS

R
ev

ie
w

thr_volume 3.838 6.051 3.533

nr_reviews 1.046 1.936 1.165

review_time (day) 1.932 3.022 2.271

response_time (day) 0.871 1.131 1.030

first_response_time (day) 0.801 1.215 1.010

P
a
tc

h size 81.660 146.100 25.430

spread 2.398 3.811 1.016

spread_subsys 1.387 1.750 1.003

O
th

er acceptance 46.05% 43.97% 23.26%

bug-fix 49.94% 36.72% 31.10%

Table 5: Time duration (#days) of the super-
threads of type MM.

time duration # of patch versions
Min. 0 2.000

1st Qu. 2.687 2.000
Median 10.061 2.000
Mean 21.341 3.172

3rd Qu. 32.923 3.000
Max. 107.524 108.000

data with value higher than the upper tail uq are considered
to be outliers and we remove them. Note that (contrary to
RQ1 and RQ2) this RQ considers both patches that are ac-
cepted (linked to a commit) as well as those that are rejected
(no corresponding commit).

Findings:

Qa) How far back does the reviewing history of a patch ver-
sion go?

Around 25% of the MM patches has a previously
“hidden” reviewing history of more than four weeks.
We analyzed the time duration of the MM super-threads,
i.e., from the very first design discussion until the last dis-
cussion of a patch (possibly across multiple threads in case
of MM). Table 5 shows that most of the super-threads con-
sist of only few patch versions (Mean. value is 3.172), but
can last a long time (Mean. value is 21.341 days). More
than 25% of the patches have a reviewing time that is 4.5
weeks longer than considered by researchers thus far [19].

Qb) What kind of patches undergo multiple patch versions?

Patches evolving across multiple versions are larger
and affect more files than those with a single version.
The patches from threads of type MM (especially) and MS
have higher values for “size”, “spread” and “spread subsys”,
as shown in Table 4. This indicates that the patches under-
going multiple versions tend to be larger and more complex,
and hence need more attention before being integrated. Sur-
prisingly, such invasive patches seem to feature especially in
single threads, rather than multiple ones. As we will see
below, this means that they are still integrated relatively
quickly, whereas the patches that need more versions tend
to be slightly less invasive. A Kruskal-Wallis test with post-
hoc tests verified the significant difference.

Qc) What kind of patches undergo multiple threads?

Kernel developers use multiple threads if too much
time has passed since the previous patch version. We
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Figure 10: Boxplot of average time interval (#days)
between two successive patch versions/threads of
super-threads.Given the log-scale, a value of 1e-05
in fact denotes zero.

compared the time distribution of the interval between two
successive threads to that of two successive patch versions
within one thread. The result is shown in the boxplots of
Figure 10. We can see that the time interval of threads is
much longer than that of patch versions. This seems to con-
firm the intuition that people typically start a new thread
when too much time has passed since the last review or
version of a patch, whereas they would continue the same
thread otherwise. A Mann-Whitney test with as null hy-
pothesis “no difference between the average of both time
distributions” obtained a p-value <2.2e-16, which confirms
that the differences are statistically significant.

Threads of type MM especially consist of bug-
fixes. Out of all MM threads, 49.94% are bug-fixes, com-
pared to 36.7% for MS and 31.10% for SS threads. The pair-
wised Mann-Whitney test show that MM has no significant
difference with MS, but that MM and MS are significantly
different from SS.

On the one hand, this finding seems surprising, since one
would expect bug-fixes to be smaller and hence require less
discussion. On the other hand, bugs might be risky to fix,
and hence require care and thorough reviews.

Qd) Do reviewers lose interest in multi-version patches?

Patches of MM and MS threads involve more dis-
cussion than SS threads. We compared the number of
reviews discussing a patch for the three different types of
threads. The value of “thr volume” of MM and MS patches
is higher than for the SS, which means that if a patch needs
to undergo one or more additional versions reviewers seem to
discuss more about it and provide more constructive com-
ments to help improve it to be accepted. The amount of
reviewing hence does not suffer from having multiple ver-
sions of a patch. A Kruskal-Wallis test with post-hoc tests
showed that the three groups are different from each other.

Patches of type SS and MS have fewer number
of reviews. SS and MS patches receive the most receives
(nr reviews), and hence take more review time as well. Hence,
it seems like patches evolving across multiple versions at-
tract fewer reviews. A Kruskal-Wallis test with post-hoc
tests showed that the difference is significant. One possible
explanation could be that MM patches received the majority



of their reviews early on, with later patch versions receiving
more focused reviewing.

Reviewers are more eager to review MM threads.
Although we did not find a statistically significant differ-
ence between the distributions of metrics “response time”
and “first response time” for SS and MS, we found that MM
threads significantly take less time before the first review.
Reviewers seem to consider such patches as having a higher
priority than other types of superthreads.

Qe) Do multi-version patches have a lower chance of accep-
tance?

No, threads of type MM in fact have a higher ac-
ceptance rate. In Table 4, we have marked a super-thread
as accepted if at least one of its patch versions could be
linked to a commit. We found that the threads of type
MM have the highest acceptance rate (46.05%), followed
by MS patches with 43.97% and SS patches with 23.26%.
A Kruskal-Wallis test for comparison of the characteristics
among the three groups shows for all 3 patch-related metrics
a p-value <2.2e-10, meaning that at least one is significantly
different from the others. Subsequent post-hoc tests show
that all three are significantly different from each other. In
other words, being asked by reviewers to write a second or
later patch version is not a guarantee for success, but at
least a good sign: reviewers see potential and really want to
work on the patch.

5. THREATS TO VALIDITY
Threats to external validity concern the fact that we

have only studied one large open source system. The Linux
kernel is a prime example of a large open source project that
uses its mailing list as reviewing environment. We cannot
automatically generalize our findings to other projects, po-
tentially supported by different reviewing mechanisms. Fur-
thermore, since Git is a flexible version control system that
can be used in various setups, we also need to take care
of extrapolating our findings to other projects using Git or
other version control systems. Hence, more case studies on
other projects are needed.

Threats to internal validity concern the relationship
between treatment and outcome. Since we did not study
causal relationships, but quantitatively analyzed the charac-
teristics of the reviewing history, we do not consider threats
to internal validity.

Threats to construct validity concern the relation be-
ween theory and observation. We link the different threads
belonging to the same super-thread together. However, the
three techniques that we applied are not perfect (precision
and relative recall below 100%). Although we use the com-
plementary results of two techniques to improve the preci-
sion and recall, and remove the outliers in the final results,
the super-threads may not be the real super-threads, due to
false positive noise. However, given the amount of email and
commit data that we consider, we believe that the impact
of noise is tolerable and that the resulting trends are valid.

6. RELATED WORK
Our work is mainly related to previous studies on the code

review process of on open source projects, traceability, min-
ing unstructured log data and clone genealogies.

Rigby et al. [25] analyzed the code review process in the
Apache open source system. They found that small, inde-
pendent, complete patches are faster to be accepted. In our
paper, we found that the patch versions in a super-thread
are examples of patches that take longer to be accepted.
Since they seem to be larger and more invasive, this con-
firms Rigby et al.’s findings

Bettenburg et al. [6] found that accepted contributions
are on average 3 times larger than rejected contributions,
however, we did not study this phenomenon here.

Rigby et al. [24] studied the peer review process of a tra-
ditional inspection of a Lucent project and six open source
projects. They found that smaller changes take shorter re-
view time and the time from the start of the review to the
end of the review was on the order of weeks. Both of the
findings are verified in our paper.

Mcintosh et al. [22] studied the impact of modern review-
ing environments (Gerrit [17]) on software quality. The im-
pact is assumed to be due to a large amount of freedom that
reviewers have when reviewing at their moment of choice via
a website. It is not clear if low-tech reviewing environments
based on emails have the same issues.

Jiang et al [19] studied the integration process of the Linux
kernel project. However, they only considered the review-
ing history inside the current thread and did not consider
the possibly “hidden” super-thread reviewing history. To
our knowledge, the current paper is the first to study the
whole patch reviewing process across multiple threads in a
low-tech reviewing process, we also analyze the impact of
different thread types on the acceptance probability and the
characteristics of different thread types.

There has been a lot of research on traceability between
source code and software-related documents [1][13][14]. How-
ever, our work is the first to trace the commit back to its
origin to figure out its rationale. Bettenburg et al. [10] pro-
posed an approach to link email discussion text to source
code fragments based on clone detection technique. This is
one of the three techniques in our work. Bettenburg et al.
[7] developed a tool for mining the structural information
from natural text bug reports. Bacchelli et al. [3] proposed
an approach to classify email content into different source
code artifacts at the line level. Since Git patches have a
very rigid format, we did not need to use there techniques
to identify the Git patches in emails.

Our work is also related to the research on the vast body of
code clone genealogies during the software evolution process
[8][12][20][21], since those also track code (changes) across
time. Our work combines clone genealogies with the review-
ing process in a low-tech environment to help developers and
reviewers understand the design rationale of patches.

7. CONCLUSION
Tracing the reviewing process of a patch to figure out

its rationale plays an important role in software mainte-
nance. However, a low-tech reviewing environment is still
commonly used in many open source systems. In our study
of the Linux kernel project, the reviewing and development
process are separated and furthermore, a patch may vary
across multiple versions and threads. In this paper, we pro-
pose an approach to recover the full lifecycle from commits
to emails and analyze the characteristics of different types of
reviewing threads. We found that the plus-minus-line-based
technique is the best to link (email, commit) pairs, while



the combination of the plus-minus-line-based technique and
the checksum-based technique works best for linking (email,
email) pairs.

As a first application of the recovered email to email links,
we quantitatively analyzed the reviewing process in a low-
tech environment and found that around 25% of the patches
have a reviewing history of more than four weeks. Patches
with multiple versions seem to be larger and impact more
files, while they are spread across multiple threads if they
contain bug fixes and long time has passed since the previous
patch. Having to submit additional patch versions is not
a disaster, since relatively more such patches are accepted
than for patches with just one version, and reviewers keep
on being interested in subsequent versions.

Our work opens up the possibility to compare low-tech re-
viewing environments head-to-head with modern reviewing
systems. We consider this to be our future work.

8. REFERENCES
[1] J. Aranda and G. Venolia. The secret life of bugs:

Going past the errors and omissions in software
repositories. In Proc. of the 31st Intl. Conf. on
Software Engineering, ICSE ’09, pages 298–308, 2009.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. of Intl.
Conf. on Software Engineering (ICSE), pages
712–721, 2013.

[3] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and
M. Lanza. Content classification of development
emails. In Proc. of the 34th Intl. Conf. on Software
Engineering, ICSE ’12, pages 375–385, 2012.

[4] O. Baysal, R. Holmes, and M. W. Godfrey. Mining
usage data and development artifacts. In Intl.
Working Conf. on Mining Software Repositories
(MSR), pages 98–107, 2012.

[5] O. Baysal, O. Kononenko, R. Holmes, and M. W.
Godfrey. The influence of non-technical factors on code
review. In R. L Lmmel, R. Oliveto, and R. Robbes,
editors, WCRE, pages 122–131. IEEE, 2013.

[6] N. Bettenburg, A. E. Hassan, B. Adams, and D. M.
German. Management of community contributions a
case study on the android and linux software
ecosystems. Empirical Software Engineering., 2013.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and
S. Kim. Extracting structural information from bug
reports. In Proc. of the Intl. Working Conf. on Mining
Software Repositories, MSR ’08, pages 27–30, 2008.

[8] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams,
Y. Zou, and A. E. Hassan. An empirical study on
inconsistent changes to code clones at the release level.
Sci. Comput. Program., 77(6):760–776, 2012.

[9] N. Bettenburg, E. Shihab, and A. E. Hassan. An
empirical study on the risks of using off-the-shelf
techniques for processing mailing list data. In Proc. of
the 25th IEEE Intl. Conf. on Software Maintenance
(ICSM), pages 539–542, 2009.

[10] N. Bettenburg, S. W. Thomas, and A. E. Hassan.
Using fuzzy code search to link code fragments in
discussions to source code. In T. Mens, A. Cleve, and
R. Ferenc, editors, CSMR, pages 319–328. IEEE.

[11] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in oss projects. In Proc. of

the 4th Intl. Workshop on Mining Software
Repositories (MSR), page 26, 2007.

[12] E. Duala-Ekoko and M. P. Robillard. Tracking code
clones in evolving software. In Proc. of the 29th Intl.
Conf. on Software Engineering (ICSE), pages
158–167, 2007.

[13] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,
A. Egyed, P. Grunbacher, and G. Antoniol. The quest
for ubiquity: A roadmap for software and systems
traceability research. Intl. Requirements Engineering
Conference (RE), pages 71–80, 2012.

[14] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,
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