Adapting Linux for Mobile Platforms: An Empirical Study of Android

Foutse Khomh, Hao Yuan, Ying Zou
Department of Electrical and Computer Engineering
Queen’s University
Kingston, ON, Canada
{foutse.khomh, hao.yuan, ying.zou}@ queensu.ca

Abstract—To deliver a high quality software system in a
short release cycle time, many software organizations chose
to reuse existing mature software systems. Google has adapted
one of the most reused computer operating systems (i.e., Linux)
into an operating system for mobile devices (i.e., Android). The
Android mobile operating system has become one of the most
popular adaptations of the Linux kernel with approximately 60
millions new mobile devices running Android each year. Despite
many studies on Linux, none have investigated the challenges
and benefits of reusing and adapting the Linux kernel to
mobile platforms. In this paper, we conduct an empirical study
to understand how Android adapts the Linux kernel. Using
software repositories from Linux and Android, we assess the
effort needed to reuse and adapt the Linux kernel into Android.
Results show that (1) only 0.7% of files from the Linux kernel
are modified when reused for a mobile platform; (2) only 5%
of Android files are affected by the merging of changes on files
from the Linux repository to the Android repository; and (3)
95% of bugs experienced by users of the Android kernel are
fixed in the Linux kernel repository. These results can help
development teams to better plan software adaptations.

Keywords-Empirical study; Software adaptation; Linux; An-
droid; Operating system; bugs.

I. INTRODUCTION

The flexibility of the Linux operating system has led
to its adoption in a wide range of domains, from home
PCs, enterprise desktops, servers to mainframes and super-
computers. With the increasing demand for mobile devices
that provide as rich functionalities as desktop computers,
many mobile carriers are also adapting Linux into mobile
operating systems. Over the past five years, the deployment
of Linux in mobile operating systems has risen to 60
million units per year, from different handset vendors, such
as Motorola, NEC, Panasonic, and Samsung [1]. Software
adaptation typically occurs when the cost of adapting an
existing software to a new platform is estimated to be less
than the cost of building a completely new software from
scratch. During software adaptation, three principal phases
are particularly important: (1) the initial modification of the
existing software system (i.e., the original system) to reuse
its functionalities in the adapted system; (2) the maintenance
of the adapted system to keep it updated with changes
from the original system; and (3) the corrective maintenance
of the adapted system to fix bugs carried down from the

978-1-4673-2312-3/12/$31.00 (© 2012 IEEE

original system as well as the new bugs introduced during
the previous development phases of the adapted system.
These three phases can be more expensive than expected if
the software adaptation is not done properly. For example,
if the design of the original system is not well understood
by the developers carrying the adaptation, they can perform
erroneous changes invalidating key design decisions and
causing the maintenance of the adapted system to become
very expensive. A great amount of research has investigated
the development of Linux (e.g., [2], [3]). The Android
system built from the kernel of Linux 2.6 has also been
analyzed extensively (e.g., [4], [5]), yet, to the best of our
knowledge, no study has investigated the challenges and ben-
efits of Linux adaptations, in particular, Linux adaptations to
mobile platforms. A good understanding of the challenges
and benefits of Linux adaptations would be beneficial not
only for the Linux community, but also for practitioners
who may be interested in adapting the Linux system to new
platforms. In this paper, using software repositories from the
Linux and Android systems, we aim at assessing the ease
to adapt the Linux kernel into the mobile operating system
Android and the benefits of adapting from the Linux kernel
instead of developing a new operating system from scratch.
This work makes the following contributions:

« We assess the initial effort needed to adapt the Linux
kernel into Android and found that 99% of the function-
alities of Linux kernel 2.6 were reused into Android,
and only 0.7% of the reused files were modified to
implement the requirements of Android.

o We measure the effort required to maintain the kernel of
Android, and found that in average only 5% of Android
files are affected by the merging of changes from the
Linux repository.

« We also investigate the propagation of bugs from Linux
to Android and observed that 95% of bugs experienced
by users of the Android kernel come from Linux and
these bugs are fixed by Linux contributors.

The rest of this paper is organized as follows: Section II
introduces some related works on Linux and Android sys-
tems. Section III describes the design of our study. Section
IV presents and discusses our results. Finally, Section V
concludes the paper, discusses some limitations and outlines
avenues for future work.

II. RELATED WORK

This section presents some works on Linux and Android.
Linux System: Linux is one of the most studied
software system in the literature. Godfrey and Qiang [2]
have explored the evolution of the Linux kernel both at the
system level and within the major modules and found its
growth rate to be super-linear. They also found that even
though the entire source code of Linux is quite large, more
than half of the code consists of device drivers, which are
relatively independent of each other. Israeli and Feitelson [3]
analyzed 810 releases of the Linux kernel over a period of
14 years and observed a decrease of the average complexity.
Android System: Major studies on Android have fo-
cused on its reliability. Maji et al. [5] compared the re-
liability of Android and Symbian OS through an analysis
of reported bugs. They concluded that more than 90% of
bugs in both Android and Symbian are permanent in nature,
with 22% of Android bugs requiring major code changes.
Gronli et al. [4] compared the development environments of
Android, Windows mobile, and Java ME, and conclude that
Android and Window mobile have better environments. We
investigate the adaptation of the Linux kernel into Android.

III. STUDY DESIGN

The goal of this study is to investigate the challenges
and benefits of adapting the Linux kernel for mobile oper-
ating systems. The perspective is of practitioners who are
interested in adapting the Linux kernel to new platforms,
in particular, mobile devices. The Linux system is one of
the fastest growing operating systems used in a variety of
different platforms. Moreover, the results of this study can
be of interest to Linux developers who could take into con-
sideration some of the challenges and benefits of adapting
Linux during their development activities. Finally, the results
of our study can be of interest to researchers interested in
adapting large legacy systems onto new platforms.

The context of this study consists of the Android system.
We chose this system for three reasons. First, the Android
system is one of the most successful mobile systems using
a modified Linux kernel in the current market. It is a good
representation of the adaptation of Linux for mobile devices.
Second, the Android system is a mature commercial product.
The software contains all the necessary functionalities of a
mobile operating system. Last but not least, it is open source;
we have access to all the repositories of the Android system.
These criteria make Android a very suitable candidate for
our study. We analyze 6 versions of Android developed
between 2005 and 2010. We investigate development efforts
during the following phases:

1) The adaptation of Linux functionalities into Android.

2) The maintenance to keep Android updated with

changes from Linux.

3) The corrective maintenance to fix bugs carried down

from Linux as well as new Android’s bugs.

A. Data Extraction

Both Android and Linux use the source code management
system Git', to track modifications on their respective source
code. We extract log files from both Linux and Android
Git repositories. Because commits in Git repositories come
from multiple time zones, we convert the time zones of
the extracted logs to the Eastern Time chosen as our ref-
erence. Next, we extract the following information from
each commit log: commit ID; the list of committed files;
the number of lines of code added or deleted; and the kind
of the commit, i.e., merging commits, or bug-fix.

Git allows developers to annotate each modification of the
source code with a message describing the reason for the
modification. We parse such messages using a perl script to
extract references to bug reports such as URLs from bugzilla
or bug Ids, (e.g., http://bugzilla.kernel.org/show_bug.cgi?id=
5209). We also look for specific keywords, such as “fixed”
or “bug” in a way similar to the work by Sliwersky et al. [6].
This approach enables us to track Linux bug fixes as well as
merging commits in the Android kernel. We rely on the code
review system of Android (i.e., Gerrit?), to track bugs related
to files existing only in the Android, i.e., bugs that have no
root in Linux. We parse messages describing change reviews
in Gerrit to search for keywords such as “fixed” or “bug” in
Git commit messages. We perform a syntactical analysis to
retrieve information about modules and packages that were
changed. In total, we identified 1,058 bug fixes. To assess the
precision of our bug fix identification, we randomly selected
200 classified instances, and manually verified them. We
found a precision of 86%.

IV. STUDY RESULTS

This section presents and discusses the results of our
analysis of the adaptation of Linux kernel 2.6 into Android.

A. Adaptation of Linux Functionalities into Android

1) Motivation: We want to quantify the effort required to
adapt the kernel of Linux into a mobile operating system.
Decision makers in software organizations could use this
quantification when planning software adaptations.

2) Analysis Method: We analyze the source code repos-
itories of Android and Linux kernels. More specifically, we
analyze the similarity between the two systems, in terms of
their functionalities and the amount of changes that were
performed to integrate Linux functionalities into Android.
To measure the level of functionality reuse between Linux
kernel 2.6 and Android, we introduce the Similarity metric
defined in Equation (1).

|Sourcea [Sourceg|

imilaritu(A. B) = !
Similarity(A, B) |Sou7~ceAUSOU7”C€B| M

! git-scm.com/
Zhttp://code.google.com/p/gerrit/

100% 1

95%

90%

85%

Similarity with Linux Kernel 2.6

75%

70% T T T T
11 15 16 20 21 22
Android Versions

Figure 1. Evolution of the Similarity between Android and Linux Kernel

100% 1 99.8%
98%

96% -

94% - 95.0% 94.3%

Adaptation Change Ratio

92%

90%

11 15 16 20 2.1 2.2
Android Versions

Figure 2. Percentage of Adaptation Changes Overtime

Sources is the set of source code lines from the system S.
Similarity(A, B) is 1 when systems A and B are identical.

To measure the amount of changes performed by Android
developers to adapt Linux functionalities, we introduce the
Adaptation Change Ratio (ACR) defined in Equation (2).

Number of non —merging commits

ACR =

@)

Total number of commits

3) Results: We found an 84% similarity between the
source code of Android 1.1 and Linux kernel 2.6. Moreover,
99% of Linux kernel functionalities are reused into Android
and only the file system and memory management modules
have been modified. In total, Android added 89 new files
and modified 75 Linux files, which represents 0.7% of all
Linux files. During this initial adaptation phase, Android
developers made 3,741 commits before the first release, i.e.,
Android 1.1. The Adaptation Change Ratio (i.e., ACR) was
0.963; meaning that 96.3% of commits during the initial
adaptation phase were modifications to adapt and extend
Linux to the mobile platform. Only a very small (i.e., 3.7%)
portion of commits were updates from the Linux repository.

Figures 1 shows the evolution of the similarity between
the Linux kernel and Android overtime. From Android 1.1
to Android 2.0, the similarity between the two systems
increased steadily. This observation can be explained by
Android importing new features and bug fixes from the
Linux kernel. However, after Android 2.0 the similarity
between the two systems is decreased. This decrease is
caused by the large amount of new functionalities added
to Android 2.0. Looking at the evolution of the Adaptation
Change Ratio, shown in Figure 2, we observe a sharp
increase (i.e., up to 99.8% of commits) after the release of

Android 2.1; meaning that developers had to perform more
changes to integrate the newly added functionalities with the
functionalities imported from the Linux kernel.

We investigated the proportion of adaptation changes on
each module of Android, and found that the most modified
modules are drivers (i.e., 31%) and fs (i.e., 25%). The
distribution of changes on remaining modules is: include
(17%), arch (11%), net (7%), kernel (6%), and mm(3%).

B. Maintenance to Update Android with Linux’s Changes

1) Motivation: In a traditional software development pro-
cess, maintenance is estimated to cost between 50% and up
to 90% of the total cost of the software system [7]. Adapting
an existing software to build a new software can introduce
challenges that are not generally faced in a traditional
development process. In this section we quantify the amount
of changes needed to keep Android up to date with new
features and bug fixes from Linux. Such results would
provide development teams with a better understanding of
the consequences of adapting a system like Linux.

2) Analysis Method: During maintenance, Android de-
velopers perform periodical source code merges from the
Linux code repository. To measure the effort induced by
these merges, we compute the Density of Merging Commits
(DMC) metric following Equation (3).

DMC — Number of merging commzts
Total number of commits

3

DMC captures the effort spent on merging source code modifica-
tions from the Linux repository.

Very often, because of data or control dependencies, a
source code merge from Linux to Android will result in a
series of cascading changes on other parts of Android. To
capture this impact of a merge, we introduce the Impact of
Merging Commits (IMC) metric defined in Equation (4):

) B
IMC(i) = 5

i

“

Where i is a merging commit; B; is the number of Android’s files
that were modified because of dependencies with files contained in
i, and M; is the number of files contained in the merging commit 1.
IMC (i) computes the proportion of files that were updated
to solve conflicts caused by a the merging commit 4.

Because it is easier to update files from a single module
compared to files distributed across multiple modules, we
introduce the Impact Range of Merging (IRM) metric,
defined in Equation (5), to calculate the number of modules
affected by a merging commit:

IRM (i) = Impacted modules, Q)

Where i is a merging commit and Impacted modules; is the
number of modules containing files that were updated to solve
conflicts caused by the merging commiti.

We also compute the lasting impact of merges in terms of
the number of sub-sequent commits triggered by a merging

commit. For each merging commit ¢, we count the number of
subsequent commits containing files from merging commit
1. We stop counting, when we find a sub-sequent commit
with none of the files from the merging commit s.

3) Results: We found the DMC of Android to be 0.14,
meaning that 14% of all Android’s commits are merging
commits to keep Android up to date with the latest modifi-
cations of the source code of Linux kernel. These merging
commits represent 6.7% of all commits in the Linux kernel
repository. Consequently, only small updates from Linux
kernel are necessary to keep Android effective.

On average, only 5% of Android files are modified as a
result of a merge. This percentage is low compared to the
percentage of Android files that are modified after a feature
enhancement or bug-fix commit (i.e., 96%). However, during
the period from 2009 to 2010, we found few merging
commits that required developers to revise all the merged
files. We refer to them as “breaking” commits. We manually
analyzed “breaking” commits and found them to be small
in size; they contain between 3 and 20 files, while the
average number of files in a merging commit is 374 files.
Nevertheless, these “breaking” commits concern changes to
important features of Linux, such as network features, or bug
fixes. 84% of merging commits impact only 1 or 2 modules.
The most impacted module is the kernel, with 35% of all
merging commits causing a modification of the kernel of
Android. Also, 86% of all merging commits have no lasting
effect, i.e., no subsequent commit is required to resolve
conflicts caused by the merge. For the remaining 14%, a
maximum of three subsequent non-merging commits were
required to resolves issues caused by the merges.

C. Corrective Maintenance to Fix Bugs from Linux

1) Motivation: When adapting an existing software to
build a new software, development teams have to deal with
bugs from the original software. Bug fixes from the original
software need to be propagated to the adapted software. At
the same time, new bugs introduced after the adaptation of
the original software need to be handled properly. In this
section, we investigate how bugs imported from the Linux
kernel and new Android’s kernel bugs are fixed.

2) Analysis Method: Using the Bug Fixed Ratio (BFR)
metric defined in Equation (6), we compute the proportion
of Android kernel’s bugs that are fixed by Android’s devel-
opers. We expect that bugs declared in Android but caused
by Linux code will be fixed by Linux’s developers.

Android Fizes
BFR= Linux Fizes ©
Where Android Fires is the number of bugs declared in
Android and fixed by Android developers and Linux Fizes is the
number of bugs declared in Android but fixed by Linux developers.
3) Results: In total, 423 files underwent bug fixes.
Among them, only 13 files (i.e., 3%) were corrected because

of bugs that are specific to Android features (i.e., these

files were not imported from the Linux kernel). The BFR
of Android is 21—0, meaning that 95% of bugs are fixed by
Linux’s developers and only 5% by Android’s developers.
We investigated the reappearance of Linux bugs in Android
and found none. Therefore, it may be a good idea to build
new software systems from seasoned mature systems, since
developers from the original system are likely to handle a
significant part of the effort to maintain the adapted system.

We also analyzed the possible impact of Android’s
changes on the Linux kernel and observed no merging
commits from Android to Linux. This finding is consistent
with previous comments from the literature about the non-
contribution of Android developers to Linux>.

V. CONCLUSION

In this paper, we have analyzed the adaptation of the
Linux kernel into a mobile operating system, i.e., Android.
Results show that 99% of Linux kernel’s functionalities
were reused into Android and only 0.7% of Linux kernel’s
files were modified during this adaptation. On average, only
5% of Android files were modified as a result of a merge
from Linux and the lasting impact of a merging commits
is less than 3 subsequent commits. 95% of bugs reported
on the Android kernel are fixed by Linux’s developers.
Development teams should consider adapting Linux when
possible, since there is a good chance that most of the
maintenance effort of the adapted system will be lifted by
Linux’s development team. The metrics proposed in this
paper are computed at a file level. In future work, we plan
to extend our investigation at a lower level of granularity,
e.g., the code level.

REFERENCES

[1] B. Weinberg, “Uniting mobile linux application platforms,”
Linux Pundit, 2008.

[2] M. Godfrey and Q. Tu, “Evolution in open source software:
a case study,” in Software Maintenance, 2000. Proceedings.
International Conference on, 2000, pp. 131 —142.

[3] A. Israeli and D. G. Feitelson, “The linux kernel as a case
study in software evolution,” J. Syst. Softw., vol. 83, pp. 485—
501, March 2010.

[4] T.-M. Grgnli, J. Hansen, and G. Ghinea, “Android vs windows
mobile vs java me: a comparative study of mobile develop-
ment environments,” in Proceedings of the 3rd International
Conference on PErvasive Technologies Related to Assistive
Environments, ser. PETRA *10, 2010, pp. 45:1-45:8.

[5] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Character-
izing failures in mobile oses: A case study with android and
symbian,” 2010.

[6] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, pp. 1-5,
May 2005.

[7] L. Erlikh, “Leveraging legacy system dollars for e-business,”
IT Professional, vol. 2, no. 3, pp. 17 =23, may/jun 2000.

3http://www.kroah.com/log/linux/android-kernel-problems.htm1?
seemore=y

