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Abstract

Anti-patterns are poor solutions to design problems that make software systems hard to understand and to extend. Components

involved in anti-patterns are reported to be consistently related to high changes and faults rates. Developers are advised to perform

refactoring to remove anti-patterns, and consequently improve software design quality and reliability. However, since the number

of anti-patterns in a system can be very large, the process of manual refactoring can be overwhelming. To assist a software engineer

who has to perform this task, we propose a novel approach RePOR (Refactoring approach based on Partial Order Reduction). We

perform a case study with five open source systems to assess the performance of RePOR against two well-known metaheuristics

(Genetic Algorithm, and Ant Colony Optimization), one conflict-aware refactoring approach and, a new approach based on sam-

pling (Sway). Results show that RePOR can correct a median of 73% of anti-patterns (10% more than existing approaches) with

a significant reduction in effort (measured by the number of refactorings applied) ranging from 69% to 85%, and a reduction of

execution time ranging between 50% and 87%, in comparison to existing approaches.
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1. Introduction

Refactoring is a software maintenance activity that aims to

improve code design, while preserving behavior [1]. In the last

decade, many works have reported that refactoring can reduce

software complexity, improve developer comprehensibility and

also improve memory efficiency and startup time [2, 3]. Hence,

developers are advised to perform refactoring operations on a

regular basis [4]. However, manual refactoring is a compli-

cated task, as there could be more than one correct solution

depending on the design attributes that one is interested in im-

proving. Moreover, the order in which a set of candidate refac-

torings should be applied is uncertain, and can lead to different

designs; some refactorings can have sequential dependencies
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that require a specific order to enable further refactorings, and

other refactorings can be mutually exclusive (i.e., incompatible

refactorings). Finding the right sequence of refactorings to ap-

ply on a software system is usually a hard task for which no

polynomial-time algorithm is known.

To automate the process of anti-pattern resolution through

refactoring, some researchers have implemented different meta-

heuristic techniques [5, 6, 7, 8, 9, 10, 11, 12]. The goal is to

find a sequence of refactoring operations that most improves

the design quality of a software system. The concept of “qual-

ity” here can be interpreted in many different ways. We can

reduce the number of design defects, a.k.a., anti-patterns [13]

in the software, or improve some desirable quality attributes

like maintainability, understandability, design complexity, etc.

The problem with existing search-based approaches is that they

do not consider how to properly schedule refactorings, but ap-

ply metaheuristic techniques blindly, which results in long ex-
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ecution times, with certain variations in the results between in-

dependent runs, due to the stochastic nature of the techniques

applied.

To address the limitations of search-based approaches, some

researchers have proposed refactoring approaches that consider

conflicts between refactorings. For example, Liu et al. [14]

proposed an approach to iteratively select the most promis-

ing refactoring operations in terms of design quality, while

removing the ones that are in conflict with them, until there

are no more refactorings candidates left. In another work, the

same research group [15] proposed a refactoring scheme for

reducing the effort required for removing different type of anti-

patterns using pairwise analysis. The idea is to refactor the anti-

patterns that can mitigate the negative effects of other types of

anti-patterns, (e.g., removing code duplication also affects anti-

patterns related to the size of classes/methods). While these ap-

proaches could find a refactoring application order (schedule)

to maximize the number of refactorings with the higher qual-

ity effect, they do not consider the effort required to apply the

proposed sequence on the software system. Moreover, devel-

opers are required to provide a list of candidate refactorings as

an input and after generating the sequence, they have to apply

it manually to the software system.

In this work, we aim to close the gap, by providing

automated-refactoring support for developers, that covers all

the main steps of the improvement of software design quality

through automatic refactoring, i.e., the (1) detection of classes

that contain anti-patterns; (2) the generation of refactoring can-

didates to improve the design quality of the classes detected

in (1); (3) the search for an optimal refactoring order; and (4)

the application of the refactoring order from (3). To achieve

this goal, we propose a new heuristic approach called RePOR

(Refactoring approach based on Partial Order Reduction). Par-

tial order reduction is a popular technique for controlling state

space explosion in model checking [16]. The intuition is to

reduce the number of refactoring sequences to be explored by

removing equivalent sequences (i.e., refactoring sequences that

leads to the same design). As a result, less search effort is re-

quired than when using metaheuristic algorithms. To evaluate

RePOR, we conduct a series of experiments over a testbed of

five open source software systems (OSS) and compare the re-

sults with Genetic Algorithm (GA) [17], Ant Colony optimiza-

tion (ACO) [18], the conflict-aware refactoring scheduling ap-

proach proposed by Liu et al. [14] (referred to as LIU in this pa-

per), and a new optimizer based on sampling (Sway) [19]. We

show that the solutions obtained by RePOR overcome the ones

obtained by the above-mentioned state-of-the-art optimization

techniques in terms of performance (i.e., execution time) and

effort (i.e., number of refactorings applied).

Tool and Data Replication. The Eclipse Plug-in and all the

data used in the experiments are available on the RePOR repli-

cation package [20].

The remainder of the paper is organized as follows: Section 2

discusses the formulation of the refactoring scheduling prob-

lem, and describes how to reduce the search-space size using

partial order reduction. Section 3 describes RePOR in detail.

Section 4 presents the case study for evaluating our approach.

Section 5 presents and discusses the results obtained in our case

study. Section 7 discloses the threats to the validity of our study.

Related work is discussed in Section 8. Finally, we present our

conclusions and lay out directions for future work in Section 9.

2. Formulation of the refactoring scheduling problem

As a software system ages, its design quality deteriorates un-

less it is continually maintained [21]. Refactoring is a software

maintenance activity that aims to keep the design quality of a

software system at an acceptable level, in order to ensure a nor-

mal evolution of the system. Typically, refactoring is performed

by applying small transformation operations (e.g., moving a

method/field to another class) to a software system while pre-

serving its original behavior. Since there is a wide range of can-

didate refactorings that can be applied on a system, depending

on the domain of the system, an optimal solution may be com-

prised of several refactorings that improve different quality at-

tributes. Hence, the refactoring scheduling problem consists of

finding the best combination of refactorings that maximizes the
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design quality improvement of a software system. The problem

of finding an optimal order can be solved using search-based

techniques. Search algorithms start by generating one or more

random sequences. Next, the quality of each sequence is com-

puted by applying it to the software system in question, and

measuring the improvement in the quality attributes of interest

using an objective function (a.k.a.,fitness function).

In this work, we evaluate the quality of a refactoring se-

quence S R as:

Q(S R) =
∑
k∈K

Q(srk); with Q(srk) = AC(k′) − AC(k) (1)

In Equation 1, S R is a subset of R; R is the set of refactor-

ings to be applied in a system S YS ; K is the set of classes in

S YS , K ∈ S YS ; srk is a subset of S R that modifies class k

(k ∈ K). Each sub-function Q(srk) is computed by subtracting

the number of occurrences of anti-patterns in class k after ap-

plying srk to k (i.e., AC(k′)) and the number of occurrences of

anti-patterns before refactoring (i.e., AC(k)). Note that we use

the number of occurrences of anti-patterns as a proxy of design

quality. The outcome of Q(S R) is a negative value when apply-

ing S R to K removes anti-patterns; zero if the number of anti-

patterns remains the same, and positive otherwise. The quality

effect of applying S R is related to the presence and the order of

refactorings in S R.

Hence, we suggest that refactorings should be clustered de-

pending on the classes that they affect. In this way, they can be

optimized separately. Since the order of appearance of refactor-

ings that affect different classes in a sequence is irrelevant, we

can reduce the number of refactoring operations that we need

to evaluate. For example, imagine that we have a set of refac-

torings: R = {A, B} to be scheduled. According to Morales et

al. [22], the number of refactoring sequences (S ) that we could

generate having n refactoring operations is given by Equation 2.

S =

 be · n!c ∀n ≥ 1

1 n = 0
(2)

where e is the Euler constant, and n is the number of refactor-

ings available.

Applying Equation 2 to our example gives us 5 possible se-

quences (be · 2!c = 5): <>, < A >, < B >, < A, B >, < B, A >, if

and only if (iff) we assume that each permutation leads to a dif-

ferent solution (here the term solution refers to the outcome of

applying a refactoring sequence to a system, i.e., the resultant

design) . Otherwise, < A, B > and < B, A > are two differ-

ent representations for the same solution and only 4 different

solutions exist.

In the case of refactorings that affect the same class, the re-

sultant design may vary depending on the order of application

of the refactorings, as the application of one refactoring can en-

able or disable the rest of refactorings. We can represent the

dependency between refactorings as an undirected graph GB,

where an edge (ru, rv) ∈ E exists iff ru, rv ∈ Rk. k ∈ K, where K

is the set of classes in a system, and Rk is the set of refactorings

that affect class k, Rk ⊂ R. GB, which is a bipartite graph, is

linked to the structure of the objective function, where a set of

refactorings modify a class, and the application or not of these

refactorings affect the number of anti-patterns that remain in

this class after refactoring.

We use GB to find the connected components (CCAP). A

connected component is a maximal subgraph where all the pairs

of vertices are connected by a path. Connected components im-

pose a partial order over the refactoring operations. We borrow

the idea of partial order reduction from model checking [16], to

express the removal of sequences of refactorings that lead to the

same design. Partial order reduction (POR) is a method that ex-

ploits the commutativity of asynchronous systems to reduce the

size of the state space. As concurrent models impose an arbi-

trary ordering between concurrent events, refactoring schedul-

ing imposes an arbitrary ordering between refactoring opera-

tions. The ordering between independent concurrent instruc-

tions is meaningless (as the order of independent refactorings

is). Hence, we can consider just one ordering for checking one

given property since the other orderings are equivalent. This

fact can be used to construct a reduced state graph hopefully

much easier to explore compared to the full state graph. We

leverage this idea to explore only a subset of refactoring per-
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mutations that are representative of all refactoring permutations

detected.

Another factor that affects the size of the search-space of the

refactoring problem is the occurrences of conflicts. We dis-

tinguish two kind of conflicts, sequential dependency conflicts

and mutual exclusion conflicts. We elaborate more on these two

kind of conflicts in the following.

• Given two refactorings ri and r j, ri has a sequential depen-

dency conflict with r j iff r j cannot be applied before ri.

We represent sequential dependency conflicts as follows:

r1 → r2, which means that r1 can be followed by r2, but

r2 cannot be followed by r1. Note that conflicts are direc-

tional, i.e., the fact that applying r j disables ri does not

necessarily means that ri disables r j.

• Given two refactorings ri and r j, ri has a mutual exclusion

conflict with r j iff ri and r j cannot be applied together in

any order. We represent mutual exclusion with the follow-

ing notation: r1 = r2.

In the extreme case where no conflicts exist among the pairs

of refactoring opportunities (i.e., all pairs commute), only the

presence or absence of a refactoring opportunity in a sequence

makes a difference in the sequence, and the search space can be

reduced to 2n refactoring sequences.

We model the conflicts between refactorings using a directed

graph GC , where the set of refactoring opportunities R is the set

of vertices and an edge e(u, v) ∈ E exists between two refactor-

ings u, v ∈ R if a conflict exists between u and v. Depending on

the refactoring type, we define some heuristics to detect con-

flicts between refactorings. For example, it is not valid to apply

move method to move method m1 from class A to class B after

inlining class A to B, as A will no longer exists, but m1 now

belongs to class B instead, if A is a subclass of B.

To better illustrate the refactoring scheduling problem, and

the effect that the consideration of dependencies and conflicts

between refactorings has on the size of the search-space, we

present an example of the problem in Listing 1.

Listing 1: Example of classes to be refactored

1 c l a s s Geometry {

2 . . .

3 double c a l c A r e a R e c t a n g l e ( R e c t a n g l e p1 ) {

4 re turn p1 . Width ( ) ∗p1 . He ig h t ( ) ;

5 }

6 void l o n g P a r a m e t e r L i s t M e t h o d ( i n t p1 , i n t p2 , . . . , i n t

p15 ) {

7 . . .

8 }

9 }

10

11 c l a s s R e c t a n g l e ex tends Shape {

12 p r i v a t e double wid th ;

13 p r i v a t e double h e i g h t ;

14 p u b l i c double Width ( ) {

15 re turn wid th ;

16 }

17 p u b l i c double He ig h t ( ) {

18 re turn h e i g h t ;

19 }

20 }

21

22 c l a s s Shape {

23 . . .

24 }

The refactorings presented in Table 1 can be applied to refac-

tor the classes described in Listing 1.

Table 1 contains three type of refactorings from [4] that we

describe below:

1. Move method. Move a method from one class to another

(e.g., to one of its parameter types [23]).

2. Inline Class. If a class contains few responsibilities, move

all its features to another class and remove it.

3. Introduce Parameter Object. Replace a list of parameters

that typically go together by an object.

Applying Equation 2 to the example shown in Listing 1,

we find that the number of refactoring sequences for the code

shown in Listing 1 is S = be · 3!c = b16.3097c = 16. A simple

manual enumeration, shown in Table 2 confirms this evaluation.

Note that in Equation 2 we assume that a permutation of a

subset of refactoring operations always leads to a different soft-

ware design. However, this assumption may not holds in all

cases. In Table 2 we find pairs of refactorings where the appli-

cation order is irrelevant, e.g., the application order of r1 and
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Table 1: List of refactorings candidates for the example from Listing 1
ID Type Source class Method Target Class

r1 Move method Geometry calcAreaRectangle Rectangle

r2 Inline Class Rectangle All fields and methods Shape

r3 Introduce Parameter Object Geometry longParameterListMethod GeometryParamObj (new)

Table 2: Enumeration of possible refactoring sequences for the set of refactor-

ing operations {r1, r2, r3}.
sequence elements sequence elements

1. None 9. r3, r1

2. r1 10. r3, r2

3. r2 11. r1, r2, r3

4. r3 12. r1, r3, r2

5. r1, r2 13. r2, r1, r3

6. r1, r3 14. r2, r3, r1

7. r2, r1 15. r3, r2, r1

8. r2, r3 16. r3, r1, r2

r3 in sequences 6, 9. Hence, it is possible to reduce even more

the search-space by removing these permutations as they lead

to the same design (same solution). This occurs because they

affect different code segments (the method and target class is

different for r1 and r3) , i.e., they are unrelated.

In addition, when a conflict exists between refactorings, it

is possible to reduce the size of the search space further. For

example, consider the sequential dependency conflict between

r1, r2, that is r2 cannot be applied before r1 (inlining class

Rectangle invalidates any move method refactoring from/to

that class). Hence, by removing redundant solutions, and in-

valid solutions (solutions with elements that are conflicted) we

can reduce the search-space size of the motivating example by

half (sequences 1, 2, 3, 4, 5, 6, 8 and 11). Thus, the value

obtained after applying Equation 2 should be used as an upper

bound of the search-space size, as long as we assume that ap-

plying a refactoring sequence does not create new refactoring

opportunities that were not in the original list. If this happens,

the number of possible refactorings can be larger than |S |. How-

ever, in a typical scenario, software maintainers would repeat

the process of finding refactoring opportunities until: (1) it is

not possible to apply more refactorings, or (2) they are satisfied

with the design quality.

3. Refactoring approach based on Partial Order Reduction

In this section we present RePOR, our novel approach to au-

tomate the correction of software anti-patterns through refac-

toring. RePOR is comprised of 7 steps depicted in Algorithm 1

Algorithm 1: RePOR
Input : System to refactor (SYS), Maximum number of refactoring operations in a

connected component subgraph (threshold)

Output: An optimal sequence of refactoring operations (S R)

1 Require Proc: extractBestPermutation, getFirstValidS equenceFromccap

2 Steps RePOR(SYS, threshold)

3 AM=code meta-model generation (SYS)

4 A = Detect Anti-patterns(AM)

5 R = Generate set of refactoring candidates(AM, A)

6 GB = Build Graph of dependencies between refactorings and

anti-patterns(AM,R, A)

7 CCAP = Find connected components (GB)

8 GC = Build Graph of conflicts between refactorings (AM, LR)

9 S R = Schedule sequence of refactorings(CCAP, GC , AM)

10 Procedure Schedule sequence of refactorings(CCAP, GC , AM):

11 S R = 0

12 for each ccap ∈ CCAP do

13 ccap.RemoveInvalidRe f actorings(S R)

14 if ccap.size == 0 then

15 continue

16 else

17 List permuts = enumeratePermutations(ccap)

18 if permuts ≤ threshold then

19 S R.addAll(extractBestPermutation(AM,GC , permuts))

20 else

21 S R.addAll(getFirstValidS equenceFromccap(AM,GC , ccap,R))

22 end if

23 end if

24 end for

25 return S R

26 end

3.1. Step 1: Code meta-model generation

In this step we generate a light-weight representation (a code

meta-model) of a system (SYS), using static code analysis tech-

niques, with the aim of evolving the current design into an im-

proved version in terms of design quality . A code meta-model
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describes systems at different levels of abstractions. We con-

sider three levels of abstractions to model systems. A code-

level model (inspired by UML) which includes all of the con-

stituents found in any object-oriented system: classes, inter-

faces, methods, and fields. An idiom-level model which is a

code-level model extended with binary-class relationships. Ex-

amples of binary-class relationships are association, aggrega-

tion, and composition relationships with association relation-

ships indicating that one instance of one class “uses” meth-

ods and–or fields of the instances of its associated class while

composition relationships indicate a constrained association in

terms of uniqueness and lifetime. They are identified through

static code-analyses with typically 100% precision and recall

for associations and a high precision and recall for aggrega-

tions. Composition relationships cannot be entirely identified

statically because they involve the lifetime of the instances of

the classes involved in such relationships. Hence, idiom-level

models include association and aggregation relationships and

only the few composition relationships that can be identified

with high precision and recall statically. A design-level model

contains information about occurrences of design motifs, code

smells, and anti-patterns. A code meta-model should provide

methods to manipulate the design model and generate other

models. The objective of this step is to manipulate the de-

sign model of a system programmatically. Hence, the code

meta-model is used to detect anti-patterns, apply refactoring

sequences and evaluate their impact on the design quality of

a system. More information related to code meta-models, de-

sign motifs and micro-architecture identification can be found

in [24, 25].

3.2. Step 2: Detect Anti-patterns

In this step we detect anti-patterns in the meta-model using

any available detection tool. The output of this step is a set

of anti-patterns instances (A), with the qualified name of the

classes and constituents that participate in each detected anti-

pattern.

3.3. Step 3: Generate set of refactoring candidates (R)

After we generate a set of anti-patterns that we want to cor-

rect from the previous step, we generate a list of refactoring op-

erations based on the type of anti-patterns. For example, in the

case of a Blob class, which is a large controller class surrounded

by data classes, we may start by moving functionality to re-

lated classes in order to reduce size and improve cohesion using

move method refactoring. We may have more than one possible

targets to move a method from the Blob class, which become

refactoring candidates, and our approach should be able to se-

lect the move method refactoring that improves the most the

design quality of the system after refactoring.

3.4. Step 4: Build refactorings dependency graph (GB)

To avoid evaluating permutations that lead to the same de-

sign, it is important to cluster refactorings by the classes they

are modifying.

3.5. Step 5: Find connected components (CCAP)

To guide the search of refactoring operations, once we have

built the refactorings dependency graph (GB), we proceed to

find the connected components of GB.

3.6. Step 6: Build refactorings conflict graph (GC)

As we mentioned before, conflicts arise when two or more

refactorings affect the same classes or their constituents (fields,

methods, etc.). These conflicts should be considered when gen-

erating a refactoring schedule to avoid evaluating invalid se-

quences.

3.7. Step 7: Schedule a sequence of refactorings (S R)

In this final step, we iterate over all connected components,

ccap ∈ CCAP, to schedule refactorings that correct more anti-

patterns (lines 11-25). At the beginning of the search, the

refactorings in sequence S R is empty (line 10). During the

search process, we will add refactorings to S R, that can dis-

able other refactorings from R. Hence, we remove refactoring

operations that are no longer valid in every iteration of the main

loop (line 12). If the number of vertices in a ccap is zero after
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removing invalid refactorings, we continue with the next con-

nected component. Otherwise, we compute all possible per-

mutations of the refactorings in ccap (line 16). To enumerate

all permutations of ccap, we use Algorithm G (General permu-

tation generator) from Knuth [26]. This algorithm generates

all permutations with the condition that every permutation is

visited only once. Depending on the number of elements in

ccap, it might not be possible to fit all possible permutations

in memory. The input parameter threshold is an integer value

which represents the maximum number of refactoring opera-

tions for a given ccap that we can enumerate without decreas-

ing RePOR’s performance, and this value is empirically deter-

mined according to the architecture of the test computer. If

permuts ≤ threshold, we call extractBestPermutation proce-

dure to obtain the best permutation in terms of anti-pattern cor-

rection, which is depicted in Algorithm 2. In case the number

of permutations is too large to be enumerated (Line 19) we call

method getFirstValidS equenceFromccap to find the first non-

conflicted sequence of anti-patterns from the current ccap. We

depict the procedure in Algorithm 4.

Algorithm 2 starts by initializing bestPermutS core to

positive infinity (as we are performing minimization) and

bestPermutation to an empty list. The main for-loop (line 4),

consists on iteratively adding refactoring operations from the

current permutation to permut. If the current refactoring is con-

flicted with the refactorings already added, it continues to the

next operation until the end of the current permutation. Then, it

evaluates the impact of the current permutation (permutS core),

and if this value is less than the current bestPermutS core, it

replaces bestPermut and bestPermutS core with permut and

bestPermutS core. Note that the application of each permuta-

tion of refactorings can result in one of the following outcomes:

the permutation removes an anti-pattern in the source class; it

does not remove the anti-pattern in the source class (e.g., there

are not enough move method refactorings to substantially de-

compose a Blob class); removes the anti-pattern in the source

class and introduces an anti-pattern in the target class; or does

not remove the anti-pattern in the source class, but adds a new

Algorithm 2: Algorithm to extract the best permutation

from a list of a set of integers
Input : Code design-model (AM), graph of conflicts GC , list of permutations

(permuts)

Output: A list of refactorings (bestPermutation)

1 Require Proc: evaluateImpactO f Permutation

2 Procedure extractBestPermutation (AM, GC , permuts):

3 bestPermutS core = +∞

4 bestPermutation = new List

5 for row = 1 to row = permuts.size do

6 permut = new List

7 for col = 1 to col = permuts[1].size do

8 if GC .isTherePathBetweenNodes(permuts[row][col],

permut)==false then

9 permut.add(permuts[row][col])

10 end if

11 end for

12 permutS core = evaluateImpactO f Permutation(permut, AM)

13 if permutS core < bestPermutS core then

14 bestPermutation = permut

15 bestPermutS core = permutS core

16 end if

17 end for

18 return bestPermutation

19 end

anti-pattern in the target class. The permutation with the best

score is returned (line 17).

In Algorithm 3 we present the procedure to evaluate a per-

mutation in terms of the number of anti-patterns that it corrects.

The procedure starts by initializing the variable score = 0. In

line 3, we have a for loop to iterate over all refactorings in the

permutation. In line 5, we proceed to detect anti-patterns in

the vertices adjacents to r in the bipartite graph, i.e., ad j(r,GB).

The outcome of the detection is stored in Ap. Next, if the appli-

cation of r on the code-design model succeeds, we recompute

the number of anti-patterns in the related classes, ad j(r,GB)

again, this time in the refactored design. Variable score is com-

puted by subtracting the count of anti-patterns after refactor-

ing (i.e., Ap′) from the count of anti-patterns before refactoring

(i.e., Ap) and adding this value to the current score. If r cannot

be applied to the model, we remove r from permut (Line 10).

This is done to reduce the overhead of scheduling invalid refac-

torings. One may think that validating the existence of conflicts

between r and the refactorings previously scheduled in Algo-
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Algorithm 3: Algorithm to evaluate a permutation in terms

of the number of anti-pattern it can remove
Input : A sequence of integers (permut), code-design model (AM), a set of

refactoring candidates (R), bipartite graph (GB)

Output: An integer value (score)

1 Procedure evaluateImpactOfPermutation(permut, AM, R):

2 score = 0

3 for col = 1 to col = permut.size do

4 r = R.getRe f actoring(permut[col])

5 Ap = Detect Antipatterns(ad j(r,GB))

6 if AM.ApplyRefactoring(r)==true then

7 Ap′ = Detect Antipatterns(ad j(r,GB))

8 score=score+(Ap′-Ap)

9 else

10 permut.remove(r)

11 end if

12 end for

13 AM.rollbackSequence(permut,R, GB)

14 return score

15 end

rithm 2 should be enough to warrants a valid sequence. How-

ever, we cannot be totally sure until we apply the refactoring se-

quence on the software system. Applying the refactoring on the

software system can be computationally expensive, specially

for a search algorithm. As an alternative, we use a code-design

model that enables us to simulate the application of a refactor-

ing on the software system. At the end of the loop (Line 12),

we undo all the refactorings from permut that were applied to

the code-design model, and return score (Lines 13-14).

Algorithm 4 starts at line 2, when variable desiredE f f ect is

set to -1. This means that the application of the sequence built

from a ccap removes one anti-pattern (in the source class) and

do not add any anti-pattern in any related class. Next, a for loop

(line 5) iterates the elements in ccap. If element is conflicted

with any of the refactorings already scheduled in sequence, we

skip to the next element. Otherwise, we perform anti-patterns

detection on the vertices adjacents to r in GB. The resulting

value is stored in Ap. If the application of r succeeds, we re-

trieve the participating elements of r from the refactored code-

design model, and detect anti-patterns again. Next, we add

element to tempRe f actoringS eq and compute score, similar to

Algorithm 3. If score is less or equal to desiredE f f ect, we

Algorithm 4: Algorithm to obtain the first valid sequence

from a set of refactorings
Input : Code meta-model (AM), graph of conflicts GC , set of connected

components (ccap), a set of refactoring candidates (R), bipartite graph (GB)

Output: A sequence of refactorings (sequence)

1 Procedure getFirstValidSequenceFromccap (AM, GC , ccap, R, GB):

2 desiredE f f ect=-1

3 sequence=new list

4 tempRe f actoringS eq=new list

5 for each element ∈ ccap do

6 score=0

7 r = R.getRe f actoring(element)

8 if GC .isTherePathBetweenNodes(element, sequence)==true then

9 continue

10 end if

11 Ap = Detect Antipatterns(ad j(r,GB))

12 if AM.ApplyRefactoring(r)==true then

13 Ap′ = Detect Antipatterns(ad j(r,GB))

14 tempRe f actoringS eq.add(element)

15 score=score+(Ap′ − Ap)

16 if score <= desiredE f f ect then

17 removeAntipattern = true

18 exit for

19 end if

20 end if

21 end for

22 AM.rollback(tempRe f actoringS eq)

23 if removeAntipattern = true then

24 sequence = tempRe f actoringS eq

25 end if

26 return sequence

27 end
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set removeAntipattern to true and exit the main loop. Finally,

we rollback the applied refactorings in the code-design model.

If we succeeded in removing at least one anti-pattern instance,

we set sequence equal to tempRe f actoringS eq. Otherwise, an

empty sequence is returned.

4. Case Study

In this section, we conduct a case study to assess the ef-

fectiveness of RePOR at improving the design quality of sys-

tems. The quality focus is the improvement of the design qual-

ity of a software system through refactoring. The perspective is

that of researchers interested in developing automated refactor-

ing tools for software systems, and practitioners interested in

improving the design quality of their software systems. The

context consists of the five metaheuristics: Ant Colony Op-

timization (ACO), Genetic Algorithm (GA), LIU, Sway, and

RePOR, and five open-source systems (OSS). We select Ant

Colony Optimization, Genetic Algorithm, LIU to compare the

results provided by RePOR as they are well-known techniques

successfully used in previous studies for scheduling refactor-

ings [27, 23, 14, 10, 8]. We select Sway because it has been suc-

cessfully applied to solve a diversity of optimization problems

(software product lines, agile project structures, and reducing

risk, defects and effort of a project), producing competitive re-

sults as those produced by traditional search-based algorithms,

but without the need of defining complex transformation oper-

ators.

We choose the five OSS according to the following criteria

(1): systems belonging to different application domains, (2)

availability for replication, (3) use in previous studies concern-

ing refactoring and anti-patterns [28, 10] and (4) non-trivial sys-

tems that are likely to present conflict when refactoring.

4.1. Research Questions

We define the following research questions:

(RQ1) To what extent can RePOR remove anti-patterns?

This research question aims to assess the effectiveness of Re-

POR at improving design quality. We use the number of oc-

currences of anti-patterns as a proxy for design quality, as they

have been found to hinder system evolution [29], and to be cor-

related with the occurrence of bugs [30]. Hence, the more anti-

patterns removed the better.

(RQ2) How does the performance of RePOR compares to

the following metaheuristics: ACO, GA, LIU, and Sway, for

the correction of anti-patterns?

This research question aims to assess the performance of Re-

POR in terms of execution time and effort. The rational of

studying the execution time is that developers are advise to

perform refactoring regularly along with other coding activi-

ties [31]. Hence, the waiting time for an algorithm to produce

refactoring solutions should be small to be suitable for work-

ing on the loop with developers. The rationale for studying

effort is that performing a long list of refactorings to achieve

high-quality design improvement could lead to an unrecogniz-

able design for developers. It also increases the probability to

introduce regression, as it is not suitable to be reviewed by a

human pair. Hence, we believe that from developers’ perspec-

tive [32], it is important to minimize the number of necessary

refactorings to attain quality improvement.

4.2. Evaluation Method

In the following, we describe the approach followed to an-

swer RQ1, RQ2.

All statistics have been performed using the R statistical envi-

ronment1. For all statistical tests, we consider a significance

level of 5%. For RQ1, we measure the effectiveness of RePOR

at removing anti-patterns in software systems using the follow-

ing dependent variable:

• Design Improvement (DI). DI represents the delta of

anti-patterns occurrences between the refactored system

(S YS ′) and the original system (S YS ) and it is computed

using the following formulation.

DI(S YS ) =
|AC(S YS ′) − AC(S YS )|

AC(S YS )
× 100. (3)

1http://www.r-project.org/
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Where AC(S YS ) is the number of anti-patterns in a sys-

tem S YS and AC(S YS ) ≥ 0. DI, which is a positive real

number, represents the improvement amount in percent-

age, and high positive values are desired. Note that Equa-

tion 3 assumes that AC(S YS ′)−AC(S YS ) < 0, as RePOR

filters out solutions that make the design worse according

to the desiredE f f ect threshold (cf., Algorithm 4).

The independent variable is the refactoring approach ap-

plied to each studied system. We statistically compare

the number of remaining anti-patterns after refactoring a

system using RePOR with the number of remaining anti-

patterns when using other refactoring approaches. Specif-

ically, we test the following hypothesis H01: There is no

difference between the number of remaining anti-patterns

of a system refactored using RePOR, and a system refac-

tored using other refactoring approaches. We test the

hypothesis using a non-parametric test, i.e., the Mann-

Whitney U test [33]. For estimating the magnitude of

the differences of means between the number of remain-

ing anti-patterns in systems refactored by RePOR and sys-

tems refactored using other approaches, we use the non-

parametric effect size measure Cliff’s δ (ES ), which indi-

cates the degree of overlapping between two sample dis-

tributions [34]. ES values range from -1 (if all selected

values in the first distribution are larger than the second

distribution) to +1 (if all selected values in the first distri-

bution are smaller than the second distribution). It is zero

when two sample distributions are identical. Cliff’s δ ef-

fect size is considered small when 0.147 ≤ |ES | < 0.33,

medium for 0.33 ≤ |ES | < 0.474, and large for |ES | ≥

0.474 [35].

For RQ2, the dependent variables are the execution time and

the effort:

• Execution Time (ET). ET represents the total CPU time

for the algorithm thread in milliseconds. CPU time is the

time that a process is actually running (not waiting on I/O

or blocked by other threads that got CPU quantum). We

use Oracle’s java.lang.management library to measure this

metric 2.

• Refactoring Effort (RE). We calculate the effort of refac-

toring by counting the number of refactorings that are

scheduled to remove an anti-pattern.

The independent variable is the refactoring approach. We test

the following two null hypothesis: H02 : There is no difference

between the execution time of RePOR and the execution time

of the other studied refactoring approaches. H03 : There is

no difference between the refactoring effort incurred by RePOR

and the refactoring effort incurred by other studied refactoring

approaches. To test H02, H03, we use the same statistical tests

as in RQ1.

4.2.1. Solution representation.

We use a vector representation where each element is a refac-

toring operation (r) that includes: an Id field (unique identifier)

to know which refactorings have been applied so far. The anti-

pattern’s source class, and the type of refactoring. The type of

refactoring is used to determine if a conflict with a previous RO

in the sequence will arise. In addition to this, we can have more

fields providing extra information, e.g., target class and method

name for move method, or long method names for Spaghetti

code classes.

4.2.2. Code meta-model

The code meta-model is generated using the Patterns and Ab-

stract level Description Language (PADL) model [25]. PADL

models are generated by the Ptidej tool suite [36] based on the

source code or bytecode of a software system.

4.2.3. Detection and correction of anti-patterns

To detect anti-patterns, we use DECOR as in previous

works [8, 7]. DECOR uses a set of rules (metrics, relations

2https://docs.oracle.com/javase/8/docs/api/java/lang/management/package-

summary.html
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between classes) that describe the characteristics of each anti-

pattern. In Listing 2 we present an example of the Blob detec-

tion rule card. The detection of a Blob is the result of the as-

sociation of a mainclass to one or more DataClass(es) (line 2).

To detect the main class (i.e., the blob class) the rule used is

the result of the union between LargeClassLowCohesion, and

ControllerClass rules (line 3-6). The union operator is inter-

preted as an addition (a logic OR). LargeClassLowcohesion is

measured using metrics number of methods plus number of at-

tributes (nmd+nad), and lack of cohesion (LCOM5) using or-

dinal values (e.g., high, medium, low etc.). These values are

computed using the box-plot statistical technique [37] to relate

ordinal values with concrete metric values while avoiding set-

ting artificial thresholds. The number after the ordinal value

(i.e., VERY HIGH) represents the degree of fuzziness, which

is the acceptable margin around the threshold relative to the or-

dinal value (line 5,6). The Blob rule card also includes a lexical

property, that is the vocabulary used to name the methods and

the class (line 8-11), i.e., using words like Process, Control, etc.

Finally, it is necessary that the mainClass is associated to one

or more data class(es). A data class is the one where the acce-

sor ratio (number of accessors/number of methods) is greater

or equal to 90% (line 12).

Listing 2: Rule card of Blob anti-pattern from DECOR

1 RULE_CARD : Blob {

2 RULE : Blob { ASSOC: associated FROM: mainClass

ONE TO: DataClass MANY };

3 RULE : mainClass { UNION LargeClassLowCohesion

ControllerClass };

4 RULE : LargeClassLowCohesion { UNION LargeClass

LowCohesion };

5 RULE : LargeClass { (METRIC: NMD + NAD , VERY_HIGH ,

0) };

6 RULE : LowCohesion { (METRIC: LCOM5 , VERY_HIGH ,

20) };

7 RULE : ControllerClass { UNION

8 (SEMANTIC: METHODNAME , {Process , Control ,

Ctrl , Command , Cmd ,

9 Proc , UI, Manage ,

Drive})

10 (SEMANTIC: CLASSNAME , {Process , Control ,

Ctrl , Command , Cmd ,

11 Proc , UI, Manage ,

Drive ,

System ,

Subsystem })

};

12 RULE : DataClass { (STRUCT: METHOD_ACCESSOR , 90)

};

13 };

From the set of anti-patterns and code smells detected

by DECOR, we consider five types of anti-patterns, namely

Blob (BL), Lazy Class (LC), Long Parameter List (LP),

Spaghetti Code (SC) and Speculative Generality (SG). These

anti-patterns are well-recognized by developers [38], and have

been studied in previous works [39, 28, 40, 41].

In Table 3, we present information about the systems stud-

ied: number of classes (NOC), number of lines of code ×103

(KLOC), and number of anti-patterns detected by type.

Table 3: Descriptive statistics about the studied systems.
System NOC KLOC BL LC LP SC SG Total

Apache Ant 1.8.2 697 191 57 40 35 3 6 141

ArgoUML 0.34 1754 183 131 25 281 1 19 457

GanttProject 1.10.2 188 44 47 4 68 5 6 130

JfreeChart 1.0.19 505 98 41 21 62 1 1 126

Xerces 2.7 540 71 56 25 119 2 3 205

The type of refactorings generated to correct the studied

anti-patterns are the same that we defined in our previous

work [7]. In this work we distinguish between intra-class anti-

patterns (anti-patterns in a class, e.g., Long-Parameter List), and

inter-class (anti-patterns spreading over more than one class,

e.g., Blob).

In Table 4 we describe the type of anti-patterns studied and

the refactoring strategies used to remove them. Table 5 shows

the number of refactoring candidates that were automatically

found in each system.

4.3. RePOR implementation

We instantiate RePOR as an eclipse plug-in and compared it

with three refactoring approaches. Design improvement (DI) is

measured using Equation 3. To determine the value of the pa-

rameter threshold, described in Section 3.7, we executed 30 in-

dependent executions for each of the systems studied in a Win-

dows 10 64-bit, Intel Core 5 at 2.30 GHz, 12 GB of memory

machine, and record the size of ccap, where the performance
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Table 4: List of studied Anti-patterns and the refactorings used to correct them.
Type Description Refactoring(s) strategy

Blob (BL) [13] A large class that absorbs most of the

functionality of the system with very

low cohesion between its constituents.

Move method (MM). Move the

methods that does not seem

to fit in the Blob class ab-

straction to more appropriate

classes [23].

Lazy Class

(LC) [31]

Small classes with low complexity that

do not justify their existence in the sys-

tem.

Inline class (IC). Move the at-

tributes and methods of the LC

to another class in the system.

Long Parameter

List (LP) [31]

A class with one or more methods hav-

ing a long list of parameters, specially

when two or more methods are shar-

ing a long list of parameters that are

semantically connected.

Introduce parameter object

(IPO). Extract a new class with

the long list of parameters and

replace the method signature

by a reference to the new ob-

ject created. Then access to

this parameters through the pa-

rameter object.

Spaghetti Code

(SC) [13]

A class without structure that declares

long methods without parameters.

Replace method with method

object (RMWO). Extract long

methods into new classes so all

local variables become fields

on that object.

Speculative Gen-

erality (SG) [31]

There is an abstract class created to an-

ticipate further features, but it is only

extended by one class adding extra

complexity to the design.

Collapse hierarchy (CH).

Move the attributes and meth-

ods of the child class to the

parent and remove the abstract

modifier.

of RePOR is acceptable, and found threshold = 10 to be the

best trade. The value of threshold indicates that for our ex-

periments, we only exhaustively explore the permutations of a

ccap containing 10 or less refactoring operations, and evaluate

the resultant permutations only after removing any conflicted

refactoring operation.

The directed graph of conflicts (GC) is used for the three

metaheuristics to avoid scheduling invalid refactorings. Due to

the random nature of the metaheuristics studied (i.e., ACO, GA,

and Sway) it is necessary to perform several independent runs

to have an idea of the behavior of the algorithms. Hence, we

execute 30 independent runs for all the approaches studied and

for each system. This is a typical minimum value (i.e., 30 runs)

used in the search-based research community to have enough

experimental data to perform a statistical analysis.

With respect to the search of the connected components in the

graph of dependencies between refactorings (GB), we use the

implementation proposed by Sedgewick and Wayne [42] which

Table 5: Number of refactoring candidates automatically generated for each

studied system.
CH IC IPO MM RMWO Total

Ant

6 9 35 4269 3 4322

ArgoUML

19 25 281 2475 1 2800

Gantt Project

6 4 68 3861 5 3944

JfreeChart

1 21 62 4228 1 4313

Xerces

3 25 119 4118 2 4267

uses a recursive depth-first search algorithm.

The stopping criteria for the metaheuristics studied has to be

uniform to provide a fair comparison. While in RePOR and LIU

the stopping criteria is determined by the number of vertices in

the refactoring dependency and conflict graphs, for ACO and

GA, the number of evaluations (transformations applied to the

randomly-generated initial solutions) required to find an opti-

mal solution cannot be determined before hand. Typically, re-

searchers use number of evaluations or execution time as stop-

ping criteria. We use number of evaluations as the stopping cri-

terion, with a maximum of one thousand evaluations (for each

system). This value was empirically determined in our previous

works [7, 8].

The next paragraphs disclose in detail the implementations

of ACO, GA, LIU, and Sway used in this case study.

4.4. Ant Colony Optimization Implementation

Ant Colony Optimization (ACO) [18] is a constructive meta-

heuristic, inspired by the behavior of real ants, that has been

successfully applied in solving NP-hard problems, i.e., prob-

lems for which no polynomial time algorithm is known, such

as routing (traveling salesman, vehicle routing), assignment

(graph coloring, frequency assignment), scheduling (job shop,

flow shop), network routing (connection-oriented network rout-

ing), etc. The benefits of using ACO are: rapid discovery of

good solutions, distributed computation which avoid premature

convergence like in local search, and greedy heuristics which

helps to discover acceptable solutions in the early stages of the

12



search process. In our ACO implementation, the ants are arti-

ficial agents that cooperate to build a path in a directed graph

G = (S ,T ) where S is the set of nodes and T ⊆ S × S is the

set of arcs. A finite path over the graph is a sequence of nodes

(refactorings operations) π = s1, s2, . . . , sn where si ∈ S for

i = 1, 2, . . . , n. We denote πi the ith node of the sequence and

we use |π| to refer to the length of the path, i.e., the number of

nodes of π.

Our ACO implementation corresponds to a simple ACO [18],

where the best ant in the colony updates the pheromone matrix.

In Algorithm 5 we describe the main steps of ACO implemen-

tation. The steps from Line 2 to 5 are the same steps performed

by RePOR, and the main algorithm starts in Line 8. In the al-

gorithm, the path traversed by the ith artificial ant is denoted

with ai. We use
∣∣∣ai

∣∣∣ to refer to the length of the path, the jth

node of the path is denoted with ai
j, and the last node with ai

∗.

We denote with T (s) to the set of successor nodes of node ai
∗.

We use the + operator to indicate concatenation between paths.

The maximum value for
∣∣∣ai

∣∣∣ is the number of elements in R

(Line 3) i.e., λant. The search process starts at Line 8 where the

pheromone trails are initialized with the same value: a random

number between 0 and 1. After the initialization, the ants start

the path construction from different nodes, and the algorithm is

executed during a given number of steps m (Line 10). Inside the

loop, each ant builds a path randomly selecting the next node

according to the pheromone (τi j) and the heuristic value (ηi j)

associated to each arc (i, j) (Line 14). In fact, if the kth ant is in

node i, it selects node j with probability pi j =
[τi j]α[ηi j]β∑

k∈Ni [τik]α[ηik]β ,

where pi j is the probability of an ant to move from node i,

to node j. τi j is the trail intensity which provides information

about how many ants have passed through this path. Ni is the

set of successor nodes from node i. ηi j is an associated heuristic

value. k is a mute variable whose domain is the set of succes-

sors nodes. The concrete expression is ηi j = h( j), where h( j)

is the score assigned to the candidate refactoring operation by

a heuristic function (see Section 4.4.1). The construction phase

is iterated until the ant reaches the maximum length λant, or the

current node has no successors in the graph (Line 13).

Once an ant has built a path, it is necessary to evaluate it on-

the-fly. We generate a clone of the original design (Line 17) and

for each node in ak we apply its corresponding refactoring op-

eration. Then, the algorithm performs anti-patterns’ detection

(Line 21) in the resulting model. The design quality is evaluated

according to the defined objective function. A good solution is

a sequence that corrects more antipatterns.

After the construction phase, the pheromone trails are up-

dated (Line 28) to take into account the quality of the candidate

solutions previously built by the ants. The pheromone update

follows the expression: τi j ← ρτi j + f (abest),∀(i, j) ∈ abest,

where ρ is the pheromone evaporation rate and it holds that

0 ≤ ρ ≤ 1. On the other hand, f (abest) is the amount of

pheromone that the best-ant-path, ever found, deposits on arc

(i, j).

The algorithm is finalized whenever the algorithm reaches

one of the following conditions:

1. We reach the maximum number of steps (msteps).

2. We reach the optimal state, i.e., The number of classes with

anti-patterns is zero (NDC = 0).

4.4.1. ACO heuristic function

The heuristic value (ηi j) is calculated by a function that pro-

duces an integer value that defines how beneficial is to apply a

refactoring r to a class in the system. According to the num-

ber of coexisting anti-patterns in the source class, we assign a

score that increases with the benefits of applying r on each of

the detected anti-patterns in a class. To determine the score, we

assign for each refactoring type, an integer value in the range

of -2 to 2, where -2 represents a negative effect for a particular

anti-pattern, and 2 a very desirable effect, i.e., complete correc-

tion. Let us take the following example: suppose that class A

has two coexisting anti-patterns namely LC and LP. The sug-

gested refactorings for correcting those anti-patterns are inline

class and introduce parameter object, respectively. Suppose

that we want to evaluate the goodness of node 1, inline class.

For the first defect (LC) we give a score of 2, as it is the ideal
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Algorithm 5: Ant Colony implementation for scheduling

refactoring
Input : System to refactor (SYS)

Output: An optimal sequence of refactoring operations (S R)

1 Steps ACO(SYS)

2 AM=code-design model generation (SYS)

3 Ap = Detect Anti-patterns(AM)

4 R = Generate set of refactoring candidates(AM, A)

5 GC = Build Graph of conflicts between refactorings and anti-patterns (AM, LR)

6 S R = Ant Colony Optimization for refactoring(GC , AM)

7 Procedure Ant Colony Optimization for refactoring(GC , AM):

8 τ = initialize pheromone()

9 step = 1

10 while step ≤ msteps AND Ap , 0 do

11 for k = 1 to colsize do

12 ak = null

13 while
∣∣∣ak

∣∣∣ ≤ λant AND T (ak
∗) − ak , ∅ do

14 node = select successor(GC ,T (ak
∗), τ, η)

15 ak = ak + node

16 end while

17 AM′ = AM.clone()

18 for all node ∈ ak do

19 apply re f actorings(AM′, node)

20 end for

21 ak .Ap = detect antipatterns(AM′)

22 if DI(ak) > DI(abest) then

23 abest = ak

24 Ap = abest .Ap

25 end if

26 end for

27 τ = pheromone evaporation(τ, ρ)

28 τ = pheromone update(τ, abest)

29 step = step + 1

30 end while

31 return abest

32 end

refactoring for correcting LC, and 0 (no benefit or detriment)

to LP; then the total score for node 1 will be 2 (2+0) as well

as for node 2. On the contrary, suppose that class A has two

defects (SC and LP), and we want to prioritize the refactoring

of SC over LP. Then, we could assign a heuristic value of 2 to

RO type replace method with method object, when a class has

SC, and 1 to introduce parameter object, when a class has LP.

In this way the sum of scores for this example will be (2+0),

and (1+0) respectively, having more probability to choose the

node that corrects SC over the one that corrects LP. The heuris-

tic component ηik cannot accept values equal to zero. Thus,

we compute 2score to provide a value in the domain of natural

numbers.

In Table 6 we show the parameters used for ACO. These pa-

rameters are not set in an arbitrary way, but they are the result of

running ACO with different configurations 30 times, in a facto-

rial design. For example, to select the importance of the heuris-

tic in ACO, we tried the following couples: no heuristic (α = 1,

β = 0), same importance (α = 1, β = 1), more importance to

pheromone (α = 2, β = 1) and so on.

Table 6: Parameters of the Ant Colony Optmization algorithm for refactoring

scheduling.
Ant Colony Optimization

Parameter Value Parameter Value

msteps 10 ρ 0.8

colsize 100 β 2.0

λant |R| α 1.0

4.5. Genetic Algorithm implementation

Genetic Algorithm (GA) is an evolutionary metaheuris-

tic [43, 44], where a group of candidate solutions, called in-

dividuals or chromosomes, are recombined through some vari-

ation operators, i.e., crossover, and mutation, in order to select

the best solutions of each iteration (generation). The process

of selection and recombination is guided by an evaluation func-

tion, a.k.a., fitness function, which ensures that the best indi-

viduals have more possibilities to be chosen in each genera-

tion. GA is a population-based algorithm, because it works with

several solutions at the same time, contrary to trajectory-based
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methods like hill-climbing and simulated annealing that work

with only one solution at a time. The GA used in this work is

an elitist genetic algorithm. The proposed elitist GA, selects

the best two individuals of the previous population and inserts

them directly in the new population (Lines 17 and 18). As next

step, the proposed approach considers the best two individuals

of the previous population (through a selection operator like bi-

nary tournament); cross them over, mutates them, and inserts

them in the new population until reaching the stop condition.

Our GA implementation [8] is instantiated from a generic one

included in JMetal, a Java framework for solving optimization

problems [45].

In Algorithm 6, we describe the main steps of our GA imple-

mentation. We define P as a list of refactoring sequences (pop-

ulation), and s as a candidate solution (individual) with s ∈ P.

Lines from 1 to 6 are the initialization steps and the main algo-

rithm starts in line 7. The population size for the experiments is

100 individuals. In Line 8, the population is initialized with ran-

domly generated refactoring sequences, and evaluated in Line

10. In Line 15, the refactoring sequences are sorted in descend-

ing order by their fitness (number of anti-patterns corrected).

The main loop starts in Line 16 until the stopping criterion is

met. For this case study, we use number of evaluations.

4.5.1. Initial Solution Length

The initial length of a solution for new individuals is a ran-

dom number between one and the total number of refactoring

candidates.

4.5.2. Selection operator

The selection operator controls the number of copies of an

individual (solution) in the next generations, according to its

quality (fitness). Examples of selection operators are tourna-

ment selection or fitness proportionate selection [46]. In our

implementation we use a binary tournament; the one proposed

by Deb et al. [47].

Algorithm 6: Genetic Algorithm implementation for

scheduling refactorings
Input : System to refactor (SYS)

Output: An optimal sequence of refactoring operations (S R)

1 Steps GA(SYS)

2 AM=code-design model generation (SYS)

3 A = Detect Anti-patterns(AM)

4 R = Generate set of refactoring candidates(AM, A)

5 GC = Build Graph of conflicts between refactorings and anti-patterns (AM, LR)

6 S R = Genetic Algorithm for refactoring(GC , AM)

7 Procedure Genetic Algorithm for refactoring(GC , AM):

8 nPop = populationS ize

9 P = GenerateInitialPopulation(AM,GC )

/* Evaluation of P */

10 for all s ∈ P do

11 AM′ = AM.clone()

12 apply re f actorings(AM′, s)

13 s.Ap = detect antipatterns(AM′)

14 end for

/* the sequences are sorted in ascendent order according to

Ap */

15 P.sort()

16 while not S toppingCriterion do

/* add the best two individuals of the previous

population in O population */

17 O.add(P0)

18 O.add(P1)

/* Reproductive cycle */

19 for 0 to nPop/2 − 1 do

/* parents is a list of refactoring sequences */

20 parents = new List of size 2

21 parents0 = selection operator(P)

22 parents1 = selection operator(P)

23 o f f spring = Variation Operators(parents,GC )

/* We generate two offsprings */

24 AM′ = AM.clone()

25 apply re f actorings(AM′, o f f spring0])

26 o f f spring0.Ap = detect antipatterns(AM′)

27 AM′ = AM.clone()

28 apply re f actorings(AM′, o f f spring1)

29 o f f spring1.Ap = detect antipatterns(AM′)

30 O.add(o f f spring)

31 end for

32 P=O

33 O=null

34 P.sort()

35 end while

36 best solution = P0

37 return best solution

38 end

15



RO: 10
Type: replace 
method with 
object

RO: 3
Type: 
collapse 
hierarchy

1. Select a random cut-point for each 
parent

3. Repeat the same procedure for child 
C2, but starting with parent P2

Parent P1

Cut-point 1 (X1) Cut-point 2 (X2)

Child C1

Child C2

RO: 7
Type: move 
method

RO: 1
Type: 
collapse 
hierarchy

RO: 10
Type: replace 
method with 
object

RO: 3
Type: 
collapse 
hierarchy

RO: 7
Type: move 
method

RO: 5
Type: 
collapse 
hierarchy

Parent P2

2. To obtain C1, take the refactorings of  P1 before X1
 and combine them with refactorings of P2 after X2.

RO: 10
Type: replace 
method with 
object

RO: 3
Type: 
collapse 
hierarchy

RO: 7
Type: move 
method

RO: 3
Type: 
collapse 
hierarchy

RO: 7
Type: move 
method

RO: 5
Type: 
collapse 
hierarchy

RO: 1
Type: 
collapse 
hierarchy

RO: 10
Type: replace 
method with 
object

Figure 1: Example of cut and slice technique used as crossover operator.

4.5.3. Variation operators

The variation operators allow metaheuristics to transform a

candidate solution so that it can be moved through the decision

space in the search of the most attractive solutions, and to es-

cape from local optima. GA uses two main variation operators:

crossover and mutation. Crossover consists of combining two

or more solutions (known as parents) to obtain one or more new

solutions (offspring). We implement the Cut and splice tech-

nique as crossover operator, which consists in randomly setting

a cut point for two parents, and recombining with the elements

of the second parent’s cut point and vice-versa, resulting in two

individuals with different lengths. We provide an example in

Figure 1.

For mutation, we consider the same operator used in our

previous work [8] that consists of choosing a random point in

the sequence and removing the refactoring operations from that

point to the end. Then, we complete the sequence by adding

new random refactorings until there are no more valid refactor-

ing operations to add (i.e., that do not cause conflict with the

existent ones in the sequence). We provide an example in Fig-

ure 2.

For population size, we use a default value of 100 indi-

viduals; and for the probability of applying a variation op-

erator we selected the parameters using a factorial design in

the following way: we tested 16 combinations of mutation

probability pm = (0.2, 0.5, 0.8, 1), and crossover probability

pc = (0.2, 0.5, 0.8, 1), and obtained the best results in terms

of anti-pattern’s correction with the pair (0.5, 0.8).
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Figure 2: Example of the mutation operator used.

4.6. LIU conflict-aware scheduling of refactorings

Liu et al. [14, 15] proposed different heuristics to solve the

refactoring scheduling problem. From these approaches, we se-

lect the one in [14], as it is the one that could work with the anti-

patterns studied in this paper. On the other hand, the approach

proposed in [15] assumes that the refactoring of certain type of

anti-patterns can lead to the resolution of another types (e.g., re-

moving code duplications can affect long method). Hence, they

leverage this property to remove redundant edges in the graph

of conflicts using topological order. However, the type of anti-

patterns that we studied and their corresponding refactorings

are independent (e.g., it is not appropriate to apply inline class

refactoring to a blob Class; collapse hierarchy and inline class

cannot be applied at the same time to the same class).

In the following paragraphs we explain the steps that we took

to adapt the conflict-aware scheduling of refactorings [14] (LIU

for short) to our framework, to compare it with RePOR.

LIU uses the QMOOD hierarchical quality model [48] to as-

sess the effect of applying a refactoring on a software system.

Because QMOOD combines weighted design metrics (e.g., de-

sign size, hierarchies, polymorphism, etc.) to measure quality

attributes like reusability, understandability, flexibility, etc. The

values obtained for each quality attribute are only useful when

compared to the values obtained from systems of the same do-

main used by the industry. Hence, in the evaluation of LIU [14]

they refactored an in-house-developed-modeling tool, and to

calibrate the weights of design metrics, they take as an upper-
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bound the metrics values obtained from a similar open-source

project (BPEL from Eclipse foundation). However, in this work

we use the occurrence of anti-patterns as proxy for design qual-

ity. We believe that the occurrences of anti-patterns is a more

appropriate way to asses the quality of a software system, as

it does not require to find a good-quality representative system

to compare with. Our anti-pattern detection framework uses

relative values to asses the quality of each class in the system

(cf., Section 4.2), which makes it more flexible and easier to

adapt for an automated approach as it does not require a cali-

bration step.

The steps of our implementation of LIU are summarized in

Algorithm 7.

Algorithm 7: LIU conflict-aware scheduling of refactor-

ings
Input : System to refactor (SYS)

Output: An optimal sequence of refactoring operations (S R)

1 Steps LIU(SYS)

2 AM=code-design model generation (SYS)

3 A = Detect Anti-patterns(AM)

4 R = Generate set of refactoring candidates(AM, A)

5 GC = Build Graph of conflicts between refactorings(AM, LR)

/* GC = (V, E) */

6 S R = Find sequence of refactorings(GC , AM)

7 Procedure Find sequence of refactorings(GC , AM):

8 S R = ∅

/* first applying all uninjurious refactorings */

9 for each vi |ad j(vi) = 0 do

10 Remove vi and its edges from GC

11 S R.add(vi)

12 end for

13 if |GC | == 0 then

14 return S R

/* End algorithm */

15 end if

/* first applying all injurious refactorings */

16 for each vi |ad j(vi) , 0 do

17 Compute synthetical effect (S ynQi)

18 Compute potential effect (PQi)

19 Selection and application

20 Update potential effect

21 end for

22 return S R

23 end

The algorithm starts after generating the list of refactoring

candidates and building the graph of conflicts (Lines 2-5). In

line 9 we start applying all uninjurious refactorings, i.e., refac-

torings that do not prevent the application of other refactorings.

More formally, i is an uninjurious refactoring iff there is not an

edge e from vi to v j where
{
vi, v j ∈ E

}
, E ∈ GC

If there are no more refactorings left in GC, the algorithm

ends (Line 13). Otherwise, we iterate over all injurious refac-

torings and perform the following steps.

Compute synthetical effect. It consists of computing the ef-

fect of applying a refactoring i in the system, i.e., the incre-

ment/decrement of anti-patterns occurrences after applying i.

We denoted the synthetical effect of applying refactoring i as

S ynQi.

Compute potential effect. The application of a refactoring

may disable other refactorings (negative effect), or reduce the

possibility of conflicts (positive effect) for those refactorings

that are adjacent to vi. Note that for LIU, there is an edge (asym-

metrical conflict) between v, u iff u can be applied before, but

not after v. In our motivating example, r2 presents an asymmet-

rical conflict with r1 according to LIU. We denoted the potential

effect of applying refactoring i as PQi.

Selection and application. Select a vertex vi from GC that has

the greatest potential effect (PQ) and add it to S R.

Update potential effect. Once refactoring i is applied, we re-

move the vertex from GC and update the potential effect of ver-

tices adjacents to vi (ad j(vi)).

4.7. Sway search-based optimizer

As we briefly discuss in Section 4.5, evolutionary algorithms

(EAs) work by improving randomly generated candidate solu-

tions across multiple generations; the evolution process consists

of selecting the most prominent individuals to mate and mu-

tate to produce better individuals with certain probability until

a stopping condition is reached. To avoid the overhead of trans-

forming candidate solutions, Chen et al. proposed Sway [19],

a search-based approach that iteratively clusters candidate so-

lutions from a large unique population to isolate the superior

17



quality solutions. When compared to existing EAs, like NS-

GAII, Sway has achieved similar (and sometimes better) results

in terms of time and quality of solutions for well-known soft-

ware engineering problems, but requiring fewer objective eval-

uations.

We briefly describe the main steps of Sway.

1. The first step consist of generating a large unique set of

solutions.

2. Then, the algorithm splits them in two sets according to

the value of their decision variables. Two representative

solutions are chosen from each set, called east and west

solutions. Note that Sway relies on the assumption that

there exists a close association between the decision and

the objective spaces. If we were to cluster the solutions

through their objectives, we would need to evaluate all so-

lutions, which might be computationally expensive.

3. Prune half of the candidates based on the objectives of the

representatives of each side (east and west solutions). If

none of the representatives of each side is better than the

other representative call Sway recursively on each side and

join the results.

In the case of the refactoring scheduling problem, a solution

is represented by a list of refactoring operations. The objective

function is based on the quality improvement achieved after ap-

plying a refactoring sequence to a software system.

The steps of our implementation of Sway are summarized in

Algorithm 8.

From Lines 2 to 5, the same initialization steps performed by

the other metaheuristics in our framework are found. In Line 9

we set nPop equal to the size of population. In this study, we

use a population of one thousand individuals. While Chen et

al. [19] suggest to use a population of ten thousands or more.

The reason why we opt for a lower value is that the execution

time was too high in the preliminary experiments we performed

with Sway. However, the size of population that we used in

Sway is ten times bigger than the one we used for ACO and

Algorithm 8: Sway Algorithm implementation
Input : System to refactor (SYS)

Output: An optimal sequence of refactoring operations (S R)

1 Steps Sway (SYS)

2 AM=code-design model generation (SYS)

3 A = Detect Anti-patterns(AM)

4 R = Generate set of refactoring candidates(AM, A)

5 GC = Build Graph of conflicts between refactorings(AM, LR)

6 S R = Find sequence of refactorings(GC , AM)

7 Procedure Find sequence of refactorings(GC , AM):

8 S R = ∅

9 nPop = populationS ize

10 enough =
√

nPop

11 P = GeneratePopulation(AM,GC )

12 P′ = Sway F(P, enough) /* get the best solution */

13 bestFitness = 0

14 for i = 0 to enough − 1 do

15 tmp f it = null

16 if P′i .Ap == null then

17 AM′ = AM.clone()

18 apply re f actorings(AM′, P′i )

19 P′i .Ap = detect antipatterns(AM′)

20 tmp f it = DI(P′i )

21 else

22 tmp f it = DI(P′i )

23 end if

24 if tmp f it > bestFitness then

25 bestFitness = tmp f it

26 S R = P′i

27 end if

28 end for

29 return S R

30 end
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GA. We discuss further the execution times we obtained run-

ning Sway with different values of nPop, and how we reduced

the evaluation time of the decision variables in Section 6.

The parameter enough (Line 10) is a threshold used as the

stop condition for the recursive function Sway F(cf., Algo-

rithm 9). If the population size is smaller than enough, then

just return all candidates. Otherwise, Sway F splits the candi-

dates in two groups, until this condition is met. The decision

spaces in software engineering models have different types of

representations, and the one that we use in this work is a se-

quence of refactoring operations [5, 8]. We define enough as

in [19], that is, enough =
√

nPop.

In Line 11, P is a set of randomly generated refactoring se-

quences, of random length. To avoid generating invalid se-

quences, we skip refactoring operations that conflict with refac-

torings already inserted in the sequence (according to GC). In

Line 12 we make a call to Sway F and retrieve P′ ⊂ P : |P′| <

enough. It is probable that Sway F returns more than one in-

dividual. Hence, we extract the best solution from P′ (Lines

14-28), and return it as S R (Line 29). Note that we only evalu-

ate the fitness of a solution once (we internally avoid unneces-

sary fitness evaluations by checking if the count of anti-patterns

has been already set) during the execution of Sway. This may

happen when comparing the best representatives of each group.

Since Sway does not make use of transformation operators, it is

safe to assume that the fitness of the individuals remains con-

stant. In Algorithm 9 we present the steps of the recursive pro-

cedure Sway F.

The input of Algorithm 9 is a list of refactoring sequences,

and the stop condition (set in Algorithm 8). The output is a

pruned list of the best sequences derived from recursive calls

of Sway. Sway works by splitting the individuals in two groups

according to their decision variables. The way to evaluate the

decision variables depends on the representation chosen. Then

Sway prunes half of them based on the fitness value of the repre-

sentative individuals, and not the whole population. The SPLIT

procedure is responsible of finding the representative of each

group (east, west). If the west solution is not better than the

Algorithm 9: Sway recursive algorithm
Input : refactoring sequences (items), stop condition (enough)

Output: pruned results

1 Require Proc: SPLIT, BETTER

2 Procedure Sway F (items):

3 if items.size < enough then

4 return items

5 else

6 ∆1,∆2 = ∅, ∅

7 west, east,westItems, eastItems = S PLIT (items)

8 if ¬BETT ER(west, east) then

9 ∆1 = Sway F(eastItems)

10 end if

11 if ¬BETT ER(east,west) then

12 ∆2 = Sway F(westItems)

13 end if

14 return ∆1 ∪ ∆2

15 end if

16 end

east solution, then the set eastItems is explored using Sway re-

cursively, to obtain a set of solution that is stored in ∆1. The

same procedure, replacing the east solution by the west solu-

tion and eastItems by westItems is done to obtain set ∆2. The

SPLIT function has to be designed according to the solution

representation, in our case it is a refactoring sequence type. In

the original publication of Sway [19], there is no implementa-

tion of the SPLIT function for this representation. Hence, we

designed a SPLIT procedure based on the suggestions of the

authors of Sway.

In Algorithm 10 we present the SPLIT procedure used in

our implementation of Sway. Algorithm 10 starts by ini-

tializing Ob jδ, east and west representatives (e,w) and the

two groups of individuals (westItems, eastItems). Next a

random refactoring sequence r is selected from items, and

f urthestPermutation(r, items) computes the furthest permu-

tation from any element in items to r, called e. That is

max(D) where D = (d0, d1..dn),∀d = DIS T ANCE(r, item) :

item ∈ Items (cf., Algorithm 11). To find w, we compute

f urthestPermutation(e, items). Then, we compute the fitness’

difference between the two representatives (Ob jδ). In line 19, a

loop to find the two representatives with the largest Ob jδ based

on a predefined threshold (attempts) is executed. We arbitrary
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Algorithm 10: SPLIT algorithm for refactoring sequence

type
Input : refactoring sequences (items), stop condition (enough)

Output: representatives (west, east), two groups (westItems, eastItems)

1 Require Proc: DISTANCE,

2 Procedure SPLIT (items,enough):

3 Ob jδ = 0, e = ∅,w = ∅,westItems = ∅, eastItems = ∅

4 r = getRandomItem()

5 e = f urthestPermutation(r, items)

6 w = f urthestPermutation(e, items)

7 if e.Ap == null then

8 AM′ = AM.clone()

9 apply re f actorings(AM′, e)

10 e.Ap = detect antipatterns(AM′)

11 end if

12 if w.Ap == null then

13 AM′ = AM.clone()

14 apply re f actorings(AM′,w)

15 w.Ap = detect antipatterns(AM′)

16 end if

17 Ob jδ = abs(DI(e) − DI(w))

18 count = 1

19 repeat

20 r = getRandomItem()

21 tempe = f urthestPermutation(r, items)

22 tempw = f urthestPermutation(e, items)

23 tempOb jδ = abs(DI(tempe) − DI(tempw.Ap))

24 if tempOb jδ > Ob jδ then

25 e = tempe,W = tempw

26 end if

27 count = count + 1

28 until count=attempts

29 for each item ∈ items do

30 if DIS T ANCE(item, e) < DIS T ANCE(item,w) then

31 eastItems.add(item)

32 else

33 westItems.add(item)

34 end if

35 end for

36 return e,w,westItems, eastItems

37 end

set the value of attempts to 10 as suggested by the authors of

Sway, while any value from 1 to items divided by 2 would be

acceptable. Note that the longer the value of attempts is, the

higher the execution time.

The final step (line 29), consists of mapping large

amounts of refactorings sequences to their corresponding group

(eastItems,westItems).

In the refactoring scheduling problem, a refactoring sequence

is a permutation derived from a subset of a list of refactoring

candidates, that have to be applied in a specific order, and where

the occurrence or absence of any operation from the complete

list of refactoring candidates determines the final quality of the

refactoring sequence.

Selecting the best metric to measure the distance between

two sequences is not straightforward, and it has been found to

be a NP-hard problem [49], which means that most probably

only approximation algorithms can be efficient for large n : n =

|permutation|. Deterministic alternatives, includes Kendall Tau

Distance (K) [50]. We suggest that an adequate distance metric

is the one that considers the features of each solution according

to the problem to solve.

To measure the distance of two refactoring sequences, K dis-

tance requires that the two permutations being of equal size.

This cannot be granted, since the existence of conflict between

refactoring operations prevents this to happen. Alternatively,

we could artificially alter one of the permutations, like adding

the missing elements from the largest permutation to the end of

the other, to measure the distance using K, but this adds over-

head to control for it and does not represent the nature of our

problem. For that reason, we propose a metric that considers

(1) the presence or absence of elements in two permutations;

(2) the order of appearance of the elements that both permuta-

tions have in common.

In Algorithm 11, we present our proposed procedure to com-

pute the distance between two refactoring sequences.

Algorithm 11 starts by setting aux to the set difference be-

tween RS 1 and RS 2; next, distance is assigned the value of

aux length. Similarly, we subtract RS 2 and RS 1 into aux, and
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Algorithm 11: Distance algorithm for refactoring sequence

type
Input : Refactoring sequences (RS 1,RS 2)

Output: Distance (distance)

1 Procedure DISTANCE (RS 1,RS 2):

2 distance = |RS 1 \ RS 2| + |RS 2 \ RS 1|

3 nbcomElem = |RS 1 ∩ RS 2|

4 for i = 1 to i ≤ |nbcomElem| do

5 for j = i + 1 to j ≤ |nbcomElem| do

6 if RS 1i < RS 1 j then

7 if RS 2i > RS 2 j then

8 distance = distance + 1

9 end if

10 else

11 if RS 2i < RS 2 j then

12 distance = distance + 1

13 end if

14 end if

15 end for

16 end for

17 return distance

18 end

adding aux length to distance. At this point distance repre-

sents the elements that are absent in both permutations. The

next step, is a pairwise comparison to obtain the relative posi-

tion in which the operations in common appear (Lines 8-21),

and in case the relative position changes in a pair the distance

is incremented by one. After making the pairwise comparison,

between the common operations, the final distance is returned

(line 23).

Finally, for determining BETT ER from two permutations

(p1, p2), let d = DI(p1) − DI(p2), if d > ε, p2 is better.

Otherwise, p1 is better. Where ε = 0 : DI(p1) − DI(p2) =

ε i f f DI(p1) = DI(p2).

5. Results

In this section, we answer our two research questions that

aim to evaluate RePOR.

RQ1: To what extent can RePOR remove anti-patterns?

We present in Table 7 the Design improvement (DI) in gen-

eral and for different anti-pattern types, for each studied system.

The results are the median of the 30 independent executions.

We observe that overall, the design improvement (first col-

umn) of the solutions generated by RePOR is higher in compar-

ison with the improvements achieved by the other approaches.

The DI of LIU is close to the one obtained by RePOR except in

one system, JfreeChart, where ACO and GA performed better

than LIU. Concerning ACO and GA, the DI achieved is very

close between them, but lower than the one achieved by Re-

POR. Sway is even inferior to the one achieved by the rest of

the approaches by 10% approximately.

With respect to the type of anti-patterns, RePOR have some

difficulty to remove Blob anti-patterns compared to the other

metaheuristics (we discuss further in Section 6), with one ex-

ception, Ant, where it improves more than LIU. In the case of

Ant, and Gantt systems, RePOR achieved the same design im-

provement than Sway. For Lazy Class, the results achieved by

RePOR are the same compared to ACO, GA and LIU except

for Gantt, where it removes less instances than the others. Sway

attained less improvement for 4 out 5 systems. The different

was Gantt where Sway surpass RePOR.

For Long-Parameter List, RePOR attained the best results in

all the systems studied. For Spaghetti code, RePOR overcomes

the rest of the approaches in Gantt, and tie with ACO, GA, and

LIU on the other systems. Finally, for Speculative Generality

no difference exists between the five approaches, except in Ant,

and ArgoUML where the results of Sway were inferior.

Table 8 presents the Mann-Whitney test results and Cliff’s

δ effect size (ES ) obtained when comparing the number of

remaining anti-patterns of the systems after being refactored

by RePOR and the other refactoring approaches. We observe

that all the differences are statistically significant with a large

effect size, except for JFreeChart where the difference between

ACO and RePOR is small, and the pair GA-RePOR where the

effect size is negligible. Therefore we reject H01 for the rest of

the systems.
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Table 7: Design Improvement (%) in general and for different anti-pattern types.
Metaheuristic DI DIBL DILC DILP DIS C DIS G

Ant

ACO 57.45 68.42 22.5 74.29 66.67 100

GA 58.16 68.42 22.5 74.29 66.67 100

LIU 58.87 54.39 22.5 100 66.67 100

RePOR 60.28 57.89 22.5 100 66.67 100

Sway 45.36 57.89 20 60 66.67 83.33

ArgoUML

ACO 75.93 51.15 100 83.63 100 100

GA 76.59 51.15 100 84.7 100 100

LIU 81.40 50.38 100 92.88 100 100

RePOR 81.62 38.93 100 98.58 100 100

Sway 62.91 48.09 84 66.01 100 86.84

Gantt Project

ACO 60 17.02 100 83.82 70 100

GA 60.77 14.89 100 85.29 80 100

LIU 63.85 14.89 100 92.65 60 100

RePOR 66.15 8.51 75 100 100 100

Sway 50 8.51 100 70.59 60 100

JfreeChart

ACO 75.4 39.02 100 89.52 100 100

GA 75.4 39.02 100 90.32 100 100

LIU 72.22 31.71 100 88.71 100 100

RePOR 75.4 24.39 100 100 100 100

Sway 61.90 36.59 90.48 73.39 100 100

Xerces

ACO 56.59 14.29 100 65.55 100 100

GA 57.56 14.29 100 67.23 100 100

LIU 64.39 16.07 100 78.99 50 100

RePOR 73.17 5.36 100 98.32 100 100

Sway 41.87 14.29 68.00 49.58 50 100
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Table 8: Pair-wise Mann-Whitney U Test test for design improvement.
Pair p − value Cliff’s δ Magnitude

Ant

ACO-RePOR 2.561349e-12 1 Large

GA-RePOR 1.431438e-11 1 Large

LIU-RePOR 1.685298e-14 1 Large

Sway-RePOR 1.190193e-12 1 Large

ArgoUML

ACO-RePOR 1.176641e-12 1 Large

GA-RePOR 1.143381e-12 1 Large

LIU-RePOR 1.685298e-14 1 Large

Sway-RePOR 1.206843e-12 1 Large

Gantt Project

ACO-RePOR 1.036681e-12 1 Large

GA-RePOR 1.086586e-12 1 Large

LIU-RePOR 1.685298e-14 1 Large

Sway-RePOR 1.165138e-12 1 Large

JfreeChart

ACO-RePOR 0.06868602 0.2333333 Small

GA-RePOR 0.2771456 -0.1333333 Negligible

LIU-RePOR 1.685298e-14 1 Large

Sway-RePOR 1.183399e-12 1 Large

Xerces

ACO-RePOR 1.0618e-12 1 Large

GA-RePOR 9.946555e-13 1 Large

LIU-RePOR 1.685298e-14 1 Large

Sway-RePOR 1.193116e-12 1 Large
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We reject the null hypothesis H01 for Ant, ArgoUML,

Gantt, JfreeChart, and Xerces. In these five systems, the

number of remaining anti-patterns after refactoring us-

ing RePOR is significantly lower than the number of anti-

patterns remaining in the systems after refactoring using

the other refactoring approaches (i.e., ACO, GA, LIU and

Sway). With respect to the magnitude of Cliff’s δ, the dif-

ference is large for all the systems, except the pairs ACO-

RePOR and GA-RePOR in JFreeChart, where it is small

and negligible, respectively. Overall, our results suggest

that for the set of anti-patterns studied and the systems an-

alyzed, RePOR can correct more anti-patterns, than ACO,

GA, LIU and Sway.

RQ2: How does the performance of RePOR compares to the

following metaheuristics: ACO, GA, LIU, and Sway, for the

correction of anti-patterns?

We present in Table 9 the execution time (ET) and the effort

(EF) incurred for each refactoring scheme. ET is given in sec-

onds, while EF represents the number of refactorings applied.

The results are the median of 30 independent runs.

Table 9: Median performance metrics for each system, metaheuristic. Execu-

tion time (ET) is in seconds, and the effort (EF) is the number of refactorings

applied.
Metaheuristic Execution Time Effort

Ant

ACO 11505.73 1686.00

GA 11558.97 1676.00

LIU 260.45 1641.00

RePOR 82.05 827.00

Sway 7301.64 1624.00

ArgoUML

ACO 5617.51 1119.00

GA 5664.39 1123.00

LIU 148.45 1166.00

RePOR 72.88 438.00

Sway 2833.33 1020.00

Gantt Project

ACO 5924.93 1069.00

GA 5975.71 1067.00

LIU 652.45 894.00

RePOR 133.45 119.00

Sway 1779.60 981.00

JfreeChart

ACO 11321.81 1748.00

GA 11369.82 1748.00

LIU 877.74 1747.00

RePOR 133.30 297.00

Sway 13677.25 1654.00

Xerces

ACO 5781.67 886.00

GA 5831.93 887.00

LIU 389.43 909.00

RePOR 63.07 178.00

Sway 1777.49 819.00

We can observe that RePOR performs better than the other

algorithms in terms of execution time and effort, with a remark-

able difference, while removing more anti-patterns and using

less resources. In terms of execution time; it takes between one

minute and less than three minutes to generate a sequence for

a complete system, while the second best scheme (LIU) takes
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a median of six and half minutes. The number of refactor-

ings scheduled are considerably less than the other approaches,

which will likely make RePOR attractive to software develop-

ers and maintainers, specially when applying refactoring while

performing other maintenance tasks.

The performance of GA and ACO is poor compared to Re-

POR, despite using the same solution representation and the

conflict graph (to discard invalid refactorings). We attribute this

poor performance to their incapability to discard equivalent se-

quences (i.e., permutations of refactorings that lead to the same

design). Despite the fact that LIU has integrated a mechanism

to evaluate the potential effect of applying/removing a refac-

toring from a sequence, it cannot avoid scheduling uninjurious

refactorings that do not improve the design quality, incurring

additional costs in effort and time. Sway, as we expected, per-

form faster than ACO and GA even that the population size is

ten times larger. However, the execution time spent by Sway

is considerably high compared to the ones of LIU and RePOR.

The same pattern occurs with respect to the effort (number of

refactorings scheduled). Here we observe that scheduling less

refactorings for Sway affect the design improvement achieved,

while in RePOR scheduling less refactorings did not affect the

design improvement attained.

Concerning RePOR, the overhead occurs when generating a

refactoring sequence from a permutation, in case that it con-

tains a large number of elements. To deal with this issue, Re-

POR only considers a subset of refactoring operations from the

permutation until it reaches the desiredimpact, i.e., the correc-

tion of an anti-pattern instance without introducing a new one

(cf., Algorithm 4). However, we do not expect to find many

cases where the number of elements in a connected component

is to large to be exhaustively explored. In Table 10 we provide

some statistics about the size of the connected components in

GB generated by RePOR from the studied systems. We can ob-

serve that the median size of the connected components is one,

and the number of connected components with size greater than

one goes from 11% to 47% of total number of connected com-

ponents in the worse scenario.

Table 10: Statistics of the connected components (CCAP) in GB from the stud-

ied systems
System Median size Size>1 Total CCAP

Ant 1 46 99

ArgoUML 1 46 424

Gantt Project 1 25 108

Jfreechart 1 30 106

Xerces 1 36 173

ACO, GA, and Sway are algorithms for which it is not possi-

ble to predict when an optimal solution will be found. In gen-

eral, the performance of a metaheuristic can be affected by the

correct selection of its parameters. The configurable settings

of the search-based techniques used in this paper correspond

to stopping criterion, population size, and the probability of

the variation operators (except for Sway). We use the number

of evaluations as the stopping criteria for ACO and GA, while

Sway relies on the parameter enough for that purpose.

In the case of ACO and GA, as the maximum number of

evaluations increase, we expect the algorithm to obtain better

quality results. The increase in quality is usually very fast when

the maximum number of evaluations is low. That is, the slope

of the curve quality versus maximum number of evaluations is

high at the very beginning of the search. But this slope tends to

decrease as the search progresses. Our criterion to decide on the

maximum number of evaluations is to select a value for which

this slope is low enough. In our case low enough is when we

observe that no more anti-patterns are removed after n number

of evaluations, where n is the value that we are testing. We

empirically tried different values in the range of 100 to 1500

and found 1000 to be the best value. However, that does not

imply that the best solution is to be found at the end of the 1000

iterations, but could happen before. In addition, computing the

average of design improvement with respect to time could help

to determine if the evolution trend of the solutions could reach

its inflexion point, or the algorithm was stopped prematurely.

To study the evolution of the quality of the solutions obtained

by each algorithm every time the current best solution is im-

proved, we compute the average quality of each solution with

respect to time, and present the results in Figure 3. The quality
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is expressed as DI, and the time is normalized using the min-

max normalization, that is the minimum time value is mapped

to 0 and the maximum value to 1. Given that RePOR and LIU

produce only one solution in the entire process (instead of pro-

ducing several solutions and evolving them), there is only one

point for these approaches. Note that we exclude Sway from

this analysis, since its goal is show that evolving an initial pop-

ulation is not necessary, but performing fast sampling is enough

to filter the best individuals.

In Figure 3, the interpretation for a point p (t,v) is: from t and

until the next sample, the average quality of the metaheuristic

is v, where t represents time and v is the DI. We can observe

that RePOR produces high-quality solutions in a small fraction

of time, in comparison to the other approaches. There are only

two cases where differences are small: in ArgoUML, LIU is

very close to the results achieved by RePOR in terms of quality

with a difference of 0.2%, and incurring only 1.75% additional

time, while the difference with the best solutions of ACO and

GA is not less than 5%. In JfreeChart, where GA approaches

the best solution found by RePOR with a difference of 0.02%

in DI, but with a remarkable difference of 99.70% of additional

time. This is the only case where GA and ACO are clearly

better than LIU. For the rest of the systems, as it is shown in

Figure 3, both metaheuristics reached their inflexion point far

below the optimal solutions found by RePOR and LIU.

With respect to the type of refactorings applied, we present

in Table 11 the number of refactorings applied by type. We can

observe that the number of refactorings applied by RePOR are

similar to those applied by the other metaheuristics, except for

move method. That explains the reduction in effort required

by RePOR compared to the other metaheuristics. It also ex-

plains why the results obtained for the removal of Blob are not

so good, since for this type of anti-pattern requires the appli-

cation of many refactorings to be corrected. Still, this should

not be considered as a flaw of our approach, since the main ob-

jective is to correct the largest number of anti-patterns without

prioritizing the correction of a particular type of anti-pattern,

over the others anti-patterns. In this regard, RePOR succeeds

well in improving the design quality of the systems studied, in

a reasonable amount of time.

Table 11: Median count of refactorings applied for each system, refactoring

scheme, by type.

Metaheuristic
Collapse

Hierarchy

Inline

Class

Introduce

Param-Obj.

Move

Method

Replace

Method

with Obj.

Ant

ACO 6 9 256 1643 3

GA 6 9 27 1629 3

LIU 6 9 35 1589 2

RePOR 6 9 35 774 3

Sway 5 8 23 1584 2

ArgoUML

ACO 17 24 246 829.5 1

GA 18 23 249 828.5 1

LIU 18 23 281 843 1

RePOR 17 25 280 115 1

Sway 15 20 198 783 1

Gantt Project

ACO 6 4 59 996 3

GA 6 4 60 994 3

LIU 6 4 68 812 4

RePOR 6 4 68 37 5

Sway 6 4 52 916 3

JfreeChart

ACO 1 21 56 1669 1

GA 1 21 56 1669 1

LIU 1 21 62 1662 1

RePOR 1 21 62 212 1

Sway 1 19 49 1588 1

Xerces

ACO 3 25 97.5 758.5 2

GA 3 25 99 759 1.5

LIU 3 25 119 761 1

RePOR 3 25 119 29 2

Sway 3 17 79 715 1

Finally, to assess the statistical significance of the results ob-

tained, we compare performance metrics between RePOR and

each metaheuristic using the same procedure as RQ1. Table 12

presents the pair-wise statistical tests for each metaheuristic.

We observe that all the differences are statistically significant

with a large effect size. Therefore we reject H02 for the five

studied systems.
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Figure 3: Quality evolution of the refactoring solutions with respect to time.
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Table 12: Pair-wise Mann-Whitney U Test test for performance metrics.
Metric Pair p − value Cliff’s δ Magnitude

Ant

ET ACO-RePOR 1.691123e-17 1 Large

EF ACO-RePOR 1.133109e-12 1 Large

ET GA-RePOR 1.691123e-17 1 Large

EF GA-RePOR 1.197023e-12 1 Large

ET LIU-RePOR 1.691123e-17 1 Large

EF LIU-RePOR 1.685298e-14 1 Large

ET Sway-RePOR 1.691123e-17 1 Large

EF Sway-RePOR 1.209803e-12 1 Large

ArgoUML

ET ACO-RePOR 1.691123e-17 1 Large

EF ACO-RePOR 1.191166e-12 1 Large

ET GA-RePOR 1.691123e-17 1 Large

EF GA-RePOR 1.202906e-12 1 Large

ET LIU-RePOR 1.691123e-17 1 Large

EF LIU-RePOR 1.685298e-14 1 Large

ET Sway-RePOR 1.691123e-17 1 Large

EF Sway-RePOR 1.209803e-12 1 Large

Gantt Project

ET ACO-RePOR 1.691123e-17 1 Large

EF ACO-RePOR 9.750474e-13 1 Large

ET GA-RePOR 3.017967e-11 1 Large

EF GA-RePOR 1.13497e-12 1 Large

ET LIU-RePOR 1.691123e-17 1 Large

EF LIU-RePOR 1.685298e-14 1 Large

ET Sway-RePOR 1.691123e-17 1 Large

EF Sway-RePOR 1.209803e-12 1 Large

JfreeChart

ET ACO-RePOR 1.691123e-17 1 Large

EF ACO-RePOR 1.038395e-12 1 Large

ET GA-RePOR 1.691123e-17 1 Large

EF GA-RePOR 1.124768e-12 1 Large

ET LIU-RePOR 1.691123e-17 1 Large

EF LIU-RePOR 1.685298e-14 1 Large

ET Sway-RePOR 1.691123e-17 1 Large

EF Sway-RePOR 1.209803e-12 1 Large

Xerces

ET ACO-RePOR 1.691123e-17 1 Large

EF ACO-RePOR 1.144319e-12 1 Large

ET GA-RePOR 1.691123e-17 1 Large

EF GA-RePOR 1.175678e-12 1 Large

ET LIU-RePOR 1.691123e-17 1 Large

EF LIU-RePOR 1.685298e-14 1 Large

ET Sway-RePOR 1.691123e-17 1 Large

EF Sway-RePOR 1.200942e-12 1 Large
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We reject the null hypothesis H02 and H03, for Ant, Ar-

goUML, Gantt, JfreeChart, and Xerces. In these five sys-

tems, the execution time and the effort incurred by RePOR

are significantly lower than those incurred by the other

refactoring approaches. With respect to the magnitude of

Cliff’s δ, the difference is large for all the systems ana-

lyzed. Overall, our results suggest that for the set of anti-

patterns studied and the systems analyzed, RePOR can

correct more anti-patterns, using less time, and requiring

less effort (in terms of refactorings applied) than ACO,

GA, LIU and Sway.

6. Discussion

In this section we discuss the results obtained by RePOR

and their relevance for software maintainers and toolsmiths in-

terested in improving the design quality of a software system

through refactoring.

In Section 5 we have shown that RePOR is able to correct

more anti-patterns using considerably less resources in terms of

time and effort than state-of-art refactoring approaches. How-

ever, we observed that the number of instances of Blob anti-

pattern removed by RePOR was lower than the number of Blobs

removed by the other approaches. This could be explained by

the large amount of refactorings that are required to remove a

Blob anti-pattern, in comparison to other types of anti-patterns.

Another interesting observation is the fact that Long Parame-

ter List and Lazy class anti-patterns show higher improvement

with RePOR. Therefore, there seems to be a trade off between

the refactorings that can be scheduled, as it is not possible to

improve all types of anti-patterns to the same extent. What

we present in this paper is an alternative refactoring approach,

which proves to be more efficient than existing refactoring ap-

proaches in terms of design improvement, execution time, and

effort. We achieved this result by clustering refactorings by

the class that they affect in a connected component subgraph

(ccap), and exhaustively searching (when possible) the best or-

der for the refactorings for each ccap, as they are likely to lead
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to a different software design. In addition, as each ccap may

contain conflicted refactorings that cannot be scheduled simul-

taneously, these refactoring operations are removed from the

search space too, reducing the length of the sequences to be

evaluated. Finally, for the set of refactorings in a ccap where

the size is too large to explore all permutations exhaustively, we

implement in our approach a mechanism to stop the addition of

refactorings if we found that the desired effect (i.e., the desired

improvement in quality) is achieved, or just simply when the

permutation does not lead to any improvement (i.e., does not

correct any anti-pattern). In comparison, LIU approach runs

until there is no more refactorings left in the graph, so it as-

sumes that all the refactorings that are not conflicted have to

be scheduled. An assumption that may lead to the inclusion of

unnecessary refactorings in the final sequence. With respect to

ACO and GA, they start with random initial solutions that are

iteratively transformed until the stopping criteria is achieved.

While this proved to be useful for removing Blob anti-patterns,

the usage of resources in terms of time and effort seems to be

prohibitive for a coding session or when working interactively

with a developer, and may be more suitable for refactoring ses-

sions running after-hours as a batch process. Another disad-

vantage of ACO and GA is that they have to be calibrated in

order to perform reasonably well, with the plethora of parame-

ters involved for each algorithm as we show in Section 4. With

respect to Sway, we observe that beside the number of evalua-

tions were reduced, the cost of evaluating the decision variables

using a refactoring sequence representation was expensive, that

is the DIS T ANCE metric. To address this problem, we store

the results of the DIS T ANCE in a map structure and consid-

ering that the result is commutative (i.e., the DIS T ANCE(i, j)

is the same that DIS T ANCE( j, i)), we managed to reduce the

execution time considerably. For example, in ArgoUML we

managed to reduce the execution time from 5 hours to just 1.

It is probable that if we increase the size of the population, we

could achieved better results, but the cost would be counterpro-

ductive. For example, in our preliminary experiments, we set

the size of the population for ArgoUML to 10, 000, and mea-

sure an execution time of more than 12 hours. Yet, the design

improvement reached 70.24%, 10% higher than with the value

reported in this paper. But still inferior compared to the other

metaheuristics employed in this study. The main weakness that

we see in using Sway for the refactoring schedule problem is

that the population is randomly generated (similar to GA and

ACO), so it is difficult to reach a good solution, but as the au-

thors mentioned [19], Sway is a good alternative algorithm for

benchmarking other metaheuristics.

One final remark, the refactoring sequences generated by all

the approaches studied, do not prioritize any code entities that

a developer might be interested. It is possible that developers

are interested in refactoring certain packages or classes from

which they have the ownership; or simply they just avoid to

touch legacy code or critical components. To provide develop-

ers with a tool that could be used during daily coding tasks, we

integrate RePOR as an Eclipse plug-in [20]. After analyzing a

software system (or a subset of classes), our plug-in presents

information about the anti-patterns detected, and a generates a

refactoring sequence where they can select the refactorings that

they consider appropriate.

7. Threats to validity

We now discuss the threats to validity of our study following

common guidelines for empirical studies [51].

Construct validity threats concern the relation between the-

ory and observation. Our case study assumes that each anti-

pattern is of equal importance, when in reality, this may not

be the case. Concerning the scheduling of refactorings, we as-

sume that the potential refactoring operations that can be ap-

plied in a software system are determined before the refactor-

ing process begins. This is a big assumption, as new refactor-

ing operations might be found as a consequence of changes in

the code, e.g., the application of previous refactorings. How-

ever, the search for new refactoring opportunities after applying

each refactoring in a sequence is a costly operation. Therefore,

most (if not all) the works on automatic refactoring assume that

there is a list of refactoring opportunities at the beginning of the
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search and the optimization algorithm simply selects which of

them will be applied and their order until the end of the list/s-

tarting of a new refactoring session [22].

Threats to internal validity concern our selection of subject

systems, tools, and analysis method. With respect to anti-

pattern’s detection, DECOR is known to be accurate [28], it

is not possible to guarantee that we detect all anti-patterns or

that what we detect as anti-patterns are indeed true anti-pattern

instances. Other anti-pattern detection techniques and tools

should be used to confirm our findings.

Conclusion validity threats concern the relation between the

treatment and the outcome. We paid attention not to violate

assumptions of the constructed statistical models. In particular,

we used non-parametric tests that do not require any assumption

on the underlying probability distribution of data.

Reliability validity threats concern the possibility of replicat-

ing this study. Every result obtained through empirical studies

is threatened by potential bias from data sets [52]. To mitigate

these threats we tested our hypotheses over five open-source

systems with different size, purpose and years of development.

In addition to this, we attempt to provide all the necessary de-

tails required to replicate our study. The source code reposi-

tories of Apache Ant, ArgoUML, JfreeChart, Gantt and Xerces

are publicly available, and have been studied in previous studies

related to anti-patterns and code smells. In addition, we made

the tool and the data generated publicly-available through our

on-line replication web site [20].

Threats to external validity concern the possibility to gen-

eralize our results. Our study is focused on five open source

software systems having different sizes and belonging to differ-

ent domains. Nevertheless, further validation on a larger set of

software systems is desirable, considering systems from differ-

ent domains, as well as several systems from the same domain.

In this study, we used a particular yet representative subset of

anti-patterns as proxy for software design quality. Future works

using different type of anti-patterns are desirable.

8. Related Work

The work related to RePOR can be divided in two categories:

refactoring scheduling, and search-based refactoring.

8.1. Refactoring Scheduling

In this category we present some of the representative works

that proposed techniques to schedule rationally a set of candi-

date refactorings to improve the effect of refactoring according

to their defined quality objectives.

Mens et al. [53] formulated a model to analyze refactoring

dependencies using critical pair analysis. However, this model

lacks of automation to schedule refactorings once potential con-

flicts are detected.

Bouktif et al. [54] proposed an approach to schedule refac-

toring actions in order to remove duplicated code using genetic

algorithm.

Liu et al. [14] proposed an heuristic algorithm to schedule

refactorings based on a conflict matrix and the effects of candi-

date refactorings on the design. They evaluated their approach

on a house-made modeling tool using QMOOD [48] model and

found that it outperforms a manual approach.

Liu et al. [15] proposed an algorithm to schedule the refac-

toring of code smells using pairwise analysis. By using topo-

logical sort on graph that represents the type of anti-patterns

detected, they reduced the search of sequences by removing re-

dundant edges that correspond to overlapping smells. However,

they did not automate the application of the refactorings on the

systems.

These previous works require a list of candidate refactorings

in advance to schedule unlike our approach, which automati-

cally detects anti-patterns and propose refactoring candidates.

Lee et al. [55] proposed an approach to automatically sched-

ule refactorings to remove method clones using a Competent

Genetic Algorithm. The proposed approach was evaluated us-

ing a testbed of four open-source systems. They found higher

quality improvement compared to manual and greedy search in

terms of QMOOD model [48], but the same quality improve-

ment using exhaustive search for the less complex systems. Zi-
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bran and Roy [56] proposed an approach to refactor code clones

based on constraint programming. They evaluated their ap-

proach on four in-house systems and reported that it outper-

formed greedy and manual approaches.

Moghadam and Ó Cinnéide [57] proposed an approach for

refactoring scheduling where the quality goal is set to be a de-

sired design expressed as a UML model, and the refactoring

operators are transformations aimed at achieving that model.

They evaluated their approach on an open-source system with a

small set of 50 refactorings to be scheduled and found that the

produced sequence of refactorings could transform the initial

design into the desired design with 100% of success.

8.2. Search-based refactoring

Seng et al. [23] proposed an approach based on GA, that aims

to improve the cohesion of the entities through the implemen-

tation of move method refactoring. They evaluated the qual-

ity of the refactoring sequences with a weighted sum fitness

function that comprise coupling, cohesion, complexity and sta-

bility measurements. O’Keeffe and Cinnéide [58] proposed

an approach that relies on the QMOOD model [48] to assess

the quality of the candidate refactorings. They tested their ap-

proach using local (SA and hill climbing) as well as global

search techniques (GA). Although they proposed hill climbing

as the most suitable technique for search-based refactoring, they

did not find statistically significant difference among the other

techniques with respect to quality gain.

Harman and Tratt [5] introduced a multi-objective refactor-

ing approach for improving two compromised metrics in soft-

ware design: coupling, and the standard-deviation of number

of methods per class. They showed that using the concept of

Pareto optimality, it is is possible to find the Pareto front, which

is the set of solutions where there is no component that can be

improved without decreasing the quality of another component.

Thus, the outcome is a not a single but a set of optimal solutions

to be selected by the developer.

Concerning swarm optimization, Fawad and Heckel [59] for-

mulated the refactoring scheduling problem as a graph trans-

formation problem, using ACO. However, they did not empiri-

cally assessed the performance of their approach, or compared

it to the performance of other metaheuristics. Simmons et al.

proposed an interactive ACO algorithm to support software de-

signers in the early stages of the software development process

(ELSD) [60]. The idea is to interactively find the best candi-

date design by grouping relevant methods and attributes into

classes and present them to the designer to provide feedback.

They conclude that ACO is effective in finding useful solutions

faster than other multiobjective metaheuristics. In our approach

the perspective is the code that already exists and needs to be

maintained.

Moghadam and Ó Cinnéide [6] proposed an automated ap-

proach where the goal is to reach a desired design, described as

an UML diagram through the mapping of the model differences

(between the UML diagram of the source code and the desired

model) into source level refactorings. The difference with our

approach, is that the software designer needs to provide in ad-

vance a desired design, to allow the approach to generate the

refactoring sequences required to achieved this desired design.

Something that is not always feasible.

Ouni et al. [11] proposed a multi-objective evolutionary algo-

rithm approach based on the NSGA-II [47]. The two conflicting

objectives of this approach are correcting a large quantity of de-

sign defects, while preserving semantic coherence.

Mkaouer et al. [61] proposed an interactive refactoring ap-

proach that allow users to rank candidate solutions found by a

NSGA-II algorithm.

Recently, researchers have been adding new objectives and

refining existing pitfalls in the existing implementations of

NSGA-II for refactoring [62, 7, 63].

Our approach differs from these works in the following

points: (1) while most of the recent works implemented EAs,

our approach reduces the search space by implementing tech-

niques derived from partial order reduction which leads to faster

results and less effort; (2) current approaches require the user

to input a set of defect examples to generate the detection rules,

however, in practice the availability and quality of such datasets
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compromise the recall and precision of the correct identification

of anti-patterns.

9. Conclusion

In this paper, we presented RePOR, a novel approach for

automatically scheduling refactoring operations for correcting

anti-patterns in software systems. To evaluate RePOR, we

conducted a case study with five open-source software sys-

tems and compared the performance of RePOR with the per-

formance of two well-known metaheuristics (GA and ACO),

one conflicting-aware refactoring approach (LIU), and a recent

metaheuristic based on sampling (Sway). Results show that Re-

POR can correct more anti-patterns than the aforementioned

techniques in just a fraction of the time, and with less effort. In

the future we plan to extend the evaluation of RePOR, consid-

ering more open and close source software systems, and more

quality attributes, e.g., energy efficiency.
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