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ABSTRACT
Accurate assessment of developer expertise is crucial for the assign-
ment of an individual to perform a task or, more generally, to be
involved in a project that requires an adequate level of knowledge.
Potential programmers can come from a large pool. Therefore, auto-
matic means to provide such assessment of expertise from written
programs would be highly valuable in such context.

Previous works towards this goal have generally used heuristics
such as Line 10 Rule or linguistic information in source files such as
comments or identifiers to represent the knowledge of developers
and evaluate their expertise. In this paper, we focus on syntactic
patterns mastery as an evidence of knowledge in programming
and propose a theoretical definition of programming knowledge
based on the distribution of Syntax Patterns (SPs) in source code,
namely Zipf’s law. We first validate the model and its scalability
over synthetic data of “Expert” and “Novice” programmers. This
provides a ground truth and allows us to explore the space of validity
of the model. Then, we assess the performance of the model over
real data from programmers. The results show that our proposed
approach outperforms the recent state of the art approaches for the
task of classifying programming experts.

CCS CONCEPTS
• General and reference→ Evaluation.

KEYWORDS
knowledge assessment, syntax pattern, Zipf law, software mainte-
nance, version control system
ACM Reference Format:
Arghavan Moradi Dakhel, Michel C. Desmarais, and Foutse Khomh. 2021.
Assessing Developer Expertise from the Statistical Distribution of Program-
ming Syntax Patterns. In Evaluation and Assessment in Software Engineering
(EASE 2021), June 21–23, 2021, Trondheim, Norway. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3463274.3463343

1 INTRODUCTION
Identifying the expertise of developers is important when search-
ing for an individual to hire, to solve a bug, or to contribute in a
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software project. The cost of poor recruiting decisions is estimated
to be as high as ten times the annual salary of an employee [7].
While platforms such as GitHub offer a valuable information source
about an individual’s skills [23, 29], a survey study shows that 66%
of non-technical recruiters have difficulty judging applicants based
on their GitHub activities [37]. They struggle with technical infor-
mation contained in these platforms; e.g., the manner or content
of the applicants’ participation in different projects. Thus, devel-
oping a model to automatically assess developers’ knowledge in
programming and identify experts is an important goal.

Representing a developer’s knowledge from their written code
is challenging. Previous works have relied on heuristics such as the
Line 10 Rule and the number of commits in different source files [3,
25, 27], or the number of different API calls [31, 34] to represent the
knowledge of developers. Another group of studies analyze textual
and linguistic information within code, like comments or function
names, to represent the domain knowledge of a developer [24, 36].

However, many of these aforementioned heuristics provide in-
direct evidence of knowledge and can prove unreliable or biased
indicators of knowledge. In a preliminary study, the first author of
this paper manually inspected 378 sample commits1 of the Pandas
repository2 on GitHub and observed that in 102 (27%) diff files,
despite the high number of code lines, some changes have no im-
pact on the semantics of the program. For example, developers
deleted additional space or they corrected the spelling of a variable
in different lines. Therefore, in addition to the quantity of changes,
such as the number of commits, the nature of the changes is also
very important to capture the knowledge of a developer.

In this paper, we focus on mastery of programming language
syntax patterns as a proxy of programming expertise. We iden-
tify expert developers by assessing their proficiency at using pro-
gramming syntactic patterns. We assume that a part of developer’s
knowledge is defined by the subset of programming constructs a de-
veloper masters, such as syntactic patterns and lexical expressions
in her/his artifacts.

The idea is also motivated by a theory in linguistics, named
Zipf’s law [44]. Zipf’s law explains the distribution between words
in a corpus. Baixeries et al [5] observed that the communication
skills of an individual is reflected by the Zipf distribution of vocab-
ularies in her/his conversation. Their assumption is consistent with
finding different vocabulary size and distributions in the speech of
various individuals. The model we propose relies on the Zipf distri-
bution of syntactic patterns in artifacts produced by a developer to
assess developer’s mastery in programming syntax patterns and
distinguish experts from novices. Also, we consider the number of

1https://www.surveysystem.com/sscalc.htm
2https://github.com/pandas-dev/pandas
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distinct syntax patterns in a developer’s artifacts as the vocabulary
size in Zipf distribution and build a baseline by representing the
expertise of a developer with this vocabulary size. Although syntac-
tic patterns are superficial evidence of knowledge, the evaluation
of our proposed model over real data shows that it achieves bet-
ter performance in classifying experts from novices than different
baselines and state of the art techniques. This model is therefore
an important first step towards our community’s long-term goal of
developing an efficient technique for the automatic assessment of
developers’ expertise.

This paper makes the following contributions:

• We propose a model to assess developers’ mastery in the pro-
gramming syntactic patterns through parameter estimation
of Zipf’s law.

• We classify expert developers from novices based on their
mastery in using syntax patterns and achieve better perfor-
mance than recent state of the arts.

The remainder of this paper is organized as follows. Section 2
presents related works. Section 3 provides a brief background on
Zipf distribution. Section 4 describes the whole process of our
proposed approach. Section 5 explains the data, details our method
to evaluate the proposed approach, shows experimental results, and
answers research questions. Section 6 discusses different factors
that constitute threats to the validity of our experiment. Section 7
concludes the paper and discusses avenues for future work.

2 RELATEDWORK
Previous works to assess expertise in programming can be divided
into two general groups: “Internal expertise” with aim of finding
expert within a software project and “Overall expertise” focusing
on assessing expertise of developers using their contributions in
different software projects.

The majority of models to assess expertise from both categories
are based on a set of features such as the number of commits, num-
ber of votes, or number of changes in a file path. A widely used
heuristic is the Line 10 Rule [25, 27], inspired by version control
systems that store the name of the author in line 10 of the commit
log. All methods motivated by Line 10 Rule heuristic states that
if a developer changed a file in the past, she/he should be one of
the candidates to solve the tasks related to this file [3, 40]. Sev-
eral studies find experts in Question Answering (Q&A) or Crowd
Sourcing platforms. They use features such as the number of ques-
tions and answers, number of votes for different answers or the
number of tasks performed by an individual to estimate her/his ex-
pertise [9, 13]. Other studies go further and collect different words
in linguistic information of the codes such as words in comments,
commits messages, the content of ReadMe files, or identifiers in
the code to define the domain expertise of its authors. Then, they
calculate the similarity between these words and the words in the
description of bug reports or tasks to identify an expert to solve
a bug or perform a task [20, 24, 36]. In Q&A platforms, the tex-
tual description or the tags of questions and answers are collected
to represent the knowledge of members [4, 33]. Another group
of studies collect API calls to determine the domain expertise of
developers [15, 31, 34, 39].

To validate models, studies which focus on assessing Internal Ex-
pertise use bug resolution information and information about tasks
performed by developers (from the revision history of projects) to
assess the effectiveness of their models [1, 42]. However, this type
of information is specific to a single project. One of the researches
in the Overall Expertise category [28] performs a self-evaluation
survey study to generate ground truth. But, they observed overes-
timation/underestimation in the survey results. Then, one of the
authorsmanually searched a group of developers on Linkedin to ver-
ify their expertise. Another group of studies asked external experts
such as group of students in the related field or the project managers
to evaluate the result of their model [21, 39]. CVExplorer [20] vali-
dated their outcomes by recommending candidates for job positions
in two companies.

Heuristic approaches that collect quantitative features such as
number of commits, number of votes, number of API calls, or tex-
tual descriptions such as comments or identifiers, are sometimes
effective indicators of the knowledge of developers, but they are
not strongly grounded in theory and may be subject to biases. For
example, Verdi et al. [41] represent that even a highly voted code
snippet may have low quality and contain vulnerabilities. In this
paper, we introduce a more theoretically grounded approach to as-
sess the expertise of developers in syntactic mastery and compare
its performance with state of the arts from the literature.

3 BACKGROUND
This section introduces a brief background on Zipf’s law which is
pivotal to the proposed approach.

Zipf’s law is a rank-frequency distribution well known in linguis-
tics [44]. George Kingsley Zipf discovered that the rank of words
times their frequencies in a corpus is proportional to a constant [45].
Equation (1) shows this relation where Pr (rw ;α ,n) is the probabil-
ity of a wordw and rw is its rank, n is the number of distinct words
and α is an exponent close to 1 [43]. It is possible for a probability
distribution to go with α < 1, if n is bounded by an above limit [10].
Hn is an Harmonic series to normalize the equation.

Pr (rw ;α ,n) =
1

rαw ∗ Hn,α
(1)

If we take a logarithm on both sides of (1), then we have (2)
which is a linear function. It converts a power law function into a
line in a log-log space with intercept logHn,α and slope α .

log Pr (rw ) = −α log rw − logHn,α (2)

Zipf’s law is known to model the word distribution of natural
languages, English, German, Chinese and Russian for example [32].
More recent studies show that Zipf’s law also applies to program-
ming languages. Zhang et al. [43] found that the distribution of
lexical tokens in Java, C++ and C source codes follows a Zipf dis-
tribution. Other studies compared the Zipf distribution in human
language and programming language [8, 35] and they find that
the range of values for the α parameter in Zipf’s law is different
between human and programming languages.

In addition, there are studies showing a relation between exper-
tise and Zipf law. There is a study that estimate the vocabulary
growth of second-language learners with Zipf’s law [16]. For ex-
ample, an individual who is a beginner in speaking English may
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Figure 1: The process of the proposed approach in classifying developers based on syntactic mastery

express “I am angry because I cannot fix this problem" while she/he
is not aware of more advanced sentences such as “I find this problem
frustrating!". Another study compared the speech of children and
adults in terms of the Zipf distribution and showed that there is a
dependency between the parameters of Zipf’s law and the commu-
nication skills of individuals [5]. In this paper we explore a similar
relationship between the parameters of Zipf’s law and the distribu-
tion of syntax patterns in developers’ code artifacts and use it to
assess their syntactic mastery.

4 APPROACH
Fig. 1 presents an overview of our approach on how to represent
the knowledge of developers with syntactical patterns and assess
syntactic mastery with Zipf’s law. Each step is described across the
following sections.

4.1 Collect Developers’ Artifacts
A program is a product of many contributors. Version control sys-
tems such as GitHub allow us to retrieve the artifacts of program-
mers in different repositories over time. The combination of com-
mits written by a developer on different projects on GitHub are
good representative of her/his experience.We collect the commits of
developers on source files (i.e., all files with “.py” extension) across
their contributions in different projects to define their knowledge
state.

4.2 Extract Syntax Patterns
In the theory of knowledge space, an individual’s knowledge state
is defined as a subset of a knowledge domain [17]. In this study,
this domain is defined as a set of syntactical patterns.

Every commit has a number of elements such as API calls, iden-
tifiers, or lexical expressions and programming language keywords.
The way that developers use programming language keywords and
expressions builds different Syntax Patterns (SPs) in their artifacts.
Developers may use different methods and consequently different
syntactic patterns to solve a problem based on their knowledge
state. For example, Fig. 2 shows two different solutions to solve
the same problem in the Python language. In this study, we col-
lect programming keywords and lexical expressions in commits as
knowledge items of its author. We use the Abstract Syntax Tree
(AST) to extract and collect the SPs.

(a)

(b)

Figure 2: (a) and (b) are two different methods of adding a
variable (between 1 to 5) with 2, in Python

Abstract Syntax Tree (AST):Abstract Syntax Tree is an abstract
version of the parsing tree [11]. The AST is larger than the natural
sentence of the code in vocabulary size. There are new nodes in the
AST that represents the relationship between the abstract compo-
nents of the programming code [30]. For example, Fig. 3b shows the
AST dump of the Python code in Fig. 3a. We collect nodes in AST
as Syntactical patterns. Fig. 3c shows the SPs that we collect from
the sample code in Fig. 3a. In this figure, for example,{’Subscript:
Index[Name]’}, means accessing a subscript with indexing type of a
variable. We omit the lowest layer in each path of AST which are for
example variable names or function names (textual information).
While the lowest layer may represent project specific knowledge
which are not common in different repositories, we chose to limit
the domain to more generic knowledge items because our goal is
to assess their proficiency at using SPs.

There is a file, named diff, attached to each commit in Git that
contains all lines that a developer touched in a source file. The
exact change made by a developer is not specified in the diff file. To
address this limitation, we compare the AST of a source file before
and after applying a commit [34] and we collect the difference
(added/removed) nodes among two trees as knowledge items of
its author. With this method, we ensure that developers actually
practiced the SPs that we are collecting as their knowledge. At the
end of this step, we build a matrix of developers and the frequency
of different SPs in their commits.
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(a) Sample python code (b) AST dump (c) Syntax Patterns

Figure 3: AST and a list of Syntax Patterns for a sample Python code. (a) shows a sample code in python, (b) is the AST of
sample code in (a), and (c) represents the Syntax Patterns (SPs) collected from AST in (b)

4.3 Assess Syntactic Mastery with Zipf’s law
In this section, we describe the relation between syntactic mastery
and Zipf’s law exponents. Fig. 4 shows the probability distribution
of SPs in commits of two developers with different knowledge states
in Python. However both charts show a Zipf distribution with a few
high probability SPs and a fat tail of low probability SPs, but they
are not mirroring the same behavior. It represents that the number
of SPs and the distribution between them is different among two
sample developers. The probability of the top rank SP, r = 1, for the
expert sample is around 0.07 while it is 0.05 for the novice sample.
Expert sample shows a longer tail or more advanced patterns while
the frequency of middle SPs are higher for novice sample. It is worth
mentioning that these are not necessarily the same patterns.

Figure 4: Probability distribution of SPs of two developers
with different knowledge states

What is the relation between Zipf’s law and Mastery of SPs?
Let us explain with an example, what we mean by the relation-

ship between Zipf’s law and programming syntax mastery. Suppose
that dev1 and dev2 are two developers with the same level of profi-
ciency at programming syntax and that they have used similar SPs
with the same frequency in their commits so far. After fitting the
distribution of SPs in their commits with Zipf’s law, the α = 1.072
for both developers.

Suppose that we ask both developers to write code to solve a
new problem, for example, a function to add a number in range 1
to 5 with 2. One of the developers, dev1, chooses the approach in
Fig. 2a. dev1 shows three new SPs, {’Add’,’List’,’insert’} and repeats
most of her/his current knowledge items. However, dev2 chooses
the method in Fig. 2b. dev2 shows more new knowledge items. The
new items disclosed by dev2 are {’map’,’Lambda’,’Add’,’List’}. We
fit the new distribution of SPs for each developer with Zipf’s law
and we find that the parameter α for dev1 is decreased to α = 1.02
and for dev2 is increased to α = 1.19. The bars in Fig. 5 shows the
real distribution of SPs and the lines are the fitted Zipf’s law for
these distributions. It is evident that different values are assigned to
exponent α to fit different distributions with Zipf’s law. Since devel-
opers choose different SPs to write code based on their knowledge,
our assumption is that there is a dependency among developers’
mastery of SPs and exponent α .

Figure 5: The Zipf distribution between SPs of two sample
developers

4.4 Classify Expert
We focus on two categories of developers: “Expert” and “Novice”.
“Expert” developers demonstrate a strong mastery in programming,
using SPs and solving programming bugs. On contrast, “Novice”
developers have few number of contributions and use basic SPs
more frequently.We distinguish experts from novices based on their
level of mastery of SPs. We fit the distribution of SPs in developers’
commits with Zipf’s law and estimate the α per each developer.
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Then, we use the value of this exponent to classify experts from
novices. We call the proposed method as “zipf_α".

We setup two types of classification tasks: one where we do
not know the proportion of experts/novices and another where
the proportion is determined from a labeled training set. They
respectively correspond to two assessment methods: “Clustering”
and “Classifiers”.

Clustering. In the clustering group, we use Jenks Natural Breaks
Clustering (JNBC) [22, 26] for methods with single-dimensional
data such as our proposed method, “zipf_α", that uses only one
feature, estimated value of α , to illustrate the syntactic mastery.

Classifier. In the classifier group, since this is a binary classifi-
cation problem, we simply find from the training set the optimum
threshold [6] for exponent α to classify experts from novices.

5 EVALUATION OF THE PROPOSED
APPROACH

In this section we describe our dataset. Then, we explain how to
fit a distribution with Zipf’s law and estimate the goodness of fit.
Subsequently, we illustrate a list of methods that we compare the
performance of the proposed model in identifying experts with
them. Finally, we report our results and answer the following two
research questions:

RQ1: How does expertise impact the distribution between SPs in
developers’ commits?

RQ2: How well can Zipf’s law assess developers’ mastery in pro-
gramming SPs and discriminate experts from novices?

5.1 Dataset
To illustrate the properties of our model we use both synthetic and
real datasets. Given that the real data is not labeled and manual
inspection of huge number of developers is costly and time con-
suming, we generate a labeled synthetic dataset of 1200 developers
based on real sample developers. We use this data to calibrate the
difference between distribution of SPs in the code of high number
of developers. Also we use this to find the optimum number of
developers that we need to manually inspect from real data.

Real dataset. We collect commits of developers on source files in
GitHub to define their knowledge state. We focus on Python pro-
gramming language because it is a common programming language
in different fields, nowadays. A lot of people without programming
or software background write code in Python due to the impor-
tance of Artificial Intelligence (AI) and Machine Learning (ML) in
all majors domains. We use pydriller [38] to collect GitHub data. We
use the following rules to collect data of developers with different
levels of expertise. Table 1 shows a summary of collected data.

(1) Start with top 10 Python projects on GitHub based on their
number of stars like Python 3 and Keras 4

(2) Collect the top 10 and the last 10 developers in the list of
contributors based on the number of commits in each repos-
itory

3https://github.com/Python/cPython
4https://github.com/keras-team/keras

(3) Link each author name to her/his profile on GitHub based
on their aliases or usernames

(4) For each repository in her/his profile: Collect last year com-
mits (for those developers who didn’t meet the optimum
sample size of the Zipf’s law, we collect more commits over
a period of multiple years until reach the optimum size)

(5) Collect the top 50 and the last 50 python developers in
GitHub based on the number of commits in projects with
python programming language (to have more diversity be-
tween developers and projects)

(6) Repeat step 4 for each of the 100 developers from step 5

Table 1: A summary of real dataset collected from github

# of Commits # of Projects # of Developers

54676 441 300

We obtain a total of 54676 commits. For each of these 54676
commits, we compare the AST of the source file before and after
applying the commits and we discover 197 unique SPs.

Generate synthetic data. We generate a labeled dataset in two
categories of “Expert” and non-expert or “Novice”. To do so, first,
we manually select one expert developer from our dataset of real
developers. Then, we calculate the probability of all SPs in the
commits of this sample developer. We use these probabilities as a
weight to generate SPs in commits of synthetic Expert developers.
For those SPs which don’t occur in the sample of the Expert, we use
the uninformative prior which is the probability of those patterns
in the whole dataset. We repeat the approach with 5 and 10 expert
samples from real dataset. Then, we apply the chi-square test to find
if these 3 synthetic datasets, generated based on 1, 5 and 10 expert
samples, are significantly different. The result of the test shows that
we cannot reject the null hypothesis that these 3 synthetic datasets
are from a common distribution. Thus, the difference between them
is not significant. We repeat this process with sample of Novice
developers to generate synthetic Novices. To explore the scalability
of the model, we generate 600 “Expert” and 600 “Novice” developers.

5.2 Fitting Zipf’s law
According to [19], the maximum likelihood method should be used
to estimate α . Suppose we have n syntax patterns: {sp1, sp2, ..., spn }
and that Pr (sp;α) is the probability distribution function of SPs. If
the probability of SP, spi , is Pr (spi ;α) then the maximum likelihood
L(α) is defined as a joint probability of each spi :

L(α) =
n∏
i=1

Pr (spi ;α) (3)

We assume that all n data points are independent and maximize
the log-likelihood of L(α) [2, 14]. We can replace log Pr (spi ;α)with
(2) in the log-likelihood function and estimate the parameter α in
Zipf’s law with (4):

logL(α) = −α
n∑
i=1

fi log ri −
n∑
i=1

fi logHn,α (4)
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To evaluate the goodness of fit, we apply Kolmogorov-Smirnov
(KS) test and use the KS table of power law distribution [19].

The optimum sample size to fit a distribution with Zipf’s law
is based on Zipf [45], who showed that saturated Harmonic series
n ∗ Hn can predict the optimum sample size in a Zipf’s law (where
in our study n is the number of distinct SPs). Thus, the optimum
size in our case study with 197 unique SPs is 1156 data points per
each developer.

5.3 Comparable Methods
In this section, we discuss how we build different baselines and
methods to investigate the accuracy of our approach. We first ex-
plain how these methods represent the knowledge of developers
and then describe their technique to identify experts.

Represent the Knowledge. As a first baseline, we build a feature-
based baseline inspired by previous works. Due to the fact that our
approach to represent the knowledge of developers in a program-
ming language is based on mastery of SPs, which is different from
the case studies in past works (such as finding who is expert in
specific libraries [31]), we could not directly compare our model
to those proposed in these previous works. Hence, we decided to
implement a new baseline using the features that were used in state
of the art approaches from the literature.

A group of features that is commonly used in previous works is
the Quantity of changes applied by developers such as the number
of commits or lines of code [18, 25, 27]. The other group of features
focuses on the Frequency of the activities such as the interval be-
tween two commit or recent dates of submission of a commit [3, 23].
The last group of features captures the Breadth of contributions
using metrics such as the number of projects [12]. Authors in [28]
calculate the correlations between different features to identify an
expert. We replicate their model using the features summarized in
Table 2. In the following, we refer to this model as baseline “bl_ft".

Table 2: features which are collect to represent the knowl-
edge in Baseline “bl_ft”

Feature Name Description

numCommits Number of commits in Python projects
LOC Number of added and removed lines
avgInterval Average interval between commits
lastCommit Number of days since last commits

numProject Number of Python projects that a developer
contributed

As a second baseline that is correlated with the study of Teyton et
al [39], we use a vector space technique to represent the knowledge
of a developer with the frequency of different SPs without fitting
the distribution between them with Zipf’s law. We calculate tf-idf
of the frequency of SPs in developers’ commits and then use them
to represent their knowledge. This method helps us to check if
representing the knowledge of developers with syntax patterns
has any influence on identifying experts compared with simulating
this knowledge with quantitative features such as the number of
commits. We call this baseline “bl_vs". As a last baseline, we build
a naive model by representing the knowledge of each developer

by the number of unique SPs in her/his commits and name it as
“bl_sp".

Due to the fact that the proposed mode, Zipf_α , has single-
dimensional data, we combine “Zipf_α", with “bl_ft" baseline. This
hybrid method presents the impact of unifying quantitative fea-
tures and the distribution of SPs on representing the programming
knowledge of developers. To apply this combination, we add the
expontent α as an extra feature into the list of features in “bl_ft"
baseline.

Classify Experts. To identify experts, we apply both Clustering
and Classification technique similar to what we explained in Sec-
tion 4.4 for Zipf_α approach. In clustering setup, we use Jenks
Natural Breaks Clustering (JNBC) [22, 26] for single-dimensional
data, bl_sp. Alternatively, we apply k-means clustering algorithm
for methods with multi-dimensional data points such as bl_ft. In
our case study, we define k = 2, because we focus on two cate-
gories: Experts and Novice. In classification setup, we choose ran-
dom forest or SVM depending on the number of dimensions for
multi-dimensional data and for single-dimensional data, we define
the optimum threshold.

Table 3 shows a list of all methods evaluated in this paper; in-
cluding our novel methods and baselines.

Table 3: A description of different methods using to identify
experts

Method Description

bl_ft
A baseline that uses features in Table 2 to
represent the knowledge of developers.

bl_vs

A novel baseline. It uses the vector space of
developers and the frequency of SPs in their
commits (SP-Dev-Matrix).

bl_sp
A baseline that uses the number of unique SPs
as an indicator of expertise.

zipf_α
The proposed model of the paper. It uses the
exponent α as a factor to identify experts.

zipf_α_ft Combination of zipf_α and bl_ft.

5.4 Assessing the Performance of the Models
Cross Validation. Weuse Leave-one-out Cross-Validation (LOOCV)

to evaluate the predicted categories in both setups. To use LOOCV
in clustering techniques, each time we separate a single developer
as a testcase and apply the clustering algorithm on the remaining
developers as a trainset. We consider the cluster with maximum
number of experts as an “Expert” cluster. Then, we calculate the
distance between the feature(s) of testcase and the centroid of each
cluster and predict the proper category by choosing the minimum
distance.

Evaluation Metrics. We evaluate results using precision, recall,
and F1-score for each category of Expert and Novice, separately.
Further, we report Kappa statistic considering both categories.

5.5 Results
RQ1: How does expertise impact the distribution between SPs in de-
velopers’ commits?
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As we discussed earlier in Section 4, two developers with two differ-
ent knowledge states choose different sets of SPs to write a code to
solve the same problem. Writing different artifacts such as commits
generates a distribution between SPs in the knowledge state of a
developer. This distribution follows Zipf’s law. We noticed that
to fit different distributions with Zipf’s law, different values are
assigned to the exponent α in Zipf’s law.

To answer the research question RQ1, we fit the generated data
of developers in two categories of “Expert” and “Novice” with Zipf
distribution. In other words, we separately fit the distribution of
SPs in commits of each developers with Zipf’s law and we obtained
the value of exponent α per developer. Then, we visualize the dis-
tribution of α in two categories of “Expert” and “Novice”. Fig. 6
presents this distribution in both categories. We find that there is
no intersection between the range of α for developers in these two
categories. It shows the proficiency of developers at SPs influences
the range of α to fit the distribution of SPs in thier commits. The
mean of α is equal to 0.75 between “Novice” developers while it is
equal to 0.96 between “Expert” ones.

Figure 6: Distribution of exponent α between developers in
synthetic Data

To find the optimum number of developers to be manually la-
beled from the real dataset, we conduct a hypothesis testing to find
this optimum number of samples. According to Fig. 6, which shows
differentmean for α in two categories of “Expert” and “Novice”, we
define a hypothesis as follow and apply a t-student test with 95%
confidence to find the optimum size of data:

H0: "The means of distributions of exponent α are equal between
novices and experts"

Ha : "The means are different between novices and experts"
Based on the result of the test in Table 4, the optimum number

of developers to reject the H0 is equal to 20. Thus, we manually
classified 20 “Expert”s and 20 “Novice”s.

Manual Classification: Two authors acting as “expertise evalu-
ators” independently [28, 36, 39] performed an inspection of 20
“Expert” and 20 “Novice” developers from dataset of real developers.
One of the evaluators is a Ph.D. candidate in software engineering,
and the second is a master student, also in SE, both having a few
years of professional experience. The evaluators checked different
number of commits, pull requests and codes reviews submitted by
developers in GitHub python projects until they felt confident in
their assessments of developers. They inspected 10%, 20% or up

to 30% randomly sampled of developers’ contributions who have
more than 500 contributions in their GitHub profile. For those who
have less than 500 contributions, the evaluators checked 40%, 70%
or up to all commits of developers. Also, they checked individuals’
profile on Stackoverflow.com if they have one and read random
samples Q/&A in which they are involved with the same procedure
(as GitHub platform) for those who have more or less than 500
reputation in stackoverflow. In addition, they checked individuals
profile in Linkedin.com if they could find them with their name and
photos, to check their careers and list of skills. To ensure that both
evaluators had a same perspective of the manual inspection, they
performed two different procedures to categorize developers: the
first evaluator classified developers in two categories of Expert or
Novice, and the second evaluator scaled developers from Novice to
Expert with labels of 1, 2−, 2+ and 3. The lowest level on the scale
means: "she/he has contributed in python repositories (including
individual repositories) but has no functional contribution such
as code reviewing or adding functionality, optimization, testing or
bug resolving commits in high star projects in Python reposito-
ries, or didn’t answers questions related to python programming in
Q/A platforms", and the highest level means: "she/he has different
functional contributions in large Python projects, has answered
questions about python programming and its libraries in Q/A plat-
forms. Also, she/he may has related career background in python
programming from Linkedin profile". Two middle scales, 2−, 2+,
belong to individuals who are not acting as lowest/highest level,
however they cannot be categorized in highest/lowest level. The
team compared the given labels with given scales and calculate the
percentage of agreement between the two evaluators using Cohen’s
Kappa5. They achieved 87.5% agreement between themselves. The
disagreements are on 5 cases. For example, the Dev2 contributes in
8 Python projects with overall 1384 commits. He is an AI researcher
and a postdoc student. First evaluator categorized him as “Novice”
and second evaluator assigned him scale 2+. As another example,
Dev5 has 316 commits in 36 projects. He is a python developer
based on his Linkedin page but his contribution metric in GitHub
is 43. First evaluator labeled him as “Expert” based on content of
his commits. However, second evaluator scaled him as 2+. We keep
disagreement cases and we calculate all evaluation metrics in RQ2
twice, each time based on the manual inspection of one of the
evaluators, and report their average.

After this labeling step, we fit the distribution of SPs in commits
of these developers with Zipf’s law. Fig. 7 shows the distribution
of α for the selected sample of 40 real developers. Similar to our
observation in synthetic data, we find that the mean of α is different
in these two categories, despite several intersection between the
range of α .

Table 4: hypothesis testing to find the optimum number of
developers

t-statistic p-value sample size

-45.76 <<0.0001 20 (20 novices and 20 experts)

5http:// vassarstats.net/kappa.html
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Figure 7: Distribution of exponent α between developers in
real data

Answer to RQ1: Syntactic mastery influences the distribution be-
tween Syntax Patterns (SPs) in commits of developers and exponent α
in Zipf’s law is an indicator of this mastership.

RQ2: How well can Zipf’s law assess developers’ mastery in pro-
gramming SPs and discriminate experts from novices?

In our second research question, we want to find how is the
performance of our proposed approached compared with baselines.

Table 5 presents results in both clustering and classifier setups.
The results for methods with single-dimensional feature, zipf_α and
bl_ps, are the same in both groups of clustering and classifier. The
performance of our proposed method, zipf_α , is greater than the
performance of all the baselines. The precision, recall, and F1-score
of our proposed method is 89.74%, 85.48% and 87.5%, respectively
in both setups, when classifying Experts. The method zipf_α_ft
that is built by combining the quantitative features and the content
of changes (mix of zipf_α and bl_ft) has the highest performance
in the classifier setup with precision, recall and F1-score of 92.5%,
90.39% and 91.4%, respectively.

The feature-based baseline, bl_ft, and the vector space baseline,
bl_vs, shows a greater performance than the naive baseline, bl_sp,
in both setups. It shows that the number of distinct SPs is not a
good indicator of developers’ knowledge by itself.

Methods with multi-dimensional features, bl_ft, bl_vs and pro-
posed method zipf_α_ft, show a better performance in Classifier
setup. As an illustrative example, Dev8 which is categorized as an
“Expert” (or scale 3) by both evaluators, is predicted wrongly as a
“Novice” in clustering setup but correctly as an “Expert” with the
classification technique. Dev8 has 1083 commits, contributed in
16 Python projects, his last commit was 26 days before our data
collection date. He added 10499 code lines in different projects
during the last year. He is one of the main developer of a 36k-star
repository in GitHub. After applying k-means, the distance between
the feature vector of this developer and the centroid of “Expert”
and “Novice” cluster is 0.35 and 0.33 respectively in the normalize
dataset of the bl_ft method. Thus, Dev8 is categorized in the clus-
ter with minimum distance of 0.33. As another example, Dev15 is
wrongly classified as a “Novice” with bl_ft in classifier setup. How-
ever, both evaluators agreed to classify him as “Expert”. With the
zipf_α_ft method, in the classifier setup, he is correctly classified
as an “Expert”. This result shows that combining the syntactical
patterns with quantitative features such as the number of commits
improves the performance of a binary classifier to identify experts
in programming.

Answer to RQ2: Our proposed method, “zipf_α” achieves a greater
precision than other baselines methods to identify “Expert”, in both
Clustering and Classifier setups. The combination of quantitative
features and the distribution of SPs as zipf_α_ft method, led to per-
formance improvements up to 18.45%.

6 THREATS TO VALIDITY
The accuracy of estimating exponent α is influenced by two factors:
“Number of SPs" and “Size of Corpus". Besides, the performance
of our model depends on the “Validity of Data in GitHub". In this
section, we discuss how these factors pose threats to the validity of
our experiments.

6.1 Number of SPs and Size of Corpus
We focused on Python programming language in the case study
we conducted. The number of SPs after applying AST on commits
of developers in real dataset is 197. It can be different in other
programming languages. Not all developers use all these 197 SPs
in their code. The quality of estimating parameter α in Zipf’s law
depends on minimum number of SPs and the corpus size.

To show the dependency to the minimum number of SPs, we
generate 4 synthetic datasets with Zipf distribution while α =
1, 0.9, 0.8 and 0.7, the corpus size (T ∗ = 1156) and the size of SPs
equal to 197. Then, we calculate a confidence interval for each value
of exponent α . To do so, for each distribution, for example, α = 0.9,
we select a random sequence of SPs with the bootstrap method
(with replacement) and generate 100 different sample datasets from
themain population. Then, we estimate α for all 100 sample datasets
and calculate the confidence interval of α . To find the uncertainty
of the model in estimating α as a function of the number of unique
SPs, we vary the number of SPs from 197 to 5 and estimate the
parameter α in the new distribution. Fig. 8 shows the estimated α
in different number of SPs. For example, for α = 0.9, if the number
of SPs (or rank in Zipf’s law) is less than 66, the predicted α is out
of the confidence interval. We can see that for the number of SPs
less than 63 (on average), the estimated α is out of the confidence
interval.

Another factor that can impact the estimation of exponent α is
the corpus size. It is the total number of SPs with frequency in the
commits of developers. As discussed in Section 5.1, n ·Hn indicates
the optimum corpus size. The optimum corpus size in our case
study with 197 distinct SPs is T ∗ = 1156. The Residual Standard
Error (RSE), is less than 1% for a Corpussize > 1156.

In our case study, our proposed model cannot make a reliable
decision if a developer represents less than 63 distinct SPs in her/his
commits, or a corpus size less thanT ∗ = 1156. This is a kind of cold
start issue for our method. To get around this issue, we exclude
developers with fewer than 63 distinct SPs or less than 1156 corpus
size.

6.2 Validity of Data in GitHub
In our dataset, we collect the contribution of developers in public
GitHub projects. However, there are developers in GitHubwho have
sparse public contributions but stronger contributions in private
projects. We don’t have access to the private projects, while they
could have provided the missing data for those developers with
which we face the cold start issue. Also, the availability of this
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Table 5: results on real data in two setups of clustering and classifier

Clustering Classifier

Proposed methods Comparable Methods Proposed methods Comparable Methods

metric/method
zipf_α
(JNBC)

zipf_α_ft
(k-means)

bl_ft
(k-means)

bl_sp
(vocab size)
(JNBC)

bl_vs
(k-means)

zipf_α
(threshold)

zipf_α_ft
(random
forest)

bl_ft
(random
forest)

bl_sp
(vocab size)
(threshold)

bl_vs
(SVM)

Precision%(Exp) 89.74 89.68 67.93 47.37 68.12 89.74 92.5 70.5 47.37 77.5
Precision%(Nov) 85.48 86 66.25 45.24 69.81 85.48 90 72.14 45.24 75
Recall%(Exp) 85.48 85.6 70.83 43.93 73.33 85.48 90.36 75.6 43.93 75.71
Recall%(Nov) 89.74 89.74 63.16 48.68 64.08 89.74 92.24 66.58 48.68 76.84
F1-score%(Exp) 87.5 87.37 69.32 45.58 70.54 87.5 91.4 72.95 45.58 76.59
F1-score%(Nov) 87.5 87.62 64.62 46.89 66.71 87.5 91.09 69.23 46.89 75.9

Figure 8: Minimum number of SPs to fit Zipf’s law and the confidence interval of α in α = 1, 0.9, 0.8 and 0.7

information from private repositories could affect the decision of
our method on cases in the “Novice” category.

Another threat to validity comes from the fact that we assume
that all commits are written by the authors who have their name
mentioned as being the author of the commit, and we did not
considered the potential effect of code copying or code generative
tools in the commits of developers.

External validity threats concern the possibility to generalize
our results. Although our work focused on python projects, our
proposed approach can be easily replicated for other programming
languages. We provide all our data and scripts 6 to allow for a full
reproduction and replication of our results.

6https://github.com/ExpertiseModel/ZipfModel

7 CONCLUSION
To improve the automatic identification of experts across different
software project repositories in GitHub, we introduce a novel ap-
proach to represent the knowledge of developers in programming
based on the Syntax Patterns (SPs) that they mastered and assess
syntactic proficiency based on the distribution of these SPs in their
commits. Our analysis shows that this distribution follows Zipf’s
law and the developers’ syntactic mastery is reflected on the pa-
rameters of this distribution. To study the area of validity of the
proposed model and discuss its sensitivity to different initialization,
we generate synthetic data. To assess the effectiveness of our pro-
posed model in identifying experts in programming, we conducted
a case study with data from real developers. We compared the per-
formance of our model with the performance of different state of
the arts, with two group of Clustering and Classifier algorithms.
Results show that our proposed model outperforms the state of the
art approaches for the task of binary classification of programming

https://github.com/ExpertiseModel/ZipfModel
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experts. Also, the combination of our model with a baseline model
from the literature led to a performance improvement of up to
18.45%.

In future work, we aim to extend our approach by collecting
more advanced patterns as knowledge of developers. Also, we want
to define patterns that specify the domain expertise of programmers.
Finally, we are curious to study how to define different levels of
expertise for developers in a specific knowledge domain.
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