
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem

Le An · Marco Castelluccio · Foutse
Khomh

Received: date / Accepted: date

Abstract DLL injection is a technique used for executing code within the
address space of another process by forcing the load of a dynamic-link library.
In a software ecosystem, the interactions between the host and third-party
software increase the maintenance challenges of the system and may lead to
bugs. In this work, we empirically investigate bugs that were caused by third-
party DLL injections into the Mozilla Firefox browser. Among the 103 studied
DLL injection bugs, we found that 93 bugs (90.3%) led to crashes and 57
bugs (55.3%) were caused by antivirus software. Through a survey with third-
party software vendors, we observed that some vendors did not perform any
QA with pre-release versions nor intend to use a public API (WebExtensions)
but insist on using DLL injection. To reduce DLL injection bugs, host software
vendors may strengthen the collaboration with third-party vendors, e.g., build
a publicly accessible validation test framework. Host software vendors may also
use a whitelist approach to only allow vetted DLLs to inject.

Keywords DLL injection · Software ecosystem · Mining software repositories

1 Introduction

Firefox, since its inception, has always provided APIs to extend the functional-
ity of the browser. There has been an evolution of methods to extend the func-
tionality towards safer and more stable methods (starting from plugins such

Le An† and Marco Castelluccio‡ (joint first authors, contributed equally)
† Polytechnique Montreal, Canada
‡ Mozilla Corporation, United Kingdom and University of Napoli Federico II, Italy
E-mail: le.an@polymtl.ca, mcastelluccio@mozilla.com

Foutse Khomh
Polytechnique Montreal, Canada
E-mail: foutse.khomh@polymtl.ca



2 Le An et al.

as Flash, moving to XUL/XPCOM extensions, then ending with JavaScrip-
t/HTML WebExtensions). While Firefox and other equivalent browsers pro-
vide public APIs for extending functionality, a lot of third-party software (i.e.,
software that adds code into another software) still employ DLL injection
techniques, i.e., techniques that forces host software (i.e., software that allows
other software to extend its functionality) to run arbitrary code by making
it load a dynamic-link library (DLL). By injecting arbitrary code, third-party
software can extend the functionality of the host software without limits. How-
ever, injecting arbitrary code, while it is a very powerful technique, can easily
cause severe bugs, such as crashes, in the host software. As can be seen in [23],
bugs arising from injection can be indeed severe and widespread as to delay
or cause revisions of entire software releases.

To the best of our knowledge, there has not been an empirical study towards
understanding the DLL injection landscape, why third-party software vendors
still employ these techniques despite the availability of safer alternatives, the
root causes of DLL injection bugs, and proposing solutions to reduce them.
This motivated us to conduct this work, in which we analyzed DLL injection
bugs that occurred from July 2015 to August 2017 in the Firefox ecosystem.
In particular, our study aims to answer the following three research questions:

RQ1: What are the characteristics of the bugs caused by DLL injections?

We observed that most of the DLL injection bugs led to severe problems.
Out of the 103 studied bugs, 93 bugs (90.3%) caused crashes (among them,
47 bugs (45.6%) crashed Firefox while the browser was starting) and four
bugs (3.9%) made the browser hang (i.e., losing responses from users’ re-
quests). By analyzing the types of the third-party software, we found that
57 bugs (55.3%) derive from antivirus software, 19 from hardware vendor
drivers, and 10 from malware.

RQ2: Which factors triggered the DLL injection bugs?

To further understand the root causes of DLL injection bugs, we surveyed
third-party vendors who caused the bugs. From their responses, we learnt
that third-party software uses a variety of techniques (including standard
Windows DLL injection techniques and proprietary techniques) to inject
DLLs into the host software. DLL injection bugs can be triggered by injec-
tion engine errors, compiler/runtime incompatibility, or version incompat-
ibility between the host and third-party software.

RQ3: What would be the potential solutions to reduce such DLL injection
bugs?

In the survey, we also asked questions about the potential solutions that
could reduce DLL injection bugs. From the answers, we realized that DLL
injection should not be outright blocked from the ecosystem because it
could be useful under certain circumstances, e.g., when antivirus soft-
ware intercepts suspicious processes. Host and third-party software vendors



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 3

should strengthen their collaboration. Host software vendors should extend
the features of the extension API (as a safer alternative to DLL injection)
and can build a publicly accessible validation test framework.

The rest of the paper is organized as follows. Section 2 provides
background knowledge on the Firefox ecosystem as well as the risks and coun-
termeasures of DLL injection in the system. Section 3 describes the design of
the case study. Section 4 shows and analyzes the results of the case study.
Section 5 discusses the implications of our findings. Section 6 discusses the
threats to the validity of our study. Section 7 summarizes related work, and
Section 8 draws conclusions.

2 Background

2.1 Firefox Ecosystem

There are several ways third-party developers have been able to extend the
functionality of Firefox: a) themes; b) plugins; c) extensions; d) DLL injection.

Themes are only allowed to change UI elements of the browser, thus they
are very limited.

The API used to build plugins, NPAPI (Netscape Plugin Application Pro-
gramming Interface), has been introduced by Netscape in 1995, and later
adopted by most major browsers. NPAPI plugins declared content types that
they could handle. When the browser was not natively able to handle that con-
tent type, it would load the appropriate plugin and let it run. NPAPI plugins
are binary plugins, and they have been slowly deprecated for security reasons
(e.g., Chrome dropped NPAPI plugins in September 2015, Firefox dropped all
NPAPI plugins except Flash in March 2017 and will drop Flash too in 2019).

Since its inception, Firefox has also allowed third-party developers to ex-
tend the functionality of the browser through JavaScript/HTML APIs by writ-
ing extensions. Extensions are either self-hosted, or hosted on a Mozilla website
called AMO (addons.mozilla.org). When hosted on AMO, they undergo code
review by Mozilla employees and/or volunteers. Since Firefox 44 (released in
January 2016), Mozilla introduced a signing requirement where all extensions
(either self-hosted or hosted on AMO) must be signed by Mozilla in order to
be installable in Firefox (with the objective of reducing malware). This means
that all extensions since Firefox 44 undergo code review.

Initially, extensions had access to browser internals (using XUL/XPCOM
APIs); meaning that they could introduce technical debt into Firefox itself,
as Mozilla developers could not easily modify Firefox internal code that was
being used by extensions.

To ease development and to make extensions higher level (which would
allow Mozilla to change their internal APIs without breaking existing exten-
sions), Mozilla later introduced an extension SDK (JetPack). Behind the hood,
JetPack extensions were still using XUL/XPCOM APIs.



4 Le An et al.

A new set of APIs, the WebExtensions API [25], was later introduced in
alpha state in November 2015, then in stable state since August 2016. Since
November 2017, following a major rewrite of the browser which would have
made many extensions incompatible, all extensions are required to use the We-
bExtensions API, which is an API supported by many major browsers (Firefox,
Edge, and Chromium-based browsers). The advantage of such a common API
is that developers only need to write a single extension and it will (modulo
implementation differences) work on multiple browsers seamlessly, much like
the web. The WebExtensions API is more restrictive than the old APIs, but
also more secure and stable, and with better performance characteristics [24]
[22]. Moreover, since these extensions are not allowed to use Firefox internal
APIs, they cannot introduce technical debt as the old extension APIs used to
do.

Another way that third-party developers use to extend the functionality of
the browser (and of other software) is DLL injection.

2.2 Risks of DLL Injection and Countermeasures

By employing DLL injection, third-party developers are able to inject in the
Firefox process any type of code, whose behaviour was not intended nor an-
ticipated by Mozilla developers.

DLL injection is a powerful technique as it allows third-party developers
to extend the functionality of the host software however they want, but it can
be very risky. The injected code can, for example, use internal functions of
the host software, without the knowledge of the host software developers, thus
causing crashes or other problems when the host software removes or changes
the behaviour of those functions. In order to use internal functions of the host
software, some injected code depends on the binary layout of the host software,
which changes for every specific build. If there are no mitigations in place, the
injected code can cause crashes for every new release of the host software.

Figure 1 shows an excerpt of some buggy code injected in Firefox by a soft-
ware using an open source library, EasyHook1. This is one of the few examples
that can be shown, as usually the injection techniques are proprietary. In this
example, Firefox is the host software (whose functionality is extended) and
the software using the EasyHook library is the third-party software (which
injects its code into Firefox). The process of the third-party software used
the CreateRemoteThread function2 to create a thread that runs in the Firefox
process address space. The thread would call the Injection ASM x86 function,
which first loads the library to inject (line 11), then tries to find the entry point
of the library using the GetProcAddress function (AcLayers!NS_Armadillo::
APIHook_GetProcAddress(), from the Windows DLL: AcLayers.dll) (line

1 https://github.com/EasyHook/EasyHook
2 https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-

processthreadsapi-createremotethread

https://github.com/EasyHook/EasyHook
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createremotethread


An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 5

1 public Injection_ASM_x86@0

2 Injection_ASM_x86@0 PROC

3 ; no registers to save, because this is the thread main function

4 ; save first param (address of hook injection information)

5
6 mov esi, dword ptr [esp + 4]

7
8 ; call LoadLibraryW(Inject->EasyHookPath);

9 push dword ptr [esi + 8]

10
11 call dword ptr [esi + 40] ; LoadLibraryW@4

12 mov ebp, eax

13 test eax, eax

14 je HookInject_FAILURE_A

15
16 ; call GetProcAddress(eax, Inject->EasyHookEntry);

17 push dword ptr [esi + 24]

18 push ebp

19 call dword ptr [esi + 56] ; GetProcAddress@8

20 test eax, eax

21 je HookInject_FAILURE_B

Fig. 1 An example of DLL injection performed by RoboSizer

19). This is where the crash occurs: the address to the GetProcAddress func-
tion was retrieved by the third-party software in its process, but then called
in the Firefox process, expecting it to have the same function and at the same
address. Since Firefox does not load AcLayers.dll, this function does not ex-
ist in its process. EasyHook later fixed the bug by retrieving the address of the
function from the remote process, rather than the process doing the injection.

Other software employed a very similar technique to the one used by Easy-
Hook, but using apphelp!StubGetProcAddress() instead (from the Windows
DLL apphelp.dll. Again, the technique is not used by Firefox). AcLayers.dll
and apphelp.dll are both part of Windows, providing fixes for backward com-
patibility. GetProcAddress is usually part of kernel32.dll (which is loaded
in every process), but for such software, Windows was probably shimming the
API for compatibility, redirecting to apphelp.dll or AcLayers.dll.

Mozilla later totally blocked this kind of injection mechanism which uses
CreateRemoteThread (ironically, the code blocking this kind of injection mech-
anism triggered a bug in another third-party software, an antivirus, which was
later fixed by the vendor).

Using public APIs rather than DLL injection is preferable. Besides the
aforementioned examples, there are other reasons:

1. Since the WebExtensions API is supported by multiple browsers, the ex-
tension code only needs to be written once but can be deployed to different
major browsers;

2. The public API is controlled by the browser vendor, who has information
on the API’s usage and can decide when to deprecate it (and when not to);



6 Le An et al.

3. The extensions are written in JavaScript and HTML, just like normal web
pages, which implies a very reduced chance of crashing the browser com-
pared to the binary code that is injected with DLL injection;

4. Should an extension cause a problem, the browser can easily recover (e.g.,
by reloading the extension). Instead, when an injected DLL causes a prob-
lem, it will likely lead to an unrecoverable situation.

Mozilla has been applying a blocklisting policy to react to bugs caused by
third-party DLLs [27]. If a DLL causes a severe and–or widespread bug (such
as an easily reproducible startup crash), Mozilla will, in parallel: a) try to
contact the vendor of the third-party DLL and ask them to solve the problem;
b) start preparing a blocklisting addition to block the DLL; c) attempt to
reproduce the problem with its own quality assurance (QA) resources, if the
third-party software is publicly available.

In order to solve the problem, third-party vendors usually request crash
dumps from Mozilla, which often cannot be shared with external people for
privacy reasons (the dumps might contain personal information of Firefox
users). Mozilla may share crash dumps with third-party vendors only in the
two following situations: 1) when Mozilla’s QA manages to reproduce the
crash; 2) when Mozilla manages to get in contact with users who can reproduce
the crash (users can optionally leave their contact details when they submit a
crash via Socorro, i.e., Mozilla’s automated crash reporting system) and the
users agree to the sharing of crash dumps.

If the third-party software is publicly available, Mozilla will prepare modi-
fied Firefox builds that block the offending DLLs. Sometimes blocking a DLL
is not easily feasible, as some DLL injection techniques operate at the ker-
nel level. Sometimes blocking DLLs can cause more severe problems than the
ones caused by the DLL itself. Hence, the blocklisting addition has to be tested
first. If blocklisting works and does not cause regressions, Mozilla will apply
the blocklisting patch, uplift it (i.e., publish the patch ahead of the normal
release cycle [6]), and, if the problem is widespread enough, generate a new
release build to ship to users.

3 Case Study Design

In this section, we describe the data collection, design of the survey, and anal-
ysis approaches that we used to answer our three research questions.

3.1 Data Collection

From the Mozilla bug tracking system, Bugzilla [33], we searched bug reports
that were created between July 2015 and August 2017. We chose this time
window because the WebExtensions API was introduced in September 2015,
and our study started in August 2017. In this work, we did not limit the
analysis on already resolved bugs, because some bugs were closed as WONTFIX



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 7

or WORKSFORME, for example, if a DLL injection bug was deemed too hard to
fix for very little benefit or if the influence of a DLL injection bug drastically
decreased after the opening of the bug. From all the bugs in the studied time
period, we selected the ones that matched at least one of the following rules:

– the Bugzilla component of the bug is the one Mozilla uses to track bugs
caused by third-party software (“External Software Affecting Firefox::Other”);

– the title of the bug contains one of the keywords: “.dll”, “virus”, “malware”
or “adware”;

– the whiteboard of the bug contains the text “AV”, which Mozilla uses to
mark some bugs caused by antiviruses.

We then manually analyzed the results of the search to filter out false pos-
itives, obtaining 103 bugs caused by external software through DLL injection.

The AV- and malware-specific rules only helped increasing our dataset
slightly (5 out of 103 bugs), so our results should not be biased towards those
kinds of software. Within the results from the other generic rules, we also
found AV- and malware-specific bugs.

3.2 Data Processing

We manually identified a series of characteristics from the 103 bugs obtained
in Section 3.1. Table 1 shows the names and the descriptions of the char-
acteristics. To reduce biases in the manual identification, two of the authors
separately collected the characteristics before comparing their results together.
They created an online document to discuss any divergence until reaching an
unanimous decision. In addition, we wrote scripts to automatically extract
some other characteristics as shown in the bottom of Table 1.

3.3 Survey

To further understand the root cause of the DLL injection bugs and how
the bugs were resolved, we designed a survey intended for the 58 vendors
who caused these bugs. However, we could not find the contact information
of 14 vendors (including the malware producers) from Bugzilla or through
an online search. Hence, we ended up contacting only 44 vendors. Among
them, 12 vendors answered all or part of our questions, which corresponds to
a response rate of 27%. As we aim to propose potential solutions to reduce
this kind of bugs, we also asked these software vendors questions on improving
the reliability when adding their code into Firefox.

In our survey, we only used open questions. Participants could choose all
or a part of the questions to answer. Our questions were designed to better
understand the DLL injection landscape: what techniques are used, what kinds
of bugs can arise, why DLL injection is still used as an extension mechanism
despite the presence of safer techniques. Here are the questions we used in the
survey:



8 Le An et al.

Table 1 Characteristics of the bugs caused by third-party software.

Characteristic Description
Manually collected characteristics

Bug impact Whether a bug broke the functionality of the browser, caused
a crash (or startup crash), or caused a hang.

Software name Name of the software that caused a bug. If no software name
is mentioned in a bug report, we marked as “unknown”.

Software type Type of the external software, e.g., antivirus, malware, and
hardware vendor driver.

How resolved How a bug is resolved, e.g., fixed by the vendor, or blocked by
Mozilla.

Reproducibility Whether a bug can be reproduced by the QA of Mozilla or
third-party vendors.
Automatically collected characteristics

Percentage of
DLL users

Percentage of Firefox users who also have the third-party soft-
ware.

Fixing time How many days it took for a bug to be fixed since its first
occurrence. We cannot retrieve the first occurrence date for
some bugs, we have to use the time period from the creation
date until the fixed date to estimated these bugs’ fixing time.

Tracked or
blocking

Whether a bug was ever tracked for a release or was blocking
a release. More information about Mozilla tracking flags and
how they are used in the release management process can be
found in [26].

Q1. What is the injection mechanism that you used?
Q2. Do you know the root cause of this bug?
Q3. If the bug is resolved from your part, do you remember the way by

which you resolved this bug?
Q4. Since Mozilla is encouraging other organizations to produce their soft-

ware as an extension, is there any specific reason why you are still using
the way of DLL injection to add functionalities into Firefox?

Q5. Would you be open to switching to an extension-based solution if Mozilla
gave you the API you needed?

Q6. Do you run QA with pre-release versions of Firefox (e.g., Firefox Beta)?
Q7. Do you have any suggestions to improve the Mozilla API extension?

A possible approach to mitigate the DLL injection issues is to adopt a
whitelist solution. Instead of reacting to DLL injection issues by blocklisting
misbehaving DLLs, Mozilla could proactively block all DLLs except “good”
ones. The vendors in the whitelist would need to be more careful and perform
QA in order to be in the whitelist. Once a whitelisted DLL causes a problem,
it will be removed from the whitelist. Also, developers using the WebExten-
sions API would effectively be exempt and would always be in the whitelist.
Besides reducing bugs, Mozilla expects that this mechanism can push third-
party software vendors to use the WebExtensions API, which can also avoid
crashes in the third-party code taking down Firefox [23].

To evaluate how this solution would be received by third-party vendors,
we asked additional questions to the vendors who have answered our initial
questions. During this work, we consulted some Mozilla developers by email
and added these follow-up questions based on their suggestions.



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 9

Table 2 Impact of the DLL injection bugs (some bugs have more than one impact)

Bug impact Occurrence Proportion

startup crash 47 45.6%
crash (unknown) 25 24.3%
crash 21 20.4%
broken functionality 8 7.8%
hang 4 3.9%
plugin crash 2 1.9%

Q8. In your opinion, what would be a solution to allow for an effective
integration of third-party code into software like Firefox?

Q9. Some software vendors are moving to instruct users to uninstall third-
party software after a crash, what do you think of such practice?

Q10. When Firefox rolls out new content security features, it often runs
into compatibility issues with third-party suites that leverage injection.
What steps do you think Firefox should take to prevent these issues
with your product(s) in the future?

Q11. What support might you be willing to provide to avoid these issues in
the future?

Q12. If Firefox blocks third-party injection associated with your product,
what side effects do you anticipate? Would this potentially break your
software product(s)? Could this break Firefox?

Q13. Some vendors are considering introducing a whitelist that only allows
“reliable” DLLs to be installed. Would the whitelist be an incentive
to adopt the cross-browser WebExtensions API? (products using the
extension API are always whitelisted)

Q14. Would the existence of a whitelist be an incentive for your company to
do more QA with Firefox?

Q15. Would your company try to circumvent the whitelist? If yes, how would
you do it?

4 Case Study Results

We present the results of our case study and discuss the implications of these
results.

4.1 (RQ1) What are the characteristics of the bugs caused by DLL injections?

According to Mozilla telemetry3, large shares of Firefox users are also users of
software employing DLL injection to extend Firefox functionality. Each major
third-party software can be installed on between 1% and 15% of Firefox users’
machines. Severe bugs affecting a DLL from a third-party software that is

3 https://wiki.mozilla.org/Telemetry

https://wiki.mozilla.org/Telemetry


10 Le An et al.

Table 3 Types of the DLL injection software

Software type Occurrence Proportion

antivirus 57 55.3%
hardware vendor driver 19 18.4%
malware 10 9.7%
multimedia tool 4 3.9%
screen reader 3 2.9%
other 3 2.9%
IME 2 1.9%
download manager 2 1.9%
desktop customization 1 1.0%
file hosting service 1 1.0%
accessibility 1 1.0%

Table 4 How the DLL injection bugs were fixed (some bugs were fixed by more than one
resolution)

Resolution Occurrence Proportion

fixed by the vendor 24 23.3%
worksforme 18 17.5%
not yet resolved 18 17.5%
blocklisted 16 15.5%
duplicate 12 11.7%
wontfix 8 7.8%
workaround 5 4.9%
invalid 2 1.9%
fixed by switching to
WebExtension

2 1.9%

fixed bug in firefox 1 1.0%

0

10

20

30

1 6 11 16 21
Fixing time in periods of six weeks (release cycle)

F
re

qu
en

cy

Fig. 2 Distribution of the bug fixing time. Each bin represents a period of six weeks, e.g.,
the first bin means bugs fixed within six weeks (i.e., one release cycle).

installed on 15% of users’ machines (or even 1%) can be very concerning for
Mozilla.

Table 2 shows the distribution of the impact of the DLL injection bugs.
Out of the 103 studied bugs, 93 bugs (90.3%) caused browser crashes, i.e.,
the browser unexpectedly terminates. Among them, 47 bugs (45.6%) caused
crash during the browser startup (the most severe type); 21 (20.4%) crashed



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 11

while the browser was running; we could not deduct the type of crash from
the other 25 bugs (24.3%) (i.e., uptime unknown). Besides, two bugs (1.9%)
crashed a browser plugin. In addition, four bugs (3.9%) caused hangs, i.e.,
the browser does not respond to users’ requests. Only eight bugs (7.8%) have
lower severity. They break the browser’s expected functionality. The overall
impact of the DLL injection bugs are severe, which can negatively affect users’
trustfulness on the quality of the browser. From the side of users, they may
not know whether the severe problems (such as crashes) are caused by the
host software itself (Firefox in this case) or by its interaction with third-party
software (usually they will just assume it is the host software, since that is the
one which crashes, even if the crash stems from injected code). If the problems
are kept unresolved for a long time, users may switch to other equivalent
products. Especially for startup crashes, where users cannot use the browser
at all, nor automatically update it to a newer version when a fix is released
by Mozilla. The only options for them are to manually reinstall Firefox after
a fix is released, wait for an update of the third-party software, or switch to
use another browser.

Table 3 shows the types of the DLL injection software. More than half of
the bugs (57, i.e., 55.3%) are from antivirus software, 19 (18.4%) are from
hardware vendor drivers, 10 (9.7%) are from malware, and 17 (16.5%) are
from other software, including multimedia tools, screen readers, input method
tools (IME), and download managers. Overall, except for a small amount of
malware and purpose-unidentified software, most bugs are derived from DLLs
that provide useful features to users.

Table 4 shows how the DLL injection bugs were resolved (or not resolved).
58 bugs (56.3%) were not actually resolved by the time of this study. Some of
the bugs were closed with a label as “WORKSFORME” (bugs can no longer be
reproduced), “INVALID” (bugs are in the third-party software and with low
enough severity), “WONTFIX” (due to low or decreased volume of impact), or
“DUPLICATE” (duplicate of another resolved bug). Unfortunately, the labels
are not always used consistently (for example, bugs with very low impact
are sometimes resolved as INVALID and sometimes as WONTFIX). Besides,
five bugs (4.9%) were fixed by employing workarounds (temporary and ugly
solutions). For the bugs that were actually resolved, 16 (15.5%) were fixed
by Mozilla by blocklisting the offending DLLs; 24 (23.3%) of them were fixed
from the vendor side. Only two bugs (1.9%) were resolved by switching to
using Mozilla’s WebExtension API as recommended. Merely one bug (1%) was
not due to the DLL vendors but due to defects of Firefox. From the result, we
observe that a weak percentage of the bugs can be resolved by the host software
itself (Firefox). Third-party vendors’ efforts and collaboration are important
to keep the Firefox ecosystem healthy. Moreover, few third-party vendors have
adopted Mozilla’s recommendation of using the WebExtensions API.

Figure 2 depicts the time period (in six weeks periods) during which the
DLL injection bugs were resolved. In this figure, we only considered the 81
bugs that were closed by the time of this study. 40 bugs were fixed within
a period of six weeks; meaning that nearly half of the DLL injection bugs



12 Le An et al.

can be fixed before the next release. 55 bugs were resolved within 18 weeks,
a full release cycle from Nightly to Release. End users can benefit from the
resolution of these bugs within three releases (a new version is released every
six weeks). However, we also observed 10 bugs that were not resolved for more
than one year. Moreover, 22 other bugs have never been resolved until the
writing of this paper. Long resolution time of DLL injection bugs challenges
users’ trustfulness not only to the third-party software, but also, and in many
cases even more, to the host software. To maintain the health of the ecosystem,
both sides of the host and third-party software need to actively and effectively
discover and resolve bugs. We found that some bugs, such as Bug #1268470,
were resolved late because at the time of reporting the bug, it affected only a
small number of users. When the bug started affecting more users, it attracted
Mozilla’s attention.

Although Bugzilla has priority/importance fields, they are used inconsis-
tently by different developers and different teams, thus cannot be relied upon
to infer the importance of a given bug. In order to evaluate the actual severity
of the bugs, we analyzed the Bugzilla tracking flags that are used by Release
Managers during the release process [26]. We found that 32 bugs (31.1%)
were tracked or blocking for a release at least once. These kinds of bugs are
particularly important because they either have been closely monitored by re-
lease managers for possible resolution in a Firefox release (tracked bugs: 24,
23.3%) or have been marked as blocking (must be fixed before shipping)
a Firefox release (blocking bugs: 8, 7.8%). To put it into perspective, we can
compare these percentages with the overall ones: 3390 tracked bugs (around
0.037%) and 165 blocking bugs (around 0.002%). This means that DLL injec-
tion bugs, even though expectedly rarer than other bugs, are often more severe
than other bugs. We also compared the fixing times of DLL-injection block-
ing/tracked bugs with those of generic blocking/tracked bugs. In addition, we
found that the average fixing time is around 3.4 times higher for DLL-injection
tracked bugs than generic tracked bugs (for blocking bugs the average is 2.8
times higher). However, the differences are not statistically significant based
on the Mann-Whitney U test [14]. One reason is that there are too few samples
in our dataset.

Finally, 26 (25.2%) of the DLL injection bugs could be reproduced by
Mozilla or third-party vendor’s QA, four (3.9%) of the bugs could not be re-
produced, and we cannot identify whether the rest 73 bugs (70.9%) could be
reproduced or not. For bugs that were reproducible, additional QA performed
by either Mozilla or the third-party vendors before a Firefox release could have
prevented the bug from hitting users. Among the aforementioned eight block-
ing bugs (account for 7.8%), five of them could be reproduced by Mozilla or
third-party QA, one of them could not be reproduced, and we cannot identify
the reproducibility for the remaining two bugs. If more in-depth QA was part
of the envisioned whitelist policy of Mozilla, many of these blocking bugs could
have been resolved before they became blocking.



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 13

Table 5 Statistics on the survey participants (all participants are from different vendors)

Question Participants Software type (and its frequency)

1 12 antivirus (7) screen reader (1)
unknown (1) internet downloader (1)
media recorder (1) hardware vendor driver (1)

2 12 antivirus (7) screen reader (1)
unknown (1) internet downloader (1)
media recorder (1) hardware vendor driver (1)

3 10 antivirus (5) screen reader (1)
unknown (1) internet downloader (1)
media recorder (1) hardware vendor driver (1)

4 11 antivirus (7) screen reader (1)
unknown (1) hardware vendor driver (1)

5 7 antivirus (3) screen reader (1)
unknown (1) hardware vendor driver (1)

6 6 antivirus (2) screen reader (1)
unknown (1) hardware vendor driver (1)

7 5 screen reader (1) unknown (1)
hardware vendor driver (1) media recorder (1)

8 5 antivirus (3) media recorder (1)
9 4 antivirus (3) media recorder (1)

10 4 antivirus (3) media recorder (1)
11 4 antivirus (3) media recorder (1)
12 4 antivirus (3) media recorder (1)
13 4 antivirus (3) media recorder (1)
14 5 antivirus (3) media recorder (1)
15 4 antivirus (3) media recorder (1)

93 bugs (90.3%) of the DLL injection bugs led to crashes. 57 bugs (55.3%)
of the bugs are from antivirus software, 19 (18.4%) of them from hardware
vendor drivers, and 10 (9.7%) from malware. 1% to 15% of Firefox users
also have some of the software that caused these bugs.

4.2 (RQ2) Which factors triggered the DLL injection bugs?

Firefox is an open source browser. Its crash and bug reports are also open to
the public. Developers and researchers can leverage these resources to under-
stand the root causes of most bugs. However, through our manual analysis,
none of the DLL injection software that caused bugs in Firefox is open source.
Thus, we cannot understand the root causes of these bugs from source code. As
we observed in RQ1, many subject bugs, which were eventually resolved, were
fixed by the software vendors or blocked by Mozilla. In both cases, Mozilla did
not know the triggers. Although the third-party vendors knew the triggers of
the bugs they resolved, they rarely mentioned them in the bug reports. In
other words, bug reports cannot help us to understand the bugs’ root causes
either. Therefore, to answer this research question, we decided to ask the soft-
ware vendors themselves. In the rest of this section, we will show the vendors’
responses to the corresponding survey questions and discuss these responses.
Table 5 shows statistics on the participants for each survey question. In this ta-
ble, we respectively provided the total number of participants who answered a



14 Le An et al.

question, types of these participants’ software, and number of participants for
each type of software. All the reported responses are from closed source soft-
ware vendors. Due to privacy reasons, we may have hidden some confidential
details.

DLL injection mechanisms used by the software vendors (Q1).
We received 12 responses to the question related to the injection mechanisms
used on Firefox. Two general kinds of mechanisms can be identified from the
responses: standard Windows techniques and proprietary techniques. Among
the eight responses on the standard techniques, seven participants explained
the detail of their technique, one participant only mentioned that their DLL
injection technique is standard for the Windows OS. Here we quote our par-
ticipants’ answers to this question: “It’s just a standard Shell Extension that
runs when folks use the open/save dialogues.” “We use SetWinEventHook [29]
from user32.dll.” “We used a general mechanism (SetWindowsHookEx [28])
to inject other processes in order to be able to influence window creation flags
in case the user decides to not be disturbed in Game Mode / Do Not Disturb
Mode.” “AppInit dll [2] registry entry.” “CreateRemoteThread+LoadLibrary
[8, 21]”.

Three participants said that they used proprietary techniques, but none
of them revealed details. Two other participants did not directly answer this
question but said that the injection mechanism is irrelevant to the bugs. Over-
all, third-party software uses a variety of techniques to inject DLLs
into the host software.

Root causes of DLL injection bugs and resolution mechanisms (Q2,
Q3).
Our second and third questions concerned the root causes of the bugs and
how the bugs were resolved. Nine participants explained the root causes of the
bugs caused by their injected software. 10 participants explained the resolution
process of the bugs caused by their injected code. Some bugs were caused by the
injection engine. The participants said: “Bug in hook engine. Legacy code not
covered by automatic tests.”, “Problem was internal to the hooked functionality
and likely not dependent on Firefox code”. The DLL vendors resolved the bugs
by fixing their injection code.

Compiler or runtime incompatibility is another cause mentioned: “Our
compiler wasn’t C++ 11 compliant and therefore introduced a race initializa-
tion of a mutex.” “(Our DLL) was incompatible with C++ runtime, shipped
with Windows 8.0 x64. It is not depend of upgrade or clear installation of FF
(Firefox). In addition, it should not depend from browser, for crash it is enough
Windows 8.0 x64 C++ runtime and any browser.”. Participants did not pro-
vide detailed information about the resolution of this problem. We suppose
that upgrading the compiler would address the bugs.

Some other bugs were due to generic programming mistakes, which were
later resolved and made the DLL work again. One participant explained: “It
was a mistake regarding 64 and 32 bit values in our code base.” “bad alloc
wasn’t caught in our code.”



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 15

In addition, bugs can also occur when “users forcibly loaded old extensions
to newer versions of Firefox and disabled compatibility checks ... (Old versions
of Firefox) missed a check for NULL on one of interface queries. The issue
started to persist after significant changes in Mozilla interfaces.” To reduce
this kind of bugs, the host software can alert users to upgrade their old version
of the third-party software, and warn them of the potential consequences of
the incompatibilities on the host/third-party software versions.

Based on our observations, most bugs are due to injection engine
problems, compiler/runtime incompatibility, or version incompati-
bility between the host and third-party software. This finding corrobo-
rates what we found in RQ1: most bugs are in third-party software’s code and
thus cannot directly be fixed by Mozilla.

In many cases, DLL injection bugs are triggered by injection engine er-
rors, compiler/runtime incompatibility, or version incompatibility between
the host and third-party software.

4.3 (RQ3) What would be the potential solutions to reduce such DLL
injection bugs?

Unreliability challenges all software ecosystems. To reduce potential crashes
caused by third-party software, from September 2018, Chrome will try to block
most third-party software that injects code into it [7] (Chrome developers
claim that “users with software that injects code into Windows Chrome are
15% more likely to experience crashes”). The organization hopes third-party
software can switch to use the recommended WebExtensions API to run code
inside Chrome processes. Mozilla is also trying to reduce bugs caused by third-
party software, while avoiding outright blocking, by introducing a whitelist to
allow only DLLs, which are proved reliable, to inject code into Firefox. With
the same expectation as Chrome, Mozilla hopes that this measure can make
third-party software vendors switch from DLL injection to WebExtensions,
which is considered as a more reliable way to interact with Firefox. In this
paper, by analyzing survey participants’ answers, we want to discuss whether
the whitelist is the best solution to reduce bugs from third-party software, and
whether there are better alternatives to it.

Reasons provided for not adopting WebExtensions (Q4).
First, we wanted to know the reasons why many third-party vendors are still
using the way of DLL injection, although WebExtensions have been available
for a while (in alpha state since Firefox 42, released in 2015-11-03; in a stable
state since Firefox 48, released in 2016-08-02). This corresponds to Question
#4 in the survey. 11 participants answered this question. Multiple partici-
pants mentioned that their DLL is not specifically designed for Firefox but is
also being used for other host software, e.g., “Our software is not just used



16 Le An et al.

for FF (Firefox). It is a general purpose audio recorder. Users choose which
application they wish to target.” For these vendors, migrating to WebExten-
sions would not be interesting because it requires extra efforts to refactor the
existing code.

Another reason is that some vendors cannot use WebExtensions to achieve
their goal, e.g., “We must be able to gather content from Firefox. The most
efficient way being to inject. Extensions are not suitable for Screen Reading
software such as ours”. An antivirus vendor said: “We provide secure input fea-
ture in our product, which means that no one can intercept symbols, which user
input in browser fields. The task could not be done on Windows OS without
kernel driver and injected dll in browser”. Another antivirus vendor explained:
“As hackers always inject, while we are reducing to minimize our injections,
we cannot totally eliminate them”. This would partially explain why a big
percentage of DLL injection bugs derive from antivirus software. Due to the
above two reasons, if a host software banned DLL injections, the vendors will
have to find other feasible hosts.

Moreover, some participants indicated the disadvantages of WebExten-
sions, e.g., “The main disadvantage we find is that WebExtensions can be
easily disabled (for a user with admin-rights, and in a Windows workgroup
environment). We had taken this route of injecting a DLL to enforce URL
filtering even in such environments”. Again, DLL injection is currently the
most suitable way for such vendors.

Only one participant is willing to accept WebExtensions, but they also said
that WebExtensions cannot fulfill some particular purposes, which is inline
with the aforementioned observations.

In general, some DLL vendors do not want to adopt WebExten-
sions, because they do not target for one specific host software, and
the features currently offered by the WebExtensions API are still
limited for some purposes. One participant told us that their organiza-
tion has thoroughly analyzed the pros and cons about using WebExtensions.
However, they still keep using DLL injection because they “don’t see any way
how and why to stop injecting there (in order to protect our users, which is
our business)”. We cite their analysis here and hope that host software orga-
nizations can take this as a reference to improve the extension API and–or
communicate better about their advantages.

“In comparison with injection, extension has much worse deployment possibil-
ities – the installation process is cumbersome (you can’t install the extension
silently without user interaction which is a major UX problem, you can’t pro-
tect the extension from uninstalling, you’d need to check for browser reinstalls
and install again etc).
Also, it’s possible to write the extension, but since the API is limited (every-
one saw the 2/3 of extensions being removed from new Firefox because of API
problems) and the model is also asynchronous, which kinda gets in a way what
would AV product need. And the next point against extensions is a need for
three different extensions for three browsers – although they all use WebExten-



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 17

sions, they’re quite different. And MSIE is still there, with stronger presence
than Edge.”

Migration from code injection to WebExtensions (Q5).
Q5 is about whether third-party vendors are open to switch to WebExtensions
if Mozilla gave them the needed API. Seven participants answered this ques-
tion. One participant, who is the one saying that WebExtensions can be easily
disabled, simply said Yes. Those vendors targeting multiple hosts answered
No, because “Mozilla doesn’t control the surface area we modify”.

A participant suggested that if different host software organizations can
standardize their APIs, third-party vendors will be more willing to migrate.
“It depends on the functionality and if there are general, OS runtime based
standard mechanisms already available. It makes no sense to have two different
implementations of the same functionality.”

Other participants’ attitude is rather open, but they doubt whether Mozilla
can provide the specific API they require. For example, “I doubt that the
extension mechanism would be sufficient for our requirements. However, we,
Mozilla, and other vendors are actively considering other ways that software
such as ours would not have to inject to gather this content.”

“We are combatting malware and exploits though, which work in a low-
level way, directly manipulating Firefox code and interacting with the operating
system. It is quite unlikely that a high-level extension (i.e., JavaScript) can be
used to detect and mitigate all those threats reliably.”

“Actually, we prefer to use ‘standard’ means whenever possible ... The main
concern is, how do you expose the API without any malicious software using
it.”

Overall, although some third-party vendors are open to adopt We-
bExtensions API, they doubt whether the API can fulfill their re-
quirements.

Quality assurance of injected code (Q6).
Six participants answered whether they run QA with pre-release versions of
Firefox. Four participants said Yes, one of them further explained: “but not as
often as we would like”. The other two said No. In our opinion, running QA
against each version of the host software is necessary. The vendors who neglect
this process may miss bugs in the ecosystem. In this case, the whitelist would
be an effective measure to penalize the vendors who do not test their software
well and frequently have bugs.

Suggested improvements to the WebExtensions API (Q7).
Q7 encourages participants to suggest improvements for the WebExtensions
API. One participant wished that “(Mozilla) can provide a mean to get the
HWND [37] of a window from within the extension”. This suggestion is in line
with the doubts on the functionality offered by the WebExtensions API.

Another suggestion is about the reliability of the API itself: “Some of
the mechanisms (of WebExtensions) do not work ... We opened a bug (on
this problem)”. Therefore, completely blocking DLL injection may not be the



18 Le An et al.

best solution because if a third-party vendor can neither use DLL injection
nor program against an available/reliable API, they have to give up the host
software and find other platforms. However, if all browsers move to reduce
DLL injection, third-party software will be forced to gradually transition to
WebExtensions.

To further discuss the solutions of reducing DLL injection bugs, we will
analyze the answers on the follow-up questions. Some of the questions are
targeted for the upcoming whitelist by Mozilla. Only five participants answered
these questions. Their answers may not be representative, but can be used as
a reference for host and third-party software to improve the reliability of an
ecosystem. In the following of this section, we will cite their answers and discuss
the implications.

Allow an effective integration of third-party software into another
software (Q8).
Our follow-up questions start by how to allow an effective integration of third-
party software into another software. Our participants answered as follows:
“Certainly the most common extensions can and should be handled by a plugin
API like WebExtensions. Additionally, having a link to AMSI (Anti-Malware
Scan Interface) by Microsoft would make sense. But generally, what Windows
supports should be also supported by Firefox, which also includes code injection.
For monitoring the process state on a system level, sometimes there are no
other options that would come to my mind.”

“Use of extensions is the most effective method. However, in enterprise
environment, admin would want to enforce use of certain extensions (with-
out allowing a user to disable it). Browsers allow enforcing certain extension
through group policy in domain environment. However, we have a lot of SMB
(small and midsize business) customers who don’t have domain-network envi-
ronments. Solving that requirement is tricky.”

“There (should be) an extensive QA verification process in place that in-
cludes Firefox test scenarios and a working collaboration with Mozilla. One
proven approach to improve the code quality of external components is to es-
tablish a publicly accessible validation test framework that provides the test
scenarios an extension has to pass and where test scenarios are updated, based
on observances with field issues.”

“If they can provide an API (e.g., callback) that will be available only for
registered whitelisted DLLs, we can move to that model instead of our current
model and reduce even more compatibilities issues.”

Based on their answers, besides the extension API, third-party software
vendors believe that DLL injection should also be kept as an option since it
is legally supported by the operating system. The collaboration between host
and third-party software is necessary to ensure the quality of an ecosystem.
Particularly, a publicly accessible validation test framework can help standard-
ize the QA for both parties. Moreover, the upcoming whitelist seems to be a
favourable solution for some third-party vendors.



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 19

Whether suggest users to uninstall third-party software after a crash
(Q9).
We then were curious to know the opinions of third-party vendors on the prac-
tice that some host software (e.g., Chrome [7]) will suggest users to uninstall
third-party software after a crash. We received a favourable opinion “If an
app crashes on your machine then sure uninstall it. Makes complete sense.
Not all machines are created equal.” versus multiple against opinions “I con-
sider this generally to be a bad practice, especially when a crash can’t be clearly
attributed to a particular third-party software – which is usually not possible
in an automated way.” “They put their customers at risk, since the legitimate
(e.g., antivirus) will be removed ... If I were malware, I will use this function-
ality to ask users to remove any 3rd party mechanisms that prevent me from
doing whatever I need.” “Uninstalling third-party solution isn’t a long term
solution.”

From the answers, we can see that this is a complex problem. First, such
suggestions may become false alarms to users because a host vendor cannot
simply decide whether a crash is due to the third-party or the host software
itself. Second, in the Mozilla ecosystem, many crashes are caused by antivirus
software. If such antivirus software is uninstalled, malware may take advan-
tage of this. Facing a third-party software related crash, we suggest
that host vendors warn users about the potential risks of running
the third-party software (e.g., by showing the number of crashes)
but also remind them of the risks of removing it. Besides, host ven-
dors should investigate whether the crash happens with other equivalent host
software. Moreover, host vendors should always make efforts to improve the
reliability of their platform if necessary, because if users value the importance
of the third-party software and find it working well with other hosts, they may
uninstall the host software instead.

Incompatibilities between host and third-party software (Q10, Q11).
Q10 and Q11 are about the way to prevent incompatibilities between host and
third-party software when the host software rolls out new content security
features. Our participant suggested: “Notify us like they did when there is an
issue. Worked well last time. We have a fix rolled out very quickly when we
were made aware of the issue.”

“Browser vendors can closely work with security vendors to bring about
more stable, secure browser ecosystem.”

“A preview of such functionality to test it in our labs will be highly appreci-
ated (with enough leeway and documentation to have the time for the vendors
to adapt their code).”

In the meanwhile, the participants told us that they are willing to take the
following measures from their part. “We always try and fix any issues with our
software when they are reported to us. We do this as soon as we were alerted
to the problem.”

“Regular compatibility testing of latest aurora/beta releases of various browsers
from our side along with our product and addresses any issues found.”



20 Le An et al.

“We are willing, and already testing, any beta and post beta releases. But if
we can get documentation and enough time, we can commit to have our code
ready and tested by the release date (or if push comes to shove, temporarily
some remove functionality to accommodate browsers releases).”

Overall, we learnt that many third-party vendors are making efforts on
compatibility testing and bug fixing for each (pre-) release. A good commu-
nication between host and third-party software would help to reduce
incompatibilities due to new security features. Mozilla can provide
some preview and necessary documentation of the new features to
the trusted (i.e., whitelisted) vendors (for compatibility testing) be-
fore the features are released to users.

Blocking of third-party DLLs (Q12).
Blocking third-party DLLs is one the of measures host software is using. Let
us look at the potential side effects analyzed by third-party vendors.

“Our users would not be able to target FireFox ... and would probably use
another browser.”

“Practically I wouldn’t anticipate any side effects, although theoretically it
could affect the stability of Firefox, our software products or even the whole
operating system.”

“It will break our protections and cause frauds associated with the removed
protections, can crash our browser components and probably Firefox as well.”

“This will break our ability to scan HTTPS URLs for malware/phishing
links.”

Again, according to the respondents, blocking DLLs would not be
the best way to resolve DLL bugs. Before doing this, host software
vendors should be aware of any potential and serious side effects.
This is the reason why in Mozilla’s blocklisting policy the blocks are always
applied after careful consideration and testing, and also why outright blocking
might pose problems if not handled well.

Enforcing a whitelist (Q13, Q14).
Some host software vendors are considering to put the DLLs into the whitelist
if the DLL software is also using the standard extension API.

On the one hand, some third-party vendors agreed that such whitelist
bonus is an incentive for them to adopt the extension API, but these vendors
have already considered/started to migrate to the API. “Yes ... (the whitelist
bonus will be) along with the ability to enforce addons in certain scenarios.”
“We already adapting to the best of our ability the WebExtension API. We
also moved to that methods on other browsers.”

On the other hand, some others are not interested in this bonus because
“I am unaware that we can extract audio from a browser using this API” and
“The WebExtensions API has simply different use cases than the ones we are
currently implementing. Therefore I don’t think it makes sense to mix that
up”. The benefit of the whitelist bonus still needs to be verified in the future.

Some participants agreed that the existence of a whitelist will be an in-
centive for them to do more QA. For the two participant who did not agree,



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 21

one thought that their “current QA processes are sufficient”. The other one
absolutely denied potential benefits from the whitelist: “A whitelist approach
is inferior as it holds back the extension ecosystem overall, in my opinion.
A proactive approach providing extensive and frequently updated test scenario
framework support covering known problematic techniques is superior.” There-
fore, we also need future evidences to answer this question.

Bypassing the whitelist (Q15).
About our last question, no participant plans to circumvent the whitelist, even
for the vendors who insist to use DLL injection.

“No, because it won’t be a long term solution.”
“We would not for legal reasons. We do not circumnavigate anything.”

“This question is quite hypothetical right now. Likely we would respect Firefox’s
policy and not try to actively circumvent anything like this by technical means,
but instead we may notify our users about this and suggest to move to another
browser. Depending on the exact method of implementation, it’s questionable
if we’d be affected by such a whitelist though.”

“If we will be on the white list, why should we (circumvent it)?”
However, we do not know whether malware producers would try to cir-

cumvent the whitelist (our guess is that they probably would), since we are
not able to contact any of them. Also, we cannot be sure that the answers to
this question are actually honest, given that circumventing the whitelist might
be illegal and would be a direct challenge against Mozilla. Clearing out this
doubt will be a part of our future work, once we collect enough field data on
the whitelist.

Completely blocking DLL injection might not be the best strategy to reduce
bugs caused by third-party software. Instead, host software vendors should
strengthen their collaboration and communication with third-party vendors,
and build a publicly accessible validation test framework. To attract third-
party vendors to use the standard extension API, host software should im-
prove the API’s reliability and functionality (i.e., available functions). A
whitelist might be beneficial, but more empirical evidences are needed to
support this claim.

5 Discussion

In a software ecosystem, pursuing user satisfaction is one of the most impor-
tant goals for both host and third-party vendors. However, to achieve this goal,
some host and guest vendors are taking conflicting measures. In the previous
section, we have observed that, on the one hand, some host vendors are (even
completely) blocking third-party software added through DLL injection and
are suggesting users to uninstall unreliable software. On the other hand, some
third-party vendors are not willing to adopt host vendors’ advices and new



22 Le An et al.

solutions because once their extensions cannot work with the host software,
they claim that they will suggest users to migrate to another host. We believe
that in an ecosystem, host and third-party vendors should not consider their
benefit as a zero-sum game, but a win-win game. To satisfy and hold their
common users, host and third-party vendors should strengthen their collabo-
ration along all aspects of the development of the ecosystem, including (but
not limited to) testing, bug fixing, feature introducing, and API evolution.

In this work, we choose DLL injection as subject because some host soft-
ware vendors realize that this technique often caused bugs (even crashes) and
can be exploited by attackers. However, besides DLL injection and a standard
extension API, there are other ways to add third party code into another soft-
ware, such as Flash. As a resource consuming and outdated technique, Flash
has been made “click-to-play” in both Firefox and Chrome since 2017, and
will be completely blocked in all browsers by 2019 (2020 for Firefox ESR),
so we do not study it in our work. Comparing the reliability among different
extension techniques will be a part of our future work.

6 Threats to Validity

Construct validity threats are concerned with the relationship between the-
ory and observation. Studying DLL injection bugs in an ecosystem is a new
research topic. As far as we know, there has not been a theory behind this.
However, before conducting the empirical study, we learnt some assumptions
through our contact with Mozilla developers, but observed opposing results.
For example, some Mozilla developers thought that the WebExtensions API
can fulfill most of the purposes. They guessed that some third-party vendors
are not willing to migrate to the API because the vendors do not want to
spend time to modify their existing code. However, multiple of our survey
participants indicated that their purposes cannot be satisfied by the current
WebExtensions API. Moreover, to reduce DLL injection bugs, host vendors
are taking measures, e.g., blocking DLL injection, suggesting users to unin-
stall “unreliable” extensions. By analyzing feedback from third-party vendors,
we realize that many of these measures could be harmful for end users and
even the host vendors themselves.

Internal validity threats concern factors that may affect a dependent variable
and were not considered in the study. Some of our observations derived from
the 12 survey responses. Although these responses cannot represent all third-
party vendors’ opinions, they provided us valuable information to understand
the root causes of the DLL injection bugs and to propose potential solutions
to reduce the bugs occurrence. The most important reason is that such in-
formation cannot be discovered from any open source repositories, such as
Mozilla bug reports, crash reports, or commit logs. Besides, we studied all the
103 DLL injection bugs reported during the past two years. These bugs were
caused by 58 different vendors, among which, 44 vendors were contacted. 12



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 23

survey participants represent a 21% coverage of all subject third-party ven-
dors and 27% survey response rate (which is higher than the average response
rate in questionnaire-based software engineering studies, i.e., 5%, according to
Singer et al.’s finding [30]).

Conclusion validity threats concern the relationship between the treatments
and the outcome. When investigating the characteristics of the DLL injec-
tion bugs, we manually classified DLL bugs into different categories. To re-
duce any biases during this process, we did not predefine any category. For
each characteristic, two of the authors independently made their classifica-
tion before comparing their results and resolving each of the discrepancies.
Despite this, we cannot guarantee a 100% accuracy on our classification re-
sult. To help future studies validate our result, we share our dataset online at:
https://github.com/swatlab/dll_injection. Some of the important ob-
servations are based on the survey responses. To reduce any possible biases,
besides our discussion and analyses, we cited participants original answers.
Readers can use this information to validate our conclusion and discover more
insight. When compiling the survey responses, we hid some details due to pri-
vacy reasons. For example, we did not make a table showing which participant
answered which question because this way may disclose information that par-
ticipants do not wish to publish. In the survey, we only use open questions,
because first, our subject problem has not been empirically studied before,
i.e., there is no reference to help us predefine options for the answers. Sec-
ond, predefined answers may bias and limit participants’ judgement. In this
work, we are open to receive any unexpected ideas that can lead us to a better
understanding of the subject problem.

External validity threats are concerned with the generalizability of our results.
In this work, we choose Mozilla Firefox as subject ecosystem because other
equivalent ecosystems either lack relevant data or will try to completely block
DLL injection soon (e.g., Chrome). We believe that Firefox is a large-scale rep-
resentative ecosystem, which contains various and diverse DLL software (refer
to the software types discussed in RQ1). In addition, Firefox possesses some
public resources that we cannot benefit from other host vendors, such as bug
reports, where we can also often see decision processes in play, and third-party
vendors’ contacts. Nevertheless, the results and conclusion of our work may
not be generalized to other environments. Future studies are required to vali-
date and complement our findings. Researchers can also use our shared dataset
to replicate this study: https://github.com/swatlab/dll_injection.

7 Related Work

7.1 Software Ecosystems

When a software organization increasingly allows other software to join and
extend its software platform, an ecosystem is gradually formed. Many software

https://github.com/swatlab/dll_injection
https://github.com/swatlab/dll_injection


24 Le An et al.

organizations have realized that either creating or joining into such an ecosys-
tem can be beneficial because they no longer have to produce an entire system
but only need to work for a part of it. Recently, we have seen an increase in
the number of software ecosystems and the number of research studies that
have focused on them. Bosch [4] observed the emerging trend of the transi-
tion from traditional software product lines to software ecosystems and pro-
posed actions required for this transition. He also discussed the implications of
adopting a software ecosystem approach on the way organizations build soft-
ware. Hanssen [13] conducted an empirical study of the CSoft system, which
transitioned from a closed and plan-driven approach towards an ecosystem. He
observed that transitioning to a software ecosystem improved the cross organi-
zational collaboration and the development of a shared value (i.e., technology
and business) in the collaboration. Jansen et al. [17] discussed the challenges of
software ecosystems at the levels of software ecosystems themselves, software
supply network, and software vendors. This early work provided a guideline
for software vendors to make their software adaptable to new business models
and new markets, and help them to choose appropriate strategy to succeed in
an ecosystem. Later on, Van Den Berk et al. [32] built models to quantitatively
assess the status of a software ecosystem as well as the success of decisions
taken by the host vendors in the past.

Researchers have also empirically studied various popular open source
ecosystems, including Linux kernel (e.g., [31]), Debian distribution (e.g., [10,
12]), Eclipse (e.g., [34, 5]), and R (e.g., [11]) ecosystems. The host software
in these ecosystems are respectively operating system, integrated development
environment, and mathematical software. However, as far as we know, there
is no previous study that empirically investigates a browser-based open source
ecosystem (e.g., Firefox, Chrome). Although Liu et al. [20] studied the ex-
tension security model of Chrome and Karim et al. [18] studied the Jetpack
Extension Framework of Mozilla, their research focused on the extension tech-
niques rather than on the ecosystems. We contribute to filling this gap by
conducting an empirical study of DLL injection bugs in the Firefox ecosys-
tem. Another difference between our work and these previous works [20, 18] is
that DLL injection is completely arbitrary, i.e., a third-party software can ex-
ecute whatever it requires; while the extension API can constrain third-party
software’s behaviour.

7.2 DLL Injection

DLL injection is one of the popular ways to insert code into other software. It
can force a process to load external code in a manner that the author of the
process does not anticipate or intend. Leveraging the DLL injection technique,
Andersson et al. [1] proposed a framework to detect code injection attacks [35].
Lam et al. [19] proposed an approach that uses DLL injection to isolate the ex-
ecution of the incoming email attachments and web documents on a physically
separate machine rather than on the user machine. Their approach can help



An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 25

reduce the risk that user machines are attacked. Berdajs et al. [3] analyzed the
limitations of multiple existing DLL injection techniques (including CreateR-
emoteThread, proxy DLL, Windows hooks, using a debugger, and reflective
injection) and introduced a new approach that combines DLL injection and
API hooking (a technique by which we can modify the behaviour and flow
of an API call [15]). The improved approach can inject code even when the
application is not fully initialized.

As DLL injection allows a program to inject arbitrary code into arbitrary
processes [36], malware producers can also take advantage of this technique
to exploit computers. Jang et al. [16] proposed an approach to help identify
malicious DLLs in Windows. Windows maintains a list of all loaded modules,
including DLL modules. Some software checks this list to detect DLLs injected
from another process and take corresponding measures, e.g., block it if a DLL is
suspicious. However, an approach called Reflective injection [9] can inject DLLs
in a stealthy manner, which increases the difficulty of detecting suspicious
DLLs.

Like a double-edged sword, DLL injection is a useful (even indispensable)
programming technique, but can also cause severe damages due to its arbitrary
nature. To the best of our knowledge, we are not aware of any existing work
that empirically studied the root causes and counterplans of the bugs or defects
caused by DLL injection. Particularly, in a software ecosystem, this kind of
bugs can hardly be predicted but can affect a large number of users. To help
software practitioners understand the root causes of DLL injection bugs and
propose solutions to reduce them, we conduct this case study on the Firefox
ecosystem.

8 Conclusion

In a software ecosystem, DLL injection allows third-party software to forcibly
load arbitrary code into the host software. This technique may cause severe
problems, such as crashes and hangs. In this paper, we quantitatively and
qualitatively studied DLL injection bugs in the Firefox ecosystem. We found
that: most of the subject bugs (93 bugs, i.e., 90.3%) led to crashes, and 57
(55.3%) of them were caused by antivirus software (RQ1). Various DLL in-
jection mechanisms were applied by third-party vendors; the triggers of the
bugs can be engine errors, compiler/runtime incompatibility, or version in-
compatibility between the host and third-party software (RQ2). Completely
banning DLL injection might not be the best strategy because some software
(e.g., antivirus) relies on this technique. Collaboration between host and third-
party software vendors could help reduce DLL injection bugs; host software
vendors should extend the features of the extension API (as a safer alternative
of adding functionalities onto the host software) and build a publicly acces-
sible validation test framework (RQ3). In the future, we plan to investigate
whether the upcoming whitelist can further help reduce DLL injection bugs.



26 Le An et al.

References

1. Andersson S, Clark A, Mohay G, Schatz B, Zimmermann J (2005) A
framework for detecting network-based code injection attacks targeting
windows and unix. In: Computer Security Applications Conference, 21st
Annual, IEEE, pp 10–pp

2. AppInitDLLs (2018) AppInit DLLs in Windows 7 and Windows Server
2008 R2. https://msdn.microsoft.com/en-us/library/windows/

desktop/dd744762(v=vs.85).aspx, online; Accessed April 12th, 2018
3. Berdajs J, Bosnić Z (2010) Extending applications using an advanced ap-

proach to dll injection and api hooking. Software: Practice and Experience
40(7):567–584

4. Bosch J (2009) From software product lines to software ecosystems. In:
Proceedings of the 13th international software product line conference,
Carnegie Mellon University, pp 111–119

5. Businge J, Serebrenik A, van den Brand M (2010) An empirical study
of the evolution of eclipse third-party plug-ins. In: Proceedings of the
Joint ERCIM Workshop on Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution (IWPSE), ACM, pp 63–72

6. Castelluccio M, An L, Khomh F (2018) An empirical study of patch uplift
in rapid release development pipelines. Springer, pp 1–37

7. Chromium Blog (2017) Reducing Chrome crashes caused by third-party
software. https://web.archive.org/web/20180728201546/https:

//blog.chromium.org/2017/11/reducing-chrome-crashes-caused-

by-third.html, online; Accessed August 1st, 2018
8. CreateRemoteThread (2018) CreateRemoteThread function.

https://msdn.microsoft.com/en-us/library/windows/desktop/

ms682437(v=vs.85).aspx, online; Accessed April 12th, 2018
9. Fewer S (2008) Reflective dll injection. Harmony Security, Version 1

10. German DM, Gonzalez-Barahona JM, Robles G (2007) A model to under-
stand the building and running inter-dependencies of software. In: Reverse
Engineering, 2007. WCRE 2007. 14th Working Conference on, IEEE, pp
140–149

11. German DM, Adams B, Hassan AE (2013) The evolution of the r software
ecosystem. In: Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, IEEE, pp 243–252

12. Gonzalez-Barahona JM, Robles G, Michlmayr M, Amor JJ, German DM
(2009) Macro-level software evolution: a case study of a large software
compilation. Empirical Software Engineering 14(3):262–285

13. Hanssen GK (2012) A longitudinal case study of an emerging software
ecosystem: Implications for practice and theory. Journal of Systems and
Software 85(7):1455–1466

14. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical meth-
ods, 3rd edn. John Wiley & Sons

15. InfoSec Institute (2014) API hooking. http://resources.

infosecinstitute.com/api-hooking, online; Accessed April 12th,

https://msdn.microsoft.com/en-us/library/windows/desktop/dd744762(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd744762(v=vs.85).aspx
https://web.archive.org/web/20180728201546/https://blog.chromium.org/2017/11/reducing-chrome-crashes-caused-by-third.html
https://web.archive.org/web/20180728201546/https://blog.chromium.org/2017/11/reducing-chrome-crashes-caused-by-third.html
https://web.archive.org/web/20180728201546/https://blog.chromium.org/2017/11/reducing-chrome-crashes-caused-by-third.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682437(v=vs.85).aspx
http://resources.infosecinstitute.com/api-hooking
http://resources.infosecinstitute.com/api-hooking


An Empirical Study of DLL Injection Bugs in the Firefox Ecosystem 27

2018
16. Jang M, Kim H, Yun Y (2007) Detection of dll inserted by windows ma-

licious code. In: Convergence Information Technology, 2007. International
Conference on, IEEE, pp 1059–1064

17. Jansen S, Finkelstein A, Brinkkemper S (2009) A sense of community:
A research agenda for software ecosystems. In: Software Engineering-
Companion Volume, 2009. ICSE-Companion 2009. 31st International Con-
ference on, IEEE, pp 187–190

18. Karim R, Dhawan M, Ganapathy V, Shan Cc (2012) An analysis of the
mozilla jetpack extension framework. In: European Conference on Object-
Oriented Programming, Springer, pp 333–355

19. Lam Lc, Yu Y, Chiueh Tc (2006) Secure mobile code execution service.
In: LISA, pp 53–62

20. Liu L, Zhang X, Yan G, Chen S, et al (2012) Chrome extensions: Threat
analysis and countermeasures. In: NDSS

21. LoadLibrary (2018) LoadLibrary function. https://msdn.microsoft.

com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx, on-
line; Accessed April 12th, 2018

22. Mozilla Add-ons Blog (2018) Advantages of WebExtensions for Develop-
ers. https://blog.mozilla.org/addons/2016/03/14/webextensons-

whats-in-it-for-developers/, online; Accessed April 16th, 2018
23. Mozilla Add-ons Blog (2018) Preventing Add-ons And Third-party

Software From Loading DLLs Into Firefox. https://blog.mozilla.org/
addons/2017/01/24/preventing-add-ons-third-party-software-

from-loading-dlls-into-firefox/, online; Accessed November 11th,
2018

24. Mozilla Add-ons Blog (2018) The Future of Developing Fire-
fox Add-ons. https://blog.mozilla.org/addons/2015/08/21/the-

future-of-developing-firefox-add-ons/, online; Accessed April
16th, 2018

25. Mozilla Wiki (2017) WebExtensions API. https://wiki.mozilla.org/
WebExtensions, online; Accessed April 12th, 2018

26. Mozilla Wiki (2018) Mozilla Release Management Tracking Rules. https:
//wiki.mozilla.org/Release_Management/Release_Process, online;
Accessed March 28th, 2018

27. Mozilla Wiki (2018) Mozilla’s blocklisting policy. https://wiki.

mozilla.org/Blocklisting, online; Accessed April 16th, 2018
28. SetWindowsHookEx (2018) SetWindowsHookEx function.

https://msdn.microsoft.com/en-us/library/windows/desktop/

ms644990(v=vs.85).aspx, online; Accessed April 12th, 2018
29. SetWinEventHook (2018) SetWinEventHook function. https://msdn.

microsoft.com/en-us/library/windows/desktop/dd373640(v=vs.

85).aspx, online; Accessed April 12th, 2018
30. Singer J, Sim SE, Lethbridge TC (2008) Software engineering data collec-

tion for field studies. In: Guide to Advanced Empirical Software Engineer-
ing, Springer, pp 9–34

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
https://blog.mozilla.org/addons/2016/03/14/webextensons-whats-in-it-for-developers/
https://blog.mozilla.org/addons/2016/03/14/webextensons-whats-in-it-for-developers/
https://blog.mozilla.org/addons/2017/01/24/preventing-add-ons-third-party-software-from-loading-dlls-into-firefox/
https://blog.mozilla.org/addons/2017/01/24/preventing-add-ons-third-party-software-from-loading-dlls-into-firefox/
https://blog.mozilla.org/addons/2017/01/24/preventing-add-ons-third-party-software-from-loading-dlls-into-firefox/
https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://wiki.mozilla.org/WebExtensions
https://wiki.mozilla.org/WebExtensions
https://wiki.mozilla.org/Release_Management/Release_Process
https://wiki.mozilla.org/Release_Management/Release_Process
https://wiki.mozilla.org/Blocklisting
https://wiki.mozilla.org/Blocklisting
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd373640(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd373640(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd373640(v=vs.85).aspx


28 Le An et al.

31. Tu Q, et al (2000) Evolution in open source software: A case study. In:
Software Maintenance, 2000. Proceedings. International Conference on,
IEEE, pp 131–142

32. Van Den Berk I, Jansen S, Luinenburg L (2010) Software ecosystems:
a software ecosystem strategy assessment model. In: Proceedings of the
Fourth European Conference on Software Architecture: Companion Vol-
ume, ACM, pp 127–134

33. WebExtensions (2017) Bugzilla@Mozilla. https://bugzilla.mozilla.

org, online; Accessed April 12th, 2018
34. Wermelinger M, Yu Y (2008) Analyzing the evolution of eclipse plugins.

In: Proceedings of the 2008 international working conference on Mining
software repositories, ACM, pp 133–136

35. Wikipedia (2018) Code injection. https://en.wikipedia.org/wiki/

Code_injection, online; Accessed April 12th, 2018
36. Wikipedia (2018) DLL injection. https://en.wikipedia.org/wiki/

DLL_injection, online; Accessed April 12th, 2018
37. WindowsDataTypes (2018) Windows Data Types. https://msdn.

microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.

85).aspx, online; Accessed April 12th, 2018

https://bugzilla.mozilla.org
https://bugzilla.mozilla.org
https://en.wikipedia.org/wiki/Code_injection
https://en.wikipedia.org/wiki/Code_injection
https://en.wikipedia.org/wiki/DLL_injection
https://en.wikipedia.org/wiki/DLL_injection
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx

	Introduction
	Background
	Case Study Design
	Case Study Results
	Discussion
	Threats to Validity
	Related Work
	Conclusion

