
Design Patterns Impact on Software Quality:
Where Are the Theories?

Foutse Khomh
Department of Computer and Software Engineering

Polytechnique Montréal
Montréal, Canada

foutse.khomh@polymtl.ca

Yann-Gaël Guéhéneuc
Department of Computer Science and Software Engineering

Concordia University
Montréal, Canada

yann-gael.gueheneuc@concordia.ca

Abstract—Software engineers are creators of habits. During
software development, they follow again and again the same pat-
terns when architecting, designing and implementing programs.
Alexander introduced such patterns in architecture in 1974 and,
20 years later, they made their way in software development
thanks to the work of Gamma et al. Software design patterns were
promoted to make the design of programs more “flexible, mod-
ular, reusable, and understandable”. However, ten years later,
these patterns, their roles, and their impact on software quality
were not fully understood. We then set out to study the impact
of design patterns on different quality attributes and published
a paper entitled “Do Design Patterns Impact Software Quality
Positively?” in the proceedings of the 12th European Conference
on Software Maintenance and Reengineering (CSMR) in 2008.
Ten years later, this paper received the Most Influential Paper
award at the 25th International Conference on Software Analysis,
Evolution, and Reengineering (SANER) in 2018.

In this retrospective paper for the award, we report and reflect
on our and others’ studies on the impact of design patterns,
discussing some key findings reported about design patterns. We
also take a step back from these studies and re-examine the
role that design patterns should play in software development.
Finally, we outline some avenues for future research work on
design patterns, e.g., the identification of the patterns really used
by developers, the theories explaining the impact of patterns, or
their use to raise the abstraction level of programming languages.

Index Terms—Design patterns, software quality, quantitative
studies, qualitative studies, retrospective.

I. INTRODUCTION

Developers like most human beings are creatures and cre-
ators of habit. When developing software systems, they follow
the same patterns again and again and reuse the same solutions
for similar problems. During development and maintenance
activities, they also look for occurrences of patterns in software
artifacts, as telltales of other developers’ architecture, design,
and implementation choices. Yet, these patterns, their roles,
and their impact on software quality are not fully understood.

There is an abundant literature on habits and patterns
in human behavior, e.g., [1], [2]. Without going into the
interesting debate between Cartesians and pragmatists [2], we
point out that several theories have been formulated [1] in
attempts to explain the formation, use, and changes of habits
and patterns in human behavior as well as the dangers and–or
usefulness of changes in these habits and patterns, e.g., the

Theory of Reasoned Action [3], the Social Cognitive Theory
[4], the Theory of Interpersonal Behavior [5], or the Theory
of Planned Behavior [6].

Alexander introduced such architectural patterns in archi-
tecture in 1974 [7] and, 20 years later, they made their way
in software engineering thanks to the work of Gamma et al.
[8]. In software engineering, design patterns encode “good
practices” guiding developers in solving recurring design prob-
lems. They were promoted to make designs more “flexible,
modular, reusable, and understandable”. Guéhéneuc [9] has
proposed a theory that try to explain how developers rely on
patterns to gather knowledge about programs. This theory and
other anecdotal evidence support the importance of encoding
patterns, whether programming language features, recurring
programming idioms, or patterns of developers’ usages of
their IDEs. They also support the roles of these patterns for
providing a common vocabulary among software engineers
and for teaching software engineers best practices [10], [11].
Thus, they support patterns as improving the overall quality
of software development and software systems.

However, at the time of publication of our paper entitled
“Do Design Patterns Impact Software Quality Positively?”
[12] in 2008, the impact of patterns on software quality was
little researched and not fully understood. Few studies had
investigated the role of design patterns in software develop-
ment activities and there were hints that some patterns may
actually be harmful to software quality [13]. Consequently,
we surveyed the research community to understand experts’
perception on design patterns and their impact on different
quality attributes: the four attributes put forward by Gamma et
al. [8], i.e., flexibility (expandability), modularity, reusability,
and understandability, and six other interesting attributes:
simplicity, learnability, generality, modularity at runtime, scal-
ability, and robustness.

Our survey showed that experts consider that design patterns
do not always improve quality and that some design patterns
have particularly negative impact on the attributes highlighted
by Gamma et al. This paper received the Most Influential
Paper award at the 25th International Conference on Software
Analysis, Evolution, and Reengineering (SANER) in 2018
“for its pioneering examination of the relation between design
patterns and code quality”. Since the publication of our survey,

researchers have been intensively investigating the impact
of design patterns on the quality of software processes and
systems. For example Garzás et al. [14] investigated whether
design patterns can ease understanding and changing UML
designs while Hegedűs et al. [15] examined the impact of
design patterns on maintainability through an analysis of more
than 300 versions of JHotdraw—a framework whose design
uses many design patterns—and reported correlations between
numbers of design patterns instances and maintainability.

To stimulate both industry practitioners and researchers to
reflect on the impact of patterns on software development
activities, we co-founded the Patterns Promotion and Anti-
patterns Prevention (PPAP) workshop series in 2013. The
workshop ran for four years and served as a forum for
researchers to discuss advances and problems in understanding
the impact of patterns on quality. It brought together up to
20 participants and culminated in a card sorting exercise at
PPAP’16, co-located with SANER’16, that highlighted three
levels of problems met by the community:

1) The need for a strong(er) community, possibly with
special issues in journals dedicated to patterns, (more)
workshop and conference series focusing on patterns,
and on-line vetted activities and resources.

2) The need to bridge research activities with industrial
practice, in particular to promote scientifically-validated
results to the practitioners and to study the impact of the
practices concretely used by practitioners.

3) The need for support in teaching patterns, in particu-
lar to students with little experience and with stringer
time constraints, through reviewing code with patterns,
summer schools, and the sharing of teaching material.

In this retrospective paper, we reflect about these previous
studies, events, and their results and take a step back from
these studies on patterns and re-examine the impact of patterns
on software development activities. This paper is not a system-
atic review of the literature on patterns but a discussion of key
works that contribute to our understanding of patterns. After
choosing, discussing, and summarising such works on design
patterns in Section II and III, we introduce the many other
types of patterns that exist in the literature in Section IV. We
name and define these patterns and provide seminal references.
The diversity of types of patterns supports the observations that
developers are creatures of habits and that theories from other
research fields apply to software engineers. It also highlights
the importance of systematically and thoroughly studying
these patterns to assess their impact on software development
activities in general and software quality in particular. We
discuss our lack of understanding of the unifying principles
supporting patterns in Section V. Finally, we suggest that the
research community should promote best practices in the study
of patterns. We outline some avenues for future research on
patterns in Sections VI and VII.

II. METHODOLOGY TO IDENTIFY WORKS

To survey the literature on design patterns and identify
the different themes addressed by the research community,

we first must reconcile the terminology used by researchers
when reporting studies about design patterns. We performed a
domain analysis [16] as follows:

1) Identify collections of papers related to design patterns.
2) Choose one such collection and download all papers.
3) Read all papers and identify design pattern-related terms.
4) Compile all terms including synonyms and homonyms.
5) For each occurrence of a term, identify its synonyms

and homonyms and retain the most significant term.
6) Define the retained terms.
7) Map all the terms with the retained terms.
This process is similar to that of reverse engineering pro-

grams written in different languages into a common meta-
model. The programs are the papers in the literature and
the programming languages are the terms related to design
patterns used in each paper. The common meta-model is the set
of retained terms. In contrast to the usual reverse engineering
process, in which a “language-independent” meta-model is
built and the different programs map into it, we do not define
such a meta-model because it would only be a model of the
English language1, with which all terms are expressed and
defined. We simply define a model (a set of terms) and map
the set of all existing terms into this set.

The result of this process is a set of terms and a mapping.
The mapping takes the form of a table with all existing
terms as columns and retained terms as rows. Cells include
references to papers that use the terms with the definitions
of the retained terms. The terms and their mapping provide a
useful background for the co-understanding of research papers
on design patterns.

The remaining of this section provides more details about
the different steps of our domain analysis.

Steps 1, 2, and 3: Identification of the Terms: The first
three steps of the process are used to identify all terms related
to design patterns. In the first step, we identify two main
collections of papers on design patterns, available on-line2,3.
These two collections mostly overlap and are representative
of other such collections. One of the authors contributed to
the second library with more than 60 papers. Therefore, we
choose this second collection for the sake of simplicity.

The chosen collection contains 99 references. We download
59 papers in PDF or HTML format, excluding books because
of their restricted availability and of their breadth and some
papers because of the unsuitability of their encoding for
search4. In these 59 papers5, we identify all terms related to
design patterns and store them with their associated references
in a table. We convert all terms into singular nouns in
British English for the sake of homogeneity. We leave out

1We only study papers written in English because it is the language used
in the main conferences in software engineering.

2http://liinwww.ira.uka.de/bibliography/SE/patterns.html
3http://www.patternforge.net/wiki/index.php?title=Papers on Pattern

Repositories
4The PDF format allows papers to be encoded as images that are not

suitable for search.
5 The complete list of studied papers is available at http://www.ptidej.net/

downloads/replications/saner18mipa/.

some terms that either are synonyms of others, for example
“Definition” is used as a synonym of “Formalisation”, or that
have little impact on the mapping, for example “Detection”
vs. “Identification”, or that have agreed-upon definitions, such
as “Role”.

Steps 4, 5, and 6: Definitions of the Terms: The Steps
4 to 6 of the process concern the sorting and definitions
of the retained terms. First, we study again all papers and
associated each found term with each paper that uses the term
disregarding its definition. Table I presents in its left column
the 42 terms related and the references to their defining papers.

Then, we group terms that we understood as having similar
definition. With this grouping, we retain 16 terms. Table I
presents in bold the retained terms and their main synonyms.
We do not show here homonyms because we study them in
Step 7. We base our choice of the retained term both on the
“popularity” of a term (the number of papers using it) and on
its “trend” in recent literature. Therefore, this choice can be at
times arbitrary when more than one term are popular or recent.
Yet, Table I is useful because it can help the community in
making an informed choice of the terms to be retained for
each definition.

Step 7: Mapping Between All Terms and Retained Terms:
The last step consists in mapping the terms in the literature
with those retained in the previous steps. It brings a common
background to understand the papers. Table II shows all terms
of the literature in columns and retained terms in rows. Thus,
a column shows the homonyms of a term and a row shows
the synonyms of a retained term.

Table II shows some interesting facts. First, several terms
are homonyms, being used repeatedly in the literature with
different definitions. This is particularly true with the term
“Design pattern”, which has been used to mean “Design
motif”, “Design pattern”, “Idiom”, “Instance”, “Occurrence”,
and “Solution”. This wide use of the term “Design pattern” is
not surprising given the ubiquitousness of this concept but its
loose definition. Previous authors often implicitly use the term
“Design pattern” with different definitions because the extent
of their work was not fully understood at the time.

Second, different terms have been used for one definition by
the same authors. For example, in Eden’s paper [23], the terms
“Design motif” and “Formalisation” are used to mean “Design
motif”. Although it is rarely the case in the studied papers,
such a synonymy could lead to confusion in the understanding
of the work if read without care.

Finally, Table II shows that some more “specialised” terms,
such as those characterising design patterns, “Fundamental
patterns” or “Hybrid patterns”, are less subject to having
homonyms and synonyms because they have been more pre-
cisely defined from the start by their authors. From Table II,
we can also observe that some terms have been used only
during a short period of time, such as “Leitmotiv” while
others have been more prevalent, such as “Formalisation” for
example. This table highlights the problem of vocabulary faced
by the community and allows for a better understanding of the
literature about design patterns, using a common set of terms.

Using the retained terms, we now examine the content of the
papers to identify recurring usages and themes addressed by
the research community with design patterns.

III. DESIGN PATTERNS IN SOFTWARE DEVELOPMENT

Overall, we identified seven main themes: knowledge shar-
ing, development tools, formalisation, forward engineering,
reverse engineering, documentation, and quality. We found
many papers discussing more than one of these themes.

A. Sharing Knowledge with Design Patterns

Design patterns are powerful knowledge-sharing tools be-
cause they encapsulate developers’ experience and provide
a common vocabulary for communication across domains.
However, an excessive use of design patterns is likely to result
in designs in which it is difficult to recognise the structure of
the participating design patterns. This problem is known as
the tracing problem. Agerbo and Cornils [38] analyzed the
use of design patterns in programs and proposed the idea of a
design-pattern library to solve the problem of tracing design
patterns in systems.

We concur that it is important to keep track of existing
patterns and suggest to put in place a repository and a vetting
process of patterns that have been shown experimentally to
benefit software engineers and systems. Such a repository and
vetting process would help educate software engineers in using
appropriate patterns and also ensuring that patterns continue
to form a consistent vocabulary. Such a repository could also
alleviate the risks (also put forward by Agerbo and Cornils)
of over-using design patterns in systems and of having too
many patterns to choose from. In fact, Agerbo and Cornils
[38] argued that if patterns grow in large numbers, it will be
increasingly difficult for software engineers to grasp them all
and they will not form a common vocabulary anymore. This
difficulty is especially visible with the many different types of
patterns now being used and studied, shown in Section IV.

B. Development with Design Patterns

Design patterns can be used as development tools in differ-
ent software development activities:

1) Design: identify a problem and propose a solution.
2) Implementation: instantiate a design motif.
3) Maintenance: document and suggest refactorings.
The benefits of design patterns during software development

have been the subject of many papers. Beck [18] suggests
that patterns generate architectures. Similarly, Ram et al.
[55] propose the Pattern Oriented Technique for developing
systems via patterns as collaborations of design patterns. Also,
during the maintenance of systems, software engineers often
identify code and design smells and look for refactorings
or patterns to remove them. These refactoring and pattern
transformations are documented to be reused in the future [56].
Lange and Nakamura [57] demonstrate that patterns can serve
as guide in program exploration and thus make the process
of program understanding more efficient. Through a trail of
pattern execution, they show that if patterns were recognized

TABLE I
RETAINED TERMS RELATED TO DESIGN PATTERNS AND THEIR DEFINITIONS. TERMS ARE GROUPED BY SETS OF SYNONYMS, SEE TABLE II FOR THE

MAPPING AMONG TERMS.

Terms Definitions
Abstract Design Pattern [17], Basic Form [18], Design
Motif [19], Design Template [20], Essence [21],
Expression [22], Formalisation [23], Implementation
[24], Lattice [23], Leitmotiv [25], Logic [21], Re-
alisation [26], Reification [24], Representation [27],
Specification [23], and Structure [8]

A design motif is the prototype proposed by a design pattern to solve the
related recurring design problem. Typically, a design motif is built from the
“Structure” section of the design pattern as defined in the GoF, including
elements from other relevant sections to characterise the participants and their
responsibilities [19].

Alternative [20], Modified Pattern [28], Variant [21],
Version [20]

A design motif (see previous definition) manifesting variety, deviation of its
canonical form as described in [8].

Canonical form [20] Original design motif as described in [8]
Clich [29], Idiom [30], Micropattern [31] A standard algorithmic fragment [29].
Design Component [32], Instance [23], Microarchitec-
ture [33]

An instance of a design motif is the concrete implementation of the solution
of the pattern in a program. A micro-architecture is deemed an instance
of a design motif if it can be asserted that the developers indeed chose
conscientiously and appropriately to implement the solution of the design
pattern to solve the corresponding design problem [19].

Design Pattern [8] A design pattern names, abstracts, and identifies the key aspects of a common
design structure that make it useful for creating a reusable object-oriented
designs. It identifies the participating classes and their instances, their roles
and collaborations, and the distribution of responsibilities. Each design pattern
focuses on a particular object-oriented recurring design problem. It describes
when its solution applies, whether or not its solution can be applied in view
of other design constraints, and the consequences and trade-offs of its use. It
also provides sample code to illustrate an implementation. [8]

Elemental Pattern [34], Fragments [23], Minipattern
[35], Subpattern [36]

Abstract syntax graph structures [37] that are constituent parts of other patterns
or subpatterns. An idiom could be a subpattern while subpatterns are not
necessarily idioms.

Fundamental Pattern [38] A core of design patterns that capture good object-oriented design and that
can be used in various contexts [38].

Hybrid Pattern [39] Pattern generated through hybridization and whose intent is to solve a high
level design problem in a generic context [39].

Intent [8] A short statement that answers the following questions: What does the design
pattern do? What is its rationale and intent? What particular design issue or
problem does it address? [8]

Language of Patterns [40] A structured method of describing good design practices within a field of
expertise [36].

Occurrence [20] An occurrence of a design motif is the concrete implementation of the solution
of the pattern in a program. However, in the contrary to an instance, it cannot
be asserted that the design motif was used with purpose by the developers,
possibly because several micro-architectures could conform to the structure of
the design motif but without conforming to the intent of the design pattern
[23].

Protopattern [40] “patterns in waiting” that are not yet known to recur [41].
Secondary Role [42] Role that can be superimposed over the defining role of a class in a program

[42].
Solution [8] The solution of a design pattern is the description composed of the “Structure”,

“Participants”, and “Collaborations” sections, as defined in the format in [8].
Trick [31] A trick is an operator specifying the sequence of steps taken in the realization

of a design motif [31].

TABLE II
MAPPING OF THE TERMS RELATED TO DESIGN PATTERNS. WE ONLY PRESENT A MAXIMUM OF 2 REFERENCES PER CELL BECAUSE OF A LACK OF SPACE.

THE COMPLETE TABLE IS AVAILABLE ON-LINE5 .

A
bs

tr
ac

t
D

es
ig

n
Pa

tt
er

n

A
lte

rn
at

iv
e

B
as

ic
Fo

rm

C
an

on
ic

al
Fo

rm

C
lic

h

D
es

ig
n

C
om

po
ne

nt

D
es

ig
n

M
ot

if

D
es

ig
n

Pa
tt

er
n

D
es

ig
n

Te
m

pl
at

e

E
le

m
en

ta
l

Pa
tt

er
n

E
ss

en
ce

E
xp

re
ss

io
n

Fo
rm

al
is

at
io

n

Fr
ag

m
en

t

Fu
nd

am
en

ta
l

Pa
tt

er
n

H
yb

ri
d

Pa
tt

er
n

Id
io

m

Im
pl

em
en

ta
tio

n

In
st

an
ce

In
te

nt

L
an

gu
ag

e
of

Pa
tt

er
ns

R
et

ai
ne

d
Te

rm
s

Canonical form
[28] [20],

[43]
[28]

Design Motif
[44] [33] [23],

[45]
[20],
[21]

[46],
[47]

[48] [25] [22] [23],
[49]

[22],
[50]

Design Pattern
[22] [20],

[21]
Fundamental Pat-
tern [20],

[27]
Hybrid Pattern

[39]
Idiom

[51] [20],
[33]

[31] [51] [23] [18],
[30]

Instance
[24] [43],

[50]
[20],
[21]

[23],
[47]

Intent
[24] [20],

[21]
Language of Pat-
terns [36],

[40]
Occurrence

[32],
[51]

[44],
[46]

[32],
[33]

Protopattern
Role
Secondary Role
Solution

[39],
[52]

Subpattern
[18],
[30]

[32] [31] [34] [23] [40]

Trick
Variant

[20],
[21]

[43],
[51]

L
at

tic
e

L
ei

tm
ot

iv

L
og

ic

M
ic

ro
ar

ch
ite

ct
ur

e

M
ic

ro
pa

tt
er

n

M
in

ip
at

te
rn

M
od

ifi
ed

Pa
tt

er
n

O
cc

ur
re

nc
e

Pr
ot

op
at

te
rn

R
ea

lis
at

io
n

R
ei

fic
at

io
n

R
ep

re
se

nt
at

io
n

Se
co

nd
ar

y
R

ol
e

So
lu

tio
n

Sp
ec

ifi
ca

tio
n

St
ru

ct
ur

e

Su
bp

at
te

rn

Tr
ic

k

Va
ri

an
t

Ve
rs

io
n

R
et

ai
ne

d
Te

rm
s

Canonical form
Design Motif

[23],
[31]

[42] [20],
[33]

[31] [45],
[53]

[25] [53] [40],
[50]

[32],
[33]

[23],
[27]

[20],
[21]

Design Pattern
[38],
[42]

Fundamental Pat-
tern
Hybrid Pattern
Idiom

[23],
[31]

[40]

Instance
[25] [20] [54]

Intent
Language of Pat-
terns
Occurrence

[20],
[23]

[26],
[28]

[54]

Protopattern
[40],
[44]

Role
Secondary Role

[42]
Solution

[20],
[21]

[38]

Subpattern
[23],
[31]

[24] [36],
[38]

Trick
[23],
[31]

Variant
[28] [21],

[30]
[18],
[49]

at a certain point in the understanding process, they could help
in “filling in the blanks” and in further exploring a system,
improving thus its understandability. Other papers focus on
design patterns during development, e.g., [50], [58], [59].

Other papers focus on the selection of design patterns
and attempt to draw rules to combine these patterns during
development. Guéhéneuc et al. [60] present a recommender
system to help software engineers in choosing among the
23 design patterns by Gamma et al. Ram et al. [39], [55]
propose rules for the combination and application of design
patterns. Despite these studies, there is no languages of design
patterns, i.e., pattern languages and their supporting tooling.
The processes of using design patterns during development is
also the topic of some papers [50], [58], [59].

C. Formalisation of Design Patterns

The formalisation relates to approaches that propose a spec-
ification of and specify design patterns (or parts thereof) and
verify their implementations. Such approaches include speci-
fication languages and tools for the selection and introduction
of design patterns in systems. They prevent implementations
inconsistent with the intents of the patterns, which would void
the benefits of these patterns.

Despite their importance, few specification languages are re-
ported in the literature. LePUS [61] is a full-fledged logic lan-
guage with a well-defined semantics. It has a compact vocabu-
lary and can represent regularities and relations among classes,
functions, and inheritance hierarchies. Similarly, Hedin [62]
presents an approach based on attribute grammars for for-
malising design patterns, which provides attributes extensions
describing conventions by declarative semantic rules. Smith et
al. also proposed a formalisation of design patterns based on
the ς-calculus and implemented in the SPQR tool to model
and identify regularities in systems designs [34]. However,
these specification languages are seldom used in research and
practice and no tooling in popular integrated development
environments supports these languages.

D. Forward Engineering with Design Patterns

Design patterns are useful for the design of systems. Many
studies have focused on design patterns in the context of
forward engineering. We divide this theme in two sub-themes:
code generation and language.

a) Code generation: With the growing interest in Model
Driven Engineering [63], design patterns could be the bridge
between the designs of systems and the automatic generation
of their source code. Many techniques of code generation
exists: Mens [64] proposes a taxonomy for the classification of
model-transformation techniques and discusses their applica-
bility. Budinsky [21] describes the architecture and implemen-
tation of a tool that automates the implementation of design
patterns. The user of the tool supplies application-specific
information for a given pattern, from which the tool generates
all the pattern-prescribed code automatically. Soukup [59]
explores the problems and possibilities of automated pattern
implementation. He identifies three basic problems: the loss of

the patterns during implementation, large clusters of mutually
dependent classes caused by the use of multiple patterns, and
the lack of a library of concrete reusable patterns. Another
paper on the topic is the work by Agerbo and Cornils [38].

b) Languages: Syntax extensions and extended language
constructs have been explored to simplify the specification
of design patterns and to improve the readability of systems.
Tatsubori et al. [65] show that compile-time MOPs provide a
general framework to implement design patterns. They show
that software engineers can use a MOP to create a library
of reusable patterns based on syntax extensions and extended
language constructs. Similarly, Chambers [58] also proposes
an interesting contribution on the topic. Bosch [50] identifies
four major problems associated with the implementation of de-
sign patterns using conventional object-oriented programming
languages. He solves these problems with a layered object
model, LayOM. LayOM is an object-oriented language that
provides explicit support for design patterns. It is extensible
with abstractions for other patterns.

E. Reverse Engineering with Design Patterns

There are two major trends in this theme: design pattern
detection and pattern-based components recovery, which we
consider here as sub-themes. Since their inception, it has
been suggested that design patterns could play a central role
in reverse engineering, e.g., the detection of occurrences of
design patterns in systems could improve their understanding
[47]. Occurrences would also improve the documentation.
During the reverse engineering of systems, design patterns
are also use to refactor code smells and design defects “away
from” the code [56]. Many papers have been published in this
sub-theme, e.g., [19], [28], [34], [66]. On the sub-theme of
pattern-based component recovery, we can cite the work by
Keller et al. [24].

F. Documenting with Design Patterns

This theme includes papers studying the role of design pat-
terns in the documentation of systems. Many papers promote
the idea that documenting patterns helps in understanding a
design and thus in easing maintenance because developers
often attempt to recover non-documented design patterns in
systems. They illustrate how a combination of patterns allows
to simply convey the essence of designs, e.g., in JUnit. They
put forward the impact of design patterns on documentation
and in the recovery of design information for revere- and
re-engineering. Again, Lange and Nakamura [57] show that
design patterns can guide exploration and ease understanding.
The approach presented by Hedin [62] also discusses the
identification of design patterns for the documentation of
systems. Soukup [59] proposes an approach to build a library
of reusable common patterns. Other interesting approaches
exist related to documenting with design patterns [38], [50].

G. Impact of Design Patterns on Quality

Ampatzoglou et al. [67] examine the stability of classes
implementing some design patterns. They report that classes

playing exactly one role in a design pattern are more stable
than classes playing zero or more than one role. This result
corroborates findings by Khomh et al. [68], which show that
playing more than one role in design patterns makes classes
more change-prone. Khomh et al. [68] also observed that
classes playing more than one role in design patterns are less
cohesive, more coupled, more complex, and more issue-prone
than playing only one role in a design pattern.

Ampatzoglou and Chatzigeorgiou [69] also examined the
impact of State, Strategy, and Bridge design pattern on code
quality and found them to improve cohesion, and reduce
coupling, and complexity. Ali and Elish [70] reviewed the
literature on the impact of design patterns on software quality
and report that design patterns negatively impact maintain-
ability, evolution, and change-proneness. The surveyed studies
disagreed on the impact of design patterns on fault-proneness.

Khomh [71] examine co-occurrences of code smells and
design patterns in systems and observe that the negative effect
of code smells on change-proneness can be mitigated (and
even reversed) by some design patterns.

IV. TYPES OF PATTERNS

Before the introduction of design patterns in software engi-
neering, there existed already few different types of patterns,
in particular idioms of programming [72], but patterns really
became mainstream with the book of Gamma et al. [8]. Since
then, many other different types of patterns were defined
and studied by the research community. In the following we
attempt to exhaustively list and succinctly define these dif-
ferent types. We consider only programming-related patterns
and, thus, exclude management [73], reengineering [74], etc.
patterns, which relate more to software development processes.

• Design patterns introduced by Gamma et al. [8] describe
and name common design problems and their solutions
in object-oriented programming.

• Meta-patterns defined by Pree [75] are reusable object-
oriented designs using a domain-independent terminology
and notation.

• JNI idioms [76] capture common interactions between
Java and C/C++ code.

• Exception-handling idioms [77] report good practices in
handling exception, in particular in Java.

• Evolution patterns (commits, mutations) introduced by
Kpodjedo et al. [78] describe patterns in the evolution
of systems.

• Developers patterns made popular by Mylyn [79] describe
developers’ behaviour captured in their IDEs.

• File editing patterns [80] capture developers’ file edits
during source-code changes.

• Programming languages features are a form of pattern, id-
ioms really, that solve particular programming problems,
e.g., the try-with-resources idiom.

• Patterns of API usages [81] put together and make
explicit systematically sets of method invocations and
their parameters values for given APIs.

• EJB patterns and other such specialised patterns are com-
plementary to patterns of API usages and describe design
and architectural choices with specific frameworks.

• Patterns of logging [82] describe where, when, and what
to log in systems to provide useful information.

• Micro-patterns introduced by Gil and Maman [83] are
design decision easily identified automatically in systems.

• Patterns of inheritance were described by Denier et al.
[84] to capture common practices in object-oriented pro-
gramming related to inheritance and identify violations.

• Patterns of rules introduced by Wuyts et al. [85] are
design constraints embodied and enforced using SOUL
to enforce design “invariants”.

• Cloud patterns [86], [87] describe good practices in
implementing Cloud-based systems.

• Architectural patterns [88] are solutions to recurring
problems when designing architectures.

• Debugging patterns formalised by Petrillo et al. [89]
describe developers’ behaviour when debugging systems.

• UML artifacts can be partly recovered from source code
when defined and specified as patterns [90].

• Test patterns as first described by Firesmith [91] are good
practices when testing systems.

We argue that the research community should follow ex-
amples set in other research fields and systematically define,
classify, categorise, and relate patterns. We need software-
pattern taxonomists6 to create a unified taxonomy of patterns.
Also, these taxonomists should identify pattern languages,
if any, that would help developers “discourse” about their
systems using patterns and, thus, make the best choices in
their usages of patterns and their impacts on quality.

V. UNIFYING PRINCIPLES AND CHARACTERISTICS

We now claim that most design motifs put forward as
solutions to design problems by design patterns share the
same underlying principles: they introduce new classes and–
or methods to add one or more levels of indirection and,
through these levels of indirection, provide more flexibility. We
describe two examples now succinctly to support our claim.

The Visitor design pattern intends to “[r]epresent an op-
eration to be performed on elements of an object structure.
Visitor lets you define a new operation without changing the
classes of the elements on which it operates” [8, page 331].
The solution advocated by the Visitor design pattern is to
introduce a hierarchy of visitor classes, which conform to a
well-defined interface and whose methods are called by new
methods declared into the hierarchy of original objects. Hence,
the solution suggests adding one level of indirection from
the original methods performing the operations, declared in
the original objects, to the methods performing the operations
declared in the visitors classes and called by novel methods
in the original objects.

Similarly, the Observer design pattern intends to define “a
one-to-many dependency between objects” [8, page 293] by

6https://en.wikipedia.org/wiki/Taxonomy (biology)

describing the behaviour of observers in dedicated classes
whose notification methods are called by a subject rather than
implementing this behaviour directly into the subject. Hence,
the solution also suggests adding one level of indirection from
the original subject and behaviour of the observers.

However, we also claim that not all design patterns are
based on this one principle of adding one level of indirection
to increase flexibility. For example, the Composite design pat-
terns has for design principle a cycle between a set inheritance
relationships and a composition relationship. These examples
show that the underlying principles of design patterns are
currently ill-defined even though their definitions would have
two major benefits:

1) The systematic formalisation and categorisation of cur-
rent design patterns based on their underlying principles,
e.g., to help teaching.

2) The systematic combinations of these underlying princi-
ples to identify novel design patterns from first principles
rather than through experiences.

In addition, other types of patterns also do not have clear un-
derlying principles and this lack of principles prevents a thor-
ough discussions of these patterns and studies of their impacts
on software quality. Moreover, although object-oriented pro-
gramming languages are well-established, popular, and have
been successful in practice, this lack of principles prevents
the cross-fertilisation of patterns in different programming
paradigms, e.g., functional programming, different designs,
e.g., design by dependency injection, and different architec-
ture styles, e.g., service-oriented architecture. Besides for-
malisation, categorisation, and cross-fertilisation, studying the
principles underlying patterns could allow unifying patterns
withing and across abstraction levels (implementation, design,
architecture) and paradigms (object-oriented, functional).

Also, having unifying, underlying principles could help
enforcing patterns implemented in systems. Although tools
exist to enforce patterns, e.g., Wuyts’ SOUL, these tools
require the explicit definitions of the patterns being enforced.
Similarly, unifying, underlying principles would help devising
tools that generate implementation of patterns and–or refactor
code to implement patterns.

Finally, studying the principles of patterns could also pro-
vide evidence for or against certain practices being “patterns”.
As suggested by Alexander and taken by Gamma et al. a
problem and its solution must have been encountered in three
different contexts, at least, before being afforded the name of
“pattern”. Thus, some current practices called patterns are not
“real” patterns. Conversely, solutions to common problems,
even if recurring in different contexts, are not “patterns” per
se. For example, the programming idiom of iterating with
an Iterator through a list is common in many programming
languages and, as such, is a quintessential part of the languages
rather than a pattern. Moreover, some patterns exist only to
overcome limitations in programming languages, e.g., the try-
with-resources feature in Java vs. destructors.

VI. SUGGESTED AGENDA

The previous sections summarised the tremendous advances
that the research community has made in the past years in
its study and understanding of design patterns in particular
and different types of patterns in general. These sections also
highlighted problems that the community is now facing.

The many excellent research studies on all types of pat-
terns make it difficult—because of their sheer numbers and
differing methodologies, subjects, objects, and objectives—
for researchers, students, and practitioners to understand the
differences and commonalities between patterns, to assess
whether some results for some types of patterns are sound
while similar results for others may be less so, and to identify
and reproduce best practices and studies from some types of
patterns to others. This diverse range of experimental designs
yielded interesting results about patterns but makes difficult
comparisons among experimental designs and among patterns
and elusive understanding globally their impacts.

Therefore, we make the following suggestions to the re-
search community interested in patterns.

a) Patterns from Developers’ Behaviour: As developers
are creatures of habits, patterns are most useful to developers
during the development and evolution (comprehension) of their
systems. We suggest that the community pursues research
works on the direct impacts of patterns on developers, e.g.,
through the use of eye-trackers in experimental designs. Eye-
trackers are now affordable and more and more popular in
various research fields and could be used systematically to
study patterns and their impacts on developers.

b) Patterns of Developers’ Behaviour: Patterns may be
used as building blocks of systems and also as templates
against which to assess the code written by developers and
their software development activities in their IDEs and with
which to recommend patterns to follow. Hence, we suggest
that the research community pursues research works on the
analyses of developers’ logs collected through, e.g., Mylyn
[79] or FeedBaG [92], and on the usages of patterns to identify
inefficient activities and help developers.

c) Patterns for Building Systems: Rich and Waters [29]
pioneered the idea of patterns (idioms in their research works)
as building blocks for systems. Few works followed their
steps and this line of research seemed to have been mostly
abandoned. We suggest to raise the levels of abstraction of
programming languages with patterns to promote appropriate
patterns as programming-language building blocks. For exam-
ple, Oracle introduced in Java 7 the concept of Automatic
Resource Management via try-with-resources blocks to im-
plement and, thus, replace a common idiom.

d) Theories of Software Patterns: Based on existing
works and possible future work, we suggest that the research
community seizes the opportunities given by its research re-
sults to propose a theory—or competing theories—of patterns.
Such theories should explain why certain types of patterns
impact positively quality while others do not and also explain
why certain types of patterns exist for certain software arti-

facts. Such a theory could then be used to frame experimental
designs and identify novel patterns and their impacts.

VII. CONCLUSION

Ten years ago, we surveyed the research community to
understand experts’ perception on design patterns and their
impact on different quality attributes: the four attributes put
forward by Gamma et al., flexibility (expandability), modular-
ity, reusability, and understandability, and six other attributes:
simplicity, learnability, generality, modularity at runtime, scal-
ability, and robustness. We showed that experts consider that
design patterns do not always improve quality and that some
design patterns have particularly negative impacts on the
attributes highlighted by Gamma et al.

After this survey, other studies appeared that, essentially,
followed three (non-mutually exclusive) research directions:
(1) further studies of the impacts of design patterns on quality,
e.g., the article by Zhang and Budgen “What do we know
about the effectiveness of software design patterns?” [93], (2)
studies of the definition and impact of other types of patterns,
e.g., the article by Di Penta et al. “When and Why Your Code
Starts to Smell Bad (and Whether the Smells Go Away)” [94],
and (3) studies to enhance the identification of occurrences
of patterns, e.g., “Code Smell Severity Classification Using
Machine Learning Techniques” [95].

We argued that these studies tremendously improved our
understanding in breadth and in depth of patterns. We then
recommended that the research community builds upon these
studies to study further patterns and their impact on quality,
in particular to build a theory of patterns and explore research
directions that have been less explored, e.g., using patterns as
building blocks of systems.

ACKNOWLEDGMENT

The authors would like to thank again the participants to
the original survey, in 2007. We would like also to thank the
research community for its appreciation of our study and the
Most Influential Paper Award committee at SANER 2018 for
the honour of choosing our paper.

REFERENCES

[1] G. Godin, A. Bélanger-Gravel, M. Eccles, and J. Grimshaw, “Healthcare
professionals’ intentions and behaviours: A systematic review of studies
based on social cognitive theories,” Implementation Science, vol. 3,
no. 1, p. 36, 2008.

[2] E. Kilpinen, Human Beings as Creatures of Habit. The name of the
publisher, 2012, vol. 12, ch. 5, pp. 45–69, cOLLeGIUM: Studies across
Disciplines in the Humanities and Social Sciences 12.

[3] M. Fishbein and I. Ajzen, Belief, Attitude, Intention, and Behavior: An
Introduction to Theory and Research. Reading, MA: Addison-Wesley,
1975. [Online]. Available: http://people.umass.edu/aizen/f&a1975.html

[4] A. Bandura, “Self-efficacy: Toward a unifying theory of behavioral
change,” Advances in Behaviour Research and Therapy, vol. 1,
no. 4, pp. 139 – 161, 1978, perceived Self-Efficacy: Analyses
of Bandura’s Theory of Behavioural Change. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0146640278900024

[5] H. C. Triandis, “Values, attitudes, and interpersonal behavior.” in Ne-
braska symposium on motivation. University of Nebraska Press, 1979.

[6] I. Ajzen and T. J. Madden, “Prediction of goal-directed behavior-
attitudes, intentions, and perceived behavioral-control,” Journal of ex-
perimental social psychology, vol. 22, no. 5, pp. 453–474, 1986.

[7] C. Alexander, “The origins of pattern theory: The future of the theory,
and the generation of a living world,” IEEE Software, vol. 16, no. 5, pp.
71–82, September/October 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley, 1994.

[9] Y.-G. Guéhéneuc, “A theory of program comprehension—joining
vision science and program comprehension,” International Journal of
Software Science and Computational Intelligence (IJSSCI), vol. 1,
no. 2, pp. 54–72, April-June 2009, 18 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/JSSCI09.doc.pdf

[10] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu, “Do maintainers
utilize deployed design patterns effectively?” in 29th International
Conference on Software Engineering (ICSE’07), May 2007, pp. 168–
177.

[11] P. C. Lotlikar and R. Wagh, “Using pogil to teach and learn design
patterns — a constructionist based incremental, collaborative approach,”
in 2016 IEEE Eighth International Conference on Technology for
Education (T4E), Dec 2016, pp. 46–49.

[12] Foutse Khomh and Y.-G. Guéhéneuc, “Do design patterns impact
software quality positively?” in Proceedings of the 12th Conference
on Software Maintenance and Reengineering (CSMR), C. Tjortjis and
A. Winter, Eds. IEEE CS Press, April 2008, pp. 274–278, short
Paper. 5 pages. [Online]. Available: http://www.ptidej.net/publications/
documents/CSMR08.doc.pdf

[13] P. Wendorff, “Assessment of design patterns during software
reengineering: Lessons learned from a large commercial project,”
in Proceedings of 5th Conference on Software Maintenance and
Reengineering, P. Sousa and J. Ebert, Eds. IEEE Computer
Society Press, March 2001, pp. 77–84. [Online]. Available:
http://www.computer.org/proceedings/csmr/1028/10280077abs.htm

[14] J. Garzás, F. Garcı́a, and M. Piattini, “Do rules and patterns
affect design maintainability?” Journal of Computer Science and
Technology, vol. 24, no. 2, pp. 262–272, Mar 2009. [Online]. Available:
https://doi.org/10.1007/s11390-009-9222-7

[15] P. Hegedűs, D. Bán, R. Ferenc, and T. Gyimóthy, “Myth or reality?
analyzing the effect of design patterns on software maintainability,” in
Computer Applications for Software Engineering, Disaster Recovery,
and Business Continuity, T.-h. Kim, C. Ramos, H.-k. Kim, A. Kiumi,
S. Mohammed, and D. Ślezak, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 138–145.

[16] R. Prieto-Dı́az, “Domain analysis: An introduction,” Software
Engineering Notes, vol. 15, no. 2, pp. 47–54, April 1990. [Online].
Available: http://portal.acm.org/citation.cfm?id=382296.382703

[17] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, “An
approach for reverse engineering of design patterns,” Software and
System Modeling, vol. 4, no. 1, pp. 55–70, February 2005. [Online].
Available: http://www.springerlink.com/content/0dn4pmqh5uhnbk69/

[18] K. Beck and R. E. Johnson, “Patterns generate architectures,”
in Proceedings of 8th European Conference for Object-Oriented
Programming, M. Tokoro and R. Pareschi, Eds. Springer-Verlag,
July 1994, pp. 139–149. [Online]. Available: http://citeseer.nj.nec.com/
27318.html

[19] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A multi-
layered framework for design pattern identification,” Transactions
on Software Engineering (TSE), vol. 34, no. 5, pp.
667–684, September 2008, 18 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/TSE08.doc.pdf

[20] K. Brown, “Design reverse-engineering and automated design pattern
detection in Smalltalk,” Department of Computer Science, University
of Illinois at Urbana-Champaign, Tech. Rep. TR-96-07, July 1996.
[Online]. Available: http://citeseer.nj.nec.com/context/734211/0

[21] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu,
“Automatic code generation from design patterns,” IBM Systems
Journal, vol. 35, no. 2, pp. 151–171, February 1996. [Online].
Available: http://www.research.ibm.com/journal/sj35-2.html

[22] S. Denier, H. Albin-Amiot, and P. Cointe, “Expression and composition
of design patterns with aspects,” in actes de la 2e Journée
Francophone sur le Développement de Logiciels Par Aspects,
L. Seinturier, Ed. Hermès, Septembre 2005. [Online]. Available:
http://www.lifl.fr/jfdlpa05/denier.pdf

[23] A. H. Eden, A. Yehudai, and J. Gil, “Precise specification and automatic
application of design patterns,” in Proceedings of the 12th Conference
on Automated Software Engineering, M. Lowry and Y. Ledru, Eds.
IEEE Computer Society Press, November 1997, pp. 143–152. [Online].
Available: http://www.eden-study.org/publications.html

[24] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé, “Pattern-based
reverse-engineering of design components,” in Proceedings of the
21st International Conference on Software Engineering, D. Garlan
and J. Kramer, Eds. ACM Press, May 1999, pp. 226–235.
[Online]. Available: http://www.iro.umontreal.ca/\∼{}schauer/Private/
Publications/icse1999/icse1999.html

[25] G. Sunyé, A. Le Guennec, and J.-M. Jézéquel, “Design patterns
application in UML,” in Proceedings of the 14th European
Conference for Object-Oriented Programming, E. Bertino, Ed.
Springer-Verlag, June 2000, pp. 44–62. [Online]. Available: http:
//gerson.sunye.free.fr/publications.html

[26] F. Bergenti and A. Poggi, “IDEA: A design assistant based on
automatic design pattern detection,” in Proceedings of the 12th

international conference on Software Engineering and Knowledge
Engineering, D. Cooke and J. Urban, Eds. Springer-Verlag, July 2000,
pp. 336–343. [Online]. Available: http://www.ce.unipr.it/people/poggi/
publications/index.shtml

[27] A. Lauder and S. Kent, “Precise visual specification of design patterns,”
in Proceedings of 12th European Conference for Object-Oriented
Programming, S. Demeyer and J. Bosch, Eds. Springer-Verlag, July
1998, pp. 114–134. [Online]. Available: http://www.cs.ukc.ac.uk/people/
staff/sjhk/pubs.html

[28] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis,
“Design pattern detection using similarity scoring,” Transactions on
Software Engineering, vol. 32, no. 11, November 2006.

[29] C. Rich and R. C. Waters, The Programmer’s Apprentice, 1st ed. ACM
Press Frontier Series and Addison-Wesley, January 1990.

[30] W. Zimmer, “Relationships between design patterns,” in Pattern
Languages of Program Design, J. O. Coplien and D. C. Schmidt,
Eds. Addison-Wesley, 1995, ch. 18, pp. 345–364. [Online]. Available:
http://citeseer.nj.nec.com/53928.html

[31] A. H. Eden and A. Yehudai, “Tricks generate patterns,” Department of
Computer Science, University of Tel Aviv, Tech. Rep. 324, 1997.

[32] F. Shull, W. Melo, and V. R. Basili, “An inductive method for
discovering design patterns from object-oriented software systems,”
Computer Science Department, University of Maryland, Tech. Rep.
CS-TR-3597, January 1996. [Online]. Available: http://www.cs.umd.
edu/projects/SoftEng/ESEG/papers/OODP\ VAL.DOC.pdf

[33] C. Krämer and L. Prechelt, “Design recovery by automated search for
structural design patterns in object-oriented software,” in Proceedings
of the 3rd Working Conference on Reverse Engineering, L. M. Wills
and I. Baxter, Eds. IEEE Computer Society Press, November 1996,
pp. 208–215. [Online]. Available: http://www.computer.org/proceedings/
wcre/7674/76740208abs.htm

[34] J. M. Smith and D. Stotts, “Elemental design patterns – a link between
architecture and object semantics,” Department of Computer Science,
University of North Carolina, Tech. Rep. TR02-011, March 2002.
[Online]. Available: http://rockfish.cs.unc.edu/pubs/TR02-011.pdf

[35] M. O’Cinnéide and P. Nixon, “A methodology for the automated
introduction of design patterns,” in Proceedings of the 6th International
Conference on Software Maintenance, T. M. Khoshgoftaar and K. Ben-
nett, Eds., 1998.

[36] J. O. Coplien, “Software design patterns: Common questions
and answers,” in The Patterns Handbook: Techniques, Strategies, and
Applications, L. Rising, Ed. Cambridge University Press, January 1998,
pp. 311–320. [Online]. Available: http://citeseer.nj.nec.com/53146.html

[37] J. Niere, J. P. Wadsack, and A. Zündorf, “Recovering UML diagrams
from Java code using patterns,” in Proceedings of the 2nd workshop
on Soft Computing Applied to Software Engineering, J. H. Jahnke and
C. Ryan, Eds. Springer-Verlag, February 2001, pp. 89–97. [Online].
Available: http://trese.cs.utwente.nl/scase/scase-2/Proceedings.pdf

[38] E. Agerbo and A. Cornils, “How to preserve the benefits of design
patterns,” in Proceedings of the 13th Conference on Object-Oriented
Programming, Systems, Languages, and Applications, C. Chambers,
Ed. ACM Press, October 1998, pp. 134–143. [Online]. Available:
http://citeseer.nj.nec.com/31381.html

[39] D. J. Ram, P. J. Kumar, and M. S. Rajasree, “Pattern hybridization:
breeding new designs out of pattern interactions,” Software Engineering
Notes, vol. 29, no. 3, pp. 1–10, May 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=986729

[40] J. O. Coplien, “Idioms and patterns as architectural literature,” IEEE
Software Special Issue on Objects, Patterns, and Architectures, vol. 14,
no. 1, pp. 36–42, January 1997.

[41] B. Appleton, “Patterns and software: Essential concepts
and terminology,” February 2000. [Online]. Available: http:
//www.cmcrossroads.com/bradapp/docs/patterns-intro.html

[42] M. L. Bernardi and G. A. Di Lucca, “Improving design patterns quality
using aspect orientation,” in Proceedings of the 3rd Software Technology
and Engineering Practice workshop series, M. di Penta and Y. Zou, Eds.
IEEE Computer Society Press, September 2005.

[43] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design pattern recovery
in object-oriented software,” in Proceedings of the 6th International
Workshop on Program Comprehension, S. Tilley and G. Visaggio, Eds.
IEEE Computer Society Press, June 1998, pp. 153–160. [Online].
Available: http://citeseer.nj.nec.com/antoniol98design.html

[44] R. Schauer and R. Keller, “Pattern visualization for software
comprehension,” in Proceedings of the 6th International Workshop
on Program Comprehension, S. Tilley and G. Visaggio, Eds. IEEE
Computer Society Press, June 1998, pp. 4–12. [Online]. Available:
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=693273

[45] M. Ó. Cinnéide and P. Nixon, “Automated application of design
patterns to legacy code,” in Proceedings of the 1st Workshop on
Object-Oriented Technology, A. M. D. Moreira and S. Demeyer,
Eds. Springer-Verlag, June 1999, pp. 176–120. [Online]. Available:
http://portal.acm.org/toc.cfm?id=646779

[46] L. Prechelt and C. Krämer, “Functionality versus practicality:
Employing existing tools for recovering structural design patterns,”
Journal of Universal Computer Science, vol. 4, no. 12, pp. 866–883,
December 1998. [Online]. Available: http://www.jucs.org/jucs\ 4\ 12/
functionality\ versus\ practicality\ employing

[47] R. Wuyts, “Declarative reasoning about the structure of object-
oriented systems,” in Proceedings of the 26th Conference on the
Technology of Object-Oriented Languages and Systems, J. Gil, Ed.
IEEE Computer Society Press, August 1998, pp. 112–124. [Online].
Available: http://www.iam.unibe.ch/\∼{}wuyts/publications.html

[48] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, “A comparison of
reverse engineering tools based on design pattern decomposition,” in
Proceedings of the 16th Australian Software Engineering Conference,
P. Strooper, Ed. IEEE Computer Society Press, March–April 2005,
pp. 262–269. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/ASWEC.2005.5

[49] T. Mikkonen, “Formalizing design patterns,” in Proceedings of the
20th International Conference on Software Engineering, T. Katayama
and D. Notkin, Eds. IEEE Computer Society Press, April 1998, pp.
115–124. [Online]. Available: http://babel.ls.fi.upm.es/services/babylon/
mikkonen-fdp98.pdf

[50] J. Bosch, “Design patterns as language constructs,” Journal of Object-
Oriented Programming, vol. 11, no. 2, pp. 18–32, February 1998.
[Online]. Available: http://citeseer.nj.nec.com/bosch98design.html

[51] J. Seemann and J. W. von Gudenberg, “Pattern-based design recovery
of Java software,” in Proceedings of 5th international symposium on
Foundations of Software Engineering, B. Scherlis, Ed. ACM Press,
November 1998, pp. 10–16. [Online]. Available: http://www.informatik.
uni-trier.de/\∼{}ley/db/indices/a-tree/s/Seemann:Jochen.html

[52] J. Dong, “UML extensions for design pattern compositions,” Journal
of Object Technology, vol. 1, no. 5, pp. 149–161, November
2002. [Online]. Available: http://www.jot.fm/jot/issues/issue\ 2002\
11/article3/index\ html

[53] M. Ó. Cinnéide, “Automated refactoring to introduce design patterns,”
in Proceedings of the ICSE Doctoral Workshop, J. Magee and M. Pezzè,
Eds., June 2000. [Online]. Available: http://swt.cs.tu-berlin.de/lehre/
seminar/ss02/

[54] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena,
and A. von Staa, “Modularizing design patterns with aspects:
A quantitative study,” in Proceedings of the 4th international
conference on Aspect-Oriented Software Development, P. Tarr, Ed.
ACM Press, March 2005, pp. 3–14. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1052898.1052899

[55] D. J. Ram, K. N. A. Raman, and K. N. Guruprasad, “A pattern
oriented technique for software design,” SIGSOFT Softw. Eng.
Notes, vol. 22, no. 4, pp. 70–73, Jul. 1997. [Online]. Available:
http://doi.acm.org/10.1145/263244.263265

[56] J. Kerievsky, Refactoring to Patterns, 1st ed. Addison Wesley, August
2004. [Online]. Available: www.industriallogic.com/xp/refactoring/

[57] D. B. Lange and Y. Nakamura, “Interactive visualization of design
patterns can help in framework understanding,” in Proceedings
of the Tenth Annual Conference on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’95. New

York, NY, USA: ACM, 1995, pp. 342–357. [Online]. Available:
http://doi.acm.org/10.1145/217838.217874

[58] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein, “MultiJava:
Modular open classes and symmetric multiple dispatch for Java,” in
Proceedings of the 15th Conference on Object-Oriented Programming,
Systems, Languages, and Applications, D. Lea, Ed. ACM Press,
October 2000, pp. 130–145. [Online]. Available: citeseer.nj.nec.com/
clifton00multijava.html

[59] J. Soukup, “Implementing patterns,” in Pattern Languages of Program
Design, 1st ed., J. O. Coplien and D. C. Schmidt, Eds. Addison-
Wesley, May 1995, ch. 20, pp. 395–412. [Online]. Available:
http://www.codefarms.com/publications/papers/patterns.html

[60] Y.-G. Guéhéneuc and Rabih Mustapha, “A simple recommender system
for design patterns,” in Proceedings of the 1st EuroPLoP Focus
Group on Pattern Repositories (EPFPR), M. Weiss, A. Birukou, and
P. Giorgini, Eds. N/A, July 2007, p. N/A, 2 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/EuroPLoP07PRb.doc.pdf

[61] A. H. Eden, Y. Hirshfeld, and A. Yehudai, “LePUS – A declarative
pattern specification language,” Department of Computer Science,
University of Tel Aviv, Tech. Rep. 326/98, June 1998. [Online].
Available: citeseer.nj.nec.com/112816.html

[62] G. Hedin, “Language support for design patterns using attribute
extension,” in Proceedings of the 1st ECOOP workshop on Language
Support for Design Patterns and Frameworks, J. Bosch and S. Mitchell,
Eds. Springer-Verlag, June 1997, pp. 137–140. [Online]. Available:
http://www.cs.lth.se/Research/ProgEnv/LSDF.html

[63] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39,
no. 2, pp. 25–31, February 2006, guest Editor’s Introduction. [Online].
Available: http://www.cs.wustl.edu/∼schmidt/GEI.pdf

[64] T. Mens and P. V. Gorp, “A taxonomy of model transformation,”
Electronic Notes in Theoretical Computer Science, vol. 152, pp.
125 – 142, 2006, proceedings of the International Workshop on
Graph and Model Transformation (GraMoT 2005). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066106001435

[65] M. Tatsubori and S. Chiba, “Programming support of design
patterns with compile-time reflection,” in Proceedings of the 1st

OOPSLA workshop on Reflective Programming in C++ and Java,
J.-C. Fabre and S. Chiba, Eds. Center for Computational Physics,
University of Tsukuba, October 1998, pp. 56–60, uTCCP Report 98-4.
[Online]. Available: http://www.csg.is.titech.ac.jp/\∼{}chiba/oopsla98/
proc/index.html

[66] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh,
“Towards pattern-based design recovery,” in Proceedings of the 24th

International Conference on Software Engineering, M. Young and
J. Magee, Eds. ACM Press, May 2002, pp. 338–348. [Online].
Available: http://portal.acm.org/citation.cfm?id=581382

[67] A. Ampatzoglou, A. Chatzigeorgiou, S. Charalampidou, and P. Avgeriou,
“The effect of gof design patterns on stability: A case study,” IEEE
Transactions on Software Engineering, vol. 41, no. 8, pp. 781–802, Aug
2015.

[68] F. Khomh, Y. G. Gueheneuc, and G. Antoniol, “Playing roles in design
patterns: An empirical descriptive and analytic study,” in 2009 IEEE
International Conference on Software Maintenance, Sept 2009, pp. 83–
92.

[69] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object-oriented
design patterns in game development,” Information and Software
Technology, vol. 49, no. 5, pp. 445 – 454, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584906000929

[70] M. Ali and M. O. Elish, “A comparative literature survey of design
patterns impact on software quality,” in 2013 International Conference
on Information Science and Applications (ICISA), vol. 00, 06 2013, pp.
1–7. [Online]. Available: doi.ieeecomputersociety.org/10.1109/ICISA.
2013.6579460

[71] F. Khomh, “Patterns and quality of object-oriented software systems,”
Ph.D. dissertation, Université de Montréal, 2010. [Online]. Available:
http://hdl.handle.net/1866/4601

[72] J. O. Coplien, Advanced C++ Programming Styles and
Idioms, 1st ed. Addison-Wesley, August 1991. [Online].
Available: www.awprofessional.com/catalog/product.asp?product\ id=
\%7BF983A2EA-89B7-4F25-B82B-6CC86496C735\%7D

[73] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III,
and T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures,
and Projects in Crisis, 1st ed. John Wiley and Sons, March
1998. [Online]. Available: www.amazon.com/exec/obidos/tg/detail/-/
0471197130/ref=ase\ theantipatterngr/103-4749445-6141457

[74] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object Oriented Reengi-
neering Patterns. Morgan Kaufmann Publishers Inc., 2002.

[75] W. Pree, “Meta patterns - a means for capturing the essentials
of reusable object-oriented design,” in Proceedings of the 8th
European Conference on Object-Oriented Programming, ser. ECOOP
’94. London, UK, UK: Springer-Verlag, 1994, pp. 150–162. [Online].
Available: http://dl.acm.org/citation.cfm?id=646152.679381

[76] M. Dawson, G. Johnson, and A. Low, “Best practices for using
the java native interface,” July 2009. [Online]. Available: https:
//www.ibm.com/developerworks/library/j-jni/index.html

[77] G. B. de Pádua and W. Shang, “Studying the prevalence of exception
handling anti-patterns,” in Proceedings of the 25th International
Conference on Program Comprehension, ser. ICPC ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 328–331. [Online]. Available:
https://doi.org/10.1109/ICPC.2017.1

[78] Ségla Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guéhéneuc, and
G. Antoniol, “Design evolution metrics for defect prediction in object
oriented systems,” Empirical Software Engineering (EMSE), vol. 16,
no. 1, pp. 141–175, February 2011, 34 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/EMSE11a.doc.pdf

[79] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
SIGSOFT ’06/FSE-14. New York, NY, USA: ACM, 2006, pp. 1–11.
[Online]. Available: http://doi.acm.org/10.1145/1181775.1181777

[80] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study of
the effect of file editing patterns on software quality,” J. Softw. Evol.
Process, vol. 26, no. 11, pp. 996–1029, Nov. 2014. [Online]. Available:
http://dx.doi.org/10.1002/smr.1659

[81] Wei Wu, F. Khomh, , B. Adams, Y.-G. Guéhéneuc, and G. Antoniol,
“An exploratory study of API changes and usages based on
Apache and Eclipse ecosystems,” Journal of Empirical Software
Engineering (EMSE), vol. 21, no. 6, pp. 2366–2412, December
2016, 47 pages. [Online]. Available: http://www.ptidej.net/publications/
documents/EMSE16a.doc.pdf

[82] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang, “Understanding
log lines using development knowledge,” in 30th IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014, 2014, pp. 21–30. [Online].
Available: https://doi.org/10.1109/ICSME.2014.24

[83] Y. Gil and I. Maman, “Micro patterns in java code,” in Proceedings
of the 20th Conference on Object-Oriented Programming Systems
Languages and Applications, R. P. Gabriel, Ed. ACM Press, October
2005, pp. 97–116. [Online]. Available: portal.acm.org/citation.cfm?id=
1094811.1094819

[84] Simon Denier and Y.-G. Guéhéneuc, “Mendel: A model, metrics,
and rules to understand class hierarchies,” in Proceedings of
the 16th International Conference on Program Comprehension
(ICPC), R. Krikhaar and R. Lämmel, Eds. IEEE CS Press,
June 2008, pp. 143–152, 10 pages. [Online]. Available: http:
//www.ptidej.net/publications/documents/ICPC08a.doc.pdf

[85] R. Wuyts, K. Mens, and T. D’Hondt, “Explicit support for software
development styles throughout the complete life cycle,” Programming
Technology Lab, Vrije Universiteit Brussel, Tech. Rep. Vub-Prog-
TR-99-07, April 1999. [Online]. Available: http://progwww.vub.ac.be/
Research/ResearchPublicationsDetail2.asp?paperID=72

[86] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson, Cloud
Design Patterns: Prescriptive Architecture Guidance for Cloud Applica-
tions. Microsoft patterns & practices, 2014.

[87] C. Leymann, F. Fehling, R. Retter, W. Schupeck, and P. Arbitter, Cloud
computing patterns. Springer, 2014.

[88] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns, 1st ed.
John Wiley and Sons, August 1996. [Online]. Available: http://www.
amazon.com/exec/obidos/tg/detail/-/0471958697/104-1238236-1419115

[89] F. Petrillo, Z. Soh, F. Khomh, M. Pimenta, C. Freitas, and Y. G.
Guhneuc, “Understanding interactive debugging with swarm debug
infrastructure,” in 2016 IEEE 24th International Conference on Program
Comprehension (ICPC), May 2016, pp. 1–4.

[90] Y.-G. Guéhéneuc, “A systematic study of uml class diagram
constituents for their abstract and precise recovery,” in Proceedings
of the 11th Asia-Pacific Software Engineering Conference (APSEC),
D.-H. Bae and W. C. Chu, Eds. IEEE CS Press, November-

December 2004, pp. 265–274, 10 pages. [Online]. Available:
http://www.ptidej.net/publications/documents/APSEC04.doc.pdf

[91] D. G. Firesmith, “Pattern language for testing object-oriented software,”
Object Magazine, vol. 5, no. 8, p. 5, 1996.

[92] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual
studio usage in practice,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1,
March 2016, pp. 124–134.

[93] C. Zhang and D. Budgen, “What do we know about the effectiveness
of software design patterns?” Transactions on Software Engineering,
vol. 38, no. 5, pp. 1213–1231, September–October 2012. [Online]. Avail-

able: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5975176
[94] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,

A. De Lucia, and D. Poshyvanyk, “When and why your code starts
to smell bad,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 403–414. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818805

[95] F. Arcelli Fontana and M. Zanoni, “Code smell severity classification
using machine learning techniques,” Know.-Based Syst., vol. 128, no. C,
pp. 43–58, Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.
knosys.2017.04.014

