
On Improving the Dependability of Cloud Applications with
Fault-Tolerance

Foutse Khomh
SWAT Lab., DGIGL, Polytechnique Montréal

Québec, Canada
foutse.khomh@polymtl.ca

ABSTRACT
Cloud computing is an increasingly popular paradigm that
allows individuals and enterprises to provision and deploy
software applications over the Internet. Customers can lease
services provided by these “cloud” applications (a.k.a cloud
apps), ramping up or down the capacity as they need and
paying only for what they use. Cloud apps are used in about
every industry today; from financial, retail, education, and
communications, to manufacturing, utilities and transporta-
tion. Forrester Research predicts that cloud apps sales will
account for more than 16% of the total software market by
2016. However, cloud apps dependability is still a major
issue for both providers and users. Failures of cloud apps
generally result in big economic losses as core business ac-
tivities now rely on them. In this position paper we discuss
the current state of the dependability of cloud apps and ad-
vocate for the use of fault-tolerance mechanisms to improve
the dependability of cloud apps.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Quality—dependability of
cloud applications

Keywords
Dependability; Cloud applications; Fault-tolerance; Recov-
ery mechanisms.

1. INTRODUCTION
Cloud computing is an increasingly popular paradigm that

allows individuals and enterprises to provision and deploy
software applications over the Internet. Customers can lease
services provided by these “cloud” applications (a.k.a cloud
apps), ramping up or down the capacity as they need and
paying only for what they use. Cloud apps typically run
on cloud platforms such as Google App Engine, Windows
Azure, or OpenStack. Cloud apps are used in about every

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request permissions from Permissions@acm.org.
http://dx.doi.org/10.1145/2578128.2578228
WICSA ’14, April 07 - 11 2014, Sydney, NSW, Australia
Copyright 2014 ACM 978-1-4503-2523-3/14/04 ...$15.00.

industry today; from financial, retail, education, and com-
munications, to manufacturing, utilities, and transportation.
Forrester Research predicts that cloud apps sales will ac-
count for more than 16% of the total software market by
2016. Yet, the dependability of cloud apps is still a major
issue for both providers and users. Failures of cloud apps
generally result in big economic losses as core business ac-
tivities now rely on them [11]. This was the case in Decem-
ber 24, 2012 when a failure of Amazon web services caused
an outage of Netflix cloud services for 19 hours. Accord-
ing to Zheng et al. [16], the demand for highly dependable
cloud apps has reached unprecedentedly high levels. How-
ever, there is still no clear methodology in industry today
for developing highly dependable cloud apps. Developers
usually delegate dependability issues to the cloud platforms
running the apps. A rule of thumb being to deploy the apps
across multiple availability zones (AZ) to replicate services,
as summarized by the Netflix strategy [15]: “Deploy in multi-
ple AZ with no extra instances –target autoscale 30-60% until
you have 50% headroom for load spikes. Lose an AZ leads
to 90% utilization”. Yet, stress tests conducted by Sydney-
based researchers [13] have revealed that infrastructure and
platform services offered by big players like Amazon, Google
and Microsoft suffer from regular performance and availabil-
ity issues due to service overload, hardware failures, software
errors and, operator errors. The response times of these ser-
vices was found to vary by a factor of twenty depending on
the time of day. Moreover, because of the constantly increas-
ing complexity of cloud apps and because developers have
little control over the execution environment of these appli-
cations, it is exceedingly difficult to develop fault-free cloud
apps. Therefore, cloud apps should be robust to failures if
they are to be highly dependable.

One way to make cloud apps robust to failures, is to use
fault-tolerance techniques. A large number of fault-tolerance
techniques have been proposed by the reliability commu-
nity over the years. Among these techniques we can quote
(the major ones) N-Version Programming (NVP) [1], recov-
ery block [5], and N self-checking programming [8]. Un-
fortunately, because of the cost of their implementations
(fault-tolerance techniques require the development and the
maintenance of multiple redundant components); the use
of these fault-tolerance techniques has been limited to crit-
ical systems only, e.g., airplane flight, space/military sys-
tems, or nuclear systems. This situation is about to change,
as the multiple redundant services and resources that are
available in cloud environments offer the possibility to build
redundancies in cloud based apps at low costs. Hundreds

of new cloud Application Programming Interfaces (API)s
are sprouting up monthly, as tracked by the website Pro-
grammableWeb 1, which features more than 10,000 APIs
today. These service-level APIs provide a lot of redundant
services that can be incorporated in cloud apps to implement
fault-tolerance. Using patterns like Heartbeat or Watchdog
[5], a cloud app can monitor a specific service on which it de-
pends and, in case of failure of this service, redirect requests
to a backup service and trigger a recovery mechanism to
maintain high availability.

In this position paper, we discuss some recent research on
the dependability of cloud apps and advocate for the use
of fault-tolerance mechanisms to improve the dependability
of cloud apps. In particular, we discuss some challenges
related to the implementation of fault-tolerance mechanisms
in cloud apps and outline some future research directions.

The rest of this paper is organized as follows: Section
2 introduces some related works on the dependability of
cloud apps. Section 3 discusses the implementation of fault-
tolerance in cloud apps. Finally, Section 4 concludes the
paper

2. RELATED WORK
Recent research studies have proposed software rejuvena-

tion and failure recovery techniques based on virtualization
to improve the dependability of cloud apps. Software reju-
venation is a proactive fault management technique aimed
at cleaning up the internal state of a system to prevent the
occurrence of severe failures due to software aging or tran-
sient failures. For instance, Kourai and Chiba [7] propose
a technique called warm-VM reboot for fast rejuvenation of
Virtual Machine Monitors (VMMs) that enables an efficient
reboot of VMM by suspending and resuming VMs without
accessing the memory images. The technique, which is based
on two mechanisms, on-memory suspend/resume of VMs
and quick reload of VMMs, is claimed to reduce downtime
and prevent performance degradation due to cache misses af-
ter the reboot. Trivedi et al. [12] propose stochastic models
that help to detect software aging and determine optimal
times to perform rejuvenation. Cully et al. [3] propose a
fail-over technique based on asynchronous VM replication.
The technique can propagate changed state to a backup host
asynchronously at frequencies as high as forty times a sec-
ond. They use speculative execution to concurrently run
the active VM slightly ahead of the replicated system state.
In case of failure, automatic fail-over with only seconds of
downtime is provided while preserving host state such as ac-
tive network connections. Israel and Raz [6] modelled the
VM Recovery Problem (VMRP) as a formal optimization
problem that provides an optimal recovery solution taking
into account both the cost of keeping machines active as well
as the VM recovery cost, and observed that it is NP-hard.
They modelled the problem as an offline optimization prob-
lem and proposed a bi-criteria approximation algorithm for
it. They also proposed a greedy approach which they claim
can reduce the overall recovery costs by 10-15% when com-
pared to currently used approaches.

In this position paper, we adopt the perspective of Recov-
ery Oriented Computing [10] that software faults are facts
to be coped with and argue for the containment of faults
at the application level. Similar goals have been pursued

1http://www.programmableweb.com/

by [4, 9] which propose fault-tolerance mechanisms for web
services. However, because of the dynamic nature of the
cloud environment and its various underlying technologies,
these fault-tolerance mechanisms cannot be simply transfer
to cloud apps. Existing fault-tolerance mechanisms assume
that a fixed amount of hardware and system resources is
bounded statically to the fault tolerant structures [2]. It is
thus difficult to test their effectiveness in a cloud environ-
ment, where resources can be provisioned on demand and
where the access to resources is regulated by contracts. In
the cloud, developers cannot go beyond what is specified in
a service contract, neither can they tune, adjust, or modify
cloud resources beyond the specifications of their contracts.
Also, before implementing a fault tolerant structure in a
cloud app, developers must determine the right granularity
at which the fault should be contained to minimize recovery
time and costs.

3. IMPLEMENTATION OF FAULT TOLER-
ANCE MECHANISMS IN CLOUD APPS

Existing fault-tolerance techniques follow two main strate-
gies: error processing and fault treatment. Error processing
aims to remove errors from the application state while fault
treatment aims to prevent the activation of faults in the
application. Error processing is generally implemented by
substituting an error-free state in place of an erroneous state
or by compensating for the error with redundancy. In the
case of fault treatment, the fault needs to be diagnosed in
advance before an appropriate passivation technique can be
applied. Depending on the nature of the faults, early diag-
nostics or state substitutions may not always be possible.
Also, fault passivation may not always result in a behavior
that is compliant with the specification the application. Fu-
ture research should propose recovery mechanisms that take
into account the dynamic nature of the cloud and ensure
that the behavior of a cloud app remains compliant with its
specification. Also, when implementing recovery patterns,
it is important to create the recovery blocks at a granularity
level that ensures the containment of the fault while mini-
mizing the execution time and costs of replacement blocks.
The identification of the right granularity of containment
for a fault requires a good knowledge on the nature of the
fault. Fault-tolerance design patterns such as those pro-
posed by Hanmer [5] can be adapted to achieve this goal.
An example of recovery mechanisms that aim to minimize
recovery time and cost is the Recursive restartability [10],
which consists in segregating components that often fail but
recover quickly from components that fail infrequently but
recover slowly; allowing the system to tolerate restarts at
multiple levels. Recursive restartable designs restart an op-
timal number of components in case of a failure; allowing a
system to recover quickly. Recently, authors like Zheng et
al. [17] and Xu et al. [14] have proposed component ranking
approaches that can be used to select components in cloud
apps on which recovery mechanisms should be implemented.
The components are ranked based on their characteristics,
their invocation relationships, and their invocation frequen-
cies.

4. CONCLUSION
In this position paper, we have surveyed some research

work on the dependability of cloud apps and discussed the

implementation of fault-tolerance mechanisms in cloud apps.
Complementary to recent works that have proposed approaches
based on virtualization to improve the dependability of cloud
apps, in this position paper, we argue for the implementa-
tion of recovery mechanisms in the architecture of cloud apps
to make them robust to faults and hence highly dependable.
We advocate for the use of fault-tolerance mechanisms to en-
able fault containment and recovery at the application level.
The availability of multiple redundant services and resources
in cloud environments offer the possibility to achieve this
goal. However, because of the dynamic nature of the cloud
and since existing fault-tolerance mechanisms assume that a
fixed amount of hardware and system resources is bounded
statically to the fault tolerant structures, it is challenging to
include fault tolerance mechanisms in the architecture of a
cloud apps. We suggest that future research works propose
recovery mechanisms that take into account the dynamic
nature of the cloud and preserve the compliance between
the specification and the behavior of the cloud apps. These
recovery mechanisms will reduce the recovery time of cloud
apps and therefore improve their dependability and reduce
the amount of money lost during service-downtime.

5. REFERENCES
[1] A. Avizienis. The methodology of n-version

programming. Software Fault Tolerance, M. R. Lyu
(ed.), page 23âĂŞ46, 1995.

[2] A. Bondavalli, S. Chiaradonna, F. D. Giandomenico,
and J. Xu. An adaptive approach to achieving
hardware and software fault tolerance in a distributed
computing environment. Journal of Systems
Architecture, 47(9):763–781, 2002.

[3] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: High
availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 161–174, Berkeley,
CA, USA, 2008. USENIX Association.

[4] J. Edstrom and E. Tilevich. Reusable and extensible
fault tolerance for restful applications. In G. Min,
Y. Wu, L. C. Liu, X. Jin, S. A. Jarvis, and A. Y.
Al-Dubai, editors, TrustCom, pages 737–744. IEEE
Computer Society, 2012.

[5] R. Hanmer. Patterns for Fault Tolerant Software.
Wiley, Chichester, England, 2007.

[6] A. Israel and D. Raz. Cost aware fault recovery in

clouds. In Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium on, pages
9–17, 2013.

[7] K. Kourai and S. Chiba. A fast rejuvenation technique
for server consolidation with virtual machines. In
Dependable Systems and Networks, 2007. DSN ’07.
37th Annual IEEE/IFIP International Conference on,
pages 245–255, 2007.

[8] M. R. Lyu. Software Fault Tolerance. Trends in
Software, Wiley, 1995.

[9] Manitra. Fault tolerant web service framework.
August 2008.

[10] D. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry,
W. Tetzlaff, J. Traupman, and N. Treuhaft. Recovery
oriented computing (roc): Motivation, definition,
techniques,. Technical report, Berkeley, CA, USA,
2002.

[11] S.Shankland. Amazon suffers u.s. outage on friday.
Retrieved on December 15, 2013.

[12] K. Trivedi, K. Vaidyanathan, and
K. Goseva-Popstojanova. Modeling and analysis of
software aging and rejuvenation. In Simulation
Symposium, 2000. (SS 2000) Proceedings. 33rd
Annual, pages 270–279, 2000.

[13] B. Winterford. Stress tests rain on amazon’s cloud. IT
News, Retrieved on December 15, 2013, August 2009.

[14] H. Xu, Y. Xie, D. Duan, L. Chen, and J. Wu. Ftcrank:
Ranking components for building highly reliable cloud
applications. In PAKDD Workshops, pages 522–532,
2013.

[15] X. Xu, Q. Lu, L. Zhu, Z. Li, S. Sakr, H. Wada, and
I. Webber. Availability analysis for deployment of
in-cloud applications. In Proceedings of the 4th
International ACM Sigsoft Symposium on Architecting
Critical Systems, ISARCS ’13, pages 11–16, New York,
NY, USA, 2013. ACM.

[16] Z. Zheng, T. Zhou, M. Lyu, and I. King. Component
ranking for fault-tolerant cloud applications. Services
Computing, IEEE Transactions on, 5(4):540–550,
2012.

[17] Z. Zheng, T. C. Zhou, M. Lyu, and I. King.
Component ranking for fault-tolerant cloud
applications. IEEE Trans. Serv. Comput.,
5(4):540–550, Jan. 2012.

