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ABSTRACT
Software crashes are feared by software organisations and
end users. Many software organisations have embedded au-
tomatic crash reporting tools in their software systems to
help development teams track and fix crash-related bugs.
Previous techniques, which focus on the triaging of crash-
types and crash-related bugs, can help software practitioners
increase their debugging efficiency on crashes. But, these
techniques can only be applied after the crashes occurred
and already affected a large population of users. To help
software organisations detect and address crash-prone code
early, we conduct a case study of commits that would lead to
crashes, called “crash-inducing commits”, in Mozilla Firefox.
We found that crash-inducing commits are often submit-
ted by developers with less experience. Developers perform
more addition and deletion of lines of code in crash-inducing
commits. We built predictive models to help software prac-
titioners detect and fix crash-prone bugs early on. Our pre-
dictive models achieve a precision of 61.4% and a recall of
95.0%. Software organisations can use our proposed predic-
tive models to track and fix crash-prone commits early on
before they negatively impact users; increasing bug fixing
efficiency and user-perceived quality.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Crash analysis, bug triaging, prediction model, mining soft-
ware repositories.

1. INTRODUCTION
Software crashes refer to unexpected interruptions of soft-

ware systems in users’ environment. Frequent crashes can
significantly decrease the overall user-perceived quality and
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even affect the reputation of a software organisation. There-
fore, nowadays, many software organisations (e.g., Mozilla,
Microsoft, and Google) are deploying crash reporting tools in
their software systems. Once the software crashes, the auto-
matic crash reporting tool collects information on the crash
event, then sends a detailed crash report to the software
organisation. Crash reports are stored in a crash collect-
ing system, where crashes with the same crashing signature
(i.e., the stack trace of the failing thread) are grouped into
a crash-type. The crash collecting system analyses the im-
pact of different crash-types and selects the top crash-types,
which will be filed into bug tracking systems (e.g., Bugzilla
or Jira); enabling, quality assurance teams to focus their
limited resources on fixing these important defects.

Khomh et al. [17] proposed an entropy-based crash triag-
ing technique that computes the distribution of crash oc-
currences among users and assigns a higher priority to the
bugs related to crashes that occur frequently and affect a
large number of users. However, this approach can only
capture crashes with high impact after the crash collecting
system has gathered enough crash reports. During this pe-
riod, the crashes may have affected a large number of users.
Moreover, while time passes, the erroneous code becomes
unfamiliar to developers, making it hard to correct.

To reduce the triaging period of crash-related bugs, in
our previous study [2], we built statistical models in Mozilla
projects to predict crash-related bugs that lead to frequent
crashes, which impact a large user base. Although this im-
proved approach can be applied at an early stage of devel-
opment to detect crash-related bugs with a serious negative
impact on users, software development teams still have to
wait for a certain period, during which crashes are collected,
triaged and filed into bug reports, before they can carry out
their bug fixing activities. If software organisations could de-
tect crash-prone code even earlier, at the time of commits,
they would address the problems as soon as possible and pre-
vent the unpleasant experience of crashes to the users, to a
great extent. This approach is referred to as “Just-In-Time
Quality Assurance” [16], which enables fine-grained defect
predictions and allows quality assurance teams to identify
error-prone code early on. By identifying error-prone com-
mits quickly, quality assurance teams are also likely to make
better decisions choosing developers to fix a bug.

In this paper, we investigate statistical models to predict
commits that may introduce crashes in Mozilla Firefox. We
are limited to Firefox because, at the time of this writing,
no other organisation provides access to its crash reporting
system. Software organisations can apply our proposed ap-



proach to detect crash-prone code early on before they affect
a large number of users and address the defective code as
soon as possible. We study Mozilla Firefox’ crash reports
between January 2012 and December 2012, as well as its
commit logs from the beginning of the project until Decem-
ber 2012, and answer the following research questions:

RQ1: What is the proportion of crash-inducing commits in
Firefox?

We analyse Firefox’ crash reports and link them to
the corresponding crash-related bugs. We then use
the SZZ algorithm [32] to map these bugs to their
related commits and identify the commits due to
which the crash-related bugs occurred. We found
that crash-inducing commits account for 25.5% in the
studied version control system.

RQ2: What characteristics do crash-inducing commits pos-
sess?

By investigating the characteristics of crash-inducing
commits and other commits, we found that, in gen-
eral, crash-inducing commits are submitted by devel-
opers with less experience and are more often com-
mitted by developers from Mozilla. Developers change
more files, add and delete more lines in crash-inducing
commits. Compared to other commits, more crash-
inducing commits fix a previous bug, and often, they
lead to another bug. In terms of changed types,
crash-inducing commits contain more unique changed
types and the changed statements tend to be scat-
tered in more changed types, while other commits
tend to be changed on a specific changed type.

RQ3: How well can we predict crash-inducing commits?

Previous studies, which proposed statistical models
to predict defects from bug reports, could be effec-
tive to some extent. However, before a certain type
of crashes is filed into the crash collecting system, a
large number of end users might have already suffered
a negative experience. Moreover, during this period,
developers may become less familiar with the code.
In this case, they may spend more time identifying
the erroneous lines to fix the problems. Therefore,
statistical models that can predict error-prone code
just-in-time are required to help software practition-
ers detect crash-inducing commits and effectively fix
them early. We use GLM, Naive Bayes, C5.0, and
Random Forest algorithms to predict whether or not
a commit will induce future crashes. Our predictive
models can reach a precision of 61.4% and a recall
of 95.0%. Software organisations can apply our pro-
posed technique to improve their defect triaging pro-
cess and the satisfaction of their users.

The remainder of the paper is organised as follows. Sec-
tion 2 provides background information on Mozilla crash
collecting system. Section 3 explains the identification tech-
nique of crash-inducing commits. Section 4 describes data
collection and processing for the empirical study. Section 5
presents and discusses the results of the three research ques-
tions. Section 6 discusses threats to the validity. Section 7
summaries related work. Section 8 draws conclusions.

Crash Time  - OCT 24, 2010 11:20:53
Firefox Install Time – SEP 22, 2010 10:20:15
System Uptime – 1125 seconds
Version- 3.6.13
OS – Windows NT 6.1 2600
CPU – x86
User Comment –
Stack Trace –

Crash Report – e1c1267874640-94324-32423

Frame
0
1
2
3
4
5
6
7

Module

User32.dll
User32.dll
User32.dll
XUI.dll
XUI.dll
Nspr4.dll
XUI.dll

Signature
@0x654789
UserCallWinProcCheckWow
DispatchMethod
DispatchMessage
ProcessNextNativeEvent
nsShell::OnProcess
mozilla::Pump
MessageLoop:Run

Source

Src/win/nsAppShell.cpp:179
Src/win/nsShell.cpp:77
Ipc/glue/MessagePump.cpp:134
Ipc/glue/MessageLoop.c:784

Each Crash Report is 
assigned  a unique ID

User Environment 
Information

All crash Reports with top 
signature as 
“UserCallWinCheckWow” are 
grouped together

Not all frames have Source 
Information

Figure 1: A sample crash report from Firefox

CrashType Signature – UserCallWinProcCheckWow

OPEN
610103 UNCONFIRMED
585660 UNCONFIRMED
608351 NEW

DUPLICATE
560498 RESOLVED
522070 VERIFIED
516182 VERIFIED

FIXED
531551 RESOLVED

� OCT24,2010 10 :56
� OCT24,2010 10 :54
� OCT24,2010 10 :52
� OCT24,2010 10 :52
� OCT24,2010 10 :51
� OCT24,2010 10 :51
� OCT24,2010 10 :50
� OCT24,2010 10 :48
� OCT24,2010 10 :47
� OCT24,2010 10 :47
� OCT24,2010 10 :46
� ……..

Bugzilla Bug Id’s Crash Reports

Figure 2: A sample crash-type from Firefox

2. MOZILLA CRASH COLLECTING SYS-
TEM

Mozilla delivers software with a built-in automatic crash
reporting tool, i.e., the Mozilla Crash Reporter. When a
Mozilla product, such as Firefox, terminates unexpectedly,
Mozilla Crash Reporter will generate and send a detailed
crash report to the Socorro crash report server [33]. The
crash report provides a stack trace for the failing thread and
information about the user’s environment. A stack trace
is an ordered set of frames where each frame refers to a
method signature and provides a link to the corresponding
source code. Different stakeholders, quality managers and
developers, can use crash reports to allocate development
resources. Figure 1 illustrates a sample crash report from
Mozilla Firefox.

Socorro collects crash reports from end users and groups
similar crash reports together by the top method signatures
in their stack traces. Such a group of crash reports where all
the stack traces possess the common top frames is termed as
a crash-type. However, the subsequent frames in the stack
traces might be different. Figure 2 shows a sample crash-
type from Firefox.

Socorro server’s data are open and provide a rich Web
interface for software practitioners to analyse crash-types.
In the Socorro server, crash-types are automatically ranked
based on the frequency of their occurrences. Software man-
agers can file crash-types with high crashing frequency into
Bugzilla, i.e., Mozilla’s bug tracking system. Different crash-
types can be linked to the same bug, while different bugs can
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Figure 3: Overview of our approach to identify crash-inducing commits and extract their characteristic metrics

also be linked to the same crash-type [1]. Socorro provides a
list of bugs for each crash report whose crash-type has been
filed into Bugzilla. The Socorro server and Bugzilla are in-
tegrated, i.e., developers can directly navigate to the cor-
responding bugs (in Bugzilla) from a crash-type’s summary
in Socorro’s Web interface. Developers use the information
contained in crash reports to debug and fix bugs. Mozilla
quality assurance teams triage bug reports and assign sever-
ity levels to the bugs [5]. Developers port patches to fix a
bug. Once approved, the patches will be integrated into the
source code.

3. IDENTIFICATION OF CRASH-INDUCING
COMMITS

In this section, we describe the identification procedure
for crash-inducing commits. All of our data and analytic
scripts are available at:
https://github.com/swatlab/crash-inducing.

Applying the SZZ algorithm [32], we identify crash-inducing
commits in two steps: identification of crash-related bugs
and identification of commits that induce those bugs. The
remainder of this section elaborates on each of these steps.

3.1 Identification of Crash-related Bugs
We extract the bug list from each of the studied crash

reports. For each of the crash-related bug, we use regu-
lar expressions to identify the crashed stack trace from the
bug’s title and comments, then extract crash-related files or
methods from the stack trace. We record the identified files
or methods as defective locations of the crash-related bugs,
which will be used to identify crash-inducing commits in the
next step. Each crash-related bug may be linked to multiple
crash occurrences. We sort these crashes by time and record
the dates of the first and the last crash occurrences before
the bug was opened.

3.2 Identification of Crash-inducing Commits
Since Śliwerski et al. [32] introduced the SZZ algorithm, a

plethora of studies (such as [19, 28, 36]) have leveraged this
approach to identify the commits that induce subsequent
commits, especially bug fixes, in version control systems. In
this paper, we use the SZZ algorithm to identify the commits
that lead to crash-related bugs as follows.

3.2.1 Extraction of Crash-related Changed Files

We use heuristics proposed by Fischer et al. [11] to map
the crash-related bug IDs to their corresponding bug fixes.
We use regular expressions to detect bug IDs from the mes-
sage of each commit. We then manually eliminate the false
positives from the results. Some commits, which fix previ-
ous bug fixes (called supplementary bug fixes [3]), may lack
bug identifier in the commit messages, where only a commit
ID of a previous fix is provided. We track these commit
IDs back to their original commits and check whether these
original commits could be mapped to a bug report. Thus,
we ensure that every crash-related bug can be mapped to all
possible corresponding commits. As Mozilla’s revision his-
tory is managed by Mercurial, for each of the identified bug
fixes, we run a Mercurial command to extract its modified
files and deleted files:

hg log --template {rev}, {file_mods}, {file_dels}

Here, we do not take added files into account, because only
modified and deleted files could be changed by preceding
commits.

3.2.2 Identification of the Previous Commits of the
Changed Files

The changed files identified in Section 3.2.1 (i.e., modi-
fied and deleted files) are considered as files that address
the crash-related bugs. For each of the changed files in a
certain commit C to the bug Bcrash, if its previous commit
C′ is dated before the bug’s first crash occurrence date, C′

would be considered as a “crash-inducing commit”. Con-
cretely, to seek out the previous commits of each changed
file to a specific commit, we use Mercurial’s annotate com-
mand to track the previous commit ID of each line in this
file. Among the identified commit IDs, we first remove those
related to white spaces and comment lines. The remain-
ing commit IDs are candidates of crash-inducing commits.
Then, for each of the IDs, we record its committed date as
Dcandidate. We find out the first crash date Dfirst of the
bug Bcrash, which is extracted in Section 3.1, and compare
it with Dcandidate. If Dcandidate is earlier than Dfirst, this
candidate commit is identified as a“crash-inducing commit”.
Otherwise, if Dcandidate is later than Dfirst, but earlier than
the last crash date Dlast before the opening of the bug, we
will check whether this candidate commit contains any of the
files appearing in the crashed stack trace of Bcrash. If yes,
we also include this commit into the set of crash-inducing
commits.



All of the above steps have been implemented in Python
scripts. Future researchers can use our scripts to validate our
data analysis process or conduct their replication studies.

4. CASE STUDY DESIGN
This section describes the data collection and processing

for our case study, which aims to address the following three
research questions:

1. What is the proportion of crash-inducing commits in
Firefox?

2. What characteristics do crash-inducing commits pos-
sess?

3. How well can we predict crash-inducing commits?

4.1 Data Collection
We analyse crash reports of Mozilla Firefox from January

2012 until December 2012. Since a crash-inducing commit
cannot be submitted later than any of its related crashes,
we select the revision history of Mozilla Firefox from the
beginning of the project until December 2012. In summary,
there are in total 132,484,824 crash reports (grouped into
2,210,126 crash-types) and 127,212 commits selected in this
research.

4.2 Data Processing
Figure 3 shows an overview of our data processing steps for

the case study. The corresponding data and Python scripts
are available at:
https://github.com/swatlab/crash-inducing.

4.2.1 Mining Crash Reports
To identify crash-inducing commits and investigate the

characteristics of these commits, we extract the following
metrics from each crash reports: bug list, crash date, and
release number. We use the bug IDs in the bug list to map a
crash report to its bug reports. We then use crash dates to
find the earliest and the latest crash occurrence dates before
the opening of each bug (see Section 3.1). We use the source
code of all detected releases to compute code complexity
metrics and social network analysis metrics.

4.2.2 Computing Code Complexity Metrics
For each studied commit, we use the Mercurial log com-

mand to extract all of its changed files. Then, as in our
previous work [2], we apply the source code analysis tool
Understand [29] to compute the code-related metrics of the
analysed files and identify the relationship among these files.
This tool generates an Understand database (UDB), which
provides a Python API1 to allow researchers to write their
own scripts and create custom data. We use a Python script
to extract five metrics on code complexity for the files in
each subject commit: lines of code (LOC), average cyclo-
matic complexity, number of functions, maximum nesting,
and ratio of comment lines over all lines in a file. Because
more than 90% of Firefox’ code is written in C or C++ [2],
in this step, we only take C and C++ files into consider-
ation. Details of the selected code complexity metrics are
discussed in Section 5.

1 https://scitools.com/new-python-api/

4.2.3 Computing Social Network Analysis Metrics
From the Understand database generated in Section 4.2.2,

we identify the dependency among different files in Firefox
and compute Social Network Analysis (SNA) metrics for
each file. Concretely, from the studied C and C++ files,
we combine each .c or .cpp file and its corresponding .h file
into a class node. We then build an adjacency matrix to
represent the relationship among these nodes. We use the
network analysis tool igraph [15] to convert the adjacency
matrix into a call graph, by which we compute the follow-
ing social network analysis metrics: PageRank, betweenness,
closeness, indegree, and outdegree. Details of the selected
SNA metrics are discussed in Section 5.

In Section 4.2.2 and Section 4.2.3, we compute the code-
related metrics for each of the releases detected from Sec-
tion 4.2.1. For a given commit C whose committed date is
Dc, we search the latest release R whose release date Dr is
satisfied: Dr < Dc. We map all the files in the commit C
to the release R, and record the code complexity and SNA
metrics for each of the successfully mapped files.

4.2.4 Identifying Changed Types
In a commit, different types of changes affect a software

system to different extents in terms of crashes. For example,
comment changes and refactorings may have little probabil-
ity to trigger subsequent crashes. Yet, if parameters or func-
tion calls are not appropriately modified (or added/deleted)
in a commit, crashes would probably happen when the com-
mit is integrated into the version control system. We use the
source code analysis tool srcML [34] to convert C or C++
code into XML files where each syntactic statement will be
converted into an XML node, in which an XML tag labels
its type. For a given changed file F in a certain commit C,
we use the following Mercurial command to check it out:

hg cat -r C F

Then, we also check out the file with the same name F ′ in the
previous commit C′. After converting F and F ′ into XML
format, we use a Python script to recursively compare the
difference on each of the corresponding srcML tags2. As we
detected more than 80 unique srcML tags from the studied
changed files, we group the srcML tags with similar semantic
functions into a“changed type”, while ignoring trivial srcML
tags, such as “block” and “@format”. Table 1 shows all of
changed types and their corresponding srcML tags.

Besides counting the number of changed types in a com-
mit, we also investigate the distribution of the changed types
in the commit. We compute the value of the normalised
Shannon entropy [30], defined as:

Hn(C) = −
n∑

i=1

pi × logn(pi) (1)

where C is a commit; pi is the probability of C possessing a
specific changed type CTi (pi ≥ 0, and

∑n
i=1 pi = 1); n is the

total number of unique changed types listed in Table 1. So,
for a commit, if all changed types have the same occurrences,
i.e., the changed types are equally distributed, the entropy
is maximal (i.e., 1). If a commit only has one changed type,
the entropy is minimal (i.e., 0).

2 For all srcML tags, please refer to:
http://www.srcml.org/doc/srcMLGrammar.html



Table 1: Changed types identified from Firefox’ source code

Changed type srcML tag(s)

Class class, class decl, member list

Comment comment

Constructor constructor, constructor decl

Control flow while, do, if, else, break, goto, for, foreach,
continue, then, switch, case, return, condition,
incr, default

Data structure enum, struct, struct decl, typedef, union,
union decl

Declaration asm, decl, decl stmt, using, namespace, range,
specifier

Destructor destructor, destructor decl

Function function, function decl

Initialisation init

Invocation call

Access modifier super, public, private, protected, extern

C++ feature template

Parameter param, parameter list, argument, argument list

Preprocessor cpp:define, cpp:elif, cpp:else, cpp:endif,
cpp:error, cpp:file, cpp:if, cpp:ifdef, cpp:ifndef,
cpp:include, cpp:line, cpp:pragma, cpp:undef,
cpp:value, cpp:derective, macro

Refactoring name, typename, label

Variable Type type

5. CASE STUDY RESULTS
This section presents and discusses the results of our three

research questions. For each question, we discuss the moti-
vation, the approach designed to answer the questions, and
the findings.

RQ1: What is the proportion of crash-inducing
commits in Firefox?
Motivation. This question is preliminary to the other ques-
tions. It provides quantitative data on the prevalence of
commits that induce subsequent crashes in Mozilla Firefox.
The results of this question will help software managers re-
alise the prevalence of the crash-inducing commits and ad-
just their bug triaging strategy to focus the resources to
resolve defects causing the crashes as soon as possible.
Approach. We identify crash-inducing commits using the
technique presented in Section 3, then calculate their per-
centage over the total number of studied commits.
Finding. Among the 127,212 analysed commits, 32,463 are
identified to result in future crashes. Figure 4 illustrates the
proportion of crash-inducing commits and other commits
(referred to as crash-free commits in the rest of this paper).�
�

�
�Crash-inducing commits account for more than 25% of the

total number of studied commits in Firefox.

One out of every four commits would cause subsequent
crashes, which are considered as severe defects [37], because
crashes can unexpectedly stop users’ running process, lead
to negative user experience and even decrease the reputation
of a software organisation. Therefore, software practitioners
should capture crash-inducing commits quickly, i.e., when
they are submitted into the version control system in order
to address them as soon as possible. In the rest of this sec-

74.5%

25.5%

Crash−free
Crash−inducing

Figure 4: Proportion of crash-inducing commits and crash-
free commits in Firefox

Table 2: Metrics used to compare the characteristics be-
tween crash-inducing commits and crash-free commits

Metric Description and rationale

Committer’s
experience

Number of prior submitted commits.

Message size Number of words in a commit message.

Changed files Number of changed files (including added,
deleted, and modified files) in a commit.

Added lines Number of added lines of code in a commit.

Deleted lines Number of deleted lines of code in a commit.

Number of
changed types

Number of unique changed types in a commit.

Entropy of
changed types

Measurement of the dispersion of different
changed types in a commit (see Section 4.2.4).

Using Mozilla
email

Whether a committer uses a Mozilla email ad-
dress.

Is bug fix Whether a commit is aimed to fix a bug.

tion, we will investigate the characteristics of crash-inducing
commits and examine how to effectively predict them early.

RQ2: What characteristics do crash-inducing
commits possess?
Motivation. Crash-inducing commits lead to bad user ex-
perience. If such a problem was not addressed promptly, de-
velopers would have to re-understand the code to locate the
erroneous lines. Understanding the characteristics of crash-
inducing commits can help software practitioners be aware
of the factors that lead to crashes of a software system, and
build predictive models to prevent them just-in-time.
Approach. For each of the commits identified either as
crash-inducing commit or crash-free commit, we parse its
commit log to extract the metrics presented in Table 2.
We test the following 9 null hypotheses to statistically com-
pare the characteristics between crash-inducing commits and
crash-free commits.

Comparing the extents of changes in crash-inducing
commits vs. crash-free commits.

H1
01: the number of words is the same for crash-inducing

commits and for crash-free commits.
H2

01: the number of changed files is the same for crash-
inducing commits and for crash-free commits.

H3
01: the number of added lines is the same for crash-

inducing commits and crash-free commits.
H4

01: the number of deleted lines is the same for crash-
inducing commits and crash-free commits.



Table 3: Median value of characteristic metrics for crash-
inducing commits and crash-free commits, as well as the
p-value of the Wilcoxon rank sum test

Metric Crash-inducing Crash-free p-value

Committer’s expe-
rience

190 246 <2.2e-16

Message size 12 11 <2.2e-16

Changed files 3 2 <2.2e-16

Added lines 9 5 <2.2e-16

Deleted lines 34 13 <2.2e-16

Number of changed
types

3 2 <2.2e-16

Entropy of changed
types

0.339 0.23 <2.2e-16

Using Mozilla email 41.8% 36.7% –

Is bug fix 91.4% 83.5% –

Comparing the changed types of crash-inducing
commits vs. crash-free commits.

H1
02: the number of unique changed types is the same for

crash-inducing commits and for crash-free commits.
H2

02: the entropy value of changed types is the same for
crash-inducing commits and for crash-free commits.

Comparing the people and bug-related factors of
crash-inducing commits vs. crash-free commits.

H1
03: committers’ experience is the same for crash-inducing

commits and for crash-free commits.
H2

03: the percentage of Mozilla committers is the same for
crash-inducing commits and for crash-free commits.

H3
03: the percentage of bug fixing commits is the same for

crash-inducing commits and for crash-free commits.
We use the Wilcoxon rank sum test [14] to accept or re-

ject the 7 first null hypotheses. This test is a non-parametric
statistical test, which is used for measuring whether two in-
dependent distributions have equally large values. As for
H2

03 and H3
03, we simply compare the percentage values be-

tween crash-inducing commits and crash-free commits. We
use a 95% confidence level (i.e., p-value < 0.05) to decide
whether to reject a null hypothesis. Since we will conduct
7 null hypothesis tests, to counteract the problem of multi-
ple comparisons, we apply the Bonferroni correction [9] that
consists in dividing the threshold p-value by the number of
tests. Thus, our threshold to decide whether a result is sta-
tistically significant is p-value < 0.05/7 = 0.007.
Finding. Table 3 shows the median values of crash-inducing
commits and crash-free commits on the metrics listed in Ta-
ble 2, as well as the p-value of the Wilcoxon rank sum test.
According to the results, crash-inducing commits are sub-
mitted by developers with less experience, suggesting that
novice developers tend to write error-prone code. The mes-
sage size of crash-inducing commits is significantly longer
than crash-free commits. It is possible that crash-inducing
commits are more complex and hence developers need longer
comments to describe these changes. In crash-inducing com-
mits, developers change significantly more files, and add and
delete more lines than crash-free commits. This result is
consistent with previous studies [21, 22] where researchers
found that relative code churn measures can indicate defect
modules. In terms of changed types, crash-inducing commits
possess more unique changed types, and their changed types’
entropy is higher than crash-free commits. In other words,
the changed statements are distributed in more changed

types in crash-inducing commits than in crash-free commits.
This observation suggests that it is preferable to make se-
mantically coherent changes (i.e., changes of the same type)
in commits. When developers modify the code with a lot
of changed types (with the modifications equally distributed
across the changed types), these modifications have a higher
probability to induce subsequent crashes.

Another interesting finding is the fact that crash-inducing
commits were mostly submitted by developers using Mozilla
email accounts. This situation may be due to the fact that
commits from outside contributors receive more scrutiny
(through code review sessions) than those from Mozilla de-
velopers. Finally, most of our studied commits (either crash-
inducing or crash-free) are bug fixing attempts. This find-
ing confirms that bug fixing has become the major activ-
ity in software development [23]. A higher proportion of
crash-inducing commits are aimed to fix bugs; meaning that
modifying code to fix an existing bug is a risky task that
can induce other bugs; confirming arguments from previous
studies, such as [24], that legacy code becomes difficult to
maintain.

In light of results from Table 3, we reject null hypotheses
H1

01 ∼ H4
01, H1

02 ∼ H2
02, and H1

03. In other words, for all
metrics listed in Table 2, there exist statistically significant
differences between crash-inducing commits and crash-free
commits.�

�

�

�

In general, crash-inducing commits are submitted by less
experienced developers. They contain longer commit mes-
sages, more changed files and changed lines than crash-free
commits. Crash-inducing commits contain more changed
types, their changed statements tend to be scattered in dif-
ferent changed types. More crash-inducing commits are
aimed to fix previous bugs. And more crash-inducing com-
mits are submitted by developers using Mozilla email ac-
counts (i.e., Mozilla developers).

RQ3: How well can we predict crash-inducing
commits?
Motivation. Crash-inducing commits may negatively im-
pact users’ experience, decrease the overall software quality
and even the reputation of the software organisation. If we
can predict these defective commits early on, we will not
only increase the satisfaction of users, but also shorten the
period between the introduction of these crash-related bugs
in the system and their detection and correction. In fact, if
the detection of a bug is done long time after its introduction
in the system, developers are likely to have a hard time iden-
tifying the root cause of the bug since their knowledge of the
code tends to decrease overtime. Hence, a delayed detection
of bugs is likely to augment maintenance overhead. In our
previous work [2], we extracted metrics from bug reports to
predict highly impactful crash-related bugs. Although this
approach can shorten bug triaging time to some extent, de-
velopers still have to wait for a certain period, during which
crashes are collected, triaged and filed into bug reports, be-
fore they can carry out their bug fixing activities. During
this period, end users (possibly in large numbers) may have
suffered unexpected aborts of the software. A just-in-time
detection of crash-inducing commits will enable developers
to act immediately on crash-prone commits before they can
negatively impact users.



Approach. We extract 24 metrics along 4 dimensions from
respectively the studied commit logs and the corresponding
source code of Firefox. Table 4 to Table 7 show our selected
metrics (i.e., independent variables for the prediction mod-
els) and their rationales.

To predict whether or not a commit will cause subsequent
crashes, we apply multiple regression and machine learning
algorithms: General Linear Model (GLM), Naive Bayes, de-
cision tree, and Random Forest. GLM is an extension of
multiple linear regression for a single dependent variable.
It is extensively used in regression analyses. Naive Bayes
are a set of logistic regression algorithms based on apply-
ing Bayes’ theorem with strong independence assumptions
between the features. Although independence is normally
a poor assumption, in practice, this algorithm often per-
forms well [26]. In a previous bug prediction study, Shihab
et al. [31] used the C4.5 decision tree algorithm to predict
re-opened bugs and obtained good prediction results. In this
research, we use C5.0 model, the improved version of C4.5,
which can obtain a higher accuracy, perform faster, and have
less memory usage than C4.5 [7]. Developed by Leo Breiman
and Adele Cutler, Random Forest [6] uses a majority voting
of decision trees to generate classification (predicting, often
binary, class labels) or regression (predicting numerical val-
ues) results. This algorithm yields an ensemble that can
achieve both low bias and low variance [8]. In this study, we
build 100 trees, each of which are with 5 randomly selected
metrics.

To deal with collinearity in the data, before building the
predictive models, we apply the Variance Inflation Factor
(VIF) analysis to eliminate correlated metrics. As recom-
mended in [27], we set the threshold to 5, i.e., metrics with
VIF values over this threshold are considered as correlated
and will be removed from the predictive models. In Table 4
to Table 7, removed metrics are marked with *.

We use ten-fold cross validation [10] to compute the ac-
curacy, precision, recall, and F-measure for crash-inducing
commits and crash-free commits. In the cross validation, we
randomly split the subject commits into ten disjoint sets.
Nine sets are used as training data and the remaining set as
testing data. We repeat the process for ten times and report
median results for accuracy, precision, recall and F-measure.
Because crash-inducing commits and crash-free commits are
imbalanced in our data set, we under-sample the majority
class instances, i.e., we randomly deleted instances from the
data set of crash-free commits to make the data sets of crash-
inducing commits and crash-free commits to have the same
number of instances. We do this under-sampling only dur-
ing the training phase. We rank the importance of the in-
dependent variables (prediction metrics) to identify the top
predictors for the algorithm with the best prediction results.
Finding. Table 8 shows the median accuracy, precision,
recall, and F-measure for the four algorithms used to predict
whether a commit will cause crashes in Firefox. According to
the results, our models can predict crash-inducing commits
with a precision up to 61.4% and a recall up to 95.0%. Ran-
dom Forest is the best prediction algorithm, which obtains
the best F-measure when predicting either crash-inducing
commits or crash-free commits. Among the 22 selected met-
rics, the SNA metric closeness is ranked as the most impor-
tant predictor in all the 10 phases of the cross validation.
This metric evaluates the degree of centrality of a class in
the whole project. Our obtained result suggests that when

Table 4: Commit log metrics

Attribute Explanation and Rationale

Hour Hour (0-24). Code committed at certain hours
may lead to crashes (e.g., hours around quitting
time).

Week day Day of week (from Mon to Sun). Code committed
on certain week days may be less carefully written
(e.g., Friday) [32, 4], and would lead to crashes.

Month day Day in month (1-31). Code committed on certain
days may be less carefully written (e.g., before
and during public holidays); resulting into subse-
quent crashes.

Month Month of year (1-12). Code committed in some
seasons may be less carefully written; resulting
into crashes. (e.g., December, during Chrismas
holidays).

Day of

year*
Day of year (1-366). Combined the rationales of
month day and month.

Message
Size

Number of words in a commit message. In RQ2,
we found that crash-inducing commits are corre-
lated with longer commit messages.

Experience Number of prior submitted commits. In RQ2,
we found that crash-inducing commits tend to be
submitted by less experienced developers.

From
Mozilla

Whether a committer uses a Mozilla email ad-
dress. In RQ2, we found that crash-inducing com-
mits are often submitted by Mozilla’s developers.

Number of
changed
files

Number of changed files in a commit. In RQ2, we
found that commits with more changed files tend
to cause subsequent crashes.

Is bug fix Whether a commit aimed to fix a bug. In RQ2, we
found that crash-inducing commits are correlated
with bug fixing code.

Is supple-
mentary
fix

Whether a commit is to fix a prior fixed bug. Sup-
plementary fixes may enhance previous fixes and
may be less likely to cause crashes.

Before
crashed files

Percentage of a commit’s files that caused crashes
in prior commits. Crashed code may be difficult
to fix, and still lead to future crashes.

Table 5: Code complexity metrics

Attribute Explanation and Rationale

LOC Median lines of code in all classes in a commit. In
RQ2, we found that crash-inducing commits have
higher code churn (i.e., added/deleted lines).

Number of
functions

Median number of classes’ functions in a commit.
A huge class may be difficult to understand or
modify, and lead to crashes.

Cyclomatic
complexity

Median cyclomatic complexity of the functions in
all classes in a commit. Complex code is hard to
maintain and may cause crashes.

Max
nesting*

Median maximum level of nested functions in all
classes in a commit. A high level of nesting in-
creases the conditional complexity and may in-
crease the crashing probability.

Comment
ratio

Median ratio of the lines of comments over the to-
tal lines of code in all classes in a commit. Codes
with lower ratio of comments may not be easy to
understand, and may result in crashes.

many other classes depend on a class, a change to this (cen-
tral) class is likely to induce crashes. Moreover, message
size, number of changed files, outdegree, and percentage of
before crashed files are ranked as the second important pre-
dictors; meaning that the length of comments in a commit,
the number of changed files, the number of callees of classes
modified by a commit, and the crashing history of files mod-



Table 6: Social network analysis metrics (other metrics in
this dimension share the same rationale with PageRank. We
compute median value of each metric for all classes in a
commit.)

Attribute Explanation and Rationale

PageRank Time fraction spent to “visit” a class in a random
walk in the call graph. If an SNA metric of a
class is high, this class may be triggered through
multiple paths. An inappropriate change to the
class may lead to malfunctions in the dependent
classes; resulting into crashes.

Betweenness Number of classes passing through a class among
all shortest paths.

Closeness Sum of lengths of the shortest call paths between
a class and all other classes.

Indegree Numbers of callers of a class.

Outdegree Numbers of callees of a class.

Table 7: Changed type metrics

Attribute Explanation and Rationale

Number of
changed
types

Number of unique changed types in a commit. In
RQ2, we found that crash-inducing commits tend
to contain more changed types.

Entropy of
changed
types

Distribution of changed types in a commit (see
Section 4.2.4). In RQ2, we found that crash-
inducing commits tend to have higher entropy of
changed types.

ified in a commit are good indicators of the risk of crashes
related to the integration of a commit in the code repository.�

�

�



Our predictive models can achieve a precision of 61.4%,
and a recall of 95.0%. The Random Forest algorithm
achieves the best prediction performance. Closeness is
ranked as the best predictor in this algorithm. Software or-
ganisations can make use of the proposed predictive models
to track crash-prone commits as soon as they are submitted
for integration in the code repository, for example, during
code review sessions.

6. THREATS TO VALIDITY
In this section, we discuss the threats to validity of our

study following the guidelines for case study research [38].
Construct validity threats concern the relation between

theory and observation. In this research, the construct va-
lidity threats are mainly due to measurement errors. We
used the source code of the previous release to a commit to
compute complexity and SNA metrics. More specifically, for
a given file F in a commit C, we found the previous release
R of C, and computed the code complexity and SNA metrics
of F in the context of the release R. Although the new com-
mit C could slightly affect the values of these metrics, we
observed that in most cases there is no noticeable change.
Also, computing the metrics every time a new commit is
submitted would delay the detection of the crash-inducing
commits (since the computation of the metrics takes some
time). In this paper, as a compromise, we use the files in the
previous release to estimate a current commit’s code com-
plexity and SNA metrics. In the future, we will experiment
with parallel algorithms to compute these metrics in real
time.

Internal validity threats concern factors that may affect a
dependent variable and were not considered in the study. In

Table 8: Accuracy, precision, recall, and F-measure (in %)
obtained from GLM, Naive Bayes, C5.0, and Random Forest
to predict crash-inducing commits and crash-free commits

Metric GLM Bayes C5.0 Random Forest

Accuracy 67.5 41.7 69.9 73.3

Crash-inducing
precision

59.5 38.6 57.2 61.4

Crash-inducing
recall

37.3 95.0 76.6 76.5

Crash-inducing
F-measure

45.8 54.7 65.4 68.1

Crash-free
precision

69.8 77.8 82.6 83.8

Crash-free recall 84.8 10.0 66.4 71.4

Crash-free
F-measure

76.7 17.7 73.5 77.4

Section 3.2.2, although we removed all candidates of crash-
inducing commits that only changed comments and–or white
space lines, our “crash-inducing commits” may still contain
some false positives. Concretely, in a fix of a crash-related
bug, not all of the changes are aimed to address defects.
Some lines may be added because of a refactoring or an
addition of a new feature. These changes are hard to identify
with an automatic approach. In our future work, we plan to
manually examine a sample of the identified crash-inducing
commits, and report its precision and recall.

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to
violate the assumptions of the constructed statistical mod-
els. In RQ2, we used non-parametric tests which do not
require making assumptions about the distribution of the
data set. When mapping crash-related bugs to their bug
fixes, we manually checked false positives from the results.
In addition, we manually grouped different srcML tags into
changed types as shown in Table 1.

External validity threats concern the possibility to gener-
alise our results. In this paper, we analysed only Mozilla
Firefox. Although many software organisations are using
crash collecting systems, to the best of our knowledge, only
the Mozilla corporation has opened its crash reports to the
public [35]. In our previous work [2], we used another Mozilla
project, Fennec for Android, as a subject system to study
crash-related bugs. However, the code of Firefox and Fen-
nec are both managed by a Mercurial release branch, in
which, the two sub-systems share some common compo-
nents; making it hard to separate the two systems at the
level of commits. We look forward to generalise our proposed
approach to more software systems. We share our data and
scripts at https://github.com/swatlab/crash-inducing. Re-
searchers and software practitioners can use these data and
scripts to validate our results and replicate our technique to
other systems.

7. RELATED WORK
In this section, we introduce some related studies on crash

analysis, traditional defect prediction techniques, and Just-
In-Time defect prediction techniques.

7.1 Crash Analysis
Crashes stop a software system unexpectedly, causing data

loss and frustration to users. Today, many software organ-



isations have deployed automatic crash collecting systems
to gather and triage crash occurrences. Researchers intend
to study the crash reports from these systems to facilitate
the debugging and bug fixing process for software practi-
tioners. Podgurski et al. [25] proposed an automated failure
clustering approach for the classification of crash reports to
facilitate their prioritisation and the diagnostic of their root
causes. Khomh et al. [17] mined crash reports in Mozilla
Firefox, and proposed an entropy-based approach that can
be used to identify crash-types with high impact, i.e., crash-
types that occur frequently and impact a large number of
users. Based on the approach proposed by Khomh et al.,
Wang et al. [35] studied crash information in Firefox and
Eclipse, and proposed an algorithm that can locate and rank
defective files, as well as a method that can identify dupli-
cate and related bug reports. Kim et al. [18] analysed crash
reports and the related source code in Firefox and Thunder-
bird to predict top crashes before a new release of a software
system.

7.2 Traditional Defect Prediction Techniques
Traditional defect prediction techniques used coarse-grained

metrics, such as bug report metrics, to identify defect-prone
modules or specific types of bugs. By using social factors,
technical factors, coordination factors, and prior-certifications
factors, Hassan et al. [13] created decision trees to pre-
dict ahead of time the certification result of a build for
a large software project at IBM Toronto Lab. Shihab et
al. [31] extracted metrics from bug reports and built mod-
els using C4.5, Zero-R, Naive Bayes and Logistic Regres-
sion algorithms, to predict bug re-opening in three open-
source projects. In their study, the decision tree model,
C4.5, yielded the best prediction results. As a complemen-
tary work, Zimmermann et al. [39] used Logistic Regression
models to predict bug re-opening in Windows. In our pre-
vious work [2], we used GLM, C5.0 (the improved version
of C4.5), ctree, randomForest, and cforest to predict crash-
related bugs with high crashing frequency and which impact
a large population of users.

7.3 Just-In-Time Defect Prediction Techniques
Though traditional defect prediction techniques can help

software organisations prevent defects to some extent, devel-
opers can only identify the error-prone modules responsible
for these defects after the defects have been filed into bug
reports. During the period between the integration of the
defective code into the version control system and the open-
ing of the bug report, a defective commit could negatively
impact a large user base. Just-In-Time defect prediction
techniques are designed to predict defects in commits, in or-
der to allow developers to track and fix defects as soon as
they are submitted for integration in version control systems.
Kamei et al. [16] used a wide range of source code metrics to
predict defect-prone commits in six open-source systems and
five commercial systems. Fukushima et al. [12] applied Just-
In-Time defect prediction techniques to cross-project defect
predictions and found them viable for projects with little
historical data. Using a number of code and process factors
extracted at change level, Misirli et al. [20] built statistical
models to predict high impact fix-inducing changes. In this
paper, we use change level metrics to predict crash-inducing
commits.

8. CONCLUSION
Crashes, which are unexpected interruptions of a software

system, are one of the major source of frustration for users.
Frequent crashes of a software system can significantly de-
crease user-perceived quality and even affect the overall rep-
utation of a software organisation. To help software prac-
titioners identify crash-prone code early on, we conduct a
study of crash-inducing commits in Mozilla Firefox. We
found that crash-inducing commits account for more than
25% of all studied commits. We also found that, compared
to other commits, crash-inducing commits are often submit-
ted by developers with less experience and contain longer
comments, more changed files and changed lines, as well as
more changed types.

To help software practitioners track and fix crash-inducing
commits as soon as possible, we built predictive models using
various regression and machine learning algorithms. These
predictive models achieved a precision up to 61.4% and a
recall up to 95.0%.

Software organisations can use our proposed predictive
models to detect crash-prone code as soon as they are sub-
mitted for integration in the source code repository. They
could then correct the code quickly to avoid users from ex-
periencing the crashes. In the future, we plan to generalise
our approach to other software systems and implement it
into tools for different programming languages.
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