
Kubernetes or OpenShift? Which Technology Best
Suits Eclipse Hono IoT Deployments.
Mohab Aly

SWAT Lab., GIGL-MAGI
Polytechnique Montréal,

Montréal, Canada
mohab.aly@polymtl.ca

Foutse Khomh
SWAT Lab., GIGL

Polytechnique Montréal,
Montréal, Canada

foutse.khomh@polymtl.ca

Soumaya Yacout
MAGI

Polytechnique Montréal,
Montréal, Canada

soumaya.yacout@polymtl.ca

Abstract—New verticals within the Internet of Things
paradigm, i.e., smart cities, industrie 4.0, etc., require specific
platform(s) to allow different components to communicate. The
value of the IoT systems often correlates directly with the ability
of those platforms to connect different devices efficiently and
integrate them into higher-level solutions. Eclipse Hono allows the
provisioning of remote service interfaces for connecting devices to
a back-end and interacts with them uniformly regardless of their
types and communication protocols. Currently, there is a variety
of possibilities for using Hono in production; it can be deployed
on Kubernetes, OpenShift or Docker Swarms. However, these
deployments decisions have important performance implications
that the developers are not often aware of. In this paper, we
step up loads in Kubernetes and OpenShift to clear out the
performance costs of their deployment scenarios, with the aim
to provide the practitioners with guidelines to help understand
the performance implications of their design and deployment
decisions.

Index Terms—IoT, Platforms, Eclipse Hono, Kubernetes,
OpenShift, EnMasse, Empirical Study, Performance Evaluation

I. INTRODUCTION

Internet of Things (IoT) systems are now pervasive in
our society. As a consequence, resources utilization of those
systems and IoT based applications has become an emerging
topic in IoT and software engineering research communities
[1], [2]. Resource utilization has complex dependencies on
the IoT platforms and the various components used by the
applications built on top of them, all contribute in raising the
resources footprint; making resource optimization a vital and
challenging problem.

Eclipse IoT [3], including Eclipse Hono, is an IoT open
source framework that is gaining a lot of traction in industry
nowadays [4]. It provides a number of protocol implementa-
tions, i.e., HTTP REST, MQTT, etc., Cloud front/back-ends,
Machine-to-Machine (M2M) management, devices’ authenti-
cation and management, Over-The-Air (OTA) update method-
ologies, security and authorization mechanisms among others.
When building, deploying and implementing applications on
top of Hono, practitioners, including developers, must seek
a compromise between choosing the right deployments, re-
sources utilization and the platform’s Quality of Service (QoS)
so that the maximum efficiency is achieved. Finding such
compromises manually is a daunting task. Practitioners need
guidelines to assist them in the selection of efficient design

and deployment strategies. Currently, there are many possi-
ble deployment options for Hono in a production pipeline;
it can be deployed on top of Kubernetes, OpenShift or
Docker Swarms. However, those deployments decisions have
important performance implications that developers should
consider carefully. Moreover, without a good knowledge of
performance deviations across different deployment platforms,
it is challenging to predict the impact of apps migrations across
IoT environments.

In this paper, we conduct an empirical study that aims
to assess the performance implications of deploying Eclipse
Hono in two different virtual environments, i.e., containers:
Kubernetes and OpenShift. We perform performance test
comparisons while incorporating EnMasse, i.e., a messaging
infrastructure, using the following performance metrics: CPU
cores usage, Memory consumption, and Network I/O usage.
Our objective is to provide evidence to confirm or refute the
efficiency of such technologies and comprehend the interplay
between them. We selected Kubernetes and OpenShift for
our study because the latter actually distributes Kubernetes
so practitioners, including end users, may believe that both
technologies offer similar performance.

The rest of this paper is structured as follows. In Section II,
we provide some background information about the Eclipse
technology in the IoT field. Section III presents the design of
our experiments and Section IV discusses the obtained results.
Section V explains the possible threats to the validity of our
findings. Section VI discusses the related literature, whereas
Section VII concludes the paper.

II. BACKGROUND

In this section, we discuss the motivation behind the Eclipse
IoT ecosystem and provide background information about the
platforms that constitute it.

A. Eclipse Hono

The Hono project provides a platform for scalable mes-
saging in the IoT. It introduces a middleware layer between
both the back-end “micro” services and the devices being
registered within the framework. Hence, the communication
and networking with the back-end services occur via the

Fig. 1: An overview of the study design setup

Advanced Message Queuing Protocol (AMQP). If the partic-
ipating devices speak this protocol in a direct way, then they
can connect to the middleware in a very transparent way;
otherwise, Hono provides the so called “protocol adapters”
that help to translate messages from the device protocol to
the AMQP. Thus, Hono’s core services are decoupled from
the protocols that specific applications are using. Through the
AMQP 1.0 endpoints, the framework provides APIs that depicts
two common communications scenarios for devices in the IoT
system: (i) Telemetry and Event, (ii) Command & Control, and
Registration.

Via Hono’s Telemetry and Event API, data flows down-
stream from devices to the back-end, and to a consumer like
a Business Application or Device Management component
that usually consists of a small set of discrete values, e.g.,
sensor readings or status property values. Messages are “one-
way” directed where devices send such kind of data and
usually do not expect a reply from the back-end. Whereas,
Hono’s Command & Control API allows the sending of
commands “requests messages” to devices and expect a reply
reception by the back-end component to such commands
from devices asynchronously in a reliable way; messages
flowing upstream from back-end components like Business
Application often represent invocations of services provided
by connected devices, e.g., instructions to download and/or
apply a firmware update, setting configuration parameters or
querying the current reading sensor. Finally, Hono provides
APIs for provisioning and managing both the identities and
credentials of connected devices.

The platform “Hono” consists of different building blocks;
the first one is the protocol adapters which are required to
connect devices that do not have the ability to speak the
AMQP natively. In the meantime, Hono comes with two pro-
tocol adapters: HTTP-based Representational State Transfer
(REST) messages and Message Queuing Telemetry Transport
(MQTT). A dispatch router that handles the proper routing
of the AMQP messages, between producing and consuming
endpoints, within Hono. Such router is based on the Apache
Qpid project and is designed with scalability in mind so that
it can possibly handle connections from millions of devices.
As such, it does not take ownership of the messages being
flowing, but rather, passes AMQP packets between different

endpoints. This allows a horizontal scaling to achieve reliabil-
ity and responsiveness. The event and commands messages,
that are in a need for a delivery guarantee, can be transmitted
and routed through a broker queue; the broker (based on
Apache ActiveMQ project) dispatches such messages that need
delivery assurance. Conventionally, such messages originate
from the Command & Control API. While devices are being
connected to the Hono server components, back-end services
are connected via subscribing to certain topics at the Qpid
server [5].

To enforce security of the routed messages, Hono possesses
a device registry that is responsible for the registration, activa-
tion of devices, provisioning of credentials and an Auth Server
to handle the authentication and authorization of the devices.
By using an InfluxDB and a Grafana dashboard “Cloud front-
end visualization tool”, the platform comes also with some
monitoring infrastructure to visualize data via a variety of
charts and diagrams configured by the users, i.e., in form
of time, series, histogram, bar/line charts, stacks and further
customization possibilities. Due to the modularity nature of its
design, other AMQP 1.0-compatible message broker than the
Apache ActiveMQ Artemis can be used.

B. Scaling out of Eclipse Hono - EnMasse

EnMasse is an open source “messaging as a service” plat-
form that simplifies the deployment of a messaging infrastruc-
ture on premise and in the Cloud. It provides the scalability
and elasticity needed to support the messaging requirements
for different IoT use cases. Furthermore, it supports common
messaging patterns, including (request/reply, competing con-
sumers and publish/subscribe) in addition to the two main
protocols: AMQP 1.0 and MQTT. Nevertheless, HTTP support
is coming along the road map of services to be included and
supported.

Moreover, this framework provides the possibility of multi-
tenancy, meaning, the same infrastructure can be shared be-
tween different tenants, but are also isolated from each other.
It enforces security with respect to securing connections using
Transport Layer Security (TLS) as well as authenticating
clients using Keycloak as the Identity Management System
(IMS). EnMasse is completely containerized and runs on
key container orchestration platforms such as Kubernetes and

OpenShift. This aspect makes it appealing to be used with
Eclipse Hono. It is considered to be an excellent complement
to Hono’s microserivces architecture and deployment models
that offers all the features needed to be its messaging infras-
tructure.

C. Eclipse Che

Eclipse Che is an open source Java based developer
workspace server and Cloud Integrated Development Environ-
ment (IDE), that provides a remote development platform for
multi-users purposes. Conventionally, it can be either utilized
by its own browser IDE or directly by connecting to the
respective workspaces that are realized as customized Docker
containers which bring their complete runtime environment,
e.g., an Ubuntu based installation with Java, Maven and/or a
C/C++ tool chain. Different than typical IDEs, the concept
of having workspaces alongside with runtime stacks allows
skipping the setup times for end-developers by sharing the
proper configurations, e.g., with preloaded example projects
and tutorials. In Hono, Eclipse Che has proven to be of a valu-
able asset for designing and developing different applications
and projects, such as IoT workload simulators for different
requests issued towards the Hono platform.

III. STUDY DESIGN

This section presents the design of our study which aims
to understand the discrepancy of the container technologies
while deploying Hono on top of them. An overview of our
case study setup is depicted in Figure 1. As previously stated,
we select two container technologies (i.e., Kubernetes and
OpenShift) which are described as good deployment practices
by the Eclipse Community, and address the following research
questions:

RQ1. Does Eclipse Hono display similar performance(s) when
bare-ly deployed on container technologies?

RQ2. Does EnMasse display similar performance(s) when
added up on Hono to scale it up?

RQ3. Do deployed applications display similar performance(s)
when being added on top of both EnMasse and container
technologies?

RQ4. To what extent does the relationship between the perfor-
mance metrics change across container environments?

To answer these research questions, we perform a series of
experiments with multiple deployments to test and analyze the
aforementioned performance metrics and their behaviors. We
analyzed three versions of the platform, summarized in table I.
Deployments were built from scratch each time a new analysis
is performed and the results were collected by performing a
series of stress tests on the platform (fixing the number of
the issued requests and applications built on top of it) and
tracing their executions. The same test sets were used for all
experiments to ensure comparable results. The remainder of
this section elaborates more the details of our experiments.

TABLE I: Setup Designs

Criteria Experimental Designs
Deployments Kubernetes and OpenShift (KO) Version
Basic Version Bare metal deployment of Hono KO-0

EnMasse Adding EnMasse on top of Hono KO-1
EnMasse-App Deploying apps on top of both Hono and EnMasse KO-2

A. Environmental Setup

The performance evaluation is conducted on a Linux ma-
chine, i.e., Ubuntu 17.10, in a lab environment; this machine
has an Intel i7-870 Quad-Core 2.93GHz CPU with 16GB of
memory, 630GB SATA storage, 8MB Cache and is connected
to a local gigabyte Ethernet cable. The hosting machine
is configured to have available, Kubernetes and OpenShift,
single-node clusters inside a Virtual Machine (VM). Those
clusters are created via the below instances.

- Minikube: tool that helps running a single-node Kuber-
netes cluster inside a VM locally. This makes it easier to
try Kubernetes or develop with(in) it.

- Minishift: helps running OpenShift locally by running a
single-node OpenShift cluster inside a VM.

Since our goal is to compare the performance metrics in
such created clusters, we set up the VM instances using
enough resources so that the deployment becomes successful,
i.e., 4CPUs, 10GB of Memory and 30GB of disk-size. Default
instants’ configurations provide a small subset of the host
machine resources, in turn, it may not be sufficient to allow the
instances to start correctly. That’s why it is recommended to
scale up the resources whenever possible, “the more resources
used, the better”, based on the physical machines capabilities.

B. Design and Procedure

To assess the benefits and trade-offs of the different deploy-
ments considered, the experimentations were orchestrated us-
ing two different types of issued requests (REST HTTP and
MQTT). For each type, we simulated the registered devices
sending both requests simultaneously in a telemetry fashion
(i.e., not to expect a response in return). Each experimentation
was performed five times (with the number of devices being
incremented gradually after each simulation: starting with 10
devices until 100 registered devices – 100 is the limit for this
platform by default) to obtain min, max, and average values
of the resources been consumed (i.e., a total of 450 readings
for each simulation were recorded). We chose to repeat five
times to mitigate the effect of variabilities (that are common
in virtual environments) on our results. Table I shows the three
deployment versions of the platform, the basic version KO-0
don’t use any additional overhead, just bare metal deployment
of Hono on top of both Kubernetes and OpenShift.

C. Performance Tests and Evaluations

Minikube and Minishift are released with DOCKER_HOST
environment variable to point to the Docker daemon run-
ning inside the virtual instances; such daemon is used
to have the final Docker images available inside the

TABLE II: p-value of Wilcoxon Test (p-VAL) – (Median Kubernetes, Median OpenShift) – (Cliff δ Effect Size (ES))
Devices CPU cores usage (p-value) Memory usage (p-value) Network consumption (p-value)

min max avg min max avg min max avg
HONO Bare metal Deployment KO-0

10 0.6905 0.8413 0.8413 0.5309 0.2948 0.2101 1 0.6752 1
20 0.3095 0.402 0.4206 0.4034 0.4034 0.4206 0.5476 0.6905 0.210075
30 0.2073 0.4206 0.4206 0.2101 0.1437 0.2222 0.03175 (70, 33.28)–(ES=0.84) 0.05556 (70, 33.28)–(ES=0.76) 0.06010281
40 0.05556 (58, 42.991)–(ES=-0.76) 0.09524 0.09524 0.007937 (70, 2.09)–(ES=1) 0.02157 (91, 16.62)–(ES=0.92) 0.01587 (82, 9.58)–(ES=0.92) 0.09469 0.09524 0.09469294
50 0.09369 0.09524 0.09524 0.09369 0.09469 0.5556 (68, 45.12)–(ES=0.76) 0.02157 (76, 48.43)–(ES=0.92) 0.03175 (95, 63.34)–(ES=0.84) 0.02157175 (85, 55.83)–(ES=0.92)
60 0.2222 0.2101 0.2222 0.6761 0.5309 0.834 0.09369 0.03671 (103, 80.37)–(ES=0.84) 0.09469294
70 0.6905 0.6905 0.6905 0.1437 0.09469 0.0601 0.0469 (85.5, 57.04)–(ES=0.68) 0.1508 0.09524
80 0.09524 1 0.1508 0.02157 (80, 40.44)–(ES=0.92) 0.01219 (96, 50.1)–(ES=1) 0.007937 (88, 45.12)–(ES=1) 0.01587 (80, 52.51)–(ES=0.92) 0.02157 (97, 75.42)–(ES=0.92) 0.02157175 (90.82, 61.03)–(ES=0.92)
90 0.4095 0.09369 0.2222 0.0601 0.0601 0.03671 (88, 70.25)–(ES=0.84) 0.2101 0.222 0.210075

100 0.09524 0.3095 0.09524 0.2963 0.2101 0.2222 0.1437 0.4034 0.1436721
HONO-EnMasse KO-1

10 0.1508 0.09469 0.1436721 0.1508 0.2963 0.210075 0.01587 (12.08, 61.69)–(ES=-0.92) 0.007937 (27.72, 74)–(ES=-1) 0.01218578 (17.981, 69.48)–(ES=-1)
20 0.03175 (38.767, 71.787)–(ES=-0.84) 0.1437 0.1508 0.1437 0.2101 0.1436721 0.02157 (37.81, 62.18)–(ES=-0.92) 0.09469 0.03671386 (46.669, 68.88)–(ES=-0.84)
30 0.222 0.1508 0.1437 0.09524 0.1437 0.09469294 0.01587 (44.88, 73.16)–(ES=-0.92) 0.01219 (63.17, 88.73)–(ES=-1) 0.02157175 (50.839, 81.88)–(ES=-0.92)
40 0.1437 0.09469294 0.9524 0.05556 (36.99, 75.34)–(ES=-0.76) 0.09469 0.09524 0.09524 0.9524 0.1436721
50 0.1436721 0.01219 (75.719, 99.964)–(ES=-1) 0.9469 0.1508 0.09524 0.1436721 0.2222 0.4034 0.210075
60 0.09369 0.1425 0.09369 0.2222 0.2963 0.4033953 0.09524 0.0601 0.06010281
70 0.1508 0.09469294 0.1437 0.09469 0.09469 0.09524 0.09469 0.09469 0.1436721
80 0.01587 (81.704, 92.705)–(ES=-0.92) 0.1437 0.03671 (90.789, 102.853)–(ES=-0.84) 0.1437 0.4034 0.1436721 0.09524 0.0601 0.09469294
90 1 0.5309 1 0.09469 0.09524 0.9469294 0.5476 0.210075 0.2962699

100 0.09524 0.01218578 (98.387, 110.456)–(ES=-1) 0.007937 (89.347, 101.604)–(ES=-1) 0.6905 0.6761 1 0.1425 0.1437 0.1436721
HONO-EnMasse-App KO-2

10 0.09524 0.09469 0.09469294 0.05556 (5.06, 53.79)–(ES=-0.76) 0.09469 0.06010281 0.1508 0.0601 0.09469294
20 0.09469 0.1437 0.9469 0.4206 0.2963 0.4033953 0.8413 0.6761 0.6905
30 1 0.4034 0.4033953 0.8413 1 1 1 0.6905 0.6761033
40 0.6905 0.8345 0.8413 0.5476 0.6761 0.5308683 0.4206 0.2101 0.4033953
50 0.4206 0.4034 0.4206 0.5309 0.8345 0.8345316 0.4034 0.5309 0.6761033
60 0.05556 (38.253, 74.32)–(ES=-0.76) 0.1437 0.09469294 0.6905 0.8345 0.8413 0.6905 0.8345 0.6905
70 0.6905 0.5309 0.5476 0.2222 0.2963 0.210075 0.8413 0.6761 0.6761033
80 0.1508 0.09469 0.9524 0.5476 0.4034 0.4033953 0.8345 0.8413 1
90 0.0601 0.09524 0.03671386 (49.108, 89.158)–(ES=-0.84) 1 1 1 0.3095 0.4034 0.4033953

100 0.5476 0.8345 0.6761033 0.6761 0.6905 0.5308693 0.6761 0.5309 0.8345316

Minikube/Minishift VMs and make them ready for Hono’s
deployment. Both deployments provide access to the platform
by means of different services, the main ones are:

1) dispatch router: router network for business applications
to consume data.

2) mqtt-adapter: protocol adapter for publishing telemetry
data and events using the MQTT protocol.

3) rest-adapter: protocol adapter for publishing telemetry
data and events using the HTTP protocol.

4) service-device-registry: component for registering and
managing devices.

To ensure the consistency between the performance tests, we
destroy the environments (VMs) and restart them after every
single experiment. This ensures that the formed clusters remain
healthy.

D. Data Collection and Preprocessing

Performance Metrics
We used heapster1 and Prometheus2 to record the values of

the performance metrics. Heapster enables container cluster
monitoring as well as performance analysis for Kubernetes.
It collects and interprets various signals, such as compute
resources utilization, whereas, Prometheus, is a service mon-
itoring system. It collects metrics from configured targets at
given time intervals, evaluates, displays the results, and trig-
gers alerts if some conditions are observed to be true. We ran
both monitoring tools on each of the clusters constructed then
performed statistical analysis on the collected data. Moreover,
we recorded the metrics with an interval of “starting the cluster
within the VMs until the destroy phase”. In total, we recorded
about 1350 performance metrics values for all emulations.

System Throughput
We used the collected measurements to calculate the mini-

mum, maximum and average values of the systems’ resources
by measuring the number of telemetry messages, HTTP and
MQTT, sent from each registered device while adopting two
applications on top of Eclipse Che – see II-C, e.g., Java
and Nodejs apps, on top of the messaging as a service

1https://github.com/kubernetes/heapster
2https://prometheus.io

infrastructure, enMasse. The Java app is a “Hello World” app
just to warm up the pods, and the latter is about simulating the
workload generated from the platforms themselves. The aim
is to combine the performance metrics and system throughput
while minimizing their gathering noise. The combination is
based on the time stamp – on a per minute basis; a similar
approach has been applied to address mining performance
metrics challenges in [6].

E. Hypotheses

To answer our research questions, we formulate the follow-
ing null hypotheses, KO-x (x ∈ {1, 2}), and KO-0 is the basic
version of the platform described in Table I:

- HR1
x: there is no difference between the amount

of CPU/Memory/Network consumed by Hono’s design
when deployed on top of both Kubernetes and OpenShift.

- HR2
x: there are no differences in the utilized resources

consumed by the messaging infrastructure, i.e., EnMasse
when being added on top of Hono.

- HR3
x: there is no difference between the amount of

resources consumed by applications when deployed on
top of both Hono and EnMasse’s backend.

F. Analysis Method

We performed the Wilcoxon test [7] to accept or reject
HR1

x, HR2
x and HR3

x. We also computed the Cliff’s δ effect
size [8] to quantify the importance of the differences obtained
between metrics values. All the tests are performed using a
95% confidence level (i.e., p-value ≤ 0.05).

A p-value that is less than or equal to 0.05 indicates that the
obtained results are statistically significant. In this case we re-
ject the null hypothesis (i.e., two populations are from the same
distribution) and accept the alternative hypothesis that help
stating whether the performance metrics in the Kubernetes and
OpenShift environments have the same distribution. We chose
the Wilcoxon test because it does not make any assumptions
on the distribution of the metrics. When it happens to have a
statistically significant value ≤ (or just very close) to the value
determined, we depict both its median and effect size values
to show which technology performs best and which one is the
worst for such kind of deployment.

https://github.com/kubernetes/heapster
https://prometheus.io

(a) Median trend of the CPU avg (b) Median trend of the Memory avg

Fig. 2: Results obtained for CPU and Memory trends

Wilcoxon test is a non-parametric statistical test that as-
sesses whether two independent distributions and–or trends are
the same. Cliff’s δ is a non-parametric effect size measure that
represents the degree of overlap between two sample trends
[8]. It ranges from -1 (when it happens that all selected values
in the first group are larger than the second one) to +1 (if
all selected values in the first group are smaller than that of
the second group). It is zero when the two sample trends are
identical [9]. A Cliff’s δ effect size is considered negligible if
it is < 0.147 , small if < 0.33, medium if < 0.474, and large
if ≥ 0.474.

IV. CASE STUDY RESULTS

This section presents and discusses the results of our
research questions. Table II summarizes the results of the
Wilcoxon test, median values and Cliff’s δ effect size for each
performance metric. Significant results are marked in bold.

RQ1. Does Eclipse Hono display similar performance(s) when
bare-ly deployed on container technologies?

Results of Table II show that there is no statistically
significant difference between the overall CPU cores usage
while deploying Hono on top of Kubernetes and OpenShift,
hence we cannot reject HR1

x for KO-x (x ∈ {0..2}) for the
CPU usage. However, effect size values and Figures 2a, 2b
and 3 – (i.e., samples) show that the trend of the CPU, in
Kubernetes, is slightly larger than that of the OpenShift in the
simulations conducted for the bare metal deployments. The
trend tends to fall down towards the statistically significant
difference value of 0.05, where Kubernetes is greedy while
consuming its CPU to handle Hono’s deployment on top of it.

In addition to the previous observation, results also show
that there is a statistically significant difference between the
Memory usage for the container technologies. Furthermore,
we obtained statistically significant results with the Network
consumption, for all Kubernetes deployments in contrast to
OpenShift (i.e., all effect sizes are large). Hence we reject
HR1

x for all KO-x (x ∈ {0..2}) for Memory and Network
usages. We explain such phenomenon by the overhead induced
by Kubernetes to be able to cope up with the processes being
issued within the system, i.e., setting up the VM, building

DOCKER images, deploying Hono Platform as well as sending
telemetry messages from the participating devices.

RQ2. Does EnMasse display similar performance(s) when
added up on Hono to scale it up?

Results from table II show that the addition of the messaging
infrastructure, EnMasse, on top of the container technologies
does affect the overall CPU cores usage of the platform as
well as the Network consumption. This addition is statisti-
cally significant for OpenShift, therefore we can reject HR2

x

for KO-x (x ∈ {0..2}). Effect size values (i.e., large) as well
as Figures 2a, 2b and 3 show the impact of EnMasse on the
performance metrics when combined with Hono to scale up
the platform.

Regarding the Memory usage, we did not obtain significant
difference between Kubernetes and OpenShift, when perform-
ing the deployment of Hono; hence we cannot reject HR2

x in
this case for the memory usage. However, figures as well as
effect size values show that the trend of Memory usage, in
OpenShift, is larger than that of Kubernetes in the simulations
performed while attempting to add EnMasse on top of Hono.
The trend tends to approach the statistically difference value
of 0.05, where OpenShift utilizes more memory to sustain the
messaging infrastructure on top of it.

RQ3. Do deployed applications display similar performance(s)
when being added on top of both EnMasse and container
technologies?

Results from table II show that the deployment of the two
applications on top of the messaging infrastructure, EnMasse,
and the container technologies does affect the overall CPU
cores usage of the platform. Such overhead is statistically
significant for OpenShift as well, therefore we can reject HR3

x

for KO-x (x ∈ {0..2}). Also, depicted figures and effect size
values (i.e., large) show the impact that adding applications to
EnMasse and Hono has on the performance metrics.

Regarding the Memory usage, the trend tends to also
lean towards the statistically significant difference value 0.05,
where OpenShift consumes more memory to allow the de-
ployment of applications. On the other hand, for the Network
consumption, we did not notice any significant difference

Fig. 3: Median trend of the Network I/O avg

between both container technologies, when allowing the de-
ployment of applications on top of the platform. Hence, in
these cases, we cannot reject HR3

x for each of the memory
and network consumptions.

RQ4. To what extent does the relationship between the perfor-
mance metrics change across container environments?

The relationship between performance metrics may signifi-
cantly change and be different between environments, which
may be a glimpse of system regression or performance issues.
as of [10], combinations of performance metrics are more
predictive towards performance issues than a single metric.
A change in such combinations can pose discrepancy of
performance and help practitioners identify the behavioral
changes of a system between different environments. For
instance, in one system, the CPU may be correlated to a
great extent with network (e.g., when network’s operations
are high due to the workload being generated, eventually
CPU is high to accommodate such increase); on the other
hand, on the same system, the correlation between CPU and
memory may become low. Such change identified may expose
performance issues (i.e., high CPU without memory and–
or network I/O operations might be due to a performance
failure). For example, in our experiments, we experienced lots
of unready pods as they had been running for more than five
minutes and had not passed their readiness check, hence, we
destroyed the formed clusters and started all over again.

However, if there is a significant difference in correlations
simply due to the platform being used, i.e., Kubernetes vs.
OpenShift, then practitioners may need to be warned that a
correlation discrepancy may be false. Hence, we examined
whether the relationship among performance metrics has a
discrepancy between both container environments.

Approach
We calculated the Spearman’s rank correlation coefficient

among all performance metrics in the container environments
and studied whether they are different. Spearman’s correla-
tion coefficient is a statistical measure of the strength of a
monotonic relationship between paired data. In a sample, it is
denoted by rs and constrained to -1 ≤ rs ≤1. It is interpreted
as, the closer rs to ±1 the stronger the monotonic relationship.

Fig. 4: Spearman’s correlation changes for Kubernetes -
Hono-EnMasse (CPU–Network) min.

Correlation is an effect size (ES) measure and the strength
of the correlation for the rs is described as:

0.00-0.19 “very weak”, 0.20-0.39 “weak”, 0.40-0.59 “mod-
erate”, 0.60-0.79 “strong”, and 0.80-1.0 “very strong”.

Discussion
There exists differences in correlation among the perfor-

mance metrics in Kubernetes and OpenShift. Tables III, IV
and Figures 4 and 5 (i.e., samples) show the changes in the
correlation coefficient among the resources utilized in both
environments. By closely looking at them, we find that in
bare metal deployments, (CPU–Network) in Kubernetes has
stronger correlation than that of OpenShift (i.e., noticeable
network’s operations due to Hono’s deployment workload);
whereas (Memory–Network) coefficients in OpenShift are
stronger than in Kubernetes. Furthermore, adding EnMasse
results in stronger coefficients in Kubernetes, but that is not
the case in OpenShift where all performance metrics show
strong coefficients to handle such addition on top of Hono
(i.e., resources have been utilized fiercely where EnMasse has
its own additional processes to be run on top of Hono).

For the sake of brevity, we do not show the detailed anal-
ysis here which can be consulted in our replication package
indicated in the next section, Section V. Box-plots as well
as Spearman’s correlation trend-lines are depicted there-in to
show the correlation changes among related metrics.

V. THREATS TO VALIDITY

This section briefly discusses the threats to the validity
of our conducted study taking into account the guidelines
suggested by Wohlin et al. [11].

Construct validity threats concern the relation between both
theory and observations, such as the measurements errors in
this conducted study. We instrumented the different versions
of deployments described in Section III to generate execution
readings from which we computed min, max and average
values of the performance metrics.

We repeated each experiment five times and computed the
median values to mitigate the potential biases that could be
induced by perturbations on the network, hardware and our
tracing. We are confident that such repeated measurements

TABLE III: Spearman’s rank correlation summary of
performance metrics in Kubernetes

Devices CPU–Memory CPU–Network Memory–Network
min max avg min max avg min max avg

HONO Bare metal Deployment KO-0
10 –> 100 -0.1025978 -0.1 -0.3077935 0.6 (strong) 0.7 (strong) 0.6 (strong) 0.2051957 0.1 0.2051957

HONO-EnMasse KO-1
10 –> 100 0.1 0.1 0.2 0.6 (strong) 0.6 (strong) -0.1 0 0 -0.1

HONO-EnMasse-App KO-2
10 –> 100 -0.2 -0.3 -0.2 0.7 (strong) 0.7 (strong) 0.6 (strong) 0.2 0.3 0.5

increased the quality of our calibration and measurements.
We monitored the performance of the containers since their
creation until their destruction and combined the performance
metrics for every minute together as a median value.

Internal validity threats concern our analysis method. Our
empirical study is based on the performance testing results
on subject systems. The way of conducing the performance
tests and its quality may introduce threats to the validity
of our findings. Particularly, our approach is based on the
recorded performance metrics where their quality can have an
impact on the internal validity of our study. Our performance
evaluations all lasted for a duration of, roughly, four → six
months, while the length of the evaluations may impact the
findings of the conducted case study, we believe that we have
observed and analyzed performance readings over a realistic
amount of time. Another internal validity threat concerns
the statistical analysis that are performed. To mitigate this
threat, we paid attention not to violate the assumptions of the
statistical tests. Specifically, we applied non-parametric tests
that do not require making assumptions on the distribution of
our dataset.

External validity threats concern the possibility of gen-
eralizing our findings. Further validation with different con-
figuration are desirable to broader our understanding of the
impact of Eclipse Hono deployment strategies on the resources
utilization, and to provide guidelines to practitioners about the
usage of such platform when developing and deploying IoT
based applications.

Reliability validity threats concern the possibility to repli-
cate this study. We attempt to provide all the necessary
information and details to replicate our study. All the data used
in the study are available online in our replication package 3.

Last but not least, the conclusion validity threats which refer
to the relation between the treatment and the outcome do not
affect this study since we paid attention to avoid violating
the assumptions of the statistical tests used in our analysis.
Nevertheless, replications of this study on more complex
clusters using different applications are desirable to make our
findings more generic.

VI. RELATED WORK

IoT performance assurance activities play a vital role in
the development of large IoT systems. Those activities ensure
that the IoT, including developed platforms, meets the desired
performance requirements [12]. However often, their failures
are a result of performance issues rather than functional

3Complete results, data and scripts are shared online at osf.io scientific data
repository: https://tinyurl.com/moaly-ec-hono

TABLE IV: Spearman’s rank correlation summary of
performance metrics in OpenShift

Devices CPU–Memory CPU–Network Memory–Network
min max avg min max avg min max avg

HONO Bare metal Deployment KO-0
10 –> 100 0.6 (strong) 0.1 0.3 -0.1 0.1 0.1 -0.3 0.8 (v. strong) 0.6 (strong)

HONO-EnMasse KO-1
10 –> 100 1 (v. strong) 0.6 (strong) 0.8 (v. strong) 1 (v. strong) 0.6 (strong) 0.9 (v. strong) 1 (v. strong) 1 (v. strong) 0.9 (v. strong)

HONO-EnMasse-App KO-2
10 –> 100 0.1 0.4 0.5 0.6 (strong) 0.8 (v. strong) 0.6 (strong) 0.3 -0.1 -0.1

impairments [6], [13]. Failures can lead to eventual quality
refusal of targeted systems with reputational and monetary
consequences. To mitigate the resulted performance issues
and ensure systems’ reliability, practitioners often conduct
performance evaluations [12] to be applied to workloads, e.g.,
mimicking users’ behavior in the field, on software systems
[14], and monitor the related performance metrics, such as
CPU cores usage, that are generated based on those carried
tests and evaluations. Conventionally, they use such metrics to
gage the performance of the, being worked on, systems and
identify potential performance issues, such as memory leaks
[15], memory allocated consumption and network throughput
bottlenecks [16].

Moreover, practitioners using new systems need guidance
on how to build such platforms and–or deploy their appli-
cations efficiently on top of them. They need to have the
know-how to pick up the right configurations and frameworks
since the participating devices are resources constrained; de-
vices are not optimal in terms of resources utilization, i.e.,
CPU, memory, network, etc., and their misuse is likely to
significantly degrade the Quality of Service (QoS) as well
as User Experiences (UEs). Prior research has suggested a
slew of techniques to analyze performance testing results, i.e.,
performance metrics. Those techniques, typically, examine the
following aspects metrics: (a) single performance metric, and
(b) performance metrics relationships.

Single performance metrics Malik et al. [17], [18] suggest
approaches that cluster performance metrics using Principal
Component Analysis (PCA) where each component generated
is mapped to its performance metrics by a weight value.
Such value measures how far a metric can contribute to the
component. For every performance metric, a comparison is
conducted on each component’s weight value so that perfor-
mance regressions are detected.

Relationship between performance metrics Malik et al. [16]
leveraged Spearman’s rank correlation to capture the relation-
ship that arises between performance metrics. The correlations
deviance is measured so that subsystems are pinpointed to take
responsibility of the occurring performance deviation.

Analysis of virtual machines overhead Kraft et al. [19]
discuss the issues pertaining disk I/O in a virtual environ-
ment; they examine disk request–response time performance
degradation by recommending a trace-driven approach. They
assert on the existing latencies in a virtual machine requests
for disk I/O because of the time increments accompanying the
request queues. Another work conducted by Huber et al. [20]
presents a study on Cloud-like environments. They compare
the performance of the virtual environments and conduct anal-
ysis on their performance degradation. They further categorize

https://tinyurl.com/moaly-ec-hono

Fig. 5: Spearman’s correlation changes for OpenShift -
Hono-EnMasse (CPU–Network) min.

the factors that influence the overhead and use regression based
models to evaluate them, however, their modeling was only
considering CPU and memory.

VII. CONCLUSION

Performance assurance activities are critical in enforcing
software and systems’ reliability. The discrepancy between
performance testing in Eclipse’s IoT container technologies
haven’t been attempted to be evaluated yet, hence, we aimed
to highlight whether there are differences between Kubernetes
and OpenShift environments while handling different Hono
deployments. In this paper, we step up loads to examine the
performance costs related to containers deployment scenarios.
By examining the results, we find that there exists discrep-
ancies between performance metrics while considering three
different modes:

- Bare metal deployment of Hono on top of Kubernetes
and OpenShift.

- Scaling out Hono and incorporating EnMasse (as a mes-
saging as a service) infrastructure to the architecture.

- Adding business applications to the platform so that we
have the complete paradigm of the system.

Such results not only provide important guidelines for build-
ing and deploying Hono, EnMasse and developing IoT based
applications, but also aim to provide understanding of the
performance implications of their design so that practitioners,
including end users, can make right deployment decisions. The
main contribution of this paper includes: (1) Our paper is one
of the first attempts to evaluate the discrepancy in the context
of analyzing performance testing in Eclipse IoT–Hono. (2)
We found unbalanced relationships among related performance
metrics (i.e., ranging between strong, moderate and weak)
between Kubernetes and OpenShift environments. Therefore,
practitioners cannot assume a straightforward overhead from
container environments (such as a simple increment of CPU).

Last but not least, our findings highlight the need to be
aware of and to reduce the discrepancy between performance
testing results in container environments (i.e., especially in
open-sourced platform(s)), such as Eclipse-IoT Hono.

REFERENCES

[1] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014, pp.
2–11.

[2] N. Nikzad, O. Chipara, and W. G. Griswold, “Ape: an annotation
language and middleware for energy-efficient mobile application de-
velopment,” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 515–526.

[3] I. The Eclipse Foundation, “Open source software for industry 4.0,
an eclipse iot working group collaboration,” Made available under
the Eclipse Public License 2.0 (EPL-20), Online: https://iot.eclipse.
org/resources/white-papers/Eclipse%20IoT%20White%20Paper%
20-%20Open%20Source%20Software%20for%20Industry%204.0.pdf,
accessed (2017/10/20), 2017.

[4] B. Cabé, “Key trends from the iot developer survey 2018,”
Available at https://blogs.eclipse.org/post/benjamin-cab%C3%A9/
key-trends-iot-developer-survey-2018, accessed (2018/02/12), 2018.

[5] E. Hono, “Eclipse hono,” Available at https://www.eclipse.org/hono/,
accessed (2018/02/01), 2017.

[6] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, and P. Flora,
“Mining performance regression testing repositories for automated per-
formance analysis,” in Quality Software (QSIC), 2010 10th International
Conference on. IEEE, 2010, pp. 32–41.

[7] J. H. Stapleton, Models for probability and statistical inference: theory
and applications. John Wiley & Sons, 2007, vol. 652.

[8] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
2006, pp. 1–33.

[9] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[10] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons,
“Correlating instrumentation data to system states: A building block
for automated diagnosis and control.” in OSDI, vol. 4, 2004, pp. 16–16.

[11] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[12] M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 171–187.

[13] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[14] M. D. Syer, W. Shang, Z. M. Jiang, and A. E. Hassan, “Continuous
validation of performance test workloads,” Automated Software Engi-
neering, vol. 24, no. 1, pp. 189–231, 2017.

[15] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser,
and P. Flora, “Leveraging performance counters and execution logs to
diagnose memory-related performance issues,” in Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. IEEE, 2013, pp.
110–119.

[16] H. Malik, B. Adams, and A. E. Hassan, “Pinpointing the subsystems
responsible for the performance deviations in a load test,” in Software
Reliability Engineering (ISSRE), 2010 IEEE 21st International Sympo-
sium on. IEEE, 2010, pp. 201–210.

[17] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora, and
G. Hamann, “Automatic comparison of load tests to support the perfor-
mance analysis of large enterprise systems,” in Software Maintenance
and Reengineering (CSMR), 2010 14th European Conference on. IEEE,
2010, pp. 222–231.

[18] H. Malik, H. Hemmati, and A. E. Hassan, “Automatic detection of
performance deviations in the load testing of large scale systems,” in
Proceedings of the 2013 International Conference on Software Engi-
neering. IEEE Press, 2013, pp. 1012–1021.

[19] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick,
“Io performance prediction in consolidated virtualized environments,”
in ACM SIGSOFT Software Engineering Notes, vol. 36, no. 5. ACM,
2011, pp. 295–306.

[20] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating and
modeling virtualization performance overhead for cloud environments.”
in CLOSER, 2011, pp. 563–573.

https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20Open%20Source%20Software%20for%20Industry%204.0.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20Open%20Source%20Software%20for%20Industry%204.0.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20Open%20Source%20Software%20for%20Industry%204.0.pdf
https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
https://www.eclipse.org/hono/

	Introduction
	Background
	Eclipse Hono
	Scaling out of Eclipse Hono - EnMasse
	Eclipse Che

	Study Design
	Environmental Setup
	Design and Procedure
	Performance Tests and Evaluations
	Data Collection and Preprocessing
	Hypotheses
	Analysis Method

	Case Study Results
	Threats to validity
	Related Work
	Conclusion
	References

