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ABSTRACT
Code smells indicate software design problems that harm software
quality. Data-intensive systems that frequently access databases
often suffer from SQL code smells besides the traditional smells.
While there have been extensive studies on traditional code smells,
recently, there has been a growing interest in SQL code smells.
In this paper, we conduct an empirical study to investigate the
prevalence and evolution of SQL code smells in open-source, data-
intensive systems. We collected 150 projects and examined both
traditional and SQL code smells in these projects. Our investiga-
tion delivers several important findings. First, SQL code smells are
indeed prevalent in data-intensive software systems. Second, SQL
code smells have a weak co-occurrence with traditional code smells.
Third, SQL code smells have a weaker association with bugs than
that of traditional code smells. Fourth, SQL code smells are more
likely to be introduced at the beginning of the project lifetime and
likely to be left in the code without a fix, compared to traditional
code smells. Overall, our results show that SQL code smells are in-
deed prevalent and persistent in the studied data-intensive software
systems. Developers should be aware of these smells and consider
detecting and refactoring SQL code smells and traditional code
smells separately, using dedicated tools.
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1 INTRODUCTION
In Software Engineering, smells are poor solutions to commonly
occurring problems in a software system. They could be found
within the design and implementation of the system, and are fre-
quently referred to as design smells and code smells, respectively.
Regardless of whether they originate from the design or the source
code, previous work have shown that they can negatively affect the
performance [20] or the maintainability [29] of a software system.
They should therefore be handled with special care, and refactored
[15] as soon as possible. We refer to these smells as traditional
smells throughout the paper. While there have been extensive stud-
ies on traditional smells [23, 29, 48, 57], recently, there has been a
growing interest in a particular type of smells, namely SQL code
smells [13, 26, 43].

SQL code smells are found within SQL code as a result of misuses
in queries (e.g., Implicit Columns [43]). Data-intensive software sys-
tems that frequently interact with databases are particularly prone
to these smells. The SQL queries are often embedded in the applica-
tion code and remain hidden from the developers, which makes it
harder to spot mistakes in them. As SQL is the principal language to
communicate with relational databases, which represent the Top-5
databases according to the DB-Engine Ranking1, many systems
might suffer from such a type of smells. Although traditional code
smells are widely studied, there have been only a few studies on the
prevalence and impact of SQL code smells [13, 35, 56]. The objective
of our study is to address this gap in the literature of code smells.

In this paper, we conduct an empirical study on SQL code smells,
that investigates their (1) prevalence, (2) impact, (3) evolution and
(4) co-occurrence with the traditional code smells within hundreds
of open-source software systems. To the best of our knowledge, this
is the first study investigating the prevalence, impact, and evolution
of SQL code smells and also contrasting with the traditional smells.

Our study relies on the analysis of 150 open-source software
systems that manipulate their databases through popular database
access APIs – Android Database API, JDBC, JPA and Hibernate. We

1https://db-engines.com/en/ranking
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analysed the source code of each project and studied 19 traditional
code smells using the DECOR tool [17] and 4 SQL code smells
using the SQLInspect tool [44]. We also collected bug-fixing and
bug-inducing commits from each project using PyDriller [60].

By analyzing the collected data, we answer the four following
research questions:

RQ1: What is the prevalence of SQL code smells across
different application domains?

We study the prevalence of SQL code smells in the selected soft-
ware systems by categorizing them into four application domains –
Business, Library, Multimedia, and Utility. We find that SQL code
smells are prevalent in all four domains. Some SQL code smells are
more prevalent than others.

RQ2: Do traditional code smells and SQL code smells co-
occur at class level?

We investigate the co-occurrence of SQL code smells and tradi-
tional code smells using association rule mining. The results show
that while some SQL code smells have statistically significant co-
occurrence with traditional code smells, the degree of association
is low.

RQ3: Do SQL code smells co-occur with bugs?
We investigate the potential impact of SQL code smells on soft-

ware bugs by analysing their co-occurrenceswithin the bug-inducing
commits. We perform Cramer’s V test of association and build a
random forest model to study the impact of the smells on bugs.
We find that there is a weak association between SQL code smells
and software bugs. Some SQL code smells tend to show higher
association with bugs compared to others.

RQ4: How long do SQL code smells survive?
Weperform a survival analysis of SQL and traditional code smells

using Kaplan-Meier survival curves to compare their survival time.
It is interesting to know the lifespan of SQL code smells as software
evolves. It indicates whether the smells stay longer without getting
fixed or not. We find that the survival time of SQL code smells is
higher compared to that of traditional code smells. Furthermore,
significant portions of the SQL code smells are created at the very
beginning and then persist in all subsequent versions of the systems.

2 BACKGROUND
2.1 SQL Code Smells
Besides many white papers and blog posts about common mistakes
or bad practices in SQL queries [34], an extensive catalogue of SQL
code smells was published by Karwin in 2010 [26].

There are also tools (e.g., TOAD and SQL Enlight) typically
designed for database administrators that can statically analyse
queries and identify common mistakes. These techniques require
the SQL code as input. For our study, to investigate SQL code em-
bedded in the source code of data-intensive systems, we rely on
SQLInspect [44], a tool able to extract SQL code from Java applica-
tions and detect SQL code smells belonging to Karwin’s catalogue.
In the following, we briefly describe the SQL code smells that SQLIn-
spect can detect.

Implicit Columns smell occurs when columns of a table are
unnecessarily queried, e.g., the usage of * in the column list of a
SELECT statement. Although it is fast to write, it may cause perfor-
mance issues such as network bandwidth wastage or even more

serious problems when the table column order is modified and the
change is not propagated to the application code [26].

Fear of the Unknown is a smell that occurs due to improper
handling of NULL values. NULL has a special meaning in relational
databases as it indicates the absence of data, and it is often mis-
interpreted by developers. For example, developers should check
for NULL values using the IS NULL operator instead of the other-
wise syntactically correct != NULL expression that always returns
UNKNOWN in SQL [43].

Ambiguous Groups smell occurs when developers misuse the
GROUP BY aggregation command. For example, adding columns in
the select list other than the ones used in aggregation function or
in GROUP BY clause may generate erroneous results [26].

Random Selection occurs when developers query a single ran-
dom row. This operation requires a full scan of the required table.
This will have a negative impact on the performance as the size of
the table increases [26].

SQLInspect supports the detection of these four smells out of the
total six types of query smells from the catalog of Karwin; hence, we
also rely on these. We notice that the catalogue of Karwin groups
smells into the following categories: Logical Database Design, Phys-
ical Database Design, Query, and Application Development. As our
goal is to investigate the application code, relevant ones for us are
the last two categories. However, SQLInspect does not implement
the detection of smells in the Application Development category as
they are not explicitly in the SQL code. SQL Code smell detection in
SQLInspect relies on SQL query extraction, which has a minimum
precision of 88 % and a minimum recall of 71.5% [38]. Hence, the
aforementioned precision and recall values can be considered as
an upper bound for SQL Code smell detection performance. More
details on SQLInspect and the supported smells can be found in the
related papers of Nagy et al. [43, 44].

2.2 Apriori: Association Rule Mining
Algorithm

Apriori is an algorithm devised for mining frequent itemsets and
relevant association rules [3]. It has been successfully used to mine
association between items in many problems such as market basket
analysis [27], intrusion detection [22], supply chain management
[1] and requirement engineering [4]. The Apriori algorithm first
scans the dataset (i.e., transactions) and generates frequent itemsets
based on filtering criteria set by users. Then, a list of association
rules is generated from the frequent itemsets.

We use the support [2], confidence [2], lift [9], leverage [52] and
conviction [9] parameters to quantify the degree of association
between two items (or smells). The range of values for support and
confidence is between 0 and 1. Lift can take any value between
0 and ∞. If the value of lift is 1, it means that the smell pairs are
independent. Leverage has a range between -1 and 1. A leverage
value of zero shows independence. Conviction has a range of 0 and
∞. Independent occurrences have a conviction of 1.

2.3 Cramer’s V Test for Association
The Cramer’s V test measures the level of association between
categorical variables [12]. It has a value between 0 and 1. A value
of 0 indicates complete independence, and a value of 1 indicates
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complete association. The Cramer’s V test takes into account sam-
ple size when comparing two variables. The formula is given in
Equation 1 where X 2 is the Pearson’s Chi-square coefficient, n is
the total number of samples and row and col represent the number
of distinct values of the categorical variables whose association is
to be computed.

V =

√
X 2

n ∗min(row − 1, col − 1)
(1)

2.4 Survival Analysis
Survival analysis [39] is a statistical analysis technique that provides
the expected time of the occurrence of an event of interest. The
event of interest could be anything as long as it is clearly defined.
We define a study observation window and track events of interest
that occur within the window. If the subjects under study leave
during the period of observation, the corresponding data will be
censored. If the event is not observed during the observation period,
the corresponding subject will be censored at the end of the period.
Time to event and status are two important variables for survival
analysis.

Time to event (T) is defined as the time interval between the
starting of observation and the occurrence of an event or the cen-
soring of data. This time can be measured in any unit. Thus, T is
a random variable with positive values [39]. Status is a boolean
variable that indicates whether an event is observed or the data is
censored. If the event occurs during the observation period, status
takes a value of 1 and otherwise 0. The Survival function S(t)
gives the probability (P(T > t)) that a subject will survive beyond
time t . After we arrange our data in increasing order of T , we can
plot the survival curve and estimate the survival probability using
one of the commonly used survival estimators (e.g., Kaplan-Meier
estimator [25]). The Kaplan-Meier estimation is computed follow-
ing Equation 2, where ti is the time duration up to event-occurrence
point i , di is the number of event occurrences up to ti , and ni is
the number of subjects that survive just before ti . ni and di are
obtained from the aforementioned ordered data.

S(t) =
∏
i :ti ≤t

[1 −
di
ni

] (2)

3 STUDY METHOD
In this section, we describe our study method where we select
appropriate projects for our study, detect traditional and SQL code
smells within their source code, extract bug-fixing and bug-inducing
commits from their version history, and then analyse all these items
to answer our research questions. Figure 1 shows the process of
our empirical study.

3.1 Project Selection
We limited our study to Java because the SQL code smell detection
tool we selected for our study, SQLInspect [44] can only process
programs written in Java. We select our projects from GitHub using
four steps as follows.

Phase-I: We use GitHub search mechanism and collect the soft-
ware repositories labelled with four keywords – android app,

Table 1: Selected projects & their database access statistics

Application domain #Projects Median DAQC

Library 97 32
Business 23 46
Utility 19 50.5
Multimedia 11 19.5

DAQC = Database Access Query Count

hibernate, JPA, Java. We choose these keywords (a.k.a., cate-
gories) since we were interested in data-intensive software systems
and also wanted to study SQL code smells in their embedding code.

Phase-II:We performed code search on each project selected in
the first phase using GitHub code search API [21]. In particular, we
look for the import statements (e.g., import android.database
.sqlite.SQLiteDatabase) that SQLInspect can analyze to detect
potential SQL code smells.

Phase-III: Once Phase-I and Phase-II are completed, we collect
the projects that (1) fall into the four categories above and (2) pass
the constraint of import statements in their source code.

Phase-IV: Since the project collection in the above three phases
was not significantly high, we thus collect all the labels from each
project and build a word-count dictionary to identify the most
common keywords. Then we select Top-50 keywords from each
of the four categories and repeat Phase-I, which delivers a large
collection of 35,000 projects. Then we look for import statements
in their source code again, and separate 800 projects that contained
the required import statements.

Phase-V: We ran the SQLInspect tool on 800 projects and se-
lected the projects with at least 10 database access queries. We
choose this threshold to capture the projects that vary in size and
complexity and obtain a dataset with a significant number of queries
for analysis. Finally, we ended up with a total of 150 data-intensive
software projects. On average, each project has a size of 146 KLOC,
121 SQL queries and 15 data-access classes. Overall, 13% of these
projects have more than 500 KLOC and 30% of them use more than
73 SQL queries. About 48% of SQL queries in those projects perform
SELECT operations where 11% have sub-queries.

We also classify our selected projects into four application do-
mains – Business, Library, Multimedia and Utility – to capture the
domain-related aspects. We assign each project to any of these four
groups by consulting their overview on the GitHub pages. Software
projects that are used for business and educational purposes (e.g.,
data analysis) are kept in the Business category. Open-source li-
braries or tools used by developers are categorized into the Library
category. Games and media player systems are categorized under
Multimedia. Finally, software projects for personal uses (e.g., task
management, scheduling or social networking) are categorized into
the Utility category.

Table 1 shows, for each application domain, the total number of
projects and their median number of database access queries. The
median is calculated by considering the latest version of all selected
projects.

3.2 Code Smell Detection
It is not practical to detect code smells from every commit of each
project due to the large number of projects and commits. Therefore,
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Figure 1: Process followed to conduct our empirical study

we detect the traditional and SQL code smells from each project by
taking their snapshots after every 500 commits starting from the
most recent commits backwards. A similar approach was followed
by Aniche et al. [5].

We use SQLInspect [44], a static analysis tool, for SQL code smell
detection. SQLInspect extracts SQL queries from the Java code and
then detects four types of SQL code smells – Implicit Columns,
Fear of the Unknown, Random Selection and Ambiguous Groups.
The tool can detect smells from the SQL code targeting several
database access frameworks – Android Database API, JDBC, JPA,
and Hibernate.

We use DECOR [17], a reverse engineering tool, for detecting the
traditional code smells. DECOR can detect 18 different traditional
code smells from Java source code. DECOR has a recall of 100% and
a precision > 60% [41].

3.3 Tracking Project File Evolution
Software projects change and so are their source code files as they
evolve over time. To ensure a reliable analysis of software evolution,
file genealogy tracking is important. Tracking of file status can help
us resolve the issues involving file renaming or file location changes
during evolution. We use the git diff command to compare two
consecutive project snapshots using their commit identifiers. The
command shows a list of files that are either added, deleted, mod-
ified or renamed between two given commits. It also provides a
numerical estimation on how likely a file has been renamed. We
consider a threshold of 70% accuracy to detect file renaming, as
was used by an earlier study [23]. Finally, each source file in each
of our projects is tagged with a unique identifier generated from
the file tracking information.

3.4 Mining Bug-Fix and Bug-Inducing
Commits

We use PyDriller [60] to mine bug-fixing and bug-inducing com-
mits from our selected projects. PyDriller offers a Python API that
interacts with any GitHub repository using a set of Git commands.

To identify bug-fix commits using PyDriller, we employed a set
of 57 keywords that indicate possible fixing of bugs, errors and soft-
ware failures (e.g., fix, fixed, fixes, bug, error, except, issue, fail,
failure, crash). The set of keywords were selected based on the
work of Mockus and Votta [40] and Antoniol et al. [6], who showed

Table 2:Most prevalent keywords used to detect bug-fix com-
mits

Keywords Bug-Fix Commits

fix, fixed, fixes 66.16%
bug 7.93%
issue 6.16%
except 4.84%
error 4.51%
fail, failure 3.55%
Total bug-fix commits 110,747

that those keywords have a tendency to be associated with bug-
fix commits. These keywords were also used in multiple previous
studies to identify bug-fixing commits [18, 24, 32]. The complete
keyword list is available in the replication package [42]. Our tool
searches for each keyword in the commit messages, and separates
the commits containing the keywords as bug-fixing commits.

Table 2 shows the proportion of bug-fix commits that are identi-
fied using the top six prevalent keywords.

PyDriller implements the SZZ algorithm [59] to pinpoint a bug-
inducing commit from a given bug-fix commit within the version-
control history. We use PyDriller to detect the bug-inducing com-
mits for the bug-fixing commits detected above.

3.5 Linking Bug-Inducing Commits with Code
Smells

To determine any association between code smells and software
bugs, the smells have to be present in the code before the bugs
actually occur. We determine such potential causal associations
using bug-inducing commits. Let T0 be the snapshot date of the
smelly code file and Tn be the commit date of the next snapshot
that tracks the same code file. Now, we identify the bug-inducing
commits between To and Tn that contain the smelly code file from
version To . If any bug-inducing commit touches the smelly file
which is later fixed in the corresponding bug-fixing commit, thenwe
mark such smells as linked with the target bug-inducing commits.

3.6 Construction of a Smell Database
In order to perform our analysis reliably, we store the information
extracted from the earlier steps in a relational database. A record in
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the smells table of our database is identified using a combination
of file identifier and project version number (a.k.a., file-version-
ID). Each record comprises of a vector that stores the statistics on
traditional code smells, SQL code smells found within a source code
file and its bug-inducing related meta data. Our database contains a
total of 1,077,548 records for 139,017 source files from 150 projects
with 1648 versions. However, our study analyzes only such records
where the source code files deal with database access, and might
contain SQL code smells. Thus, in practice, we deal with a subset
of 29,373 records for our study.

3.7 Experimental Data Analysis
Association between SQL and Traditional Code Smells: For
Apriori analysis, we consider each entry (i.e., a record from our
database that has at least one database access query) containing
code smell statistics as a transaction. Then, the frequent itemsets
are generated from all the transactions that involve traditional code
smells and SQL code smells.

Besides the Apriori algorithm, we employ Cramer’s V association
test to collect numerical, comparable association values between
these two classes of code smells (RQ2).

Co-occurrence between SQL Code Smells and Bugs: To in-
vestigate the co-occurrence (or potential causation) between SQL
code smells and software bugs (RQ3), we employ both Chi-squared
test and Cramer’s V test. We also develop a RandomForest model to
investigate the importance of various code smells in determining
co-occurrence with bugs.

Survival Analysis of Code Smells: We analyze the survival
rates of traditional and SQL code smells during the evolution of our
selected systems (RQ4). For survival analysis, we use the Kaplan-
Meier curve [25] (e.g., Fig. 4). The curve shows the survival prob-
ability S(t) of a given code smell at a time t . We define the fixing
of a code smells as our event of interest. That is, if a source code
file contains a target smell in an earlier version snapshot and does
not contain the same smell in the current snapshot, our event of
interest occurs at the current snapshot. The occurrence of this event
determines the survival probability of corresponding code smell.

3.8 Replication Package
We made our collected data and results publicly available [42]. We
provide (i) the database of smells in the projects under question,
(ii) the list of keywords used for the identification of bug-fixing
commits, (iii) data collection and analysis scripts.

4 STUDY RESULTS
In this section, we present our study findings and answer each of
the four research questions as follows.

4.1 RQ1: What is the Prevalence of SQL Code
Smells Across Different Application
Domains?

We collect SQL code smells from each of the projects (i.e., latest
tracked versions) and provide the summary statistics on code smells
for each of the four application domains. Our projects from each

domain have varying complexity in terms of project size and inter-
actions with the database. We determine prevalence of SQL code
smells as the ratio between total number of SQL code smells and
total number of database access queries in a subject system. We
present our prevalence analysis in Figures 2, 3 and Table 3.

Table 3: Prevalence of Implicit Columns across four applica-
tion domains

Domain Median Prevalence Mean Prevalence

Business 2.98% 8.49%
Multimedia 0.23% 5.47%
Utility 1.68% 5.27%
Library 0.75% 7.93%

Library Business Multimedia Utility
Category of projects
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Figure 2: Prevalence of SQL code smells (Implicit Columns)
across different application domains
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Figure 3: Prevalence of SQL code smells (Fear of the Un-
known) across different application domains

We detect four types of SQL code smells (e.g., Section 2.1) with
SQLInspect in our data-intensive subject systems. Out of these
four smell types, Implicit Columns was the most frequent across all
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projects with a median prevalence of 1.67%. That is, out of every
100 database access queries, two queries are affected by this smell.
The second most frequent code smell – Fear of the Unknown – has a
median prevalence of 0.8%. We did not find any Ambiguous Groups
or Random Selection in themost recent tracked version of our subject
systems. However, our analysis identified a few Ambiguous Groups
code smells in the older versions of the systems.

We analyse the prevalence of Implicit Columns across four appli-
cation domains. Table 3 and Fig. 2 summarize our findings. From
Table 3, we see that projects from Business and Utility domains have
the highest median prevalence of 2.98% and 1.68%. Fig. 2 further
shows the distribution of prevalence for Implicit Columns across
the application domains. We see that Business and Library have the
highest median and 75% quantile in the prevalence ratio measure.
We also investigated the nature of the outlier projects from Library
domains, as shown in the box plot of Fig. 2. We notice that the
Library project with the highest prevalence ratio, Tablesaw data
visualization library, has 45 SQL queries, out of which 31 queries
are smelly. This project has more than 2K stars and 39 contributors.
The second highest in prevalence, calcite-elasticsearch, is another
library project that has a total of 167 SQL queries, out of which 79
queries are smelly. Since library projects are often reused by other
applications, the impact of these SQL code smells could be much
more serious. In both Figure 2 and Table 3, we see that SQL code
smells such as Implicit Columns have the least prevalence in the
subject systems from Multimedia domain.

We further analyse the distribution of prevalence for Fear of
the Unknown SQL code smell across the four application domains.
Fig. 3 shows our prevalence ratio distribution for this smell. We
see that the median prevalence for all domains is zero. However,
there exist a significant number of outlier projects in the library,
business and utility domains that we analyse. The project with the
highest prevalence of Fear of the Unknown smell is a real-time chat
and messaging Android SDK library, Applozic-Android-SDK, that
has at least 295 forks and 18 contributors. The project has 202 SQL
queries in the most recent tracked version, out of which 40 queries
are affected with the target smell.

All our analyses above show that Implicit Columns and Fear of
the Unknown are the two prevailing SQL code smells across all four
application domains. We also randomly selected 10 projects and
manually investigated 98 Implicit Columns smells from them. We
found that at least 70% of these smelly SQL queries retrieved three
or more columns that were unused and 15% retrieved nine or more
table columns that were unused. Such a counter-productive data
access could lead to a performance bottleneck. Implicit Columns
smells might also create unnecessary coupling between a front-
end and its back-end database, which could negatively affect the
maintainability of the system. Although the prevalence of Fear of
the Unknown smell is not as high as for Implicit Columns, their
impact on maintenance and performance could also not be ignored.

Implicit Columns smells are themost prevalent SQL code
smells in the data-intensive systems across four applica-
tion domains followed by the Fear of the Unknown smells.
The remaining two SQL code smells are not prevalent in
the 150 subject systems under our study.

4.2 RQ2: Do Traditional Code Smells and SQL
Code Smells Co-occur at Class Level?

We determine co-occurrences between SQL code smells and tradi-
tional code smells within our subject systems where we consider
multiple versions of the source code files (a.k.a., revisions). Table 4
shows the statistics on file versions for each application domain. We
see that business systems have the highest number of file versions
that deal with database access while multimedia systems have the
lowest number. Business systems have more database interactions
since they are often involved in data processing and data visualiza-
tion. We have only 11 Multimedia systems in our dataset, which
might explain their low number.

Table 4: Source code file versions with database access

Application Domain # File Versions

Business 16,225
Library 11,839
Multimedia 156
Utility 1,153

We use Apriori algorithm for determining the association (co-
occurrence) between traditional code smells and SQL code smells.
To generate frequent itemsets, we selected a minimum support of
0.01 (1%) considering the small number of occurrences of SQL code
smells compared to that of traditional code smells. We also restrict
the maximum number of items in every itemset to 2 since we were
interested in the association between one traditional smell and one
SQL code smell. We also set the minimum lift threshold to 1 to
generate the relevant association between SQL code smells and
traditional code smells.

Table 5 shows our frequent itemsets where each itemset com-
prises of one traditional code smell and one SQL code smell. When
all subject systems are considered, we see an association (i.e., Lift>
1.00) between Implicit Columns and LongMethod. We also repeat
the same experiments for each of the four application domains.
We see that Implicit Columns smells co-occur with LongMethod
across both business and library domains. They also co-occur with
ComplexClass in all application domains except business. However,
the leverage value is close to zero for each of the mined association
rules, which indicates that the association between SQL code smells
and traditional code smells is not strong.

We also conduct Chi-squared and Cramer’s V tests to check
whether the associations between traditional code smells and SQL
code smells (e.g., Table 5) are statistically significant or not. Table
6 shows the p-values from our Chi-squared tests. We assume this
null hypothesis – H0: traditional code smells and SQL code smells
occur independently. However, given the p-values (< 0.05) in Table
6, we have strong evidence to reject the null hypothesis for each
of the five emboldened smell pairs. That is, Implicit Columns has a
significant association with several traditional code smells such as
LongParameterList and ComplexClass. It should be noted that each
of these code smells is a result of bad programming practices by
the developers. Given the p-values (>= 0.05) in Table 6, we have
weak evidence to reject the null hypothesis, i.e., such code smell
pairs might not be associated.



On the Prevalence, Impact, and Evolution of SQL Code Smells in Data-Intensive Systems MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 5: Top-3 SQL code smells and traditional code smells based on lift value across the application domains. A leverage value
close to 0 indicates weak association.

Application Domain Smell Pais Support Confidence Lift Leverage Conviction

Combined Implicit Columns:LongMethod 0.0507 0.528 1.03 0.0015 1.0336

Business Implicit Columns:ComplexClass 0.0169 0.445 1.2169 0.003 1.1429
Implicit Columns:LongMethod 0.0207 0.5437 1.031 0.0006 1.0358

Library Implicit Columns:LongParameterList 0.0295 0.1804 1.0261 0.0007 1.0056
Implicit Columns:LongMethod 0.0854 0.5228 1.0377 0.0031 1.0398

Multimedia Fear of the Unknown:AntiSingleton 0.01923 0.2143 5.5714 0.0158 1.2238
Fear of the Unknown:ComplexClass 0.0705 0.7857 2.7238 0.0446 3.32
Implicit Columns:ComplexClass 0.1474 0.5476 1.8984 0.0698 1.5729

Utility Fear of the Unknown:AntiSingleton 0.0208 0.31169 4.6074 0.0163 1.3545
Fear of the Unknown:LongParameterList 0.01908 0.2857 1.8 0.0085 1.1778
Implicit Columns:ComplexClass 0.0928 0.4693 1.5593 0.0333 1.3173

Table 6: Chi-square and Cramer’s V value of smell pairs computed on the combined dataset for each smell pair in Table 5. We
reject H0 for all smell pairs in bold.

Smell Pairs Chi-square P-value Cramer’s V

Implicit Columns:LongParameterList < 0.0001 0.0708
Fear of the Unknown:LongMethod < 0.0001 0.048
Fear of the Unknown:LongParameterList < 0.0001 0.03864
Implicit Columns:ComplexClass < 0.0001 0.02925
Implicit Columns:AntiSingleton < 0.0001 0.0282

Fear of the Unknown:ComplexClass 0.02217 0.01335
Fear of the Unknown:AntiSingleton 0.04868 0.0115
Implicit Columns:LongMethod 0.0796 0.01

We also further investigate the statistically significant associa-
tions between traditional and SQL code smells within our subject
systems, and determine the degree of associations using Cramer’s
V tests. Table 6 shows the results from these tests. We see that
Implicit Columns:LongParameterList pair has the highest degree of
association with a V value of 0.07, which is still a weak association.
The smell pairs for which we accept the null hypothesis have also
small Cramer’s V values, which is expected.

Several traditional code smells (e.g., LongParameterList)
and SQL code smells (e.g., Implicit Columns) could co-
occur within the data-intensive subject systems. How-
ever, their association is rather weak according to mul-
tiple statistical tests and our extensive analysis.

4.3 RQ3: Do the SQL Code Smells Co-occur
with Software Bugs?

We determine the association between SQL code smells and soft-
ware bugs by analysing smelly code, bug-fixing code, and bug-
inducing code. Our dataset contains a total of 21,973 file revisions,
out of which 3,215 revisions were found in the bug-inducing com-
mits. It should be noted that bug-inducing commits lead to software

bugs, which are confirmed by the bug-fixing commits later. We thus
separate the bug-inducing commits, and determine the pair-wise
co-occurrence (association) between SQL code smells and bugs
within these commits. We conduct Chi-squared test and Cramer’s
V test to check the significance and degree of the association. Table
7 shows our investigation details.

To determine the association between SQL code smells and soft-
ware bugs, we assume this null hypothesis – H0: The presence of
SQL code smells in a file version and the file version being bug-
inducing are independent phenomena. We test this hypothesis with
Chi-squared test using α = 0.05. As shown in Table 7, we notice
that both Implicit Columns and Fear of the Unknown are two SQL
code smells that occur independently of the bug-inducing commits.
They have p-values greater than our significance threshold of 0.05.

Although the Implicit Columns smell is known to cause perfor-
mance issues and software bugs [26, 43], our empirical analysis
did not show a strong correlation with bugs. On the contrary, the
traditional code smells such as SpaghettiCode, ComplexClass and
AntiSingleton have significant p-values < 0.05, which indicates that
they have a stronger association with bugs. The traditional code
smell namely ComplexClass has the lowest and the most significant
p-value, which indicates its significant association with the bugs.
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Table 7: Result of statistical tests and random forest model
of association between smells and buggy files.

Smell Chi-square Cramer’s Feature
P-value V value Contribution (%)

Implicit Columns 0.2377 0.0069 5.095
Fear of the Unknown 0.1671 0.008 7.695
LongMethod 0.1162 0.0003 9.86
LongParameterList 0.0034 0.0034 9.1
AntiSingleton < 0.001 0.0001 7.69
SpaghettiCode < 0.001 0.0227 5.87
ComplexClass < 0.001 0.0846 46.65

ComplexClass was also reported to be associated with software bugs
by the earlier studies [33, 63].

We also determine the degree of association between any code
smells and software bugs using Cramer’s V test. As shown in Table
7, we see that the traditional code smells (e.g., LongMethod, Long-
ParameterList) have a relatively higher V-values than that of SQL
code smells. That is, SQL code smells might be less associated with
the bugs than the traditional code smells.

We also develop a RandomForest model to investigate the con-
tribution of each code smell on determining whether a file revision
is bug-inducing (e.g., true class) or not (e.g., false class). Since the
dataset was not balanced, we used SMOTE-based oversampling
[11] and 10-fold cross-validation for our machine learning model.
Finally, we collect the feature importance values from our trained
model. These values indicate the importance of code smells (i.e., pre-
dictors) on determining whether a file version being bug-inducing
or not. The last column of Table 7 shows how each of the code
smells could turn its containing file to be bug-inducing. We see that
ComplexClass has the highest importance of 46%. Despite the low
Cramer’s V values, LongMethod and LongParameterList are pretty
important (≈10%) in our trained model. On the other hand, SQL
code smells (e.g., Fear of the Unknown, Implicit Columns) might
be less important according to our model, which clearly indicates
their low association with the software bugs.

SQL code smells (e.g., Implicit Columns, Fear of the Un-
known) do not have statistically significant association
with software bugs. On the contrary, traditional code
smells (e.g., ComplexClass, SpaghettiCode) have a statis-
tically significant association with the bugs, according
to the results of the performed two statistical tests and
RandomForest-based feature contribution analysis.

4.4 RQ4: How Long do the SQL Code Smells
Survive?

We perform survival analysis [39] to determine how long the SQL
code smells survive throughout the life cycle of a subject system.
Fig. 4 shows the Kaplan-Meier survival curve of Implicit Columns
SQL code smells against 150 data-intensive subject systems. We see
that the survival curve has a steeper slope at the beginning and
becomes flat after 3000 days. This indicates that a large fraction of
this smell was either fixed or censored without getting fixed in this
time. However, the large number of censored data points indicate
that a significant part of Implicit Columns smells persist without
getting fixed.
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Figure 4: Kaplan-Meier survival curve for Implicit Columns
SQL code smell. The X-axis is the time in days and the verti-
cal axis shows the survival probability value. The Censoring
time and the Confidence interval are marked in the plot.
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Figure 5: Kaplan-Meier survival curve for Fear of the Un-
known SQL code smell. The X-axis is the time in days and
the vertical axis shows the survival probability value. The
Censoring time and the Confidence interval are marked in
the plot.

Fig. 5 shows the Kaplan-Meier survival curve for another preva-
lent SQL code smell namely Fear of the Unknown. It has a similar
trend to that of Implicit Columns but the events are more visible
due to small number of instances of this smell in the dataset.

In order to achieve further insights, we compare the survival
time of SQL code smells with that of traditional code smells. We run
survival analysis on the two most prevalent traditional smells that
are LongMethod and LongParameterList. Fig. 6 shows our compara-
tive analysis between traditional and SQL code smells. We see that
SQL code smells have gentler survival curve than that of traditional
smells. That is, SQL code smells have longer lifespan. Thus, they
persist within the subject systems for a longer time duration.
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Figure 6: Kaplan-Meier survival curve for traditional code
smells and SQL code smells. The Censoring time for cen-
sored files is marked in the plot.

We performed Logrank test [51] to determine whether the dif-
ference between these two survival curves in Fig. 6 is statistically
significant or not. We obtained a Chi-squared test p-value of 0.002,
which provides a strong evidence that these survival curves are
significantly different. In both curves, we see large number of cen-
sored data. By censored we mean those files whose smells either
persist in all tracked snapshots or they are deleted from the projects
during the observation window which is a rare case in our data.

We also track the SQL code smells that occur across the versions
of each single subject systems. Based on our investigation, we
found that a large percentage of SQL code smells occurred in early
versions of the subject systems. For instance, 89.5% of the source
code files with Implicit Columns had their smells introduced in their
first tracked snapshots. Similarly, 72.5% of the source code files
with Fear of the Unknown had their smells introduced in their first
tracked snapshot.

Our analysis shows that, 80.5% of source code files with Implicit
Columns smell contained this smell in all snapshots. Similarly, 65%
of source code files with the Fear of the Unknown smell contained
this smell in all snapshots. In contrast, 54% of source code files with
LongParameterList and 65% of source code files with the LongMethod
contain those traditional code smells in all snapshots. This confirms
the observation that a large number of files with SQL code smells
and traditional code smells were censored before they are getting
fixed. All these findings above suggest that SQL code smells get a
little to no attention from the developers for refactoring.

SQL code smells have higher tendency to survive for
longer period of time compared to traditional code
smells. A large fraction of the source files affected by SQL
code smells (80.5%) persist throughout the whole snap-
shots, and they hardly get any attention from the devel-
opers during refactoring.

5 IMPLICATION OF FINDINGS
The result of RQ1 shows that not all SQL code smells are equally
prevalent in data-intensive projects. Developers need to focus their
attention on smells that are prevalent such as Implicit Columns
whichmay lead to unexpected issues in the production environment.
The prevalence of SQL code smells on Library projects is more
concerning as it may propagate to other application domains.

Our findings show a small but statistically significant co-occurrence
between some SQL code smells and some traditional code smells.
This result can be a starting point for investigation of the relation
between SQL code smells and traditional code smells and potentially
detecting the occurrence of SQL code smells given some traditional
code smells or vice versa.

We did not see a strong co-occurrence between SQL code smells
and bugs. Our result shows that some traditional code smells have
a higher association with bugs compared to SQL code smells. This
implies that, future investigation should focus on the impact of SQL
code smells on maintainability and performance instead of their
link with bugs.

The result of RQ4 shows that little attention is given to SQL code
smells. Large portions of those smells are created in the first tracked
snapshot of our subject systems and tend to persist for longer period
of time. This implies that smells in general and SQL code smells
in particular get a low priority in refactoring. The reasons for this
could be developers’ lack of awareness about those smells and their
potential negative impact, or developers’ engagement in higher
priority tasks such as bug fixing tasks.

6 THREATS TO VALIDITY

Threats to construct validity:We relied on the accuracy of SQLIn-
spect and DECOR detection tools. Both tools may miss some smells.
While the results reflect the minimum case, the actual number of
smells could be higher. We used git diff for file history tracking,
which might fail to track some files if they are moved using mv
command instead of git move. We did not include such files in our
study. We also used a 70% similarity threshold for rename detec-
tion, which may lead to false rename assumption in some cases.
However, the same threshold was used by the literature (e.g., by
Johannes et al. [23]). To link bugs with file versions, we relied on
the SZZ algorithm, which might not be free from limitations. First,
the heuristics of finding bug-fix commits using keywords may in-
troduce false positives, which might incorrectly identify buggy
lines [54]. We also manually checked 50 randomly-sampled, bug-
inducing commits detected by the SZZ algorithm and found only
three (6%) false-positives. Thus, the threat posed by SZZ might not
be significant.

Threats to internal validity: We did not claim any causation as
this is an exploratory study. We only discussed the co-occurrence or
association. Hence, our study is not subjected to threats to internal
validity.

Threats to conclusion validity: To avoid conclusion threats
to validity we only used non-parametric statistical tests.

Threats to external validity: To make our findings generaliz-
able, we selected different types of projects in terms of application
domain, size, and number of interactions with a database. We also
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covered projects that use different drivers and frameworks to inter-
act with the database. We also tried to select representative projects
with relevant data access. We only considered Java projects for anal-
ysis. However, our investigation approach is generalizable to any
programming language. It is desirable to study if our conclusions
can be extended to different programming languages.

Threats to reliability validity: To minimize potential threats
to reliability, we analyzed open-source projects available on GitHub
and provide a replication package that contains our dataset [42].

7 RELATEDWORK
We discuss the state of the art from two perspectives. First, we
overview the related work on empirical studies about traditional
code smells. Then, we discuss the state of the art research on SQL
code or database-related smells.

Traditional Code Smells: Since the initial introduction of the
term “design flaws” [53] and “code smell” [15], many studied their
impact on development; i.e., how they affect performance, source
code quality or maintainability. A recent literature review “on the
code smell effect” by Santos et al. [55] gives an overview of these
studies. They identify a total number of 3530 papers in this area
and after removing duplicated and short papers they do an in-depth
examination of 64 papers in their survey. Important to mention
here are correlation studies on code smells and quality attribute such
as number of bugs or number of modifications in classes [14, 33,
36, 62, 63] and empirical studies on the evolution of code smells
[23, 29, 45, 48, 50, 57], their influence on defects [46], maintenance
effort [58] or how humans perceive them [37, 49].

For the detection of traditional code smells, we rely on the
DECOR tool [17]. However, different traditional smell detection
tools are also available. For example, an artificial immune system-
based smell detection tool was developed by Hassaine et al. [19], a
Bayesian network-based expert system by Khomh et al. [30], and
a textual data mining approach by Palomba et al. [47]. Kessentini
and Ouni proposed an approach to automatically generate smell
detection rules using genetic algorithm [28]. Another popular tra-
ditional smell detection tool is JDeodorant developed by Tsantalis
[61]. JDeodorant focuses on the detection and refactoring of Fea-
ture Envy, God Class and Duplicated Code, Type Checking and
Long Method smells. We choose DECOR because it covers more
traditional code smells and was reported to reach a 100% recall.

SQL Code Smells: Although researchers studied common er-
rors in SQL queries before [8, 16], the book of Karwin [26] is the
first to present SQL antipatterns in a comprehensive catalogue. This
catalogue inspired researchers to further investigate such smells.
Khumnin et al. [31] present a tool for detecting logical database
design antipatterns in Transact-SQL queries. Nagy and Cleve [43]
propose a static analysis approach to detect SQL code smells in
queries extracted from Java code. They also provide additional anal-
yses (e.g., metrics) about the detected smells [44]. Another tool,
DbDeo [56], implements the detection of database schema smells.
DbDeo is evaluated on 2925 open-source repositories; their au-
thors identified 13 different types of smells, among which ‘index
abuse’ was found to be the most prevalent one. In another recent
work, De Almeida Filho et al. [13] investigate the prevalence and
co-occurrence of SQL code smells in PL/SQL projects. Arzamasova

et al. propose to detect antipatterns in SQL logs [7] and demon-
strate their approach through the refactoring of a project containing
more than 40 millions of queries. Let us also mention the work by
Burzanska et al. [10], who question whether the ‘Poor Man’s Search
Engine’ smell should still be considered as a poor practice today, as
relational databases evolved since Karwin’s catalogue.

There exist several other SQL analysis and smell detection tools,
including TOAD2, SQL Prompt3, and SQL Enlight4. However, those
tools require a set of SQL queries as input, and they cannot analyze
the queries embedded in source code. SQLInspect can extract the
queries and detect SQL code smells given the project source code,
which justifies our choice.

Summary: In contrast with the studies discussed above, this
constitutes – to the best of our knowledge – the first empirical study
investigating the prevalence of SQL code smells, their association
with bugs and with other traditional code smells, as well as their
evolution over time. We expect this study to serve as a baseline for
further studies on the impact and persistence of SQL code smells
in data-intensive systems.

8 CONCLUSION AND FUTUREWORK
In this study, we investigated the prevalence of SQL code smells
and their association with bugs and other traditional code smells.
We collected 150 open-source Java projects, extracted both SQL and
traditional code smells, and then jointly analyzed their prevalence
and co-occurrence.We linked bug-inducing commits to those smells
using the SZZ algorithm to study their association with bugs. We
performed a survival analysis to study how SQL code smells are
handled throughout the lifetime of these projects.

Our results show that SQL code smells are prevalent in open-
source data-intensive systems, but at different levels. In particular,
we found that the Implicit Columns SQL code smell is the most
prevalent in our subject systems. With some exceptions, however,
we did not see a significant difference in the prevalence of SQL
code smells among application domains. Also, we found only a
weak association between SQL code smells and traditional code
smells. Survival analysis showed that a significant portion of SQL
code smells was created in the first tracked snapshot of the studied
systems and persisted in all snapshots without getting fixed.

Overall, our findings indicate that SQL code smells exist persis-
tently in data-intensive systems, but independently from traditional
code smells. As a consequence, developers have to be aware of SQL
code smells, so that they can identify those smells and refactor them
in order to avoid potential harm.

Our study is exploratory in nature. We believe that further in-
vestigation is needed to better understand the consequences of
SQL code smells. This includes, in particular, their impact on the
performance and the maintainability of data-intensive systems.
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