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Abstract—With the proliferation of online developer forums
as informal documentation, developers often share their opinions
about the APIs they use. However, given the plethora of opinions
available for an API in various online developer forums, it can
be challenging for a developer to make informed decisions about
the APIs. While automatic summarization of opinions have been
explored for other domains (e.g., cameras, cars), we found little
research that investigates the benefits of summaries of public API
reviews. In this paper, we present two algorithms (statistical and
aspect-based) to summarize opinions about APIs. To investigate
the usefulness of the techniques, we developed, Opiner, an online
opinion summarization engine that presents summaries of opin-
ions using both our proposed techniques and existing six off-the-
shelf techniques. We investigated the usefulness of Opiner using
two case studies, both involving professional software engineers.
We found that developers were interested to use our proposed
summaries much more frequently than other summaries (daily
vs once a year) and that while combined with Stack Overflow,
Opiner helped developers to make the right decision with more
accuracy and confidence and in less time.

Index Terms—Opinion mining; API informal documentation;
opinion summaries; study; summary quality.

I. INTRODUCTION

APIs (Application Programming Interfaces) offer interfaces
to reusable software components. Modern-day rapid software
development is often facilitated by the plethora of open-source
APIs available for any given development task. The online
development portal GitHub [1] now hosts more than 38 million
public repositories. We can observe a radical increase from the
2.2 million active repositories hosted in GitHub in 2014.

While developer forums serve as communication channels
for discussing the implementation of the API features, they
also enable the exchange of opinions or sentiments expressed
on numerous APIs, their features and aspects. In fact, we
observed that more than 66% of Stack Overflow posts that
are tagged “Java” and “Json” contain at least one positive
or negative sentiment. Most of these (46%) posts also do
not contain any code examples. The number of numerous
APIs available and the sheer volume of opinions about any
given API scattered across many different posts though pose
a significant challenge to gain quick and digestible insights.

Due to the diversity of opinions in online forums about
different products (e.g., camera, cars), mining and summariza-
tion of opinions for products have become an important but
challenging research area [2]. We are aware of no summariza-
tion techniques applied to API reviews. Given the plethora
of reviews available about an API in developer forums, it
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can be extremely beneficial to produce an informative but
concise representation of the summaries, so that quick but
useful insights can be gathered.

We developed an online API review summarization engine,
Opiner that given as input all the opinionated sentences about
an API produces summaries of the reviews using our two pro-
posed techniques: statistical and aspect-based summarization.
In Figure 1, we present a screenshot of Opiner. Opiner is
developed as a search engine, where developers can search
opinions for an API @ Upon clicking on API, developers can
see all the reviews collected about the API both in summarized
and original formats (2). A developer can also search for an
API aspect (e.g., performance) @ in Opiner, to find the most
popular APIs based on the aspect @ We investigated the
usefulness of Opiner based on two research questions:

RQ1: How informative are the various API opinion sum-
marization techniques to the developers?

We investigated the informativeness of our proposed sum-
maries against the summaries produced by six off-the-shelf
summarization techniques by conducting a study involving
10 professional software engineers. The 10 developers rated
the summaries of four different APIs using five development



scenarios (e.g., selection of an API, etc.). We found that
developers strongly favored our proposed summaries against
other summaries (more than 80% vs less than 50% ratings).

RQ2: How useful is an API opinion summarization engine
to support development decisions?

We conducted another study where we provided access to our
tool to professional software engineers to help them in their
selection of an API for two development tasks. We observed
that while developers correctly picked the right API with 20-
66% accuracy while just using Stack Overflow, they had 100%
accuracy while they used Opiner and Stack Overflow together.

This paper makes the following contributions:

1) Opiner: We present Opiner, our online API opinion
summarization and search engine where developers can
search for opinions about APIs.

2) Evaluation: We evaluated the effectiveness of the sum-
maries and Opiner using two case studies.

II. AUTOMATIC SUMMARIZATION OF API REVIEWS

We investigated opinion summarization algorithms from the
following major categories [2], [3]:

1) Aspect-based: positive and negative opinions are grouped
around aspects related to the entity (e.g., picture quality).
Aspects can be pre-defined or dynamically inferred using
algorithms such as topic modeling.

2) Contrastive: Contrastive viewpoints are grouped.

3) Extractive: A subset of the opinions are extracted.

4) Abstractive: An abstraction of the opinions is produced.

5) Statistical: Overall polarity is transformed into numerical
rating (e.g., star ratings).

We present algorithms to produce aspect-based and statis-
tical summaries of API reviews (see Sections II-B,II-C).
We leveraged off-the-shelf algorithms to produce extractive,
abstractive, and topic-based summaries and implemented the
algorithm proposed by Kim and Zhai [4] to produce contrastive
summaries (see Section II-D).

In Section II-A, we introduce the API review dataset that we
used to produce the summaries. We then leverage the dataset
to describe our summarization techniques.

A. Dataset

Our API review dataset was produced by collecting all
the opinionated sentences for each Java API mentioned in
the Stack Overflow threads tagged as “Java + JSON”, i.e.,
the threads contained discussions and opinions related to the
json-based software development tasks using Java APIs. We
selected Java APIs because we observed that Java is the most
popular Object-oriented language in Stack Overflow. As of
April 2017, there were more than 12.3 million threads in
Stack Overflow, behind only Javascript (13.5 million). We used
JSON-based threads for the following reasons: (1) Competing
APIs. Due to the increasing popularity in JSON-based tech-
niques (e.g., REST-based architectures, microservices, etc.),
we observed a large number of competing APIs in the threads
offering JSON-based features in Java. (2) Diverse Opinions.

TABLE I
STATISTICS OF THE DATASET (A = ANSWERS, C = COMMENTS)

Threads Posts A C | Sentences Words | Users
3048 22.7K 5.9K 13.8K ‘ 87K 1.08M ‘ 7.5K
Average 746 193 453 | 2855 35336 | 392

We observed diverse opinions associated to the competing
opinions from the different stakeholders (both API users
and authors). (3) Diverse Development Scenarios. JSON-
based techniques can be used to support diverse development
scenarios, such as, serialization, lightweight communication
between server and clients and among interconnected software
modules, and growing support of JSON-based messaging over

HTTP, using encryption techniques, and on-the-fly conversion

of Language-based objects to JSON formats, and vice versa.

In Table I we show descriptive statistics of the dataset.
There were 22,733 posts from 3048 threads with scores greater
than zero. We did not consider any post with a negative
score because such posts are considered as not helpful by
the developers in Stack Overflow. The last column “Users”
show the total number of distinct users that posted at least
one answer/comment/question in those threads. To identify
uniqueness of a user, we used the user_id as found in the
Stack Overflow database. On average, around four users par-
ticipated in one thread, and more than one user participated
in 2940 threads (96.4%), and a maximum of 56 distinct users
participated in one thread [5]. From this corpus, we identified
all of the Java APIs that were mentioned in the posts. Our API
database consists of the Java official APIs and the open source
Java APIs listed in the two software portals Ohloh [6] and
Maven central [7]." We crawled the javadocs of five official
Java APIs (SE 6-8, and EE 6,7) and collected information
about 875 packages and 15,663 types. We consider an official
Java package as an API in the absence of any guidelines
available to consider otherwise. In total, our API database
contains 62,444 distinct Java APIs. All of the APIs (11,576)
hosted in Maven central are for Java. From Ohloh, we only
included the Java APIs (50,863) out of the total crawled
projects (712,663). We considered a project in Ohloh as a
Java API if its main programming language was Java.

We collected the opinionated sentences about APIs using a
technique previously developed by Uddin an Khomh [8]. The
technique consisted of the following steps:

1) Loading and preprocessing of Stack Overflow posts.

2) Detection of opinionated sentences. We used a rule-based
algorithm based on a combination of Sentistrength [9] and
the Sentiment Orientation (SO) algorithm [10].

3) Detection of API names and hyperlinks in the forum
texts and the association of APIs to opinionated sentences
based on a set of heuristics.

In Table II, we present summary statistics of the opinionated
sentences detected in the dataset. Overall 415 distinct APIs
were found. While the average number of opinionated sen-
tences per API was 37.66, it was 2066 for the top five most

'We crawled Maven in March 2014 and Ohloh in Dec 2013.



TABLE II
DISTRIBUTION OF OPINIONATED SENTENCES ACROSS APIS
Overall Top Five
API Total +Pos  -Neg | Total +Pos —Neg
415 15,627 10,055 5,572 ‘ 10,330 6,687 3,643
Average 37.66 24.23 13.43 ‘ 2,066 1,337.40 728.60

reviewed APIs. In fact, the top five APIs contained 66.1%
of all the opinionated sentences in the posts. The APIs are
jackson, Google Gson, spring framework, jersey, and
org. json. Intuitively, the summarization of opinions will be
more helpful for the top reviewed APIs.

B. Statistical Summaries of API Reviews

An approach to statistical summaries is the “basic sentiment
summarization, by simply counting and reporting the number
of positive and negative opinions” [3]. In Figure 2, @ shows
such a summary for API jackson. We propose the following
statistical summaries for API reviews:

1) Star rating. Provides an overall sentiment representation
towards an API using a rating on a five-star scale. We
present a technique to compute a five star rating for an API
based on sentiments.

2) Sentiment Trends. Because APIs can undergo different
versions and bug fixes, the sentiment towards the API can
also change over time.

3) Co-Reviewed APIs. We visualize other APIs that were
mentioned in the same post where an API was reviewed.
Such insights can help find competing APIs.

1) Star Rating: The determination of a statistical rating
can be based on the input star ratings of the users. For
example, in Amazon product search, the rating is computed
using a weighted average of all star ratings. Thus, if there
are 20 inputs with 10 five stars, two four stars, four three
stars, one two stars, and three one stars, the overall rating
can be computed as 3.75. Given as input the positive and
negative opinionated sentences of an API, we computed an
overall rating of the API in a five star scale by computing
the proportion of all opinionated sentences that are positive
as follows: R = gpALoSInerS . For example, for the API
Jackson, with 2807 positive sentences and 1465 negative
sentences, the rating would be 3.3. In Figure 2, (1) shows
the calcuated five-star rating for Jackson.

Our approach is similar to Blair-Goldensohn et al. [11] at
Google research, except that we do not penalize any score that
is below a manually tuned threshold. In our future work, we
will investigate the impact of sentiment scores and popularity
metrics available in developer forums.

2) Sentiment Trend: We produce monthly aggregated sen-
timents for each API by grouping total positive and negative
opinions towards the APIL. In @ of Figure 2, the line charts
show an overview of the summary by months. We produced
the summary as follows: (1) We assign a timestamp to each
opinionated sentence, the same as the creation timestamp
of the corresponding post where the sentence was found.
(2) We group the timestamps into yearly buckets and then into
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Fig. 2. Statistical summarization of opinions for API Jackson.

monthly buckets. (3) We place all the opinionated sentences
in the buckets based on their timestamp.

3) Co-Reviewed APIs: In Figure 2, (4) shows the other
APIs that were reviewed in the same posts where the API
Jackson was discussed. We computed this as follows: (1) For
each opinionated sentence related to the given API, We iden-
tify the corresponding posts where the sentence was found.
(2) We detect all the other API mentions in the same post.
(3) For each of the other APIs in the post, we detect the
opinionated sentences related to the APIs. (4) For each API,
we group the positive and negative opinions in each post.
(5) We then calculate a ratio of negativity vs positivity by
taking the count of total positive opinions for the given API
vs total negative opinions for each of the other APIs. If the
ratio is greater than one, we say that the given API is more
negatively reviewed around the other API. (6) For each of the
other APIs, We count the number of times the other API is
more positively reviewed around the given APIL

C. Aspect-Based Summaries of API Reviews

Aspect-based summarization [11], [12] involves generating
summaries of opinions around a set of aspects, each aspect
corresponding to specific attributes/features of an entity about
which the opinion was provided. For example, for a camera,
picture quality can be an aspect. Aspects can be different
depending on the domains. Thus the detection of domain
specific aspects is the first step towards aspect-based opinion
summarization [13]. In this section, we describe the compo-
nents of our system that identifies the aspects of an API about
which developers provided opinions. This includes finding



the corresponding sentences that mention these aspects. Our
approach contains the following steps, each supported by our
development infrastructure:

1) Static aspect detection: We leverage the fact that similar to
other domains [11], we observed a Zipfian distribution for
API reviews, i.e., some aspects are more likely to be dis-
cussed across the APIs (e.g., performance, usability). These
are called static aspects [11] and we present techniques to
automatically detect those in Section II-C.

2) Dynamic aspect detection: We observe that certain aspects
can be more common in an API or a group of APIs
(e.g., ‘object conversion” for JSON parsing APIs vs ‘applet
size’ for APIs to design user interfaces). The detection of
these dynamic aspects requires techniques different from the
detection of static aspects (see Section II-C)

3) Summarizing opinions for each aspect: For each API, we
produce a consolidated view by grouping the reviews under
the aspects and by presenting different summarized views
of the reviews under each aspect (see Section II-C3).

Static Aspect Detection

In a previous study, Uddin et al. [8] surveyed software
developers and found that developers prefer to see opinions
about the following API aspects in the forum posts: (1) Per-
formance: How well does the API perform? (2) Usability:
How usable is the API? (3) Security: How secure is the
API? (4) Documentation: How good is the documentation?
(5) Compatibility: Does the usage depends on other API?
(6) Portability: Can the API be used in different platforms?
(7) Community: How is the support around the community?
(8) Legal: What are licensing requirements? (9) Bug: Is the
API buggy? (10) Only Sentiment: Opinions without specifying
any aspect. (11) Others: Opinions about other aspects. We de-
veloped a supervised classifier to detect each aspect to account
for the fact that more than one aspect can be discussed in one
opinionated sentence. We used four performance measures to
assess the performance of the classifiers: precision (P), recall
(R), F-measure (F'1), and Accuracy (A).

TP TP
pP= , R= s
TP+ FP TP+ FN

PxR
* —_
P+R’

TP+TN

Fl1=2 - —
TP+FP+TN+FN

TP = Nb. of true positives, and FN = Nb. false negatives.

We report the performance of our aspect detection com-
ponent using a dataset previously labeled by Uddin and
Khomh [8]. The benchmark consisted of 4,594 manually la-
beled sentences from 1,338 Stack Overflow posts. The threads
were selected from 18 tags representing nine distinct domains
(two tags for each domain).

Candidate Classifiers. Because the detection of the aspects
requires the analysis of textual contents, we selected two
supervised algorithms that have shown better performance for
text labeling in both software engineering and other domains:
SVM and Logistic Regression. We used the Stochastic Gra-
dient Descent (SGD) discriminative learner approach for the
two algorithms. For SVM linear kernel, we used the 1ibsvm
implementation. Both SGD and libsbm offered more flexibility

TABLE III
PERFORMANCE OF STATIC ASPECT DETECTORS
Precision Recall F1 Score Accuracy
Aspect | N| A S| A S| A S| A S
Performance B 0.78 0.10 0.46 0.16 0.56 0.13 0.95 0.01
Usability B 0.53 0.05 0.75 0.10 0.62 0.06 0.71 0.04
Security U | 078 027 | 058 0.17 | 060 0.16 | 097 0.06
Community U 0.40 0.32 0.24 0.22 0.26 0.20 0.97 0.01
Compatibility T | 050 050 | 0.08 0.09 | 0.13 0.14 | 098 0.00
Portability 8] 0.63 0.21 0.63 0.22 0.61 0.19 0.99 0.01
Documentation B 0.59 0.18 0.43 0.17 0.49 0.18 0.95 0.02
Bug U | 057 016 | 050 0.16 | 051 012 | 096 0.01
Legal U 0.70 0.28 0.46 0.18 0.52 0.19 0.99 0.00
OnlySentiment B | 061 014 | 043 0.4 | 050 0.14 | 094 0.02
Others U | 061 007 | 067 006 | 064 006 | 0.71 0.05

N = Ngram, U = Unigram, B = Bigram, T = Trigram, A = Average, S = Stdev

for performance tuning (i.e., hyper-parameters) and both are
recommended for large-scale learning.’

We applied the SVM-based classification steps as recom-
mended by Hsu et al. [15] who observed an increase in
performance based on their reported steps. The steps also
included the tuning of hyper parameters. Intuitively, the opin-
ions about API performance issues can be very different from
the opinions about legal aspects (e.g., licensing) of APIs.
Due to the diversity in such representation of the aspects, we
hypothesized each as denoting a sub-domain within the general
domain of API usage and tuned the hyper parameters of
classifiers for each aspect.> As recommended by Chawla [16],
to train and test classifiers on imbalanced dataset, we set lower
weight to classes with over-representation. In our supervised
classifiers, to set the class weight for each aspect depending
on the relative size of the target values, we used the setting
as ‘balanced’ which automatically adjusts the weights of each
class as inversely proportional to class frequencies.

Picking the Best Classifiers. To train and test the performance
of the classifiers, we applied 10-fold cross-validation on the
benchmark for each aspect as follows: (1) We put a target value
of 1 for a sentence labeled as the aspect and O otherwise.
(2) We tokenized and vectorized the dataset into ngrams.
We used n = 1,2,3 for ngrams, i.e., unigrams (one word as
a feature) to trigrams (three consecutive words). We inves-
tigated the ngrams due to the previously reported accuracy
improvement of bigram-based classifiers over unigram-based
classifiers [17]. (3) As recommended by Hsu et al. [15], we
normalized the ngrams by applying standard TF-IDF with
the optimal hyper-parameter (e.g., minimum support of an
ngram to be considered as a feature). (4) For each ngram-
vectorized dataset, we then did a 10-fold cross-validation of
the classifier using the optimal parameter. For the 10-folds
we used Stratified sampling which keeps the ratio of target
values similar across the folds. (5) We took the average of the
precision, recall, F1-score, accuracy of the 10 folds. (6) Thus
for each aspect, we ran our cross-validation nine times - three
times for each candidate classifier and once for each of the
ngrams. (7) We picked the best performing classifier as the
one with the best Fl-score among the nine runs.

2We used the SGDClassifier of Scikit [14]
3we computed hyper parameters using the GridSearchCV algorithm of Scikit-Learn
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Fig. 3. The distribution of dynamic aspects in the dataset

In Table III, we report the performance of the final classifiers
for each aspect. Except for one aspect (Security), SVM-
based classifiers were found to be the best. Unigram-based
features were better-suited for most of the aspects (five as-
pects and others), followed by bigrams (four aspects) and
trigrams (Compatibility). The diversity in ngram selection can
be attributed to the underlying composition of words that
denote the presence of the corresponding aspect. For example,
performance-based aspects can be recognized through the
use of bigrams (e.g., thread safe, memory footprint). Legal
aspects can be recognized through singular words (e.g., free,
commercial). In contrast, compatibility-based features require
sequences of words to realize the underlying context.

Analysis of Misclassifications. While the precisions of nine
out of the 10 detectors are at least 0.5, it is only 0.39 for
the aspect ‘Community’. While the detection of the aspect
‘Compatibility’ shows an average precision of 0.5, there is a
high degree of diversity in the detection results. For example,
in second column under ‘Precision’ of Table III, we show
the standard deviation of the precisions across the 10 folds
and it is 0.5 for ‘Compatibility’. This happened because the
detection of this aspect showed more than 80% accuracy
for half of the folds and close to zero for the others. We
observed two primary reasons for the misclassifications, both
related to the underlying contexts required to detect an aspect:
(1) Implicit: When a sentence was labeled based on the
nature of its surrounding sentences. Consider the following
two sentences: (1) “JBoss is much more popular, ...it is
easier to find someone ...”, and (2) “Sometimes this is
more important ...”. The second sentence was labeled as
community because it was a continuation of the opinion started
in the first sentence which was about community support
towards the API JBoss. (2) Unseen: When the features (i.e.,
vocabularies) corresponding to the particular sentence were not
present in the training dataset. In the future we will investigate
this issue with different settings, e.g., using more labeled data.

In Figure 3, (1) shows the distribution of the static aspects
in our dataset. Some aspects are much less represented due to
the specific nature of the domain. For example, ‘security’ is
less of a concern in JSON parsing than it is in network-based
tasks. The aspect ‘Compatibility’, because APIs offering JSON
parsing in Java can be applied irrespective of the underlying

operating system. The aspect ‘Usability’ accounted for almost
60% of the opinions, followed by ‘Others’. The sentences
belonging to the ‘Others’ category contain opinions about
API aspects not covered by the static aspects. We apply our
dynamic aspect detection on the opinions labeled as ‘Others’.

Dynamic Aspect Detection

We detect dynamic aspects on the 15% of the sentences in
our dataset that were labeled exclusively as ‘Others’. Our dy-
namic aspect detection algorithm is adopted from similar tech-
niques used in other domains, e.g., electronic products [10],
and local service reviews (e.g., hotels/restaurants [11]).

Our approach consists of the following three steps:

1) Keyword Identification: We find representative keywords
and phrases in the sentences labeled as ‘Others’.

2) Pruning: We discard keywords/phrases based on two filters.
The remaining items are considered as dynamic aspects.

3) Assignment: We assign each sentence to a dynamic aspect.

The remaining keywords are considered as dynamic aspects.
We discuss the steps with examples below.

1) Keyword Identification: The first step in dynamic aspect
detection is to find keywords/phrases that are most likely to
be a representation of the underlying domain. Unlike Hu et
al. [10] and BlairGoldensohn et al. [11] who used frequent
itemset mining, we use the keyphrase detection process used
in the Textrank algorithm. Textrank uses the Google Page rank
algorithm to find representative keyphrases in a given dataset.*
The page rank algorithm has been successfully applied in
software engineering research [18]. We detect the keyphrases
as followed: (1) We tokenize the sentences (2) We remove the
stopwords (3) We detect Parts of Speech (4) We discard any
words that are not Nouns (5) We create a graph of the words by
putting the words as nodes and creating an edge between the
words whenever they appeared together in the dataset. (6) On
this network of words, we then applied the Page rank algorithm
to find the ranking of each words. (7) From this ranking, we
keep the top 5% words as keywords. In our future work, we
will investigate the algorithm with different percentages of
keywords. We then merge two or more keywords into one
if they appeared together in the sentences.

2) Pruning: Hu et al. [10] and BlairGoldensohn et al. [11]
observed that, the frequent keywords by themselves can still
be too many to produce a concise list of aspects. We thus apply
two filters on the keywords to remove the keywords that are
not widely found across different APIs. Both of the filters were
originally proposed by Hu et al. [10] We then compute the TF-
IDF score of the remaining keywords and phrases in all the
sentences labeled as ‘Others’ and rank those based on score
(i-e., a keyword with a higher score is more representative).

3) Assignment: We assign each sentence in the ‘Others’
dataset to a keyword as identified in the previous step. If
a sentence is not labeled as any of the keywords/phrases,
we consider it as a ‘general comment’. We label each such
sentence as discussing about an API ‘feature’. For a sentence

“We used the Page rank implementation from Python networkx library



Json:

®

» Documentation: 51

3 e 3 |
« I can deserialize it fine with mapper.readvalue » Features: 206

is the String containing your json. « Portability: 4
» Object: 8
s Community: 6
Class: 10
Onlysentiment: 38

Performance:

* @Zaphod42 Efficiency doesn't only apply to hi |

« The root cause it that your data is too large tc
* Performance: 43

Documentation:

Most Popular

1. return: 1
= Always return out of memory.. details

Most Positive Most Negative

1. com.fasterxml.jackson
o And with Jackson don't help me when I need to parse large files, so for
. read large files.
o Solve the out of memory problem.
e I've seen some performance metrics on GSON - FlexJSON and J:
POJO into JSON, and have better overall speed/performance thal
o The root cause it that your data is too large to be held in memo
o seems like jackson need them and gson doesn't right, this is a d

Nonthly senfiment distribution for aspect Usabiity

) el

Fig. 4. Screenshot of the aspect-based summarizer

labeled as more than one dynamic aspect, we assign it to the
one with the highest TF-IDF score.

In Figure 3, (2) shows the distribution of the dynamic
aspects (except the general comments) in the dataset.

Aspect-Based Summarizing of Opinions

We produce the following summaries based on the aspects:
1) Overview, 2) Nested aspect views, and 3) Comparative
by aspect. We explain the techniques behind each summaries
below:

(1) Overview: For a given API, we produce a consolidated
overview of the aspects detected in its reviews. The overview
contains the rating of each aspect for the given API and the
most recent positive and negative opinion. In Figure 4, (1)
shows the overview page. The aspects are ranked based on
their recency, i.e., the aspect with the most recent positive or
negative opinion is placed at the top. We further take cues
from Statistical summaries and visualize sentiment trends per
aspect for the APIL. Such trends can be useful to compare how
its different aspects have been reviewed over time.

(2) Nested Views Given as input all the positive or negative
opinions of an API, we group the opinions by the detected
aspects. We rank the aspects based on their recency, i.e., the
aspect with the most opinion is placed at the top. We observe
that even after this grouping, some of the aspects contain
hundreds of opinions (e.g., Usability). To address this, we
further categorize the opinions under each aspect into sub-
categories. We denote those as nested-aspect. We detect the
nested aspects as follows. (a) We collect all the Stack Overflow
tags associated to the threads in the dataset. (b) For each
sentence under a given aspect of an API, we label each opinion
as a tag, if the opinion contains at least one word matching
the tag. (c) For an opinion labeled as more than one tag, we
assign the opinion to the tag that covers the most number of
opinions within the aspect for the API. (d) For an opinion that
can not be labeled as any of the tags, we label it as ‘general’.
In Figure 4, the second circle(@) shows a screenshot of the
nested views of the negative opinions of the API Jackson. By

clicking the ‘details’ link the user is taken to the corresponding
post in Stack Overflow where the opinion was provided.

(3) Comparative By Aspect While all the above three sum-
marizations take as input the opinions and aspects of a given
API, they do not offer a global viewpoint of how a given aspect
is reviewed across the APIs. Such an insight can be useful to
compare competing APIs given an aspect (e.g., performance).
We show three types metrics: popularity ,’Z?ixg , positivity 113—2,
and negativity x—z‘ P, is the total number of positive opinions
about an API, and P¢ is the total number of positive opinions
about all APIs. In Figure 4, the third circle(@) shows a
screenshot of the ‘comparative by aspect’ views for the aspect
‘performance’ and shows that the most popular API for json-
based features in Java is jackson. A user can click the API
name and then it will show the most recent three positive
and three negative sentences, one after another. If the user
is interested to explore further, a link is provided after those
six opinions that will take the user to all the opinions and
summaries of the reviews of the APL

D. Summarization Algorithms Adopted For API Reviews

In this section, we explain how we adopt currently available
summarization algorithms to produce extractive, abstractive,
contrastive, and topic-based summaries of API reviews.

1) Topic-based Summarization: In a topic-based opinion
summarization [19]-[23], topic modeling is applied on the
opinions to discover underlying themes as topics. There are
two primary components in a topic-based opinion summa-
rizer: (1) A title/name of the produced topics, and (2) A
summary description of the topic. Three types of summaries
are investigated: word-level [19], [20], phrase level [21] and
sentence level [22], [23]. For each API in our dataset, we
summarize the reviews by applying LDA (Latent Dirichlet
Allocation) [24] once for the positive opinions and once for the
negative opinions. We apply standard practices, e.g., optimal
number of topic detection (we use the technique proposed by
Arun et al. [25]). To determine the representativeness of topics,
we use the topic coherence measure as proposed by Roder et
al. [26]. For each topic, we produce a description by taking
the top ten words of the topic.

2) Contrastive Viewpoint Summary: In contrastive sum-
maries, contrastive viewpoints are grouped together (e.g., “The
object conversion in gson is easy to use’ vs ‘The object con-
version in GSON is slow’). In the absence of any off-the-shelf
API available to produce such summaries, we implemented the
technique proposed by Kim and Zhai [4].

3) Extractive Summarization: With the extractive summa-
rization techniques, a summary of the input documents is
made by selecting representative sentences from the original
documents. Extractive summaries are the most prevalent for
text summarization across domains (e.g., news, blogs). For
each API, we apply three extractive summarization algorithms:
Luhn [27], Lexrank [28], and Textrank [29]. Luhn is the oldest
summarization algorithms, while Texrank and Lexrank are
among the most recent. Using each algorithm, we produce
two summaries for each API, one for positives and one for



negatives. For each API, we produce summaries containing 1%
of the inputs or 10 opinionated sentences (whicever yields the
most number of sentences in the summary). Each sentence in
our dataset has 12 words on average. The most reviewed API
in our dataset is Jackson with 28 sentences with a 1% threshold
(i.e., 330-340 words). For 10 sentences, the summaries would
have 120 words. Previous research considered lengths of
extractive summaries to be between 100 and 400 words [30].

4) Abstractive Summarization: Abstractive summaries pro-
duce an abstraction of the documents by generating concise
sentences. A limitation of extractive summarization for opin-
ions is that a limit in the summary size may force the algo-
rithm to remove important sentences. We produce abstractive
summary for an API once for positive sentences and once for
negative sentences using Opinosis [31], a domain-independent
abstractive opinion summarization engine.

III. INFORMATIVENESS OF THE SUMMARIES (RQ1)

Because the goal of the automatic summary of the reviews
of an API is to provide developers with a quick overview of
the major properties of the API that can be easily read and
digested, we performed a study involving potential users, in
a manner similar to previous evaluation efforts on software
artifact summarization [32], [33]. In this section, we describe
the design and results of the study.

A. Study Design

Our goal was to judge the usefulness of a given summary.
The objects were the different summaries produced for a given
API and the subjects were the participants who rated each
summary. The contexts were five development tasks. The five
tasks were designed based on a preliminary survey of software
developers of their preference to use summaries of API reviews
in assisting development tasks [8].

Each task was described using a hypothetical development
scenario where the participant was asked to judge the sum-
maries through the lens of the software engineering profession-
als. Persona based usability studies have been proven effective
both in the Academia and Industry [34]. We briefly describe
the tasks below.

T1. Selection. (Can the summaries help you to select this
API?) The persona was a ‘Software Architect’” who was
tasked with making a decision on a given API based on
the provided summaries of the API. The decision criteria
were: (Cl) Rightness: contains the right and all the useful
information. (C2) Relevance: is relevant to the selection.
(C3) Usable: different viewpoints can be found.

T2. Documentation. (Can the summaries help to create
documentation for the API?) The persona was a ‘Technical
Writer’ who was tasked with writing a software documentation
of the API to highlight the strengths and weaknesses of a given
API based on the reviews in Stack Overflow. The decision
criteria were: (CI) Completeness: complete yet presentable
(C2) Readable: easy to read and navigate.

T3. Presentation. (Can the summaries help you to justify
your selection of the API?) The persona was a development

team lead who was tasked with creating a short presentation
of a given API to other teams with a view to promote
or discourage the usage of the API across the company.
The decision criteria were: (C1) Conciseness: is concise yet
complete representation (C2) Recency: shows the progression
of opinions about the different viewpoints.

T4. Awareness. (Can the summaries help you to be aware
of the changes in the API?) The persona was a software
developer who needed to stay aware of the changes to this
API because she used the API in her daily development
tasks. The decision criteria were: (CI) Diversity: provides a
comprehensive but quick overview of the diverse nature of
opinions. (C2) Recency: shows the most recent opinions first.

T5. Authoring. (Can the summaries help you to author an
API to improve its features?) the persona was an API author,
who wanted to assess the feasibility of creating a new API to
improve the features offered by the given API. The decision
criteria were: (C1) Strength and Weakness highlighter: shows
the overall strengths and weakness while presenting the most
recent opinions first. (C2) Theme identification: presents the
different viewpoints about the APIL

We assessed the ratings of the three tasks (Selection,
Documentation, Presentation) using a 3-point likert scale (the
summary does not miss any info, Misses some info, misses
all the info). For the task (Authoring), we used a 4-point
scale (Full helpful, partially helpful, Partially Unhelpful, Fully
unhelpful). For the task (Awareness), we asked participants
how frequently they would like to use the summary (never,
once a year, every month, every week, every day). Each of
the decision criteria under a task was ranked using a five-point
likert scale (Completely Agree — Completely Disagree).

Each participant rated the summaries of two APIs. We
collected ratings for four different APIs. The four APIs
(Jackson, GSON, org.json and jersey) were the four most
reviewed APIs in our dataset offering JSON-based features in
Java. The four APIs differed from each other on a number of
aspects. For example, Jackson differentiates itself by providing
annotation-based mixin to facilitate faster processing of JSON
files. GSON focuses more on the usability of the overall usage,
org.json is the oldest yet the natively supported JSON API
in Android, and jersey is a framework (i.e., it offers other
features besides providing JSON features). In addition to col-
lecting rates for each summary, we also collected demographic
information about the participants, i.e., by collecting their
experience and current roles in their development teams. We
analyzed the responses using descriptive statistics.

B. PFarticipants

We hired 10 participants from the online professional social
network site (Freelancer.com). Each freelancer had at least a
4.5 star rating (the maximum possible star rating being 5).
Sites like Amazon Mechnical turks and Freelancer.com have
been gaining popularity to conduct studies in empirical soft-
ware engineering research due to the availability of efficient,
knowledgable and experienced software engineers. We only
hired a software engineer if he used at least one of the four
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Fig. 5. Developers’ preference of usage of summaries

TABLE IV
IMPACT OF THE SUMMARIES BASED ON THE SCENARIOS

Task | Option | S A T C B L P U

Selection NM \ 75 80 25 40 10 20 35 35
MS 25 20 65 50 40 65 60 65
MA 0 0 10 10 50 15 5 0

Documentation NM 60 75 40 25 20 25 35 30
MS 25 20 40 60 50 50 50 55
MA 15 5 20 15 30 25 15 15

\
NM |65 65 40 20 20 20 30 10
\

|
\
Presentation |
|

MS 30 30 35 50 50 60 65 80
MA 5 5 25 30 30 20 5 10
Authoring FH 50 75 15 10 5 10 20 20
PH 40 10 55 65 50 55 40 45
PU 5 10 10 0 25 5 10 10
FU 0 0 0 5 10 10 5 0
NT 5 5 20 20 10 20 25 25

NM = Not misses any info, MS = Misses some info, NT = Neutral

MA = Misses all info, S = Statistical Summary, A = Aspect

FH/PH = Full/Partially Helpful, FU/PU = Full/Partially Unhelpful

T = Topic-based, B = Abstractive, L = Lexrank, P = Texrank, U = Luhn

APIs in the past. Each participant was remunerated between
$7-$12, which is a modest sum given the volume of the work.
Each participant was allowed to complete a study only once.
To ensure future traceability, we collected the name and email
address of each participant. The study was conducted using
Google Doc Form. Each participant was given an access to
the Opiner online tool and provided a short demo of the tool
to ensure that they understood the tool properly. In addition, a
coding guide was linked to the study questionnaire to explain
all the summaries in details. Each reference to a summary of
a given API was also linked to the corresponding web page
in Opiner. The participants were allowed to only complete the
study when they completed reading the coding guide. All of
the participants were actively involved in software develop-
ment and had software development experience ranging from
three to more than 10 years. The occupation of the participants
varied among software developers, team leads, and architects.

C. Results

In Table IV, we show the percentage of the ratings for
each summary for the four tasks (Selection, Documentation,
Presentation, Authoring). In Figure 5, we show the percentage
of participants showing their preference towards the usage of
the summaries to stay aware (Awareness task). The aspect-
based summary was considered as the most useful, followed by

TABLE V
RATIONALE BASED ON THE SCENARIOS (ONLY COMPLETELY AGREED
AND AGREED STATISTICS ARE PRESENTED FOR BREVITY)

T \ Criteria Agree S A T C B L P U

S Rightness & 55 65 25 15 5 10 20 25
E & 30 20 15 55 35 40 25 25
L Relevant W& 65 60 25 10 5 15 25 10
E & 25 20 20 55 40 30 25 40
C | Usable & 40 60 25 30 10 15 25 10
T & 45 20 30 30 30 35 35 45
D | Complete & 55 60 35 15 15 20 30 30
o & 15 20 20 45 35 30 20 20
C | Readable W& 60 65 35 30 20 20 20 20
U & 20 30 35 35 45 35 40 35
P Concise & 60 65 30 15 10 10 25 15
R & 25 20 25 50 40 35 20 35
E Recency W& 65 70 35 15 25 20 25 25
S & 15 10 20 30 20 30 25 20
A | Diversity & 60 75 25 15 IS 10 25 15
w & 30 10 40 60 40 55 50 60
A | Recency & 55 70 30 10 15 10 15 10
R & 15 10 25 40 45 40 30 30
A | Highlight & 50 70 25 15 10 15 25 15
U & 25 15 35 50 50 50 35 45
T Theme & 25 65 20 20 10 15 20 15
H & 50 20 25 35 40 30 25 30

b= Completely Agree, U = Luhn, L = Lexrank,
S = Statistics, A = Aspect, T = Topic, B = Abstract, P = Textrank

statistical summaries. Among the other summaries, the topic-
based summaries were the most favored. In Table V, we show
the percentages of the ratings for each criteria under each
development task. We discuss the rationales below.

1) Selection: While most participants completely agreed
the most (60-65%) for aspect-based summaries, when we com-
bined the ratings of completely agreed and agreed, statistical
summaries were the most favored. When the participants were
asked to write a short summary of their ratings based on the
provided criteria, participant R6 summed it up well “First I
used the statistics summarization to get an overview on the
API, whether I should go on and check it’s details. Then I
headed to Aspect-based summarization to check each aspect
of the API. These gave me a good picture of the API and
whether we should use it or not.”

2) Documentation: The aspect-based summary was fa-
vored followed by statistical summaries. Among the other
summaries, topic-based summaries were the most favored,
showing the needs of grouping opinions by themes as well
as offering visualizations. According to a participant “Aspect-
based summarization’s documentation part was a huge help
making the decision. All the other summarization were quite
useless regarding deciding about documentation.”

3) Presentation: While aspect and statistical summaries
were again strongly favored, contrastive summaries were the
most favored among the rest, showing a similarity with the
‘Selection’ task. This inclination could mainly be due to the
fact that both tasks asked them to provide justification of
their selection/usage of the API. According to one participant
“Statistical is ideal for presentation Aspect covers every thing
trends, positive and negative response, response summary”.



4) Awareness: While the aspect and statistical summaries
were the most favored based on each criteria, topic-based was
considered as the most helpful among others. Intuitively, the
same trends were observed for the task ‘Documentation’, and
we note both were focused towards helping developers while
‘Selection’ and ‘Presentation” were mainly for software devel-
opers who are not involved in daily programming activities.

5) Authoring: Aspect-based summaries were still favored
the most, because of the ratings provided to each aspect in the
overview page ‘Aspect-based summary helped a lot with it’s
rating system, where I could see exactly what are the weak
spots of the API, so what should I concentrate on if I decide
to make a new, better APL”

IV. EFFECTIVENESS ANALYSIS OF OPINER (RQ3)

Because the purpose of developing Opiner was to add ben-
efits over the amazing usefulness Stack Overflow provides to
the developers, we sought to seek the usefulness of Opiner by
conducting another study of professional software developers
who completed two tasks using Stack Overflow and Opiner.

A. Study Design

The goal of this study is to analyze the usefulness of Opiner
to assist in a development task. The objects of this study are the
APIs and their summaries in Opiner and Stack overflow. The
subjects are the participants completing the tasks. Our study
consisted of two parts: (P1) Assessment of Opiner’s usefulness
in a development setting (P2) Opportunities of Industrial
adoption of Opiner. To conduct the study, we developed
an online data collection tool with the following features:
1) Login features for each user 2) Passive logging of user
activities 3) Storage of user inputs in a relational database.

P1. Usefulness Analysis. We designed two tasks, both corre-
sponding to the selection of an API from a pool of two APIs.
The two tasks corresponded to two different sets of APIs.

(T1) The participants were asked to make a selection out
of two APIs (GSON and org.json) based on two criteria:
a) Usability, and b) Licensing usage. The right answer was
GSON. The licensing agreement of the API org.json is gener-
ally considered not safe for Industrial usage [35].

(T2) The participants were asked to make a selection out of
two APIs (Jackson and json-lib) based on two criteria:a) Per-
formance and b) Pre-installed base in leading frameworks
(e.g., Spring, Restlet, etc.) The correct answer was Jackson
which is the pre-packaged JSON API in the major frameworks.

We asked each developer to complete a task in two settings:

1) SO only: Complete only using Stack Overflow
2) SO + Opiner: Complete using Stack Overflow + Opiner

For a task in a each setting, each developer was asked to
provide following answers: (1) Selection: Their choice of API
(2) Confidence: How confident they were while making the
selection. We used a five-point scale: Fully confident (value 5)
- Fully unsure (1). (3) Rationale: The reason of their selection
in one or more sentences. In addition, we logged the time it
took for each developer to complete a task under each setting.

TABLE VI
PROGRESSION OF LEARNING FROM STACK OVERFLOW TO OPINER
T Tool Correctness Conversion Confidence Time
1 SO 20.0% - 4.3 12.3
SO + Opiner 100% 100% 4.5 7.5
2 SO 66.7% - 2.7 18.6
SO + Opiner 100% 100% 4.6 6.8

P2. Industrial Adoption After a developer completed the
tasks, we asked her to share her experience of using Opiner:

» Usage: Would you use Opiner in your development tasks?
« Usability: How usable is Opiner?
« Improvement: How would you like Opiner to be improved?

The developers were asked to write as much as they can.

B. Participants

We invited nine professional developers from a software
company and two developers from Freelancer.com to partic-
ipate in the study. The experience of the developers ranged
between 1 year and 34 years. The developers carried on
different roles ranging from software developer to architect
to team lead. The team leads were also actively involved
in software development. Except one developer from the
company all others participated in the study. We first provided
an online demo of Opiner to them within the company during
the lunch time. The Freelancers were provided the demo by
sharing the screen over Skype. After the demo, each developer
was given access to our data collection tool.

C. Study Data Analysis

We analyzed the responses along the following dimen-
sions:1) Correctness: How precise the participants were while
making a selection in the two settings. 2) Confidence: How
confident they were making the selection? 3) Time: How
much time did the developers spend per task? In addition, we
computed a ‘conversion rate’ as the ratio of developers who
made a wrong selection using Stack Overflow but made the
right selection while using both Stack Overflow and Opiner.

D. Results

Usefulness Analysis. Nine developers completed task 1 using
the two different settings (10 using Stack Overflow, one of
them could not continue further due to a sudden deadline
at work). Five developers completed task 2 using both of
the settings (nine using Stack Overflow, four of them could
not complete the task. In Table VI, we present the impact of
Opiner while completing the tasks. To compute the Conversion
rate, we only considered the developers that completed a
task in both setting. For task 1, only 20% of the developers
using Stack Overflow only selected the right API, but all of
those who later used Opiner picked the right API (i.e., 100%
conversion rate). For task 2, only 66.7% of the developers
using Stack Overflow only selected the right API, but all of
them picked the right API when they used both Opiner and
Stack Overflow (conversion rate = 100%). The developers
using the setting ‘SO+Opiner’ on average took only 7.5



minutes total to complete T1 and 6.8 minutes to complete
T2. When the same developers used SO alone, they took on
average 12.3 minutes to complete T1 and 18.6 minutes to
complete T2. The developers also reported higher confidence
levels when making the selection using Opiner with Stack
Overflow. For task 1, the confidence increased from 4.3 to
4.5 and for Task 2, it increased from 2.6 (Partially unsure) to
4.6 (almost fully confident). For Task 1 one developer did not
select any API at all while using Stack Overflow and wrote
“not a lot of actual opinions on the stackoverflow search for
net.sf.json-lib and same for com.fasterxml.jackson. Most Stack
Overflow questions are related to technical questions”. One of
the developers (with 7 years of experience) spent more than 23
minutes for Task 1 while using Stack overflow only and made
the wrong selection, but then he picked the right API while
using Opiner by citing that he found all the information in the
summary “com.google.code.gson has an open source license,
while I was only able to find a snippet citing ‘bogus license’
for org.json ...” The developers found the information about
license while using Aspect-based summaries.

Industrial Adoption. All developers answered to the three
questions. We summarize major themes below.

1) Would you use Opiner in your daily development tasks:
Nine out of the 10 developers mentioned that they would
like to use Opiner. The participants wanted to use Opiner
as a starting point, “Yes I would use Opiner. The summaries
were a great way to form a first opinion which could then be
improved with specific fact checking. If I was not constrained
by today’s exercise to only use Stack Overflow then I would
then challenge the my first opinion with general searches.”
For one developer the usage may not be daily “Yes, perhaps
not daily ...the value is the increased confidence. The co-
mentioned APIs are extremely valuable.”

2) How usable is Opiner: The participants were divided
about the usability of Opiner. Half of the participants consid-
ered it usable enough “It is very user-friendly to use. Got used
to it quickly.”. For another participant “The Ul is simple. But
is a bit confusing to go through the tabs to find out exactly
what the user needs. The search bar is a big help.”

3) How would you improve Opiner: Moving forward, the
participants offered a number of features that would like to
see in Opiner:1) Enhanced contrastive: “Focus on contrastive
view, ...instead of its technical qualities (e.g. why use one vs
another).” 2) Documentation: “A brief description regarding
what ’Aspects’, ’Contrastive’, 'Extractive’, ’Abstractive’ mean
would be helpful” 3) Sorting: For aspect-based summaries “I
think the categories need to be in alphabetical order. It makes
it hard when I was comparing to API to another because I had
to ctrl-f to find category.” 4) Opinion from multiple sources:
“Another thing that could improve Opiner is if it mined from
other websites too. I think it would give an even better opinion
and I would be tempted to use it more than google then.”

V. THREATS TO VALIDITY

Construct validity threats concern the relation between
theory and observations. In this study, they could be due to

measurement errors. In fact, the accuracy of the evaluation of
API aspects and mentions is subject to our ability to correctly
detect and label each such entities in the forum posts we
investigated. We relied on the manual labelling of aspects [8].
To assess the performance of participants, we use time and
the percentages of correct answer which are two measures
that could be affected by external factors, such as fatigue.

Reliability validity threats concern the possibility of repli-
cating this study. We attempted to provide all the necessary de-
tails to replicate our study. The anonymized survey responses
are provided in our online appendix [36]. Nevertheless, gen-
eralizing the results of this study to other domains requires
an in-depth analysis of the diverse nature of ambiguities each
domain can present, namely reasoning about the similarities
and contrasts between the ambiguities in the detection of API
aspects mentioned in forum posts.

VI. RELATED WORK

Related work can broadly be divided into (1) Analysis of
developer forums; and (2) Summarization of software artifacts.

Analysis of Developer Forums. Online developer forums
have been studied extensively, to find dominant discussion
topics [37], [38], to analyze the quality of posts [39]-[44],
to analyze developer profiles [45], [46], or to determine the
influence of badges in Stack Overflow [47]. Several tools have
been developed, such as autocomment assistance [48], collab-
orative problem solving [49], [50], and tag prediction [51].

Summarization in Software Engineering. Natural language
summaries have been investigated for software documenta-
tion [52]-[55] and source code [S56]-[59]. Murphy [60] pro-
posed two techniques to produce structural summary of source
code. Storey et al. [61] analyzed the impact of tags and anno-
tations in source code. The summarization of source code ele-
ment names (types, methods) has been investigated [56], [57],
[62]. A more recent work proposed automatic documentation
via the source code summarization of method context [58]. The
selection and presentation of source code summaries have been
explored through developer interviews [63] and eye tracking
experiment [64]. Our findings confirm that developers also
require API review summaries.

VII. SUMMARY

Opinions can shape the perception and decisions of de-
velopers related to the selection and usage of APIs. The
plethora of open-source APIs and the advent of developer
forums have influenced developers to publicly discuss their
experiences and share opinions about APIs. In this paper,
we have presented opiner, our summarization engine for API
reviews. Using Opiner, developrs can gather quick, concise,
yet complete insights about an APIL. In two studies involving
Opiner we observed that our proposed summaries resonated
with the needs of the professional developers for various tasks.
In our future work, we plan to extend Opiner to integrate
opinions from multiple forums and to integrate continuous
learning modules into the summaries to learn and improve
from developers’ feedbacks.
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