
Inferring Repository File Structure Modifications

Using Nearest-Neighbor Clone Detection

Thierry Lavoie1, Foutse Khomh2, Ettore Merlo1, Ying Zou2

1 Departement de genie informatique et logiciel, Ecole Polytechnique de Montreal, Montreal, QC, Canada,
2Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON, Canada

thierry-m.lavoie@polymtl.ca, foutse.khomh@queensu.ca, ettore.merlo@polymtl.ca, ying.zou@queensu.ca

Abstract—During the re-engineering of legacy software sys-
tems, a good knowledge of the history of past modifications on
the system is important to recover the design of the system and
transfer its functionalities. In the absence of a reliable revision
history, development teams often rely on system experts to
identify hidden history and recover software design. In this paper,
we propose a new technique to infer the history of repository
file modifications of a software system using only past released
versions of the system. The proposed technique relies on nearest-
neighbor clone detection using the Manhattan distance. We
performed an empirical evaluation of the technique using Tomcat,
JHotDraw and Adempiere SVN information as our oracle of
file operations, and obtained an average precision of 97% and
an average recall of 98%. Our evaluation also highlighted the
phenomena of implicit Moves, which are, Moves between a
system’s versions, that are not recorded in the SVN repository. In
the absence of revision history and software experts, development
teams can make use of the proposed technique during the re-
engineering of their legacy systems.

Keywords-Software repository, Software similarity, Software
clones, Software evolution, Legacy systems, Nearest-Neighbor

I. INTRODUCTION

Software companies depend on Version Control Systems

(VCS) to track and manage modifications on their software

systems. The information recorded by VCS is key to the

success of many software development activities. For example,

during a software reengineering, development teams rely on

the revision history of the software system to recover its design

and transfer its functionalities. However, for many legacy

systems, VCS are not available and developers are left to

rely solely on their knowledge of the system to uncover the

hidden history of modifications. Developers knowledge of a

system is often incomplete [24]. Therefore, relying solely on

this knowledge is likely to be ineffective. Nevertheless, since

source code based evolution analysis can be performed also

at release level (i.e., using the source code of the versions

released to customers), in the absence of a reliable VCS,

it is possible to infer information about files structure and

the history of their modifications. Inspired by clone detection

techniques, we present an original technique to recover file

moves information between released versions of a system. The

new technique relies on a nearest-neighbor clone detection

approach using the Manhattan distance on frequency vectors

of code fragments. To assess the effectiveness of the proposed

technique, we perform a case study using the open source

software systems Tomcat, JHotDraw and Adempiere. We

answer the following research question:

RQ1: Can the proposed technique accurately recover file

moves that occur between released versions of a

software system ?

Using the proposed technique, we are able to identify moves of

files across the releases of a software system with an average

precision of 97% and an average recall of 98%. The proposed

technique also identifies implicit files movements that are not

recorded by VCS. These implicit files movements are generally

the results of file clonings. In the absence of a reliable VCS,

development teams can make use of the proposed technique to

recover important knowledge about the modifications of their

software systems. The proposed technique can also be used to

enrich the meta-data of existing VCS with information about

implicit moves that are not recorded currently.

The rest of the paper is divided as follows: Section II

summarizes the related literature concerning clone detection

and code fragments evolution analysis, Section III details

the proposed algorithm, Section IV presents our experimental

setup and our methodology, Section V reports the results of

our experiments, Section VI discusses the obtained results

and potential threats to their validity. Finally, Section VII

summarizes our work and outlines avenues for future work.

II. LITERATURE

This section summarizes the related literature on clone de-

tection techniques, provenance, and clone evolution analysis.

A. Clone Detection Techniques

The state of the art on clone detection includes many

different techniques. For identical and parametric clones, they

range from AST-based detection techniques [7] to metrics-

based [21], suffix tree-based [13], and string matching [11]

detection techniques. Roy and Cordy [27], Göde and Koschke

[13], and Lavoie and Merlo [19] have also proposed detection

techniques for near-miss clones. A detailed survey of clone

detection techniques is presented in [26]. In this paper, we

improve on our own clone detection technique [20], and

extend it to track similarities between all code fragments

(including non cloned code) using the same approximation

of the Levenshtein distance. We do this because we believe

that clones are only a special case of similarity in software

systems.

B. Provenance and Clone Evolution Analysis

The work presented in this paper is also related to prove-

nance analysis since we track the provenance of code frag-

ments across the versions of a software system. Searching for

the provenance of code fragments in a preceding version is

comparable to tracking a clone throughout the evolution of a

software system. The problem of code provenance analysis is

a special case of clone evolution analysis [18].

Code provenance analysis are becoming more and more

popular in the software clone community. Recently, Godfrey

et al. [14] published a position paper in which they highlight

some key issues related to the problem of code provenance.

They recommend the development of simple and lightweight

techniques capable of reducing the search space of the po-

tential origins of candidates pieces of code. Other relevant

literature on provenance analysis include [9], [12]. Kim et al.

[17] proposed the first work on software clone evolution. They

analyzed clone classes and defined patterns of clone evolution.

Using two java systems and the CCFINDER clone detection

tool, they performed a case study of the evolution of clones in

software systems and concluded that at least half the of clones

in a software system are eliminated within eight check-ins after

their creation. A systematic review of clone evolution studies

is presented in [25]. The work presented in this paper differs

from previous work in the way that we track the provenance

of all code fragments in a version instead of searching for the

provenance of clones only. The next section elaborates more

on the details of our technique.

III. PROBLEM, ALGORITHM, AND METHOD

A. Definition of the problem

The goal to achieve is to infer the underlying file structure

modifications between two versions of a system. There are

three file structure modification primitives:

• Add: A new file is added in version N+1

• Delete: A file from version N is deleted in version N+1

• Move: A file from version N has been moved in version

N+1

Conceptually, a move can be represented as a succession of

a Delete of the original file and an Add of a file which is a

copy of the original file with a different name. Indeed, Version

Control Systems represent a move using these two primitives.

In these systems, raw Add and Delete are either part of a Move

or strict Add or Delete. To identify Add and Delete operations

properly, it is necessary to first identify the move operations.

Thereafter, the remaining Add and Delete are the true Add

and Delete operations. Thus, the important task in inferring

repository file structure modifications is the detection of the

move operations.

Assuming the above, the rest of this section discusses only

the algorithm to track move operations. It follows naturally

that the detection accuracy of the Add and Delete is directly

dependent on the accuracy of the move identification step.

Consequently, the evaluation will also only focus on the moves.

As already mentioned in section II, the technique is an

extension over [20]. The key element in this extension is the

use of a nearest-neighbor search instead of range-query search.

Both operations are faster if executed in a metric tree rather

than using a brute-force approach. Considering this fact, before

introducing our algorithm called Move Inferring Algorithm

(MIA), let us review some basic concepts about the metric

tree data structure.

B. Metric tree definition and construction

Since the clone detection operation relies on finding a set

of fragments with a certain distance property, it follows from

[19], [20] that it is worth using a specialized data structure to

optimize the search space. The metric tree, originally presented

in [28], and then notably used in [8], [10], is well suited

for this task. Other structures, such as the kd-tree and the

cover-tree might be worth exploring, but since the metric tree

supports arbitrary metrics, it is best suited for clone detection

as precised in [19], [20].

Using a metric tree restricts the similarity measures allowed

to the set of distances satisfying the metric axioms. The

following is a brief reminder of those axioms:

δ(x, y) ≥ 0 (non negativity) (1)

δ(x, y) = δ(y, x) (symmetry) (2)

δ(x, y) = 0 ⇔ x = y (3)

δ(x, y) + δ(y, z) ≥ δ(x, z) (triangle inequality) (4)

Many common distances like the Jaccard distance, the

Levenshtein distance, the Euclidean distance and the li norm

family satisfy these axioms. Colloquially, they are called

distances even though they are metrics. Also, in this paper

distance will always be used in the same sense as metric.

Nodes in the metric tree contain one or two elements. For

similarity analysis, these elements may be code fragments such

as files, classes, methods or any mapping of these fragments to

other representation such as frequency vectors. The variables

f and f ′ in the following figures always represent a fragment

or a representation of a fragment, according to the context. A

node containing only one element is a leaf. A node containing

two elements may be a leaf or not. Nodes with two elements,

called pivots, split the search space into four regions according

to the distance d between the two pivots. These four regions

themselves are individually nodes that contain up to two pivots

and recursively divide the space. Edges in the tree link nodes

to their four children regions.

The metric tree supports three important primitives:

insert(f) and rangeQuery(f, ǫ) and findnn(f). The

insert(f) primitive takes a fragment and inserts it in the tree.

The primitive rangeQuery(f, ǫ) takes a fragment f and a real

number ǫ as parameters and returns the set of all fragments

f ′ in the tree for which δ(f, f ′) ≤ ǫ, as follows:

rangeQuery(f, radius) = {f ′ | δ(f, f
′

) ≤ ǫ} (5)

The findnn primitive searches for the nearest-neighbor of

a fragment f in the tree, i.e.:

findnn(f) = f ′| δ(f, f ′) = min(δ(f, fi))∀fi ∈ F (6)

An outline of the insert primitive is presented in Figure 1.

1: insert (f)
2: target = n0

3: region = 0
4: while target.d 6= UNDEFINED do

5: d1 = δ(target.x, f)
6: d2 = δ(target.y, f)
7: if d1 < target.d then

8: if d2 < target.d then

9: region = 0
10: else

11: region = 1
12: end if

13: else

14: if d2 < target.d then

15: region = 2
16: else

17: region = 3
18: end if

19: end if

20: target = target.c[region]
21: end while

22: if target.x 6= UNDEFINED then

23: target.x = f
24: else

25: target.y = f
26: target.d = δ(target.x, target.y)
27: end if

28: return

Fig. 1: Insertion algorithm in metric trees

In the insertion algorithm, node contains fragment x and y
and the distance d between x and y. Line 2 of the algorithm

starts by initializing a variable target with the node n0

assumed to be the root of the tree. The variable target
represents the node in which we will insert the new fragment.

The main loop in the algorithm will assign different nodes

to target as the algorithm progresses. The first two steps of

the loop at lines 5 and 6 compute the distance of f with the

two fragments already assigned to the node, called the pivots.

From lines 7 to 21, the distance of f to the two pivots is

compared to the distance between the two pivots. A region

is selected according to criteria based on those distances. The

loop continues to search nodes until it finds a node for which at

least one pivot is undefined. Lines 22 to 27 then check which

of the pivot is undefined and setup the node accordingly with

the new fragment.

C. Building the token frequency vectors

To compute fast matching, it is required to find a proper

representation of code fragments to insert in the metric tree.

We chose to represent each fragment with a frequency vec-

tor of its tokens n-gram. The proposed algorithm combines

different known ideas for clone detection along with new

ones. Token-based clone detection was proposed by [16].

Other authors [6], [27] have since used tokens with different

algorithms and token manipulation is now widely used by

many tools at different step of the process of clone detection.

Code metric based clone detection was introduced by [21]

and developed in [22], [23]. The idea of code metric clone

detection is to choose software syntactic features, such as

statements, branching instructions, function calls, etc., and

to build a vector for which each dimension is a specific

feature. The value of each vector component is the frequency

of the corresponding feature. Syntactic analysis is first done

to compute the frequencies to then build the vectors. These

are then compared using a similarity criterion, such as the

Euclidean distance, cosine distance, etc. The original technique

of [21] used space discretization for clone clustering. The

new algorithm presented in this paper combines token analysis

and code metric to create a vector: it builds vectors of token

frequencies. It is not limited to the use of single tokens, but can

also be extended to n-grams which we call windowed-tokens.

With the new vectors, similarity is computed according to the

Manhattan distance, also known as the l1 metric.

To build these vectors, the first step of the algorithm is

to extract the tokens from the software source code. This is

done with a lexical analyzer on a file basis. Using lexical

analysis instead of syntactic analysis has some advantages.

It is faster, first, since most of the times it relies only on

regular expression matching instead of context-free grammar

matching, and second, it is also usually easier to write a lexer

than a parser.

The second step uses the extracted tokens from the files to

build frequency vectors. The base case is to use single tokens

or windowed-tokens of length 1. A unique ID number cor-

responding to its corresponding dimension in R
n is assigned

to every different token type. The tokens ID are generated

dynamically. Each time a new token type is encountered, the

next available ID, starting with ID 0, is assigned to the newly

discovered type. After the token type has been identified, the

corresponding vector component is incremented by one. Every

component in the vector has an initial value of 0. For better

memory storage, the frequency vectors are not stored in a

vector-array data structure but rather in a hash table. Since

code fragments have a frequency of 0 for most token types,

the hash table will reduce memory usage. This may not be

trivially apparent, but if we allow windowed-tokens of length 2

or more, storing data in vector-arrays is not an option because

of storage capacity. For example, in a language with 200 token

types, the required array length to store every components

explicitly is 200 for window length 1, 19 900 for length 2,

and 1 313 400 for length 3. In general, the vector length is

described as:

t!

(t − l)!
(7)

where t is the number of token types in the language and

l the window length. This equation is of course growing

exponentially with respect to the length of the window and

thus compels for a better memory storage. Since to any

fragment there cannot be more token types associated than

its number of tokens, the hash table will use a storage linear

in the number of tokens.

To extend the base case to a window length above 1, the

same procedure is used but token type identifiers are assigned

on an n-gram basis. For example, let the tokens of a language

be {A, C, G, T }, and let s0 be:

s0 = ATGCGTCGGGTCCCAG (8)

a random string. With a window of length 1, ID assignment

would be:

(A, 0) (T, 1) (G, 2) (C, 3) (9)

and s0 frequency vector vs0
:

vs0
= (2, 3, 6, 5) (10)

With a length 2 window, ID assignment would be:

(AT, 0) (TG, 1) (GC, 2) (CG, 3) (GT, 4) (11)

(TC, 5) (GG, 6) (CC, 7) (CA, 8) (AG, 9) (12)

and s0 frequency vector vs0
:

vs0
= (1, 1, 1, 2, 2, 2, 2, 2, 1, 1) (13)

and so forth with higher window lengths. The reader should

note that the total number of token types in the second

example, 10, is less than the theoretic maximum, 12. This is

almost always the case with higher window lengths and thus

it supports the idea that a hash table will consume much less

memory than a vector-array.

The third step, after extracting the tokens from software and

building their corresponding frequency vectors, is to build a

metric tree [10], [19] with all the resulting vectors under a

chosen distance. The li metric family is a natural choice. The

goal of the algorithm is to be as precise as possible and to have

a fine grain adjustable threshold on the similarity criterion. The

l1 metric, or Manhattan distance, is the best choice in the li
family according to our criterion. The motivation behind this

choice is a simple geometric observation. To get the finest

grain threshold, the space enclosed by the distance at a specific

threshold should be as small as possible. That space is of

course a sphere defined by the chosen li metric. Using a quick

proof, it will be shown that at each step, the l1-sphere is always
smaller than the l2-sphere. An analogous reasoning can then

be applied to show that an li-sphere is always smaller than

an lj-sphere if i < j for any integer value, making the l1-
sphere the smallest. Lets define an li-sphere Si,δ as the set

x ∈ R
n|li(x − y) ≤ δ for a fixed n. In R

2, the l1-sphere S1,δ

is thus a π
4 radians rotated square of side-length

√
2δ and the

l2 − sphere S2,δ is a circle of radius δ. In R
n, every point x

in S1,δ has a distance to the origin equal to:

l1(x, 0) =

d
∑

i=0

|xi| (14)

and the distance of every point in S2,δ to the origin is:

l2(x, 0) =

√

√

√

√

d
∑

i=0

x2
i (15)

Now we have:

l1(x, 0) =

d
∑

i=0

|xi| > l2(x, 0) =

√

√

√

√

d
∑

i=0

x2
i (16)

l1(x, 0) =

d
∑

i=0

√

x2
i > l2(x, 0) =

√

√

√

√

d
∑

i=0

x2
i (17)

which holds ∀d ≥ 2 and xi 6= 0. Thus, an l1-sphere covers

less space than an l2-sphere since there are some points in the

l2-sphere that do not belong to the l1-sphere, but the l1-sphere
is entirely comprised in the l2-sphere. It should be obvious that
this argument holds for every metric in the li family. It follows

that the best choice to have a fine control over the sensibility

of the algorithm is l1. One may argue that other spheres could

have better semantic properties, but our personal experience

suggests that the finer the control, the better the results.

The Manhattan distance, l1 metric, between two vectors u
and v is defined as:

l1(u, v) =
d

∑

i=0

|ui − vi| (18)

One can recall that higher metrics require root extraction

which is an expansive operation. Clearly, l1 is the fastest

to compute in the li family. Being the best for precision

control and the fastest to compute, it is a natural choice. It

can be found in many geometry textbooks that l1 satisfies the

metric axioms (non-negativity, symmetry, identity and triangle

inequality). Fulfilling such axioms allows us to use it in a

metric tree.

However, to include the impact of the fragments relative

size, it is best to normalize the metric. Thereafter, all queries

will be specified with a real number in the interval [0, 1]. The
chosen normalized Manhattan distance is the following:

ǫ(u, v) =

∑d

i=0 |ui − vi|
∑d

i=0 max(ui, vi)
(19)

Incidentally, this normalization of the Manhattan distance

coincides with the Jaccard distance of the two sets, under

certain hypotheses. Other Jaccard distances could be defined

over the sets of fragment tokens, but this one suits our needs

better since it is derived from the Manhattan distance.

D. Using a Nearest-Neighbor approach

Contrary to the approach presented in [19], this paper relies

on finding the nearest-neighbor instead of performing a range-

query to find the closest match. For the move retrieval problem,

we need to search for a file that is likely to have generated

the moved file. Between the time the file is originally moved

and the time we try to retrieve its generator, the file might be

altered in a way that it is no longer very close to the original.

Thus, using a range-query to find multiple close candidates

could result in missing those far-away moves. However, it is

very likely that even if a file is deeply modified, the file that is

the closest to it in the search space is the more likely to have

generated it, no matter the distance. This problem is solved

by finding the file’s nearest-neighbor. Figure 2 outlines the

procedure in a metric tree.

The algorithm is split-up in two core parts. Lines 1 to

16 compute the distance from the query to the pivots of the

current node. It then selects the best match as the new nearest-

neighbor if that match has a distance smaller than the current

known nearest-neighbor. The rest of the algorithm recursively

traverses each node that may have better candidates. Each

condition tests whether or not it is possible to find a better

match in the sub-tree rooted at that node. The criteria to visit

each region are summarized in Table I.

TABLE I: Criteria for region selection in the findnn primitive.
Region 1 δ(x, f) < ǫ + d ∧ δ(y, f) < ǫ + d

Region 2 δ(x, f) + ǫ ≥ d ∧ δ(y, f) < ǫ + d

Region 3 δ(x, f) < ǫ + d ∧ δ(y, f) + ǫ ≥ d

Region 4 δ(x, f) + ǫ ≥ d ∧ δ(y, f) + ǫ ≥ d

Combining the metric tree, the frequency vectors and the

nearest-neighbor search, we can now describe the Move In-

ferring Algorithm (MIA) shown in Figure 3. The procedure

is straightforward. In MIA, a code fragment is a file. MIA

is provided with two arguments: the source, which contains

all files from a system at version N, and the destination,
which contains all files at version N+1. It is assumed that

every file has already been analyzed and transformed into

frequency vectors. MIA iterates over all files in destination
and queries the metric tree of source to find its nearest-

neighbor in it. Then, it checks if the nearest-neighbor path

exists in destination and if the path of the query fragment

is in source. If not, MIA indicates that the file added in

destination has a closely related file in source, but that this
file no longer exists. This strongly indicates the presence of

a move; the pair of paths is added to the results. At the end,

MIA returns the list of all inferred moves.

IV. EXPERIMENTAL SETUP

A. Analyzed systems and computational equipment

All computations were performed on an Intel Core 2 Duo

2.16MHz, with 4GB of RAM, using an SSD hard-drive under

Linux Fedora 15 OS. Clone detection executable binaries were

compiled using g++ version 4.6.3 with the -O3 flag.

The systems on which MIA was evaluated are presented in

Table II. The testbench is comprised of the Java web service

1: findnn(node,f)

2: if node == NULL then

3: return ERROR

4: end if

5: result = ∅

6: ǫ = ∞
7: d1 = δ(node.x, f)
8: d2 = δ(node.y, f)
9: if d1 < ǫ then

10: result = node.x
11: ǫ = d1

12: end if

13: if d2 < ǫ then

14: result = node.y
15: ǫ = f2

16: end if

17: if δ(node.x, f) < ǫ+node.d∧δ(node.y, f) < ǫ+node.d
then

18: (candidate, ǫ0) = findnn(node.region1, f)
19: if ǫ0 < ǫ then

20: result = candidate

21: end if

22: end if

23: if δ(node.x, f)+ ǫ ≥ node.d∧δ(node.y, f) < ǫ+node.d
then

24: (candidate, ǫ0) = findnn(node.region2, f)
25: if ǫ0 < ǫ then

26: result = candidate

27: end if

28: end if

29: if δ(node.x, f) < ǫ+node.d∧δ(node.y, f)+ ǫ ≥ node.d
then

30: (candidate, ǫ0) = findnn(node.region3, f)
31: if ǫ0 < ǫ then

32: result = candidate

33: end if

34: end if

35: if δ(node.x, f)+ ǫ ≥ node.d∧δ(node.y, f)+ ǫ ≥ node.d
then

36: (candidate, ǫ0) = findnn(node.region4, f)
37: if ǫ0 < ǫ then

38: result = candidate

39: end if

40: end if

41: return (result, ǫ)

Fig. 2: Nearest-neighbor algorithm in metric trees

manager Tomcat, the drawing application JHotDraw and the

enterprise resource management Adempiere. For Tomcat and

JHotDraw, we identified the release dates of many consecutive

versions and downloaded the corresponding source code from

their repository. For Adempiere the same procedure was fol-

lowed, except for the first version, for which we had to infer a

release date for fictitious versions, called 2.x.x and 2.y.y. It was

necessary to do so because many moves in Adempiere didn’t

TABLE II: Systems versions statistics
System # Version Date # Files LOCs # Moves # True Moves # Ghost Moves

JHotDraw 8 2007-01-10 - 2011-01-09 1457-1665 217 372-281 082 299 186 (62%) 113 (38%)

Tomcat 19 2009-06-03 - 2012-04-05 1526-1681 402 843-433 148 19 2 (11%) 17 (89%)

Adempiere 6 2007-07-26 - 2010-06-14 3623-4217 652 261-1 186 149 847 766 (91%) 81 (9%)

1: MIA (source, destination)
2: moves = ∅

3: for all f ∈ destination.fragments do

4: nn = findnn(f, source.tree.root)
5: if nn /∈ destination.file∧ f /∈ source.file then

6: moves = moves ∪ (nn, f)
7: end if

8: end for

9: return moves

Fig. 3: Move inference algorithm (MIA)

seem to coincide with one of the later releases and the history

of early releases is incomplete. Nevertheless, many repository

commits were done between 2.x.x and 2.y.y and this should

maintain the data validity. All systems have Subversion (SVN)

repositories which may be found at [1], [2], [3].

B. Computing the nearest-neighbor

For each system, the nearest-neighbor of every file was

computed using the algorithm presented in section III-B. For

comparison purposes of our results, we actually computed

two nearest-neighbors using a slight variation of the presented

approach. We first computed the nearest-neighbor using the

token ID, and then computed the nearest-neighbor using the

token image. Although the token ID is usually the only repre-

sentation used for clone detection, textual similarity might be

more accurate for the search of moves, we decided to include

results using token image. Both variants have been evaluated

and compared.

C. Building the repository oracle using VCSMiner

We use our framework VCSMiner to extract file movements

information from the source code repository of each subject

system. VCSMiner extracts commit information from source

code repositories (e.g., CVS, SVN, and GIT) and stores the

information into a database. We query this database to identify

moves of files across the revisions of our studied systems. For

VCSs such as CVS which reports moves of files implicitly,

VCSMiner compares MD5 hashes of files to identify file

movements. Using the extracted moves, we built an oracle

for our problem. That oracle excludes every move outside the

trunk of the repository. That experimental design choice was

made to avoid interference between the many versions and

the tags and branches directories. Since tags and branches
are partial clones of the trunk directory, finding the nearest-

neighbor in the whole repository could lead to find the nearest-

neighbor in a random version, because there is no way for MIA

to make the difference between identical files in two different

paths. This choice does not alter the claim to identify move

operations between versions, since the tags and branches

directories are not part of the current version. Consequently,

their exclusion is a reasonable choice.

D. Categorizing the oracle moves

Since the experiment is version-based instead of commit-

based, it might happen that moved files cannot be identified as

such because of file creation and deletion. We classified the

reported repository moves in the following two categories:

• True move : The original file is in version N, but not

in N+1, and the resulting file after the move is still in

version N+1, but was not in N

• Ghost move : Both the original and the resulting file are

missing from versions N and N+1

For the purpose of computing precision and recall on move

identification, we consider only the oracle moves tagged as true

move. The ghost move operation is impossible to identify when

using source code of released versions only, thus precision

and recall for this primitive is not reported. However, the total

number of moves along both with the number of identified

true move and ghost move is reported for each system. The

reported percentage for the two different types of moves are

relative to the total number of moves. From one version to

another, as it is displayed in table II, the number of ghost

moves is not generally significant, and there are enough true

move to conduct a sound experiment.

Also, if the tool reported a move that wasn’t reported by the

VCS, then we classified it as an implicit move. An example

of a legitimate implicit move would be a file movement not

recorded by a developer in the VCS.

E. Methodology to compute precision and recall

Using the oracle produced by tool VCSMiner and classified

according to the scheme introduced in section IV-D, we

computed the recall of MIA.

As it will be discussed in section VI, the tool precision

couldn’t be evaluated with the chosen oracle and it had to be

inferred statistically.

For recall, we compared all the possible destination −
source pairs, including pairs with the same source parameter.

V. RESULTS

Tables III, IV, and V show the detailed results for each

system using the two variants of the algorithm. On average,

using token image instead of ID gives a better recall. It

also reports more implicit moves. However, after a quick

inspection of the reported implicit moves in both cases, we

concluded that more false-positives were produced by the ID-

based algorithm. For the image-based algorithm, almost all

pairs of destination−source in implicit moves had the same

file name at the end of the path, which was not the case for

the ID-based version. Thus, qualitatively, the precision of the

TABLE III: JHotDraw recall of inferred moves, with implicit found moves.
Versions Recall #Implicit moves

Token Id Token Image Token Id Token Image

7.0.8-7.0.9 0.0 0.9286 0 4

7.0.9-7.1.0 0.0 0.8571 0 3

7.1.0-7.2.0 0.0 0.7500 0 8

7.2.0-7.3.0 0.0 1.0000 0 1

7.3.0-7.4.1 0.0 0.9912 0 17

7.4.1-7.5.1 0.0 0.8667 0 6

7.5.1-7.6 0.4587 1.0 2 0

Summary 0.0765 0.9647 2 39

image-based algorithm is greater than the ID-based one. For

this reason, we did not investigate further the results of the ID-

based moves as they were clearly worse than the one reported

by the image variant.

Table VI shows that for JHotDraw and Adempiere, on aver-

age the similarity of two different move types is really close.

The averages for Tomcat cannot be compared in a meaningful

way because it only contained 2 true moves. Despite this small

number of true moves, results on Tomcat are not excluded

because they help evaluate a limit case for the false-positive

rate: they provide an answer to the question ”how many results

are reported when only few are expected ?” Evaluating limit

case is as important as evaluating the average one. Figure 4

shows a box-plot of the implicit moves distance distribution

excluding the moves with distance 0.0. As the analysis of

their averages already suggested, JHotDraw and Adempiere

seem to share some common characteristics regarding their

moves; it may also suggest that MIA gives coherent results

independently of the system. Because verifying all the implicit

moves manually was not practical due to their large number,

we randomly sampled and checked a representative sample of

100 implicit moves out of all the reported implicit moves and

manually verified if they were real moves using information

from both file names and contents. We tagged each sampled

move as a ”hit” or a ”miss” by assigning it a real value

of 1.0 for ”hit” and 0.0 for ”miss”. The mean of ”hit”

and ”miss” distribution corresponds to the precision of MIA.

The mean of the ”hit” and ”miss” distribution was found to

be 0.9700. The chosen sampling allows us to compute the

precision of the implicit moves with a confidence level of 99%,

and a confidence interval of 0.0422 using the Central Limit

Theorem [15]. The theorem proves sample averages to be

normally distributed if the sample is random, which is the case

here. Therefore, the confidence interval is built using standard

equations also provided in [15]. Building this interval does not

require a specific test. The lower bound on precision of MIA

is 0.92788 (i.e., 0.9700 − 0.0422). We combined the average

recall obtained over all our subject systems (i.e., 0.98) with

the lower bound of the precision (i.e., 0.92788) to compute

the F-value. We found the F-value to be 0.9533. Hence, we

conclude that MIA achieves a very high accuracy. We answer

our research question RQ1 positively. Our proposed technique

MIA can successfully recover the revision history of a software

system.

Figures 5, 6, and 7 display the running time of the algorithm,

including the tokenizing preprocessing step. with respect to

a
d

e
m

p
ie

re
jh

o
td

ra
w

to
m

c
a

t

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4: Box-plot of distance distribution of inferred moves

excluding identical matches for all systems

 38

 40

 42

 44

 46

 48

 50

 400000 405000 410000 415000 420000 425000 430000 435000
 38

 40

 42

 44

 46

 48

 50

 400000 405000 410000 415000 420000 425000 430000 435000

Fig. 5: Execution time (s.) of the Nearest-Neighbor clone

detection for Tomcat with respect to the number of lines of

codes in each version

TABLE IV: Tomcat recall of inferred moves, with implicit found moves.
Versions Recall #Implicit moves

Token Id Token Image Token Id Token Image

6.0.20-7.0.0 1.0000 1.0000 0 0

7.0.0-7.0.4 1.0000 1.0000 0 0

7.0.4-7.0.5 1.0000 1.0000 1 1

7.0.5-7.0.6 1.0000 1.0000 0 0

7.0.6-7.0.8 1.0000 1.0000 0 0

7.0.8-7.0.10 1.0000 1.0000 0 0

7.0.10-7.0.11 1.0000 1.0000 0 0

7.0.11-7.0.12 1.0000 1.0000 63 63

7.0.12-7.0.14 1.0000 1.0000 0 0

7.0.14-7.0.16 1.0000 1.0000 3 3

7.0.16-7.0.19 1.0000 1.0000 9 9

7.0.19-7.0.20 1.0000 1.0000 1 1

7.0.20-7.0.21 1.0000 1.0000 0 0

7.0.21-7.0.22 1.0000 1.0000 0 0

7.0.22-7.0.23 1.0000 1.0000 0 0

7.0.23-7.0.25 1.0000 1.0000 0 0

7.0.25-7.0.26 1.0000 1.0000 0 0

7.0.26-7.0.27 1.0000 1.0000 2 2

Summary 1.0000 1.0000 79 79

TABLE V: Adempiere recall of inferred moves, with implicit found moves.
Versions Recall #Implicit moves

Token Id Token Image Token Id Token Image

2.x.x-2.y.y 0.8571 1.0000 7 5

2.y.y-3.3.0 0.8490 1.0000 250 131

3.3.0-3.3.1 1.0000 0.9972 4 3

3.3.1-3.4.0 1.0000 1.0000 0 0

3.4.0-3.5.3 1.0000 1.0000 1131 970

3.5.3-3.5.4 0.0455 0.9091 31 22

3.5.4-3.6.0 1.0000 1.0000 3 0

Summary 0.8217 0.9844 0 1131

TABLE VI: Average similarity of True Move and Implicit Move for all systems
System True moves average distance Implicit moves average distance

Token ID Token image Token ID Token image

JHotDraw 0.0509 0.1651 0.2336 0.1951

Tomcat 0.1997 0.2546 0.0261 0.0359

Adempiere 0.0687 0.0812 0.0921 0.0930

the lines of code in each version. The longest execution time

is 600 seconds from an Adempiere version over 1 MLOC,

but this data seems to be an outlier with respect to the other

points gathered for Adempiere. After investigation, that point

possibly had more cache misses in hard-drive read operations

than the others and the occurrence seems to be random and

not linked to that particular version.

VI. DISCUSSION

The analysis focused on finding the closest code fragment

from one version to what is the closest related fragment in

another version. This is the first similarity analysis that uses a

nearest-neighbor approach with a continuous distance instead

of a binary matching without an underlying explicit distance.

Using this proximity query allowed to find the most likely

generator in version N of a fragment in version N + 1.
According to the results presented in section V, it compares

well to the move information provided by the repository of our

system. It also supplies more information about implicit moves

not recorded in the repository. Such conclusions establish the

soundness of the algorithm to infer file structure modifications.

As noted in section I, this implies the possibility of recovering

repository information for systems that do not have one or to

fix existing one.

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 235000 240000 245000 250000 255000 260000 265000 270000 275000 280000 285000

Fig. 6: Execution time (s.) of the Nearest-Neighbor clone

detection for JHotDraw with respect to the number of lines

of codes in each version

It was unexpected that the implicit moves would account

for such a large proportion of all the moves. This makes the

assessment of the precision complicated. By looking closely

at our results, we observed that a large proportion of the

implicit moves has a very small distance. Assuming our

distance is accurate, it is more likely that these moves were

 0

 100

 200

 300

 400

 500

 600

 600000 700000 800000 900000 1e+06 1.1e+06 1.2e+06

Fig. 7: Execution time (s.) of the Nearest-Neighbor clone

detection for Adempiere with respect to the number of lines

of codes in each version

done without the developers recording them in the VCS. If

that is true, the information provided by the repositories may

not be reliable as a complete oracle. This is the principal

threat to validity to our experiment. Assessing recall like

what was done in section V is necessary but not sufficient

to prove true recall to be high because some moves seem to

be missing from the oracle. Also, the proportion of implicit

moves seems too large to do a precision analysis, since with

reasonable arguments our results seem precise. Therefore, our

study indicates the need for more data to compare repositories

information to draw more conclusions on the general pattern of

moves recording. Nevertheless, our experimental results show

with strong evidences that MIA achieves results at least as

good as the information provided by the existing repositories,

if not better.

All experiments were done on systems of size above 100

KLOC, with the biggest of size 1.5 MLOC. Execution time

of the clone detection step never exceeded 10 minutes for

token image based analysis, and the lexical analysis step stayed

below 5 minutes. Even if the technique may not be applied

in real time, it is reasonable to say that it is scalable, since

it runs under 10 minutes for systems of few MLOCs. As this

experiment did not have any previous knowledge to enhance

the searches, it was sound to use a nearest-neighbor approach

even if it is time-expensive. However, as it turns out that

the inferred move information is very akin to clone detection

information, it may be possible to use a much faster range-

query to find generator candidates and retain the closest result

afterwards.

Finally, the move inference problem has proven to be

solvable using techniques from clone detection. Moreover,

observing the evaluation methodology proposed here might

give a clever insight to challenge the clone detectors evaluation

problem. Even if the proposed oracle seems to have flaws

in its construction, it provides an interesting set of naturally

occurring clones. Testing against the move reference might

not be necessary and sufficient, but it can be an interesting

indicator about tools capacity to detect small-gap and large-

gap clones. Despite the evident flaws we already outlined,

disregarding it would mean to eliminate a naturally occurring

set of clones which might serve as a reference set.

Under the hypothesis that our tool is precise, the many

moves identified that were not present in the repository in-

formation suggest that the technique may be used to suggest

to developers to record certain modifications. It might be

integrated in a version control system to automate the process

of identifying moves between commit instead of asking de-

velopers to provide the information manually. This might help

storing more meaningful information about software evolution

in repositories. Automating the process of recording file struc-

ture modifications may also help developers to manage local

sandboxes with greater ease and avoid file operation mistakes

that are generally arduous to fix in VCS.

Moreover, the information contained in version control

systems or repositories, such as Subversion and GIT, may

also be used to deduce more information, as described in [5].

Repository information may also be used to provide version

history editing as suggested by [4].

A. Threats to validity

This section discusses the threats to validity of our study

following the guidelines for case study research [29].

Threats to construct validity concern the relation between

theory and observation. In this work, the construct validity

threats are mainly due to measurement errors. We extracted

moves information from repositories but discovered that infor-

mation is probably incomplete. This limits the interpretation

of the recall as an upper bound instead of a definitive value

and makes it impossible to evaluate the precision against the

oracle. The alternative to measure precision may be biased by

the opinion of the expert who inspected the implicit moves. To

mitigate this bias, we inspected the name of the reported file

to verify whether there was a coherence pattern and indeed

there was. Thus, it increases the confidence in the reported

precision value.

Threats to internal validity concern our selection of subject

systems, tools, and analysis method. In [20], we measured

the distortion of the Manhattan distance with the Levenshtein

distance for clone detection and found the distortion to be

very low in general. However, the seldom cases for which the

distortion is not very low could affect our findings.

Threats to conclusion validity concern the relation between

the treatment and the outcome. We paid attention not to violate

assumptions of the performed statistical tests.

Threats to reliability validity concern the possibility of

replicating this study. We attempt to provide all the necessary

details to replicate our study. The source code repositories

of Tomcat, JHotDraw and Adempiere are publicly available

to obtain the same data for the same releases. We also

provided all the algorithmic versions of our code with all the

software experimental parameters and hardware configuration.

Moreover, we published on-line1 the raw data to allow other

1https://dl.dropbox.com/u/14931955/wcre12.zip

researchers to replicate our study and to test other hypotheses

on our data set.

Threats to external validity concern the possibility to gen-

eralize our results. On the two systems with the most moves,

we obtained similar precision and recall and a small difference

between the average distance of the oracle moves and the

implicit moves. Nevertheless, the validation of our technique is

limited to three open source software systems written in Java,

therefore, we cannot generalize our findings to other program-

ming languages. However, the results are very encouraging and

suggest further studies on different systems written in different

programming languages to make our findings more generic.

VII. CONCLUSION

In this paper we have introduced a new technique to recover

file structure modifications information and file movement

informations in source code repositories. The technique proved

to be highly precise (F-value = 0.9533) and scalable. The tech-

nique may also be applied to other reverse-engineering tasks

that require file structure modification information. Further

research could include, comparing the nearest-neighbor with

range-query primitive as well as investigating the different

proposed applications. In practice, our proposed technique

can be integrated in existing VCSs to enrich their meta-

data with information on implicit moves; easing file structure

manipulations and preventing mistakes that may require fixes

that are hard to handle. The oracle used in the evaluations

our proposed approach provides an interesting set of naturally

occurring clones that can be reuse to evaluate clone detectors.

VIII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers of WCRE

for their valuable feedback that helped us to improve the

quality of the paper. Many thanks also go to Francois Gauthier

and Anael Maubant for their many good advices on the

writing of this paper. This research has been funded by the

Natural Sciences and Engineering Research Council of Canada

(NSERC) under the Discovery Grants Program and the Fonds

Quebecois Nature et Technologie (FQRNT).

REFERENCES

[1] Adempiere. http://sourceforge.net/projects/adempiere/.
[2] Jhotdraw. http://sourceforge.net/projects/jhotdraw/.
[3] Tomcat. http://tomcat.apache.org.
[4] D. L. Atkins. Version sensitive editing: Change history as a program-

ming tool. In ECOOP 98, SCM-8, LNCS 1439, pages 146–157. Springer-
Verlag, 1998.

[5] T. Ball, J. min Kim, A. A. Porter, and H. P. Siy. Abstract if your version
control system could talk...

[6] H. Basit, S. Pugliesi, W. Smyth, A. Turpin, and S. Jarzabek. Efficient
token based clone detection with flexible tokenization. In European
Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2007.
[7] I. Baxter, A. Yahin, l. Moura, M. Sant’Anna, and L. Bier. Clone

detection using abstract syntax trees. In Proceedings of the International
Conference on Software Maintenance - IEEE Computer Society Press,
pages 368–377, 1998.

[8] S. Brin. Near neighbor search in large metric spaces. In Proceedings
of the 21th International Conference on Very Large Data Bases, VLDB
’95, pages 574–584, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

[9] J. Cheney, S. Chong, N. Foster, M. I. Seltzer, and S. Vansummeren.
Provenance: a future history. In OOPSLA Companion, pages 957–964,
2009.

[10] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In Proc. of 23rd
International Conference on Very Large Data Bases, pages 426–435.
Morgan Kaufmann Publishers, 1997.

[11] S. Ducasse, O. Nierstrasz, and M. Rieger. On the effectiveness of
clone detection by string matching. International Journal on Software

Maintenance and Evolution: Research and Practice - Wiley InterScience,
(18):37–58, 2006.

[12] D. M. German, M. D. Penta, G. Antoniol, and Y. gal Guhneuc. Code
siblings: Phenotype evolution. In In Proc. of the 3rd Intl. Workshop on

Detection of Software Clones, 2009.
[13] N. Göde and R. Koschke. Incremental clone detection. In Proceed-

ings of the 2009 European Conference on Software Maintenance and

Reengineering, pages 219–228. IEEE Computer Society, 2009.
[14] M. W. Godfrey, D. M. German, J. Davies, and A. Hindle. Determining

the provenance of software artifacts. In Proceedings of the 5th Inter-
national Workshop on Software Clones, IWSC ’11, pages 65–66, New
York, NY, USA, 2011. ACM.

[15] W. Hines. Probability and Statistics in Engineering. John Wiley, 2003.
[16] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-linguistic

token-based code clone detection system for large scale source code.
volume 28, pages 654–670. IEEE Computer Society Press, 2002.

[17] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of
code clone genealogies. In Proceedings of the 10th European software

engineering conference held jointly with 13th ACM SIGSOFT interna-

tional symposium on Foundations of software engineering, ESEC/FSE-
13, pages 187–196, New York, NY, USA, 2005. ACM.

[18] R. Koschke, I. D. Baxter, M. Conradt, and J. R. Cordy. Software Clone
Management Towards Industrial Application (Dagstuhl Seminar 12071).
Dagstuhl Reports, 2(2):21–57, 2012.

[19] T. Lavoie and E. Merlo. Automated type-3 clone oracle using levenshtein
metric. In Proceedings of the 5th International Workshop on Software

Clones, IWSC ’11, pages 34–40, New York, NY, USA, 2011. ACM.
[20] T. Lavoie and E. Merlo. An accurate estimation of the levenshtein

distance using metric trees and manhattan distance. In Proceedings of

the 6th International Workshop on Software Clones, IWSC ’12, pages
1–7, New York, NY, USA, 2012. ACM.

[21] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In
Proceedings of the International Conference on Software Maintenance

- IEEE Computer Society Press, pages 244–253, Monterey, CA, Nov
1996.

[22] E. Merlo, G. Antoniol, M. D. Penta, and F. Rollo. Linear complexity
object-oriented similarity for clone detection and software evolution
analysis. In Proceedings of the International Conference on Software

Maintenance - IEEE Computer Society Press, pages 412–416. IEEE
Computer Society Press, 2004.

[23] E. Merlo and T. Lavoie. Detection of structural redundancy in clone
relations. Technical Report EPM-RT-2009-05, Ecole Polytechnique of
Montreal, 2009.

[24] D. L. Parnas. Software aging. In Proceedings of the 16th international
conference on Software engineering, ICSE ’94, pages 279–287, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[25] J. Pate, R. Tairas, and N. Kraft. Clone Evolution: A Systematic Review.
Journal of Software Maintenance and Evolution: Research and Practice,
Sept. 2011.

[26] C. Roy and J. Cordy. A survey on software clone detection research.
Technical Report Technical Report 2007-541, School of Computing,
Queen’s University, November 2007.

[27] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In Proceedings of the 2008 The 16th IEEE International Conference on
Program Comprehension, ICPC ’08, pages 172–181, Washington, DC,
USA, 2008. IEEE Computer Society.

[28] J. K. Uhlmann. Satisfying general proximity/similarity queries with
metric trees. Inf. Process. Lett., 40(4):175–179, 1991.

[29] R. K. Yin. Case Study Research: Design and Methods - Third Edition.
SAGE Publications, London, 2002.

