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Abstract

This work presents a descriptive and analytic study
of classes playing zero, one, or two roles in six different
design patterns (and combinations thereof). First, we
answer three research questions showing that (1) play-
ing roles in design patterns is not a all-or-nothing char-
acteristic of classes and that there are significant dif-
ferences among the (2) internal and (3) external char-
acteristics of classes playing zero, one, or two roles.
Second, we revisit a previous work on design patterns
and changeability and show that its results were, in a
great part, due to classes playing two roles. Third, we
exemplify the use of the study results to provide a rank-
ing of the occurrences of the design patterns identified
in a program. The ranking allows developers to balance
precision and recall as they see fit.

1 Introduction

Design patterns are proven solutions to recurrent de-
sign problems in object-oriented software design. Their
design motifs [9] describe ideal solutions that will be
either used to generate an architecture [3] or super-
imposed [11] on designed (or already existing) classes
of a program. Consequently, classes in a program may
play n roles in m motifs, with n > 0, m > 0.

Yet, to the best of our knowledge, previous works
considered that classes either play mo role or some
role(s) in some motif(s), without distinguishing classes
playing one or more roles in one or more motifs. They
neglected that classes may play many different roles
and considered role playing as a all-or-nothing charac-
teristic of classes. This coarse-grained perspective pre-
vents studying finely the impact of motifs on classes.

A reason for the current coarse-grained perspective
is the lack of a method and manually-validated data

to identify and evaluate the characteristics of classes
playing one, two, or more roles with respect to classes
playing no role. Therefore, we present a descriptive
and analytic study of the impacts of playing one or
two role(s) in motifs on classes wrt. playing zero role.
We also show that this novel fine-grain perspective on
role playing benefits works on design patterns.

We exemplify these benefits on previous works that
studied (1) design motif changeability and (2) motif
identification. First, Bieman [4], Di Penta [7], and oth-
ers (see Section 2) showed that classes playing some
role(s) in one design motif are more complex and-
or change-prone than classes playing no roles. They
did not distinguish classes playing different numbers of
roles. Consequently, they could only conclude gener-
ally on role change-proneness. A fine-grain perspective
allows us to revisit these previous works and show that
classes playing two roles represent, in average, 56% of
all the changes that occurred before the studied release
date while classes playing one role only 33%.

Second, Tsantalis et al. [24], Guéhéneuc and Anto-
niol [9], and others (see Section 2) proposed approaches
to identify occurrences of design motifs in programs,
which return unordered sets of occurrences. Yet, a
ranking would help developers focus on the most rele-
vant occurrences first. A fine-grain perspective allows
us to sketch an approach to assign ranks to occurrences
in function of the numbers of roles played by their
classes. Applying this approach on JHotDraw v5.1,
the Decorator design motif, and the occurrences ob-
tained from DeMIMA [9] leads to 100% precision and
recall on the first occurrence, to be compared to the
previously reported 7.7% precision and 100% recall.

Thus, the contributions of this paper are: (1) a de-
scriptive study showing that a non-negligible propor-
tions of classes play one or two roles and that some roles
are often played in pairs; (2) an analytic study showing
that internal and external characteristics of classes are



impacted differently by playing one and two roles; (3)
a revisit of previous works confirming the soundness
of our study and showing that they should be reexam-
ined with a finer-grain perspective; and, (4) a revisit of
a design pattern identification approach illustrating the
ranking of occurrences and the possible improvements
in precision and recall.

Section 3 presents the study definition and design
while Section 4 its implementation: the method, pro-
grams, and motifs to build the samples; the metrics
and their computations. Section 5 provides the study
results. Section 6 present possible threats. Section 7
revisit previous works by describing two uses of the
study results. Section 8 concludes with future work.

2 Related Work

Many works are related to design patterns, from
their definition [15] to their identification [9]. We
present here works related to the impact of design mo-
tifs on object-oriented quality and to the identification
of occurrences of motifs in programs.

Motif Impacts. Bieman and McNatt [20] per-
formed a qualitative study of the coupling between
motifs and claimed that, when motifs are loosely com-
posed and abstracted, maintainability, modularity, and
reusability are well supported by the motifs. They con-
cluded on a need for further studies to examine differ-
ent motif compositions and their impact on quality.

Di Penta et al. [7] studied the change-proneness of
roles and the kinds of changes affecting roles. Their
results confirmed the expected, theoretical impact of
motifs, e.g., in Abstract Factory, classes playing con-
crete roles change more often than these playing ab-
stract roles. They also highlighted deviations from the
intuition, e.g., in Composite, classes playing the role of
Composite can be complex and undergo many changes.

Hannemann and Kiczales [11] studied the use of
aspect-oriented programming and show that 17 of the
23 design patterns in [8] benefits from their “aspectisa-
tion” to overcome: the influence of motifs on programs
and of programs on motifs; the loss of motif modularity
and of traceability; the invasiveness of motifs; the diffi-
culty to reason about classes involved in several motifs.

Khomh and Guéhéneuc [22] performed an empirical
study of the impact of the 23 design patterns from [8]
on ten different quality characteristics and concluded
that patterns do not necessarily promote reusability,
expandability, and understandability, as advocated by
Gamma et al. They also studied patterns with respect
to object-oriented principles and concluded that pat-
terns do not necessarily lead to programs with good
quality. Overall, their study advocate a considered use

of patterns during development and maintenance.

Lange and Nakamura demonstrated [17] that pat-
terns can serve as guide in program exploration and
thus ease program comprehension. Through a trail of
patterns, they showed that if patterns were recognized
during the comprehension process, they help in “filling
in the blanks” and in starting the next exploration.

Vokac et al. [25] analysed the corrective mainte-
nance of a large commercial program over three years
and studied the defect rates of classes playing roles in
design motifs. Classes in motifs were less defect prone
than others. He also noticed that the Observer and Sin-
gleton motifs are correlated with larger classes; classes
playing roles in Factory Method were more compact,
less coupled, and less defect prone than others classes;
and, no clear tendency exists for Template Method.

Wendorff [26] evaluated the use of design patterns
in a large commercial software systems and concluded
that design patterns do not improve a system design
necessarily. Indeed, a design can be over-engineered
[16] and the cost of removing patterns high.

Wydaeghe et al. [27] studied the use of six design
patterns to build an OMT editor. They discussed the
impact of their motifs on reusability, modularity, flex-
ibility, and understandability. They concluded that,
although design patterns offer several advantages, not
all of their motifs have a positive impact on quality.

Motif Identification. Our recent survey [9] of de-
sign motif identification approaches show that most ap-
proaches do not rank the identified occurrences. For
example, Tsantalis et al. [24] proposed an approach
based on similarity scoring to identify classes poten-
tially playing a role in the design motif. This approach
is fast and has reasonable precision and recall. It is ex-
emplified on three programs and 10 design motifs. The
occurrences are not ranked by their similarity score.

Our approach, DeMIMA [9], uses explanation-based
constraint programming to provide approximations
and explanations on the occurrences. It assigns a
weight to each occurrence but this weight is subjec-
tive: it essentially depends on the weight assigned to
each constraint and on the user’s choice of the relaxed
constraints; it does not consider the probability of a
class to play zero, one, or more roles.

To the best of our knowledge, only Jahnke et al.
[14] provide ranked occurrences. They used fuzzy-
reasoning nets to identify design motifs. Their ap-
proach computes, for example, the probability of a
class to be a Singleton. The main advantage of their
approach is that fuzzy-reasoning nets deal with incon-
sistent and incomplete knowledge and that each oc-
currence is assigned a probability. However, their ap-
proach requires the description of all possible approxi-



mations of a design motif and users’ assumptions.

Our study builds on this previous work, in particular
Bieman and McNatt’s work, to understand the impact
on classes of playing one role in a motif or two roles in
two different motifs. We use the study results to revisit
previous works on design motif change-proneness and
to rank identified occurrences of motifs. Spinellis’ study
[21] of four OS kernels also inspired us.

3 Study Definition and Design

Following GQM [2], the goal of our study is to study
classes playing zero, one, or two roles in some design
motifs. Our purpose is to bring generalisable, quantita-
tive evidence on the impact of playing roles on classes.
The quality focus is that playing zero, one, or two roles
impact differently classes. The perspective is that both
researchers and practitioners should be aware of the
impact of playing roles on classes to make inform de-
sign and implementation choices and to understand
and forecast the characteristics of classes. The context
of our study is both development and maintenance.

3.1 Research Questions and Hypotheses

Descriptive Questions. The two first research
questions are descriptive and aim at understanding the
extent of classes playing zero, one, or two roles in a gen-
eral population of classes. If the proportions are not
negligible, then the two following analytic questions
will be answered.

e RQ1: What is the proportion of classes playing
zero, one, or two roles in some motif(s)?

e RQ1bis: What are the roles that are more often
played solitary or in pairs than others?

Analytic Questions. The two following questions
are analytic and divides in two sets of null hypotheses.

e RQ2: What are the internal characteristics of a
class that are the most impacted by playing one
or two roles wrt. zero role?

e RQ3: What are the external characteristics of a
class that are the most impacted by playing one
or two roles wrt. zero role?

For any metric m measuring some internal or ex-
ternal characteristics of a class, we test the set of null
hypotheses: Hy,,i/;: the distribution of the values of
metric m for the classes playing i € [1,2] role(s) is sim-
ilar to that of classes playing j € [0,1] A i # j role.

We relate the following independent and dependent
variables to assess the proportions of classes playing
different roles and to test the previous null hypotheses.

3.2 Independent Variables

In an ideal situation, we would know the general
population of all possible classes and know the number
of roles played by any class. Then, we would use the
sub-populations of classes playing zero, one, or more
roles to answer the research questions. However, this
situation is impossible because the population of all
possible classes is so large and, in general, a class does
not know if it plays any roles.

Therefore, the independent variables are three sam-
ples of classes playing zero, one, and two roles in de-
sign motifs. We limit our study to two roles and will
consider more roles in future work. We name these
samples the 0-, 1-, and 2-role samples. The samples
must be large enough to be statistically representative
but small enough to be manually validated, because
it is not practicable for any set of classes to identify
and validate manually all classes playing n-role. The
method to build these samples along with its imple-
mentation are presented in Section 4.

3.3 Dependent Variables

The dependent variables are the metrics measuring
classes internal and external characteristics. We choose
to study a large number of metrics, as previous work
[21], to assess all the possible impacts of role playing.

Internal Characteristics are related to class
themselves and are measured using 56 different met-
rics from the literature, including Briand et al.’s class-
method import and export coupling [5]; Chidamber
and Kemerer’s Coupling Between Objects (CBO), Lack
of Cohesion in Methods (LCOMS5), and Weighted
Method Count (WMC) [6]; Hitz and Montazeri ‘C’ con-
nectivity of a class [12]; Lorenz and Kidd numbers of
new, inherited, and overridden methods and total num-
ber of methods [18]; McCabe’s Cyclomatic Complexity
Metric (CC) [19]; Tegarden et al.’s numbers of hierar-
chical levels below a class and class-to-leaf depth [23].
The definitions of all the metrics is available on-line’.

External Characteristics are limited in this study
to the change-proneness of classes. A class is change-
prone if, at a given time, it has been changed more
than other classes. Change-proneness is assessed by
computing the numbers and frequencies of past and
future changes per class. Future work will study issue-
proneness as well as other external characteristics.

Thttp://wiki.ptidej.dyndns.org/research/pom.



The computation of the internal and external char-
acteristics is described in Section 4. In Section 5, we
report the metrics that proved to be significantly im-
pacted by the number of roles played by classes and
also discuss the not-impacted metrics.

3.4 Descriptive and Analytic Analyses

We use the following analyses to answer the research
question with independent and dependent variables.

RQ1. Given a population of classes from 6 programs,
we computed the classes playing zero, one, and two
roles with our identification approach DeMIMA. Then,
we compute the accuracy of our approach for one and
two roles by manually validating classes playing roles
in the identified occurrences. With this precision, we
extrapolate the proportions of classes playing zero, one,
and two roles in the general population.

RQ2 and RQ3. We use the Wilcoxon rank-sum test
to compute for each metric and each pair of samples (0-
role, 1-role), (0-role, 2-roles), and (1-role, 2-role), the
p-values for the corresponding null hypotheses. The
Wilcoxon rank-sum test is a non-parametric statisti-
cal hypothesis test that assesses whether two samples
come from a same distribution or not. It allows us to
attempt rejecting the null hypotheses while making no
assumptions on the normality of the samples.

4 Study Implementation

The following subsections detail the building of the
samples and the computation of the metrics.

4.1 Definitions

We define a:

e General population as the set of all classes and
interfaces belonging to some given programs;

e n-role population as the population of classes
playing n roles in some design motifs. Thus, The
0-role population contains all the classes in the
general population playing no role. The 1-role
population contains classes playing one and only
one role. The 2-role population includes only
classes playing two roles in two different motifs,
i.e., playing roles in pairs of motifs;

e n-role class subset as a subset of the classes
in the general population that has been manually
studied to identify n-role classes;

e n-role sample as the intersection of the n-role
class subset and the n-role population: a manually
validated sample of n-role classes.

0-role population

7
—ro le sample

O-role class subset

1-role population 2-role population

General population

Figure 1. Subsets of the general population,
details are given for 0-role classes.

Figure 1 illustrates the partition of a general popula-
tion of classes. We define three sub-populations, which
form a partition of the general population. The 0-role
population contains all classes playing no role. The I-
role population contains classes playing one and only
one role. The 2-role population includes only classes
playing two roles in two different motifs, i.e., playing
roles in pairs of motifs. We extracted from the 0-, 1-
, and 2-role populations three subsets of classes, CSp,
CS1, and C'Ss, that we manually validated to build, af-
ter validation, the 0-, 1-, and 2-role samples with which
we will answer the research questions. We use different
n-role class subsets when identifying classes playing n
role(s) to avoid any bias.

4.2 Size of the Samples

The size of the samples must be large enough to
allow the generalisation of the results to the overall
population yet small enough to be validated by hand.

We compute the sample size in two steps: (1) we as-
sume the normality of the population and we compute
the sample size needed for a two-sample t-test; and, (2)
we adjust this size based on the Asymptotic Relative
Efficiency (ARE) [13] of the two-sample Wilcoxon test.



We choose a power of 0.8, i.e., we seek 80% chance
of finding statistical significance if the specified effect
exists. We also choose a significance level of 0.05 be-
cause we seek to reduce as much as possible the prob-
ability that a positive finding is due to chance alone

With this power and significance level, we study the
relation between effect size and sample size to choose
the adequate sample size for a two-sample t-test, as-
suming the normality of the distribution. We plotted
the values of the sample sizes corresponding to the ef-
fect sizes varying from 0.5 to 1.5.

Figure 2 presents the obtained curve.

60

50

sample size
40
|

e

/

effect size

Figure 2. Possible sample sizes wrt. effect
size for the t-test.

With the relations display on this curve, we decided
to choose a medium effect size of 0.58 that corresponds
to a sample size of 50 classes.

The ARE represents the asymptotic limit of the ra-
tio of the sample sizes needed to achieve equal power
for two statistical tests: given a sample size for a statis-
tical test A achieving a power p, the sample size needed
for a test B to achieve the same power p is obtained
from the ARE of A wrt. B. We compute the sample
size for the two-sample Wilcoxon test that ensures the
same power as the t-test, with no assumption of the dis-
tribution. The ARE for the two-sample Wilcoxon test
is never less than 0.864 [13], we choose to be conserva-
tive and therefore divide the sample size for a t-test by
0.864. We obtain a sample size of 58 classes.

Consequently, the parameters of our study are thus:

e Power: 0.8;

e Significance level: 0.05;
o Effect size: 0.58;

e Sizes of the samples: 58 classes.
4.3 Selection of the General Population

We choose six programs to form the general popula-
tion of classes from which to build the n-role samples:
ArgoUML v0.18.1, Azureus v2.1.0.0, Eclipse JDT Core
plug-in v2.1.2 (JDT Core v2.1.2), JHotDraw v5.4b2,
Xalan v2.7.0, and Xerces v1.4.4. These programs are
written in Java and open source. They are of different
domains, sizes, complexity, and maturity. Table 1(a)
summarises facts on these programs.

ArgoUML ? is a full-fledged UML modelling tool
with code generation and reverse-engineering capabili-
ties. It provides the user with a set of views and tools to
model programs using UML diagrams, to generate the
corresponding code skeletons and to reverse-engineer
diagrams from existing code. Azureus 2 (now called
Vuze) is a bit-torrent client. Bit torrent is a protocol to
exchange data among peers across a network. Azureus
provides advanced user-interface and implementation
of the protocol. JDT Core is an Eclipse ? plug-in that
implements the infrastructure for the Java IDE of the
Eclipse platform. It provides a Java model and capabil-
ities to parse, manipulate, and rewrite Java programs.
JHotDraw 2 is a graphic framework for drawing 2D
graphics. It was created in October 2000 by Beck and
Gamma with the purpose of illustrating the use of de-
sign patterns. Xalan 2 is an XSLT processor for trans-
forming XML documents into other document types
(HTML, text, and so on). It implements the XSLT
and XPath standards. Xerces 2 is a Java XML parser
which supports XML, DOM, and SAX.

4.4 Selection of the Motifs and their Roles

We select six design motifs used in previous work
[7, 24]: Command, Composite, Decorator, Observer,
Singleton, and State. We follow [7] in their choice of
the motifs main roles. We only study main roles be-
cause (1) they are most likely to impact classes, as con-
firmed by the following results, and (2) they allow us
to concentrate on a fewer number of roles during the
manual validation. In the following, roles are named
using the notation <Pattern Name> . <Role Name>.

2http://argouml.tigris.org/,
http://azureus.sourceforge.net/,
http://www.eclipse.org, http://www.jhotdraw.org,
http://xml.apache.org/xalan-j/, and
http://xerces.apache.org/xerces-j.
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Azureus v2.1.0.0 591 83,534 1/06/04 18,304 483 33,753 Azureus v2.1.0.0 9 9 9 9
JDT Core v2.1.2 669 | 184,690 3/11/03 | 23,243 | 26,923 62,728 JDT Core v2.1.2 10 | 10 | 17 | 17
JHotDraw v5.4b2 413 44,898 1/02/04 5,793 51 1,286 JHotDraw v5.4b2 6 6 6 6
Xalan v2.7.0 734 259,286 8/08/05 12,298 1,714 58,448 Xalan v2.7.0 11 11 11 11
Xerces v1.4.4 306 86,814 13/10/03 5,213 1,209 16,143 Xerces v1.4.4 5 5 5 5
Total 3,980 | 861,742 | 6 releases | 85,141 | 42,997 | 213,923 Total 58 | 58 | 58 | 58

(a) Statistics for the six programs. (Future refers to the time between the release

dates and 31/01/09.)

(b) Distribution of the sample size among
the programs of our strata.

Table 1. Data on the Studied Programs.

Patterns Descriptions Main Roles

Command Encapsulates a request as an object, thereby letting you parameterize clients with different Command, Invoker
requests, queue or log requests, and support undoable operations

Composite Composes objects into tree structures to represent part-whole hierarchies. Composite lets Component, Composite
clients treat individual objects and compositions of objects uniformly

Decorator Attaches additional responsibilities to an object dynamically. Decorators provide a flexible Component, Decorator
alternative to subclassing for extending functionality

Observer Defines a one-to-many dependency between objects so that when one object changes state, Observer, Subject
all its dependents are notified and updated automatically

Singleton Defines a mechanism that ensure that the same instance of a class is used throughout a | Singleton
program execution

State Allows an object to alter its behavior when its internal state changes Context, State

Table 2. Chosen design patterns and the main roles of their motifs.

In addition to choosing the roles of interest, we must
also select pairs of roles for classes playing two roles.
The eleven main roles yield 66 possible pairs of roles.
We exclude pairs with the same role because identical
roles in different motifs must have similar characteris-
tics, e.g., among the six motifs, Component is the only
role that appears twice with similar structure albeit
slightly different semantics. We exclude pairs involv-
ing roles from the same motif because a class play-
ing both the roles of Composite.Component and Com-
posite.Composite must be a degenerated case. Conse-
quently, we retain 45 possible pairs.

4.5 Building of the Samples

Building the n-role sample, with n € [0, 2], consists
of searching in the general population for three sets of
58 classes playing n roles. We reduce the search space
using our DeMIMA approach because it ensures 100%
recall and has up to 80% of precision, with an average
of 40% for the six design motifs in Table 2 in a set of
programs different from these used in this study.

DeMIMA uses explanation-based constraint pro-
gramming to automatically provide (1) explanations on
the identified occurrences: the roles and relationships
that led to identify a certain micro-architecture as an

occurrence of a motif and (2) approximations from the
given motifs: the relaxations of the constraints on a
micro-architecture to be identified as a approximated
occurrence of a motif. It provides a complete mapping
between roles in a motif and classes in an occurrence.
Thus, we can find all the roles that each class plays for
a set of motifs in a program.

We applied DeMIMA on the classes in the general
population and obtain candidate classes playing (at
least) one role in the selected motifs. We automati-
cally divided this set in two 1- and 2-role subsets.

Then, for each subset, we studied each class (its code
source, comments, hierarchy, relationships) to decide
whether it plays one role (respectively two roles) using
a voting process: the authors and a post-doc. student
marked independently each class as true when a class
played one role (respectively, two roles) or false else.
Then, a class was assigned to the 1-role sample (respec-
tively, 2-role sample) if the majority marked it as true,
else it was excluded. We stopped the voting process as
soon as the samples were completed.

In total, 238 classes were manually validated: 81
classes where false positives, i.e., classes playing no role
but belonging to occurrences identified by DeMIMA;
88 classes played 1 role; and, 69 classes played 2 roles.
Finally, from the classes not included in any of the oc-



currences identified by DeMIMA, we selected randomly
and validated manually 58 classes playing 0 role.

The distribution in the samples of the classes from
the general population must be representative of the
population. We distributed the 58 classes per sam-
ple along the strata formed by the six programs. We
computed stratified sample sizes so that each stratum
reflected the proportional size of one program with re-
spect to the others. For example, JHotDraw v5.4b2
makes up 10.38% of the general population. So, it had
to provide 10.38% of the 58 classes in each sample.
Thus, we ensured that the results equally reflect the
six programs. The second column in Table 1(b) shows
the expected size of each stratum, i.e., the expected
numbers of classes of each program in each sample.

We could not find enough 1- and 2-role classes in Ar-
goUML. Therefore, we made up for the reduced num-
ber of classes in ArgoUML by using more classes from
JDT Core. The fourth and fifth columns in Table 1(b)
show the actual repartitions of classes in the 1- and
2-role samples. We replicated our study on the gen-
eral population without JDT Core and on JDT Core
exclusively and noticed the same trends.

4.6 Computing Dependent Variables

We compute the dependent variables using two dif-
ferent frameworks.

Internal Characteristics are computed using the
PADL meta-model and parsers and the POM frame-
work [10]. PADL models of programs are obtained us-
ing the Java parser and the metric values are computed
by applying each metric on each class of the models.

External Characteristics are computed using the
Ibdoos framework. Ibdoos extracts commit informa-
tion from any CVS, GIT, or SVN repository and
stores this in a database. We implemented queries to
count the numbers and frequencies of changes for each
class before and after the release dates of the six pro-
grams. Issue-proneness is assessed by analysing the
issue-trackers of each program and counting the num-
ber of classes in some issue descriptions.

5 Study Results

We analyse the metrics values computed on the
classes in the samples to answer the research questions.

RQ1. To answer our first research question, “What is
the proportion of classes playing zero, one, or two roles
in some motifs in a program?”, we extrapolate, for each
program and each motif, the number of classes playing
zero, one role, and two roles in the motifs.
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Table 3. Validated precisions of DeMIMA.
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734 594 36 104
Xalan v2.7.0 T00% | 80.92% | 4.00% | 14.16%
306 56 91 56
Xerces vl.4.4 100% | 50.98% | 30.72% | 18.30%
Total 3,080 | 2,832 318 830
T00% | 71.15% | 7.00% | 20.85%

Table 4. Extrapolated numbers and percent-
ages of classes playing no, one, or two roles.

First, from the class subsets, we compute the accu-
racy of DeMIMA as the number of classes in a sub-
set indeed playing zero, one, or two roles with respect
to the total numbers of classes in the subsets. Table
3 summarises this accuracy and shows that it varies
across motifs and programs. It therefore highlights the
need for more detailed studies of the accuracy of identi-
fication approaches. Indeed, current approaches report
their precision and recall in function of the motifs but
of the programs. Reporting variations in terms of pro-
grams could help the community to focus on programs
in which the identification is difficult. Such a focus
would lead to a better understanding of the impact of
program design and implementation on analysis tools
and to a collection of known difficult programs. This
collection could be included into oracles for design mo-
tif identification, such as P-MART [10].

Second, we extrapolate in Table 4 the numbers of
classes playing one and two roles from the previous
accuracy and the numbers of classes in each program.



The number of classes playing zero role is computed by
subtracting the two previous numbers from the total
number of classes. Table 4 shows that the percentage
of classes playing one or two roles in any of the six
selected design motif varies from 4.02% to 30.72%.

The answer to RQ1 is that classes playing one or two
roles do ezist in programs and are not negligible, which
confirms the need to understand the characteristics of
classes playing different numbers of roles.

RQ1bis. An answer to this research question, “What
are the roles that are more often played solitary or in
pairs than others?” is obtained by studying the pro-
portions of the numbers of classes playing one or two
roles with respect to the number of classes playing a
particular role.

Table 5 shows the numbers and proportions for
each role and each pair for which the proportions of
classes playing this role or pair of roles was not neg-
ligible. It shows that, for example, five classes play
the role of Command.Command alone while four play
the roles of both Command.Command and State.State,
which make up for 44.44% of classes playing both roles
with respect to the 5 4+ 4 classes playing the Com-
mand.Command role.

We notice three facts:

1. There are three pairs and two solitary roles
for which the percentage is above our decision

threshold: (Command.Invoker, State.State),
(Decorator.Component,  State.State),  (Dec-
orator.Decorator, State.State), Compos-

ite.Composite, State.Context. We could conclude
that these pairs are prevalent. Yet, these roles
and pairs are only played by a few classes. We
will therefore study in future work more classes
playing these roles to generalise the results to any
programs.

2. Among the roles/pairs with a significant number
of classes (more than 50) playing these roles, the
percentages are smaller than our decision thresh-
old and prevents us to generalise our results.

3. The preponderance of pairs involving roles in the
State motif possibly indicates a bias during the
manual validation of the classes. We further dis-
cuss the threat to the validity of our study in Sec-
tion 6.

We therefore answer that, in the siz studied pro-
grams, pairs (Command.Invoker, State.State), (Deco-
rator. Component, State.State), (Decorator.Decorator,
State.State) and roles Composite. Composite and

Pairs
(Command.Command , State.State)
(Command.Invoker , State.State)
(Command.Invoker , Singleton.Singleton)
(Composite.Component, Observer.Observer)
(Composite.Component, State.State)
(Composite.Component, Singleton.Singleton)
(Composite.Composite , State.Context)
(Composite.Composite , Singleton.Singleton)
(Decorator.Component , State.Context)
(Decorator.Component , State.State)
(Decorator.Component , Singleton.Singleton)
(Decorator.Decorator , State.State)
(Observer.Observer , State.State)
(Singleton.Singleton  , State.State)

Table 6. Selected pairs of roles.

State.Context have greater prevalence than others.,
which confirms that some roles are more often played
together than others.

RQ2. In the rest of this study, we limit our selection
of roles to the 14 pairs shown in Table 6 by keeping
only pairs for which we had enough classes, determined
while in RQ1. To answer RQ2, “What are the internal
characteristics of a class that are the most impacted by
playing one or two roles?”, we test the null hypotheses
Hopmisj,i € [1,2],5 € [0,1] A j # i for the 56 met-
rics. Table 8 summarises the results. It shows for each
metric in each metric group the p-value when testing
the associated null hypothesis. It reports in bold the
p-values that show a statistically significant difference
between the distribution of the metric value between
two samples. It also shows using arrows the trend in
the change between.

We analyze the results in Table 8 in three steps:
metrics whose distributions do not change between
samples and then each pairs of samples:

There are 8 metrics whose distributions did not
change significantly between the three samples: ANA,
connectivity, CP, DSC, MFA, NOH, PP, and RPII.
These metrics are therefore unlikely to be of interest
when assessing the impact of role playing and could
be excluded from future studies on design motifs. This
finding was predictable for CP, PP, RPII because these
metrics measure the structure of the packages of a sys-
tem rather than the structure of its classes. The same
explanation applies to DSC and NOH, which count re-
spectively the total number of classes and the number
of class hierarchies in a system. The finding for ANA,
connectivity, and MFA is surprising because we ex-
pected that classes playing roles in design motifs would
inherit more from other classes and are more “con-
nected” to other classes. We explain this finding by
the specific definitions of these three metrics because
the values of other metrics related to inheritance and



Roles \ Pairs Counts Percentages
Command.Command 5 55.56%
(Command.Command , State.State) 4 44.44%

Command.Invoker 0 0%
(Command.Invoker , State.State) 13 100%

Composite.Component 4 22.22%
(Composite.Component, Observer.Observer) 9 50%

(Composite.Component, State.State) 5 27.78%

Composite.Composite 8 80%
(Composite.Composite , State.Context) 2 20%

Decorator.Component 1 11.11%
(Decorator.Component , State.State) 8 88.89%

(Decorator.Component , State.Context) 0 0%

Decorator.Decorator 1 8.33%
(Decorator.Decorator , State.State) 11 91.67%

Observer.Observer 36 66.67%
(Composite.Component, Observer.Observer) 9 16.67%

(Observer.Observer , State.State) 9 16.67%

State.Context 33 94.29%
(Composite.Composite , State.Context) 2 5.71%

(Decorator.Component , State.Context) 0 0%

State.State 50 50%
(Command.Command , State.State) 4 1%

(Command.Invoker , State.State) 13 13%

(Composite.Component, State.State) 5 5%

(Decorator.Decorator , State.State) 11 11%

(Decorator.Component , State.State) 8 8%

(Observer.Observer , State.State) 9 9%

Table 5. Counts and percentages of roles played alone or paired with another role.

coupling significantly change between the samples.

There is a statistically significant difference between
classes playing zero and one role for 29 metrics. These
metrics characterise coupling, cohesion, inheritance,
size and polymorphism, and complexity. The trends
are a decrease in metric values for only four metrics:
LCOM1, LCOM2, WMCI1, and RRTP. This finding is
explained again by the implementations of the metrics:
LCOMI and 2 have been superseded by LCOMS5, which
changes significantly, while WMC1 counts weighs each
method by 1 and RRTP is related to packages. The
others metrics see a statistically significant increase
in their values. Among these, we can quote: CBO,
DCAEC, LCOMS5, McCabe, SIX, WMC. We explain
this finding by the fact that playing roles implies re-
sponsibilities, thus classes playing one role have more
responsibilities than classes playing zero role, which
results in classes being more complex (McCabe, SIX,
WMC), more coupled (CBO, DCAEC), and less cohe-
sive (LCOMS5), as examples. We conclude that playing
one role impact classes wrt. playing zero role.

There is a statistically significant difference between
classes playing zero and two roles for 48 metrics, with,
for each metric, an increase of its values for classes
playing two roles, except for RRFP and RRTP. This
finding was expected because RRFP and RRTP con-
cern packages. For the 48 other metrics, the argument
of added responsibilities with each role can also help
explain the impact of 2-role classes on metric values
in comparison to the impact of classes playing zero
role. Having more responsibilities, classes become more

complex (McCabe, WMC, WMC1, SIX), more coupled
(CBO, DCAEC, DCC, DCMEC), inherit more from
their superclasses (CLD, DIT, NOC, NOD), and use
more polymorphism (MOA, NMA, NMD). Therefore,
we conclude that playing two roles has a major impact
on classes, in particular in comparison to the impact of
playing one role. Playing two roles should be carefully
considered during design and implementation.

The change in the distributions of the metrics values
between classes in the 2- and 1-role samples is signifi-
cant for 26 metrics, among which: CAM, CLD, DCC,
LCOMS5, McCabe, SIX, WMC. We observe that the
more they play roles, the more classes are complex (Mc-
Cabe, SIX, WMC, WMC1), are coupled (CBO, DCC),
inherit (NOP), and use polymorphism (MOA, NAD,
NMO). The values of CLD decrease significantly, pos-
sibly hinting at more shallow inheritance tree thank to
the elegant solutions provided by the motifs. We con-
clude that, indeed, playing two roles has a significant
impact on classes that cannot be accounted for by the
fact that they play two different one roles.

Table 7 shows the change in trends in the metrics
values when considering classes playing zero roles but
identified by DeMIMA as playing one or more roles,
i.e., false positives, rather than classes truly playing
zero roles. It shows that, again, there are several met-
rics that are impacted when comparing classes in the
07P_sample with classes in the 1- and 2-roles samples.

Consequently, the answer to RQ2 is that playing two
roles has a major impact on classes when compared to
playing zero or one role.



RQ3. We answer the last research question, “What
are the external characteristics of a class that are the
most impacted by playing one or two roles?”, by carry-
ing null hypothesis tests on the numbers and frequen-
cies of past and future changes and on the numbers of
issues related to classes in the different samples. Table
8 shows the results of testing out the null hypotheses.

We can reject the null hypotheses related to the ex-
ternal metrics for 1-role and 2-role classes wrt. O-role
classes with statistical significance. We cannot reject
the null hypotheses for 2-role classes when compared
to 1-role classes.

These results confirm previous works on the change-
and issue-proneness of classes playing roles in some de-
sign motifs, for example [4, 7]. We perform in Section
7 a deeper analysis that shows that 2-role classes are
the cause of the greater parts of the changes (56%)
and issues (57%) with 1-role classes causing only 33%
of changes and 30% of issues.

The answer to RQS is that playing roles do impact
the number of changes and issues as well as the fre-
quencies of the changes. It confirms that playing roles
has a major impact on change- and issue-proneness.

6 Threats to Validity

The results of any empirical studies are subject to
the following threats to their validity. Construct Va-
lidity. There is actually no agreed-upon definition
of motif composition. In this study, we define a mo-
tif composition as the implementation of two differ-
ent roles in two different motifs by a same class. We
only considered pairs of roles and ignored the effect of
the particular roles on a class. We also explicitly ex-
cluded auto-composition, i.e., a class playing two dif-
ferent roles in a same motif. Future work should dis-
tinguish compositions based on their roles and further
study auto-compositions. Also, we purposefully stud-
ied only main roles of design patterns. Future work
includes extending our study to all roles.

Internal Validity. Our approach relies on the pre-
cision of the automatic detection technique DeMIMA.
The results include false positive. We try to limit the
number of false positive through a manual validation.
However, the manual validation is a tedious task that
leads to resilience and the experimenter bias: some
false positive class may pass the validation because it
“looks like” a motif. An approach that would pro-
vide a better precision is to use a manually validated
repository of motifs such as P-MART [10]. However,
P-MART does not contain enough data as of now to
perform such a study. We used as a baseline for our
study of classes playing 1-role and 2-role, the O-role
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population of classes playing none of the 11 roles con-
sidered in our study. However, among these classes,
some may be playing one or two roles in other design
motifs. Future work should extend this study to cover
the 23 patterns from Gamma et al. [8]

External Validity. We studied six programs of dif-
ferent sizes, domains, maturity, and complexity. How-
ever, these programs are all open-source programs writ-
ten in Java. We choose six design patterns among the
many available. The results could be different with in-
dustrial programs, other object-oriented programming
languages, and different design patterns.

Reliability validity. This threat concern the pos-
sibility of replicating this study. We attempted to pro-
vide all the necessary details to replicate our study.
Moreover, both Eclipse source code repository and
issue-tracking system are available to obtain the same
data. Finally, the data from which our statistics have
been computed is available on-line3.

Statistical Validity. In Section 4, we presented
the process to build the sample size of our study. We
could not find enough classes playing one role and two
roles in ArgoUML and, therefore, used more classes
from JDT Core. We assess the impact of this selection
on the conclusions of our study by replicating the study
on the population without JDT Core and on JDT Core
exclusively. We obtained for these two additional stud-
ies the same trends on the results.

Conclusion Validity. There is no threat to the
validity of the conclusion of this study as there is a di-
rect relation between the chosen metrics and the overall
internal quality of a class.

7 Discussions

We now exemplify the use of our study results by
revisiting previous works and sketching an approach to
rank occurrences of identified design motifs.

7.1 Proportions of 0-, 1-, or 2-role Classes

Table 4 shows the percentages of classes playing no,
one, or two roles in the six programs. In addition to the
overall percentages, some programs have higher per-
centages than others: JHoDraw contains only 5.81%
of classes playing one role and 24.45% two roles in
contrast to the 30.72% of classes playing one role in
Xerces and the 26.60% of classes playing two roles in
JDT Core. Given that JHotDraw has been developed
to show the “good” use of design patterns, the higher

Shttp://www.ptidej.net/downloads/experiments/
prop-icsm09/.



percentages of classes playing one or two roles in Xerces
and JDT Core could be due to an overuse of design
patterns. These higher percentages could be used with
other quality measures to confirm or refute the impact
of overusing design patterns as put forward by Wen-
dorff [26] and others.

7.2 Trends in Playing Roles on Quality

Table 8 shows that in the 2-role sample, classes are
more complex, more coupled, less cohesive than classes
than in the 0- and 1-role samples. This trend suggests
that motif composition (playing more than one role in
motifs) degrades more the quality of the classes. We
explain this degradation by the addition to the classes
of non-feature oriented methods and fields to allow the
classes to fulfill their roles. Future work should inves-
tigate classes playing more roles in motif compositions
to confirm and generalise this trend.

7.3 Revisit of Previous Works.

Bieman and McNatt’s Work. We observe that
playing one or more roles in a design motif decreases
the cohesion of classes (increases of the LCOMx* met-
rics) while increasing their coupling (increase of the
coupling metrics). This result confirm Bieman and Mc-
Natt’s claim [20] that design motifs impact the cohesion
and coupling of programs.

Hannemann and Kicazles’ Work. We explain
the decrease in cohesion and increase in coupling by
suggesting that design motif-related methods may be
orthogonal to the responsibilities of the classes and thus
reduce their cohesion. Therefore, our study confirms
that design motifs are often “cross-cutting concern”
that could benefit from being “separated” from the
program using, for example, aspect-oriented program-
ming. We thus bring quantitative support to previous
work on rewriting design motifs as aspects [11].

Di Penta et al.’s Work. We revisit Di Penta et
al.’s study of the numbers and frequencies of changes
of classes playing roles. We compare the set of classes
playing some roles, as identified by DeMIMA, which is
the union of the samples of 1- and 2-role classes with
the sample of false positive classes, noted 0F'F, with the
set of classes playing really zero role: O-role sample vs.
(0FP_role U 1-role U 2-role) sample. This comparison
yields a p-value of 1.973e-14 < 0.05, thus confirming
the previous work as well as the statistical validity of
our three samples.

It appears from our study that, in average, the num-
bers of changes prior to the releases of the studied pro-
gram for classes playing two roles accounts for 56% of
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the total number of past changes. Also, classes playing
two roles change 1.52 times more than classes playing
one role. Classes playing zero and one role account re-
spectively for 33% and 11% of past changes. Classes
playing one role change more than two role classes af-
ter the studied release of the programs. They change
1.46 times more than the 2-role classes and they ac-
count for 61.53% of the total number of future changes.
We explain this result by the fewer numbers of future
changes, shown in Table 1(a): in total, there are twice
as much past changes than future changes. Therefore,
we bring evidence that the results found by Di Penta
et al. was largely due to classes playing two roles.

Table 7 shows the fine-grained study of the impact
for a class to be a false positive wrt. playing zero, one,
or two roles. It shows that false positive classes do have
a significantly different number of changes than classes
playing 0 role. This results was expected because false
positive classes must have some particular feature, be-
cause DeMIMA included them in its results. Also, it
shows that classes playing two roles change significantly
differently from false positives classes, thus confirming
their importance.

We conclude that developers should be careful with
classes playing roles, in particular 2-role classes, be-
cause they have internal and external metric values
that are significantly higher than these of other classes:
they are more change-prone, less cohesive, more cou-
pled, more complex, and more issue-prone.

7.4 Ranking Design Motif Occurrences.

We get inspiration from previous works by Antoniol
et al. [1], Guéhéneuc et al. [10], and Jahnke et al. [14]
to use the study results to rank occurrences.

First, we assign to each class in a program its proba-
bility to play one or more roles in a design motif using
its metrics values. We select a set of discriminating
metrics for the 0-, 1- and 2-role classes from Table 8.
Then, we plot the distributions of these metrics for the
0-, 1- and 2-role samples. Finally, we find the thresh-
olds characterising these samples for each selected met-
rics by superposing the curves of each selected metrics.

Second, the probability of a class is computed by
interpolation as the distance between the values of its
metrics and the thresholds characterising each samples.
We aggregate these probabilities with the min and max
fuzzy logic operators. Finally, from the probability of
classes, we assign a probability to an occurrence as:

where po is the probability of the occurrence to be a



100.00 190% 100%
90.0%
80.0% \
70.0% \
60.0%
50.0% \
40.0%
30.0%
20.0%
10.0% 77%
0.0% —_—
1 2 3 4 5 & 7 8 9 10 11 12 13

—— Precision
- Recall

100.0%

100%
90.0%
80.0%
70.0%
60.0%
50.0%

—— Precision
-~ Recall

28.6%

0,
40.0% 38.5%

33.3%

/

30.0%

20.0%
10.0%
0.0% +=r T Tt T T T T T T T T
123 456 7 8 9 101112131415 16 17 18 19 20 21

~7

(a) Precision and recall of the identification of Decorator.

(b) Precision and recall of the identification of State.

Figure 3. Precision and Recall.

true positive; pc, is the probability of the class playing
the i*" role in the occurrence to play one or more roles;
and, «; is a weight to discriminate roles.

We apply this naive approach using the metrics
CAM, CBO, LCOM5, McCabe, MOA, NAD, NMO,
SIX, and WMC, because Table 8 shows that these met-
rics are the most discriminating of classes playing 0,
1, and 2 roles. We choose Vi € [1,n],a; = 1. We
apply this approach on the occurrences identified by
DeMIMA in JHotDraw v5.1. We choose JHotDraw
v5.1 to be able to compare with our previous work [9]
ans also to show that our naive approach can be applied
successfully on a different set of programs.

Figure 3(a) shows that, in the case of Decorator, our
naive approach assigns the higher rank to the true pos-
itive occurrence. The precision and recall are therefore
100% when considering the first occurrence. These are
to be contrasted to the 7.7% precision and 100% recall
obtained by DeMIMA with no ranking [9].

Figure 3(b) shows that, in the case of State (or
Strategy), our approach rank occurrences with less ef-
ficiency. Still, the precision of 33.3% with 100% recall
obtained on the 18" occurrence must be compared to
the DeMIMA precision of 28.6%. Also, if a recall of
100% is not mandatory, precision reaches 38.5% on the
13" occurrence.

We obtain results for the other four motifs in-
between those presented for Decorator and State.
Therefore, this naive approach allows reducing the de-
velopers’ efforts by presenting true positive occurrences
first and modulating precision and recall.

We conclude that our study results allow ranking the
occurrences obtained from a design pattern identifica-
tion approach using the number of roles likely to be
played by classes. This ranking reduces the develop-
ers’ efforts and allows developers to balance precision
and recall as they see fit.
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8 Conclusion

In this paper, we presented a study of the impact of
playing one or two roles in a(some) motif(s) for a class.
We answered the following research questions: RQ1.
In average, 8.24% (respectively 17.81%) of the classes
of the six studied programs played one role (respec-
tively two roles) in some motifs. These percentages are
not negligible and therefore justify a posteriori the in-
terest in design motif identification and a priori future
studies on the impact of motifs on programs. RQ1bis.
Despite the few numbers of classes displaying a rela-
tionships between roles, we can conclude that some
roles are more often played in pairs than others, for
example (Decorator.Decorator, State.State). Further
studies must focus on this question to bring further
generalisable evidence. RQ2. There is a significant in-
crease in many metric values, in particular for classes
playing two roles. These increases confirm a posteriori
the warning addressed to the community by Bieman,
Beck, and others on the use of design patterns. RQ3.
There is a significant increase in the frequencies and
numbers of changes of classes playing two roles. We
thus confirmed on new samples the previous results by
Di Penta et al.

We justify the usefulness of this study by revisit-
ing previous work and proposing a naive approach to
rank occurrences. We show that developers should be
wary of classes playing two roles because they have
significantly higher metric values and represent 56% of
changes while 1-role classes only 33%.

We also sketched a naive approach to illustrate the
possibility of ranking occurrences using the metrics
characterising 1- and 2-role classes. This approach
leads to a precision and recall of 100% for the first
occurrence of the Decorator. Extending on this naive
approach, a new family of design pattern identification
approaches could be designed to include the knowledge
of the numbers of roles played by classes.



As future work, we plan to further study the impact
of unique design motif on metrics values with the intu-
ition that some motifs actually do fulfill (part of) the
intrinsic responsibilities of classes. We will also repli-
cate this study on other motifs and programs as well
as study classes playing three roles and more to con-
firm its generalisability. We also plan to further study
the ranking of occurrences using other a more sophis-
ticated approach, other identification approaches, and
other programs. Also, the use of Bayesian beliefs net-
works to assign probabilities presents a great potential
of obtaining better ranking and thus improving further
the precision of identification approaches.
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Metric Groups

Metric Names

1 role vs. 0 role

2 role vs. 0 role

2 role vs. 1 role

l

| p-values [ Trends | p-values [ Trends | p-values | Trends |
ACMIC 0.896 0.066 0.04961 s
ACAIC 0.6251 0.8771 0.5029
CBO 0.513 0.000176 )z 0.001948 )z
CBOin 0.8466 0.0001986 s 0.0005939 s
CBOout 0.6496 9.21E-06 Y 0.0001025 %
connectivity 0.1912 0.8574 0.2603
CP 0.4471 0.03687 /! 0.1428
Coupling DCAEC 0.002435 )z 0.2118 0.06724
DCC 0.3617 2.05E-05 )z 0.002347 )
DCMEC 0.06408 0.2239 0.595
RFP 0.9383 0.6465 0.6074
RRFP 0.6811 0.993 0.5106
RRTP 0.8693 0.6973 0.6952
RTP 0.8923 0.4358 0.3693
CAM 0.8532 0.0007399 S 0.0003884 J
CohesionAttributes 0.5716 0.01112 )z 0.0009488 )V
Cohesion LCOM1 0.6737 0.0004046 /! 0.0009946 /!
LCOM2 0.9168 0.001582 ) 0.0017 )z
LCOM5 0.6976 0.0083 Y 0.001383 %
AID 0.6621 0.03946 S 0.1391
ANA 0.1938 0.5803 0.3918
CLD 0.002887 /" 0.9954 0.003298 AV
DIT 0.3 0.02209 / 0.2632
Inheritence NCM 0.6426 0.008635 s 0.07486
NOA 0.9256 0.01207 a 0.01153 Va
NOC 0.003547 ) 0.1792 0.245
NOD 0.0002031 )z 0.166 0.07
NOH 0.7356 0.7807 0.9663
NOP 0.4834 0.0008245 s 0.007146 %
ICHClass 0.8911 0.000905 /" 0.001095 /!
CIS 0.4914 0.05132 0.1605
DAM 0.6724 0.03264 /! 0.003362 /!
DSC 0.5031 0.4196 0.8725
EIC 0.6013 0.4277 0.5616
EIP 0.1874 0.5998 0.1039
MFA 0.9776 0.2374 0.243
MOA 0.9682 0.01269 /! 0.01493 /!
NAD 0.921 0.00277 )z 0.003884 )z
NADExtended 0.8652 0.008383 s 0.005466 %
NMD 0.4008 0.01341 S 0.0467 7
Size and NCP 0.7092 0.4407 0.1198
Polymorphism NMA 0.3501 0.1012 0.3157
NMDExtended 0.5107 0.02384 s 0.05112
NMI 0.4371 0.02397 Y 0.2016
NMO 0.8188 0.0006559 /! 0.0005408 /!
NOM 0.4008 0.01341 /" 0.0467 /!
NOParam 0.8372 0.1123 0.1551
NOPM 0.2496 0.9574 0.2793
PIIR 0.588 0.7276 0.2846
PP 0.8226 0.1112 0.1468
REIP 0.87 0.4993 0.3336
RPII 0.4809 0.652 0.8614
McCabe 0.8881 0.001085 S 0.00063 J
Complexity SIX 0.6163 0.002085 ) 0.0008183 /!
’ WMC1 0.4008 0.01341 /! 0.0467 /!
WMC 0.9252 0.0003315 /! 0.001297 "
Class Rank 0.2598 0.9978 0.212
Changeability Frequencies of Changes in Past 0.9956 0.08194 0.08794
and Rank Frequencies of Changes in Future 0.9733 0.5469 0.5983
Numbers of Changes Past 0.212 0.03508 S 0.06668
Numbers of Changes Future 0.8688 0.8537 0.7018
[ Tssues [ Numbers of Issues [ 00728 ] [ 01603 ] [ 06645 ] |

Table 7. p-values and Metrics Trends, with 07", (A  or \, represents an increase (respectively, decrease)
of, for example in the third column, the metrics values of 1-role classes wrt. to these of O-role classes.)
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Metric Groups | Metric Names [ 1 role vs. 0 role 2 role vs. 0 role [ 2 role vs. 1 role |
| p-values [ Trends | p-values [ Trends [ p-values | Trends |
Frequencies of Past Changes 8.26E-07 s 1.24E-09 e 0.08794
Changeability Frequencies of Future Changes 0.0001564 )V 7.44E-06 Vs 0.5983
Numbers of Past Changes 3.54E-07 / 5.50E-10 /" 0.06668
Numbers of Future Changes 0.001552 ! 9.72E-05 e 0.7018
CAM 0.854 0.0001996 Ve 0.0003884 J
cohesionAttributes 0.6881 0.04051 Va 0.0009488 Vs
Cohesion LCOM1 0.01313 . 6.22E-09 S 0.0009946 S
LCOM?2 0.01087 A 1.41E-07 S 0.0017 S
LCOMb5 0.03454 )z 3.95E-06 Vs 0.001383 Ve
McCabe 0.2274 7.85E-07 Ve 0.00063 Ve
Complexity SIX 0.004657 Va 1.41E-08 Va 0.0008183 Va
WMCT 2.09E-05 Va 4.00E-08 Va 0.0467 Va
WMC 0.01453 Y 5.40E-07 S 0.001297 )
ACAIC 0.1733 0.03935 e 0.5029
ACMIC 0.284 0.002702 Vs 0.04961 Va
CBO 0.5706 0.0001434 Va 0.001948 Va
CBOin 0.191 7.89E-06 J 0.0005939 S
CBOout 0.1055 5.96E-07 s 0.0001025 "
connectivity 0.5005 0.07963 0.2603
CP 0.9802 0.2272 0.1428
Coupling DCAEC 9.37E-06 Vi 0.003612 Va 0.06724
DCC 0.4149 2.98E-05 S 0.002347 S
DCMEC 0.0001468 ! 0.001024 s 0.595
PP 0.829 0.1382 0.1468
RFP 0.04845 ) 0.01477 Vs 0.6074
RRFP 0.0968 0.02306 . 0.5106
RRTP 0.02637 A 0.03722 Y 0.6952
RTP 0.2005 0.01295 s 0.3693
AID 0.126 0.0001542 e 0.1391
ANA 0.3958 0.8077 0.3918
CLD < 2.2¢-16 / 7.94E-11 o 0.003298 <
DIT 0.08713 8.59E-05 s 0.2632
Inheritence NCM 0.00087 )z 4.84E-09 s 0.07486
NOC 2.22E-16 J 3.55E-11 e 0.245
NOD 2.22E-16 S 5.29E-11 Pz 0.07351
NOH 0.5644 0.601 0.9663
NOP 0.2248 6.10E-06 )z 0.007146 )z
ICHClass 0.03035 ! 2.03E-07 s 0.001095 )
[ Tssues [ Numbers of Issues [ 0.0003619 [  ~ [ 0.0003612 [ ~ [ 0.6645 [ |
CIS 9.22E-07 J/ 1.50E-08 Ve 0.1605
DAM 0.1285 1.04E-05 Va 0.003362 Va
DSC 0.1461 0.2098 0.8725
EIC 0.0002848 ! 9.03E-06 s 0.5616
EIP 7.26E-13 /! 1.43E-09 Ve 0.1039
MFA 0.1138 0.7105 0.243
MOA 0.0001883 Va 6.44E-10 S 0.01493 S
NAD 0.1349 5.03E-06 S 0.003884 J
NADExtended 0.1514 1.14E-05 s 0.005466 )z
NCP 5.39E-06 J/ 0.01465 Ve 0.1198
Polymorphism NMA 9.34E-06 )V 2.30E-06 Vs 0.3157
and Size NMD 2.09E-05 Va 4.00E-08 Va 0.0467 Va
NMDExtended 3.37E-05 ! 1.07E-07 s 0.05112
NMI 0.1029 0.0001075 a 0.2016
NMO 0.00163 S 3.57E-10 Vs 0.0005408 Va
NOA 0.1868 7.35E-08 Va 0.01153 Ve
NOM 2.09E-05 Va 4.00E-08 Va 0.0467 Va
NOParam 7.81E-06 ! 2.38E-08 s 0.1551
NOPM 2.89E-14 ! 1.93E-10 Ve 0.2793
PIIR 7.00E-05 S 0.01216 Va 0.2846
REIP 5.94E-10 /! 7.54E-08 s 0.3336
RPII 0.1486 0.08605 0.8614
[ Ranking [ Class Rank [ 7.33E-09 | /" [ 408E-06 | 7~ ] 0.212 [ |

Table 8. p-values and Metrics Trends. (A " or \, represents an increase (respectively, decrease) of, for
example in the third column, the metrics values of 1-role classes compared to these of 0-role classes.)
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