An Exploratory Study of the Impact
of Antipatterns on Software Changeability

Foutse Khomh!, Massimiliano Di Penta?,
Yann-Gaél Guéhéneuc', and Guiliano Antoniol?

1Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada

2 SOCCER Lab., DGIGL, Ecole Polytechnique de Montréal, Canada
3 University of Sannio, Dept. of Engineering, Benevento, Italy

E-mails: {foutsekh,guehene}@iro.umontreal.ca,
dipenta@unisannio.it, giuliano.antoniol@polymtl.ca

ABSTRACT

Antipatterns are poor design choices that make object-orien-
ted systems hard to maintain by developers. In this study,
we investigate if classes that participate in antipatterns are
more change-prone than classes that do not. Specifically,
we test the general hypothesis: classes belonging to an-
tipatterns are not more likely than other classes to undergo
changes, to be impacted when fixing issues posted in issue-
tracking systems, and in particular to unhandled excep-
tions-related issues—a crucial problem for any software sys-
tem. We detect 11 antipatterns in 13 releases of Eclipse
and study the relations between classes involved in these
antipatterns and classes change-, issue-, and unhandled ex-
ception-proneness. We show that, in almost all releases of
Eclipse, classes with antipatterns are more change-, issue-,
and unhandled-exception-prone than others. These results
justify previous work on the specification and detection of
antipatterns and could help focusing quality assurance and
testing activities.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools And Tech-
niques— Object-oriented design methods

General Terms

Design, Experimentation, Measurement

Keywords

Antipatterns, Mining Software Repositories, Empirical Soft-
ware Engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. CONTEXT AND PROBLEM

Antipatterns [7] are poor design choices that are conjec-
tured in the literature to hinder object-oriented software
evolution. They are opposite to design patterns [16]: they
are “poor” solutions to recurring design problems. Antipat-
terns are composed of code smells, which are poor imple-
mentation choices. Code smells are to antipatterns what
roles are to design patterns: classes participating in an an-
tipattern may possess one ore more of the smells defining it.
Fowler’s 22 code smells [15] are symptoms of antipatterns,
such as Brown’s 40 antipatterns [7].

Consequently and in practice, antipatterns are in-between
design and implementation: they concern the design of one
or more classes, but they concretely manifest themselves in
the source code as classes with specific code smells.

One example of an antipattern is the LazyClass, which
occurs in classes with few responsibilities in a system. A
LazyClass is revealed by classes with methods with little
complexity and few declared methods and fields. A Lazy-
Class is often the result of some speculative generality [17]
during the design or implementation of the system.

Goal. Despite the many works on code smells and antipat-
terns, no previous work has contrasted the changeability of
classes participating in antipatterns with other classes to
study empirically the impact of antipatterns on software evo-
lution. Because antipatterns concretely manifest themselves
in the source code as code smells, we identify antipatterns
from the source code to investigate the relations between
antipatterns and three types of code evolution phenomena.

First, we study whether classes participating in an an-
tipattern have more risk, i.e., an increased probability, to
change than other classes. Second, given that issue-tracking
systems contain issues related to faults—plus other issues,
e.g., issues related to enhancement or restructuring, we want
to understand if classes belonging to some antipatterns have
more risk to be involved in issues. Third, we want to assess
whether classes participating in antipatterns have more risk
than others to be involved in the subset of issues document-
ing unhandled exceptions (UHE in the following).

Study. We present an exploratory study investigating the
relations between antipatterns and classes changes, classes
involved in issue-fixing, and classes involved in UHE issue

fixing, in 13 releases of Eclipse. We show that antipatterns
do have a negative impact on classes, that certain kinds of
antipatterns do impact classes more than others, and that
classes involved in antipatterns present higher risk of UHE.

To deepen our understanding of the impact of antipatterns
on changeability, we also show that some code smells defin-
ing the antipatterns are more symptomatic of changes, is-
sues, and UHE, for example LongMethod-LongMethodClass.

Relevance. Understanding if antipatterns increases the
risk of a class to be changed, to be modified for fixing issues,
or to be modified for preventing UHE is important from the
points of view of both researchers and practitioners.

We bring evidence to researchers that antipatterns do in-
crease the numbers of (1) changes that classes undergo, (2)
issues in which classes are discussed, and (3) UHE issues
in which classes are present. We also bring evidence that,
like design patterns [3, 6, 11, 34], particular symptoms of
antipatterns—their code smells—are more important than
others. Therefore, this study justifies a posteriori the previ-
ous work on code smells and antipatterns: within the limits
of the threats to its validity, classes belonging to antipatterns
are more change-prone than others and therefore antipat-
terns may indeed hinder software evolution; we prove the
conjecture in the literature—premise of this study—true.

We also provide evidence to practitioners—developers, qua-

lity assurance personnel, and managers—of the importance
and usefulness of antipattern detection techniques to assess
the quality of their systems by showing that classes par-
ticipating to antipatterns are more likely to change often
and—or to be prone to issues and unhandled exceptions than
other classes. Consequently, a tester could decide to focus
on classes belonging to antipatterns, because she knows that
such classes have more risks to generate UHE. Similarly, a
manager could use antipattern detection techniques to assess
the volume of classes belonging to antipatterns in a to-be-
acquired system and, thus, narrow down her price offer and
forecast the system cost-of-ownership.

Organisation. Section 2 relates our study with previous
works. Section 3 provides definitions and a description of
our specification and detection approach for antipatterns.
Section 4 describes the exploratory study definition and de-
sign. Section 5 presents the study results, while Section 6
discusses them, along with threats to their validity. Finally,
Section 8 concludes the paper and outlines future work.

2. RELATED WORK

This section discusses related work on antipatterns defi-
nition and detection and on the impact of design patterns
and object-oriented metrics on software evolution.

Antipatterns Definitions and Detection. The first book
on “antipatterns” in object-oriented development was writ-
ten in 1995 by Webster [36]; his contribution includes con-
ceptual, political, coding, and quality-assurance problems.
Riel [28] defined 61 heuristics characterising good object-
oriented programming to assess a system quality manually
and improve its design and implementation. Beck [15] de-
fined 22 code smells, suggesting where developers should
apply refactorings. Mantyld [23] and Wake [35] proposed
classifications for code smells. Brown et al. [7] described 40
antipatterns, including the well-known Blob and Spaghetti
Code. These books provide in-depth views on heuristics,

code smells, and antipatterns aimed at a wide academic au-
dience. They are the basis of all the approaches to specify
and detect (semi-)automatically code smells and antipat-
terns, such as DECOR [26], presented in Section 3.

Several approaches to specify and detect code smells and
antipatterns have been proposed. They range from manual
approaches, based on inspection techniques [32], to metric-
based heuristics [24, 27], where antipatterns are identified
according to sets of rules and thresholds defined on various
metrics. Rules may also be defined using fuzzy logic and
executed by means of a rule-inference engine [1].

Some approaches for complex software analysis use visual-
isation techniques [10, 29]. Such semi-automatic approaches
are an interesting compromise between fully automatic de-
tection techniques that can be efficient but loose track of
the context and manual inspections that are slow and sub-
jective [21]. However, they require human expertise and are
thus time-consuming. Other approaches perform fully auto-
matic detection and use visualisation techniques to present
the detection results [22, 33].

This previous work has contributed significantly to the
specification and automatic detection of code smells and
antipatterns. The approach used in this study, DECOR,
builds on this previous work and offers a complete method
to specify antipatterns and automatically detect them.

Design Patterns and Software Evolution. Several au-
thors have studied the impact of design patterns on sys-
tems. Vokac [34] analysed the corrective maintenance of
a large commercial system over three years and compared
the fault rates of classes that participated in design pat-
terns against those of classes that did not. He noticed that
participating classes were less fault prone than others. He
also concluded that the Observer and Singleton patterns are
correlated with larger classes that could require special at-
tention and that classes designed with the Factory Method
pattern are more compact and less coupled than others and,
consequently, have lower fault rates. Vokac could not find
a clear tendency for the Template Method pattern. Vokac’s
work inspired this study, in particular the use of logistic
regression to analyse the correlations between antipatterns
and change-, issue-, and unhandled exception-proneness.

Bieman et al. [6] analysed four small and one large sys-
tems to identify the impact of design patterns, such as pat-
tern change proneness. Khomh and Guéhéneuc [30] per-
formed an empirical study of the impact of the 23 design
patterns from [16] on ten different quality characteristics and
concluded that patterns do not necessarily promote reusabil-
ity, expandability, and understandability, as advocated by
Gamma et al. Other studies deal with the changeability
and resilience to change of design patterns [3] and of classes
playing a specific role in design patterns [11], or their impact
on the maintainability of a large commercial system [37].

While this previous work investigates the positive (and
negative) impact of good design principles, i.e., design pat-
terns, on software systems, we study the impact of poor
design choices, i.e., antipatterns, on software evolution and
focus specifically on three kinds of software changes.

Metrics and Software Evolution. Several studies, such
as Basili et al.’s seminal work [5], used metrics as quality in-
dicators. Cartwright and Shepperd [8] conducted an empir-
ical study on an industrial C++ system (over 133 KLOC),
which supported the hypothesis that classes in inheritance

relations are more fault prone. It followed that Chidamber
and Kemerer DIT and NOC metrics [9] could be used to find
classes that are likely to have higher fault rates. Gyimothy
et al. [19] compared the capability of sets of Chidamber
and Kemerer metrics to predict fault-prone classes within
Mozilla, using logistic regression and other machine learn-
ing techniques (e.g., artificial neural networks). They con-
cluded that the CBO metric is the most discriminating met-
ric. They also found LOC to discriminate fault-prone classes
well. Zimmermann et al. [39] conducted an empirical study
on Eclipse showing that a combination of complexity met-
rics can predict faults and suggesting that the more complex
the code, the more faults. El Emam et al. [13] showed that
after controlling for the confounding effect of size, the cor-
relation between metrics and fault-proneness disappeared:
many metrics are correlated with size and, therefore, do not
bring more information to predict fault proneness.

In our study, we relate changeability and issue proneness
to antipatterns rather than to metrics as antipatterns are
a higher-level of abstraction than metrics, thus likely to be
better indicators for developers than metrics. We also re-
late antipatterns with issues. However, differently from Gy-
imothy et al. [19], we talk about issues rather than “faults”
because we are aware that only about 50% of posted issues
are actually related to corrective maintenance, others relate
to enhancement or restructuring [4].

3. DEFINITIONS AND DETECTION

We now define the studied phenomena and the detection
technique used to relate antipatterns to these phenomena.

3.1 Changes, Issues, Unhandled Exceptions

In this study, we relate antipatterns with changes. We
also relate antipatterns with issues posted in issue-tracking
systems and issues related to unhandled exceptions (UHE).

Changes. Changes are counted for each class in a system as
the number of commits related to that class in its versioning
system (CVS in the case of Eclipse). Changes provide an
indication of the development and maintenance efforts put
into the class: the more changes, likely the more efforts.

Issues. Issues are reports that describe different kinds of
problems related to a system [4]. They are usually posted
in issue-tracking systems by users and developers to warn
the system community of impending issues with its func-
tionalities. An issue often includes a description, steps to
reproduce, and possibly some patches to resolve it. We
only consider issues marked as “FIXED” or “CLOSED”, be-
cause they required some changes, and traced into changes
by matching the issue ID in the commits [14].

UHE Issues. We distinguish issues and UHEFE issues, which
are issues reporting null-pointer exceptions and other un-
handled exceptions thrown by the system at the users. UHE
issues are critical because they often prevent the use of the
system and thus must be avoided at all costs.

3.2 Code Smells and Antipatterns

When studying antipatterns, we do not excluded that, in
a particular context, an antipattern can be the best way to
actually implement or design a (part of a) system. For ex-
ample, automatically-generated parsers are often Spaghetti
Code, i.e., very large classes with very long methods. Only

developers can evaluate their impact according to the con-
text: it may be perfectly sensible to have a Spaghetti Code
if it comes from a well-defined and well-managed grammar.

We use our previous approach, DECOR (Defect dEtection
for CORrection) [25, 31], to specify and detect antipatterns.
DECOR is based on a thorough domain analysis of existing
code smells and antipatterns on which is based a domain-
specific language to specify antipatterns. It also provides
methods to specify antipatterns and detect them automat-
ically. It can be applied on any object-oriented system be-
cause it is based on the PADL meta-model and POM frame-
work. PADL is a meta-model to describe object-oriented
systems [18]; parsers for C++ and Java are available. POM
is a PADL-based framework that offers implementations of
more than 60 metrics, including McCabe cyclomatic com-
plexity and Chidamber and Kemerer metric suite, and sta-
tistical features, e.g., computing and accessing metrics box-
plots, to compensate for the effect of size. Moha et al. [26]
showed that the current detection algorithms obtained from
DECOR ensure 100% recall and have precisions between
31% and 70% (average 60%).

Listing 1 shows the specification of the LazyClass antipat-
tern. LazyClass is an antipattern because it combines two
symptoms: the code smells NotComplexClass and FewMe-
thods. A class is a LazyClass if it is a class with low complex-
ity (code smell NotComplexClass) and with only few meth-
ods (code smell FewMethods). A class is a NotComplexClass
if the sum of its number of declared methods weighted by
their complexity—measured as their number of method in-
vocations in terms of the Chidamber and Kemerer's WMC
metric—is very low, i.e., under the lower quartile when con-
sidering all classes. A class has FewMethods if its number
of declared methods and fields (measured using the NMD
and NAD metrics) is also very low. The values 20 and 5
indicates that, in these two code smells, a deviation from
the lower quartile is possible. For example, classes with a
WMC value at most 20% greater than the lower quartile are
also tagged as complex classes.

In the following, we focus on 11 antipatterns from [7, 15]:
AntiSingleton, Blob, ClassDataShouldBePrivate, Complex-
Class, LargeClass, LazyClass, LongMethod, LongParame-
terList, SpaghettiCode, SpeculativeGenerality, SwissArmy-
Knife, because these antipatterns are representative of prob-
lems with data, complexity, size, and the features provided
by a class. They divide in 20 code smells, listed in Table
6. Their specifications are outside of the scope of this paper
and can be obtained upon request.

4. STUDY DEFINITION AND DESIGN

The goal of our study is to investigate the relations be-
tween classes participating in antipatterns and their prone-
ness to changes, issues, and unhandled exceptions.

The quality focus is to provide developers, quality assur-
ance personnel, and managers with recommendations on an-
tipatterns, to understand and forecast their system evolu-
tion, and researchers and practitioners with evidence on the
conjecture of the impact of antipatterns on changeability.

The perspective is that of developers, who perform devel-
opment or maintenance activities on systems, and of testers
who perform testing activities and who need to know which
classes are important to test. It is also that of managers
and-or quality assurance personnel, who could use detec-
tion techniques to assess the change-, issue-, and unhandled

1 RULE_CARD LazyClass {

2 RULE LazyClass { INTER NotComplexClass FewMethods };

3 RULE NotComplexClass { (METRIC: WMC, VERY_LOW, 20) };

4 RULE : FewMethods { (METRIC: NMD + NAD, VERY_LOW ,5) };

5 b

Listing 1: Specification of the LazyClass Antipattern
g 8 Number Ofw tween classes participating in some antipatterns and
3 § 2 g Y other classes.
K o) g z e = - ; ; ;
8 = g 2 g e RQ2: What is the relation between particular kinds

30011107 | 1.0 =31.480 1647 | 21,553 | 2,208 166 of antipatterns and change proneness? Also, we anal-
2002-06-27 | 2.0 1,249:840 6,742 26,378 3,367 204 yse whether particular kinds of antipatterns contribute
2003-06-27 | 2.1.1 | 1,797,917 8,730 | 10,397 | 2,211 165 more than others to changes by testing the null hy-
3882:(1);:(1]8 ;}g tzgg:%; S’;gg 1;:;23 ;:?ig ;1;83 pothegis: Hoz: classes pqrti'cipating in particular kinds
2004-06-25 | 3.0 2,260,165 | 11,166 | 11,582 798 | 113 of antipatterns are not significantly more change prone
2004-09-16 | 3.0.1 2,268,058 11,192 24,150 | 4,225 248 than other classes.

2005-03-11 | 3.0.2 2,272,852 11,252 49,758 | 10,000 | 1,061

2006-06-29 | 3.2 3,271,516 15,153 2,745 550 111 e RQ3: What is the relation between the code smells
2006-09-21 | 3.2.1 | 3,284,732 | 15,176 | 11,854 | 4,078 229 composing the studied antipatterns and change prone-
2007-02-12 | 3.2.2 | 3,286,300 | 15,184 | 10,682 | 2,137 153 ness? We also analyse the influence of the 20 code
2007-06-25 | 3.3 3,752,212 17,162 7,386 1,822 244 . . .

20070021 [3.31 | 3.756.164 | 17.167 | 40.314 | 14.915 =55 smells composing the 11 studied antipatterns on chan-
Total 13 31,579,975 | 151,030 | 243,903 | 51,371 | 4,018 ges by testing the null hypothesis: Hoz: classes with

Table 1: Summary of the 13 analysed releases of
Eclipse. Changes, issues, and UHE are counted from
one release to the next, Eclipse 3.4 excluded.

exception-proneness of in-house or to-be-acquired source code

to better quantify its cost-of-ownership.

The contezt of this study consists in the change history
of Eclipse. Eclipse is famous as an open-source integrated
development environment. It is a platform used both in
open-source communities and in industry. Eclipse is mostly
written in Java, with C/C++ code used mainly for wid-
get toolkits. We chose Eclipse because it is a large system
(more than 3.5 MLOC in it 3.3.1 release) that, therefore,
come close to the size of real industrial systems. It is also a
system that has been developed partly by a commercial com-
pany (IBM), which makes it more likely to embody indus-
trial practices. Also, it has been used by other researchers
in related studies, e.g., to predict faults [39]. We analysed
13 releases of Eclipse available on the Internet between 2001
and 2008. Table 1 summarises the analysed releases and
their key figures. Changes, issues, and UHE are counted
from one release to the next (values for 3.3.1 refer to the
period between releases 3.3.1 and 3.4).

4.1 Research Questions

We divide our study in three sets of null hypotheses to
be tested against the data collected from Eclipse to answer
research questions concerned with the relations between an-
tipatterns, their code smells, and (1) change proneness, (2)
issue proneness, and (3) UHE proneness.

Change Proneness.

e RQ1: What is the relation between antipatterns and
change proneness? We investigate whether classes par-
ticipating in some antipatterns are more change-prone
than others by testing the null hypothesis: Hoi: the
proportion of classes undergoing at least one change
between two releases does not significantly differ be-

particular kinds of code smells are mot significantly
more change-prone than other classes.

Issue Proneness.

e RQ4: What is the relation between antipatterns and
issue proneness? This research questions relates an-
tipatterns with issues posted in Eclipse issue-tracking
system (Bugzilla) and fixed. The null hypothesis tested
is: Hoa: the proportion of classes undergoing at least
one change to fix one issue between two releases does
not significantly differ between classes participating in
some antipatterns and other classes.

e RQ5: What is the relation between particular kinds
of antipatterns and issue proneness? Also, we analyse
whether particular kinds of antipatterns tend to be
more related to issues than other kinds: Hos: classes
participating in particular kinds of antipatterns are not
significantly more prone to issue-firing than other clas-
ses.

e RQ6: What is the relation between the code smells
composing the studied antipatterns and issue prone-
ness? We also analyse the influence of the code smells
on classes appearing in issues by testing the null hy-
pothesis: Hos: classes with particular kinds of code
smells are not significantly more prone to issue-firing
than other classes.

Antipatterns and UHE Proneness.

e RQT7: What is the relation between antipatterns and
UHE proneness? This research question focuses on the
relation between antipatterns and severe issues that
caused a null pointer exceptions or other unhandled
exceptions. The null hypothesis is: Hor: the propor-
tion of classes undergoing at least one UHE issue fix-
ing between two releases does not significantly differ
between classes participating in some antipatterns and
other classes.

e RQS8: What is the relation between particular kinds
of antipatterns and UHE proneness? We also anal-
yse the influence of particular kinds of antipatterns
on UHE issues by testing the null hypothesis: Hos:
classes participating in particular kinds of antipatterns
are not significantly more prone to UHE issue-fizing
than other classes.

e RQ9: What is the relation between the code smells
composing the studied antipatterns and UHE prone-
ness? We also analyse the likelihood for classes with
code smells to appear in UHE issues by testing the
null hypothesis: Hog: classes with particular kinds of
code smells are not significantly more prone to UHE
issue-fixing than other classes.

4.2 Variable Selection

We relate the following dependent and independent vari-
ables to test the previous null hypotheses and, thus, answer
the associated research questions.

Independent variables. Independent variables divide in
two sets: the numbers of (1) classes participating in the
11 kinds of antipatterns and (2) classes belonging to the 20
code smells defining the 11 antipatterns. Therefore, we have
as many independent variable as kinds of code smells and
antipatterns; each variable indicates the number of times
that a class participates in a kind of antipattern or code
smell in a release 7.

Dependent Variables. Dependent variables measure the
phenomena to relate to classes belonging to antipatterns:

e Change proneness refers to the number of changes that
a class underwent between release 7 (in which it was
participating in some antipatterns) and the subsequent
release ;1. This number is measured by counting the
number of changes occurring in classes as the number
of commits in Eclipse CVS versioning system.

e [ssue proneness counts the number of fixed and re-
solved issues posted in Eclipse Bugzilla that refer to
classes participating in some antipatterns between re-
leases 7, and 7i+1. We link changes in the CVS to
issues in Bugzilla by matching Bugzilla issue ID with
CVS commit notes, as in previous work [14].

e UHE proneness counts to the number of the previous
issues that caused unhandled exceptions by looking at
their content and searching for the presence of specific
keywords, such as “Null Pointer Exception” or “NPE”,
and—or of stack traces.

Given Cj i, I; 1, and U; 1 the sets of changes, issues, and
UHE issues that a class ¢; undergo in release 7, the sets
are inclusive: U; i, C I, C Cy i, because they all refer
to changes in the CVS, either counting all changes (C; k),
changes that have been traced back into some issues posted
in Bugzilla (I;,1), or changes resulting from an issue posted
in Bugzilla and that includes a stack trace (U k).

4.3 Analysis Method

In RQ1, RQ4, and RQ7, we are interested in understand-
ing whether the occurrences of changes, issues, and—or UHE
issues in a class are related to the class participating in an-
tipatterns, regardless of the kinds of antipatterns.

Therefore, we test whether the proportions of classes ex-
hibiting (or not) at least one change, one issue, and—or one
UHE significantly vary between classes participating in an-
tipatterns and other classes. We use Fisher’s exact test [12]
for Ho1, Hos, and Ho7. Fisher’s exact test checks whether
proportions vary between two samples and is an equivalent
of the x? test but is deemed more accurate for small sam-
ples, such as the samples of the classes exhibiting issues or
UHE issues, see in Table 1. We also performed the x? test
(results not shown here) and obtained consistent results in
term of significance.

We also compute the odds ratio (OR) [12] that indicates
how much likely is an event to occur or not. The odds ratio
is defined as the ratio of the odds p of an event occurring
in one sample, i.e., the set of classes participating in some
antipatterns (experimental group), to the odds ¢ of it oc-
curring in the other sample, i.e., the set of classes belonging
to no antipattern (control group): OR = %. An odds
ratio of 1 indicates that the event is equally likely in both
samples. An OR greater than 1 indicates that the event is
more likely in the first sample (antipatterns) while an OR
less than 1 that it is more likely in the second sample.

In RQ2, RQ5, and RQ8, we want to understand how spe-
cific kinds of antipatterns are correlated with change-, issue-,
and UHE-proneness. We use a logistic regression model [20],
similarly to Vokac’s previous work [34], to correlate the pres-
ence of antipatterns with, for example, change-proneness. In
a logistic regression model, the dependent variable is com-
monly a dichotomous variable and, thus, it assumes only two
values {0,1}, e.g., changed or not. The multivariate logistic
regression model is based on the formula:

eCo+C1- X1+ 4Cn-Xp

7T()(lv D, CHI Xn) = 1 + eCotC1-Xi++Cn Xy

where:

e X, are characteristics describing the modelled pheno-
menon, in our case the number of classes participating
to an antipattern of kind 1.

e 0 < 7 < 1is a value on the logistic regression curve.
The closer the value is to 1, the higher is the probabil-
ity that a class participating to this kind of antipattern
underwent a change.

While in other contexts (e.g., [2] and [19]), logistic regres-
sion models were used for prediction purposes; as in [34], we
use such models as an alternative to the Analysis Of Vari-
ance (ANOVA) for dichotomous dependent variables. This
is to say that we use logistic regression to reject Hoz2, Hos,
Hos Hos, Hos and Hog.

Then, we count, for each antipattern, the number of times,
across the 13 analysed Eclipse releases, that the p-values ob-
tained by the logistic regression were significant. We define
a threshold ¢t = 10 (75%) to assess whether classes partici-
pating to a specific kind of antipattern have a significantly
greater odds to change than classes not participating to this
kind: if in more than ¢ releases of Eclipse the classes with
a kind of antipattern are more likely e.g., to change, then
we conclude that this antipattern has a significant negative
impact on e.g., change-proneness.

With RQ3, RQ6, and RQ9, similarly to our previous work
[11], we want to understand if particular roles in the an-

w0 w0 wn

&) &

2 g g g

20 = = =

g $ o $

s £ = =z

Ay Ay] Ay
Releases < < 4 < | p-values OR
1.0 1921 1669 538 510 0.22 1.09
2.0 3493 1350 947 259 < 0.01 0.71
2.1.1 2148 3714 269 1088 < 0.01 2.34
2.1.2 2320 3544 439 918 < 0.01 1.37
2.1.3 2833 3037 625 730 0.16 1.09
3.0 3090 4703 986 1232 < 0.01 0.82
3.0.1 5780 2020 1730 490 < 0.01 0.81
3.0.2 5363 2437 1615 607 < 0.01 0.83
3.2 1593 8490 341 3341 < 0.01 1.84
3.2.1 2504 7588 565 3130 < 0.01 1.83
3.2.2 2877 7221 853 2844 < 0.01 1.33
3.3 1682 10018 241 3190 < 0.01 2.22
3.3.1 4056 7660 963 2460 < 0.01 1.35

Table 2: Contingency table and Fisher’s exact test
results for classes participating in at least one an-
tipattern and undergoing at least one change. (AP
means antipatterns).

@
g & F 2
wn
-
a8 a9 o) <}
Releases < < 4 Z | p-values OR
1.0 489 3101 109 939 0.01 1.36
2.0 740 4103 134 1072 < 0.01 1.44
2.1.1 418 5444 64 1293 < 0.01 1.55
2.1.2 377 5487 52 1305 < 0.01 1.72
2.1.3 574 5296 7T 1278 < 0.01 1.80
3.0 512 7281 68 2150 < 0.01 2.22
3.0.1 927 6873 153 2067 < 0.01 1.82
3.0.2 2336 5464 451 1771 < 0.01 1.68
3.2 743 9340 125 3557 < 0.01 2.26
3.2.1 1181 8911 234 3461 < 0.01 1.96
3.2.2 954 9144 229 3468 < 0.01 1.58
3.3 999 10701 118 3313 < 0.01 2.62
3.3.1 1659 10057 457 2966 0.24 1.07

Table 3: Contingency table and Fisher’s exact test
results for classes participating in at least one an-
tipattern reported in at least one fixed issue.

tipatterns, i.e., if particular code smells defining the stud-
ied antipatterns, are more symptomatic of their antipattern
change-, issue-, or UHE-proneness than others. Therefore,
we again use a logistic regression model [20] to correlate the
presence of code smells with the three phenomena.

S. STUDY RESULTS

We now report the results of our study to address the
research questions. We discuss these results in Section 6.

5.1 Change Proneness

Table 2 reports the results of Fisher’s exact test and ORs
when testing Ho1. Besides two exceptions, releases 1.0 and
2.1.3, proportions are significantly different, thus allowing to
reject Ho1. We therefore conclude that there is a greater pro-
portion of classes participating in antipatterns that change
wrt. other classes. While in many cases ORs are close to 1,
i.e., the odds is even that a class belonging to an antipattern
changes or not, it is worth highlighting some releases, such
as 2.1.1, 3.2, 3.2.1, and 3.3, for which the odds of changing
are about two times in favour of classes belonging to antipat-

<)

jast

H H)

as o o)

s 5 2 2

S - -

A a9 e} <}
Releases < < 4 Z | p-values OR
1.0 94 3496 2 1046 < 0.01 14.06
2.0 151 4692 13 1193 < 0.01 2.95
2.1.1 99 5763 9 1348 < 0.01 2.57
2.1.2 80 5784 8 1349 0.02 2.33
2.1.3 161 5709 5 1350 < 0.01 7.61
3.0 140 7653 7 2211 < 0.01 5.78
3.0.1 196 7604 10 2210 < 0.01 5.70
3.0.2 608 7192 7 2152 < 0.01 2.60
3.2 130 9953 8 3674 < 0.01 6.00
3.2.1 313 9779 28 3667 < 0.01 4.19
3.2.2 139 9959 25 3672 < 0.01 2.05
3.3 150 11550 21 3410 < 0.01 2.11
3.3.1 252 11464 27 3396 < 0.01 2.76

Table 4: Contingency table and Fisher’s exact test
results for classes participating in at least one an-

tipattern reported with at least one fixed UHE.

Proneness to
12}
. 5
Antipatterns %: § -
<= 7] jasi
O i =]
AntiSingleton 6 13 | 7
Blob 9 4 2
ClassDataShouldBePrivate | 7 5 6
ComplexClass 11 | 13 | 11
LargeClass 0 0 0
LazyClass 11 | 12 | 11
LongMethod 10 | 13 | 12
LongParameterList 7 6 4
SpaghettiCode 0 0 0
SpeculativeGenerality 3 4 2
Swiss ArmyKnife 8 3 3

Table 5: Number of significant p-values across the 13
analysed releases obtained by logistic regression for
the correlations between changes, issues, and UHE
and kinds of antipatterns. Boldface indicates signif-
icant p-values for at least 75% of the releases.

terns. We conclude that the odds for a class belonging to
some antipatterns to change are in general higher, in some
cases twice, than other classes. Hoi rejection and the ORs
provide a posteriori concrete evidence of the negative impact
of antipatterns on change-proneness. Developers should be
wary of classes participating in antipatterns, because they
are more likely to be the subject of their efforts.

Table 5 (column 2) and Table 9 report the results of
the logistic regression for the correlations between change-
proneness and the different kinds of antipatterns. We can
reject Hoz for all antipatterns but LargeClass and Spaghet-
tiCode. Following our analysis method, we remark that
ComplexClass, LazyClass, and LongMethod have a signif-
icant negative impact on change proneness: classes involved
in these antipatterns are more likely to change than classes
participating to other or no antipattern in more than 75%
(10) of Eclipse releases.

Table 6 (column 2) shows the results of the logistic regres-
sion for the correlations between changes and the different
kinds of code smells composing the studied antipatterns.
We can reject Hos for 13 out of the 20 code smells, i.e.,
13 out of the 14 detected code smells. We analyse that
only four code smells are symptomatic of changes: Blob-
DataClass, ComplexClass-LargeClassOnly, LazyClass-Few-

Proneness to

wn
Code Smells & »

gl =

=} 7] jes

O A =)
AntiSingleton-NotClassGlobalVariable 7 13 | 6
Blob-ControllerClass 5 9 3
Blob-DataClass 13 | 2 2
Blob-BigClass 1 2 1
Blob-LowCohesion 3 2 0
ClassDataShouldBePrivate-FieldPublic 8 5 6
ComplexClass-LargeClassOnly 10 | 11 | 8
LargeClass-VeryLargeClassOnly - - -
LargeClass-LowCohesionOnly - - -
LazyClass-FewMethods 11 | 12 | 11
LazyClass-NotComplexClass - - -
LongMethod-LongMethodClass 11 | 13 | 12
LongParameterList-LongParameterListClass 7 6 4
SpaghettiCode-ClassGlobalVariable 0 0 0
SpaghettiCode-ComplexMethod - - -
SpaghettiCode-MethodNoParameter - - -
SpaghettiCode-NolInheritance - - -
SpeculativeGenerality-AbstractClass 3 4 2
SpeculativeGenerality-OneChildClass - - -
SwissArmyKnife-MultipleInterface 8 2 3

Table 6: Number of significant p-values across the
13 analysed Eclipse releases obtained by logistic re-
gression for the correlations between change-, issue-,
and UHE-proneness and kinds of code smells. Bold-
face indicates significant p-values for at least 75% of
the analysed releases, a — indicates cases where no
class was detected with that specific code smell.

Methods, and LongMethod-LongMethodClass.

5.2 Issue Proneness

Table 3 reports Fisher’s exact test results and ORs for
Hos. The differences in proportions are always significant,
but for release 3.3.1; thus, in general, we can reject Hoa.
ORs are higher than for changes: they are close to 2 or
higher, as for releases 3.0 (OR = 2.22), 3.2 (OR = 2.26),
and 3.3 (OR = 2.62). The proportion of classes participat-
ing to antipatterns and reported in issues is twice as large
as the proportion of other classes. Therefore, we conclude
that antipatterns may have a negative impact on the issue-
proneness of classes.

Table 5 (column 3) and Table 10 report the results of
the logistic regression for the correlations between issue-
proneness and the different kinds of antipatterns. We can
reject Hos for all antipatterns but LargeClass and Spaghetti-
Code. Four antipatterns characterise, in at least 75% of the
releases, classes that are more issue-prone than other classes:
AntiSingleton, ComplexClass, LazyClass and LongMethod.

Table 6 (column 3) shows the results of the logistic regres-
sion for the correlations between issues and the code smells.
We can reject Hos again for the 13 detected code smells.
Following our analysis method, we conclude that four code
smells are symptomatic of issues: AntiSingleton-NotClass-
GlobalVariable, ComplexClass-LargeClassOnly, LazyClass-
FewMethods, and LongMethod-LongMethodClass.

5.3 UHE Proneness

Table 4 reports Fisher’s exact test results and ORs for
Ho7. Differences in proportions are always significant, thus
we can reject Ho7. ORs are always high, ranging from 2.11 in
release 3.3 to 14 in release 1.0: classes belonging to antipat-
terns are, at least, two times more likely to be involved in
an UHE-related issue fixing than other classes. Therefore,
we again conclude that antipatterns may have a negative

impact on evolution wrt. UHE issues than other classes.
Table 5 (column 4) and Table 11 report the results of
the logistic regression for the correlations between UHE-
proneness and the different kinds of antipatterns. We reject
Hog for all antipatterns but LargeClass and SpaghettiCode.
Three antipatterns characterise UHE-prone classes in 75%
of the releases: ComplexClass, LazyClass and LongMethod.
Table 6 (column 4) shows the results of the logistic re-
gression for the correlations between issues and the code
smells. We can reject Hopg again for the 13 detected code
smells. Following our analysis method, we conclude that
only two code smells are symptomatic of UHE: LazyClass-
FewMethods and LongMethod-LongMethodClass.

6. DISCUSSION

6.1 Relations with Antipatterns

Table 2 shows the O Rs for classes participating in antipat-
terns to undergo at least one change between one release and
the next. In general, classes belonging to antipatterns are
more change-prone than others. However, there are four
cases where the ratios are unexpected, i.e., classes not be-
longing to antipatterns changed more than classes that do.
(Greek-letter note-marks refer to Table 7.)

The first of these cases concerns classes having changed
between 2.0 and 2.1.1, with an OR of 0.71. We explain
this ratio using the release notes of Eclipse 2.1, 2.1.1, and
2.1.2. Eclipse 2.1 introduced several new features wrt.
the 2.0, including navigation history, sticky hovers, promi-
nent status indication, and many more. In addition to
these features, 283 issues” were fixed between 2.0 and 2.1
and 126 more” between 2.1 and 2.1.1, including issues re-
lated to the new features, for example issue ID 1694 “FEA-
TURE: Contributed inspection formatter” or 17872 “Howver
help for static final fields is inconsistent”. Moreover, 8, 730—
6,742 = 1,988 classes were added for a total increase in
size of 1,797,17 — 1,249,840 = 548,077 LOC. Therefore,
between 2.0 and 2.1.1, Eclipse underwent such dramatic
changes to its behaviour and API that many classes (not
belonging to antipatterns) changed or were added to pro-
vide the new features, thus explaining the ORs.

The second, third, and fourth cases concern classes hav-
ing changed between releases 3.0 and 3.2. We also explain
these ratios using release notes. Eclipse 3.0 was a major
improvement over the 2.0 series, with a new runtime plat-
form implementing the OSGi R3.0 specifications® to become
a Rich Client Platform, which can be used by organisations
to develop any tools (not necessarily an IDE). It had many
problems at first®, corrected in the subsequent 3.0.1, 3.0.2,
and 3.2 releases, with respectively 266¢, 707, and 285 issues’
fixed. As between 2.0 and 2.1.1, 15,153 — 11,166 = 3,987
classes were added between 3.0 and 3.2, increasing Eclipse
size by 3,271,516 — 2,260,165 = 1,011,351 LOC. Thus,
we argue that the changed classes were not only classes be-
longing to antipatterns but also classes related to the new
features, thus explaining the ORs of 0.82, 0.81, and 0.83.

Tables 3 and 4 show results that confirm our expectations
and the conjecture in the literature: the ORs of classes par-
ticipating in antipatterns to be in issues or UHE issues range
from 1.07 (issue-proneness, Eclipse 3.3.1) to 14.06 (UHE-
proneness, Eclipse 1.0).

6.2 Relations with Specific Antipatterns

Link IDs | URLs

http://archive.eclipse.org/eclipse/downloads/drops/R-2.1-200303272130/whats-new-all.html

o
B https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=Platform&target_milestone=2.1&resolution=

FIXED&order=bugs.bug_id

v
FIXED&order=bugs.bug_id
1) http://www.eclipse.org/osgi/
€
¢
FIXED&order=bugs.bug_id
n

FIXED&order=bugs.bug_id

FIXED&order=bugs.bug_id

https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=Platform&target_milestone=2.1.1&resolution=
For example, a search for “Eclipse 3.0 crash” returns 224 messages on http://www.eclipsezone.com/

https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=Platform&target_milestone=3.0.1&resolution=
https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=Platform&target_milestone=3.0.2&resolution=

https://bugs.eclipse.org/bugs/buglist.cgi?product=JDT&product=PDE&product=Platform&target_milestone=3.2&resolution=

Table 7: URLs of the discussed release notes and issues listings.

Table 5 shows the numbers of times, across the 13 releases,
that each kind of antipatterns led to an increase in change-,
issue-, and UHE-proneness. LargeClass and SpaghettiCode
do not impact change-proneness at all. We explain these re-
sults by the low number of classes participating in these two
antipatterns: an average of 479 and 2 classes respectively per
release, for an average of 11,618 classes per release. Eclipse
uses extensively object-oriented concepts, in particular poly-
morphism, and thus avoid large classes and spaghetti code.
Moreover, detected antipatterns concerned stable classes.
For example, in release 2.0, the only LargeClass was class

org.eclipse.core.internal.indexing.IndexedStoreExcep-

tion, which is also an AntiSingleton and a DataClass. It
changes once between 2.0 and 2.1.1 and never changed again.

Classes participating to the antipatterns ComplexClass,
LazyClass, and LongMethod are more change-, issue-, and
UHE-prone than others. ComplexClass classes are complex
and central to the system, as discussed in the next Section
6.3. Classes participating in the LongMethod and Lazy-
Class antipatterns contain long methods, which are also
very complex, as also discussed below. This result con-
firms Fowler and Brown’s warnings about these kinds of an-
tipatterns. Classes participating in the LazyClass antipat-
tern tend to be removed from the system or changed to
increase their behaviour while other are introduced: there
were 2,765 lazy classes in Eclipse 1.0, 59% of the system,
while there were 8,967 lazy classes in Eclipse 3.3.1, 52%
of the system. The class org.eclipse.search.internal.
core.SearchScope, for example, was a lazy class in 1.0 but,
in 3.0, methods public boolean encloses (IResourceProxy
proxy) and public void setDescription(String descrip-
tion) were added with two more constructors and the inner
class WorkbenchScope was removed. Some new lazy classes,
like org.eclipse.team.internal.ccvs.ui.actions.Show—
EditorsAction, were then introduced.

Classes belonging to the AntiSingleton are only more issue-
prone than other classes. As mentioned in the next Section
6.3, AntiSingleton classes are generally removed from the
system or changed. However, with their public attributes,
as it happens for procedural “global variables”, the risk of
introducing errors in the system while changing these classes
is likely to be higher.

Other antipatterns are not consistently related to the stud-
ied phenomena across releases. We conclude that they may
impede the evolution of a particular release but do not im-
pact the overall evolution of Eclipse.

6.3 Relations with Code Smells

Table 6 shows that classes with particular antipattern-

related code smells behave differently from the others.

For the AntiSingleton-NotClassGlobalVariable code smell,
we observed that they are removed from Eclipse or changed
during its evolution: 16% of the classes with this smell
present in release 1.0 had been removed in release 3.0 and
only 53% of the classes were still AntiSingleton in that re-
lease. The other classes were changed. For example, org.
eclipse.compare.internal.CompareWithEditionAction,
an AntiSingleton in release 1.0, was changed during Eclipse
evolution: all its methods were removed between 1.0 and 3.0
and it became a LazyClass with no behaviour.

We explain the change-proneness of Blob-DataClass (and
of LazyClass-FewMethods) because they are representative
of classes that are only used to store data, without provid-
ing much behaviour. These classes are likely to disappear or
to change when new behaviour is added to the system. We
found that only 8% of Blob-DataClasses from release 1.0 are
still Blob-DataClasses in release 3.0: 23% of the classes have
been removed from the system and behaviour was added to
the remaining classes. For example, the class org.eclipse.
jdt.internal.compiler.problem.AbortCompilation, had
no behaviour in release 1.0, while two methods were added to
it in release 3.0; public void updateContext(Invocation-
Site invocationSite,CompilationResult unitResult) and
public void updateContext (ASTNode astNode, Compila-
tionResult unitResult).

ComplexClass-LargeClassOnly characterises classes that
have a number of methods higher than the average. There-
fore, developers adding new features or fixing issues are more
likely to touch these classes because of the higher number of
features in which they must participate.

Two particular code smells, LazyClass-FewMethods and
LongMethod-LongMethodClass, are more change-, issue-,
and UHE-prone than other classes. This result is expected
for LongMethodClass, because classes with long methods are
complex and are thus more likely to be modified for correc-
tions and improvements. For the LazyClass-FewMethods,
57% of its classes across the 13 releases also are LongMethod-
LongMethodClass. Thus, they are quite complex classes in-
volved in higher numbers of issues and UHE issues.

We also found that the presence of the LazyClass-Few-
Methods code smell in a class is generally related to the
LongMethod-LongMethodClass and LongParameterList-Long-
ParameterListClass code smells. For example, in release
1.0, 55% of LazyClass-FewMethods are also LongMethod-
LongMethodClass while 46% are LongParameterList-Long-
ParameterListClass. Thus, their likelihood to throw unhan-
dled exceptions is in part due to the complexity of their long
methods with long parameter lists.

In addition, we observed that 82% of classes with the code
smell ComplexClass-LargeClassOnly in release 1.0 are also
LongMethod-LongMethodClass, which confirms the Fowler
and Brown’s suggestion: classes with long methods are com-
plex. These classes tend to remain with their code smells
during the evolution of the system and are, in general, cen-
tral to the system core features. Previous studies [3] showed
that classes and patterns central to the system core features
are more change-prone than others. Similarly, one could
expect that they are more issue prone too.

Classes with the SpaghettiCode-ClassGlobalVariable are
not interesting. We expected this result because of the little
number of such classes: an average of 2 for each release. For
example, in release 3.0.1, the only SpaghettiCode was org.
eclipse.core.runtime.adaptor.EnvironmentInfo, a dis-
torted implementation of the Singleton design pattern us-
ing many if-else statements, but a quite stable class that
underwent no changes in the following releases, as shown
by its source code. The other code smells do not impact
consistently Eclipse changeability.

Some code smells are indeed symptomatic of their antipat-
terns, for example LazyClass-FewMethods for LazyClass,
but they do not explain alone that some classes partici-
pating in some antipatterns are more likely to change, to
be mentioned in an issue, or to be involved in unhandled
exception-related issue than others. Therefore, we conclude
that antipatterns and code smells provide related yet differ-
ent information and should be considered together to better
understand the evolution of a software system. Similarly to
roles in design patterns, some code smells are more subject
to change than others [11].

Some code smells could not be detected, for example Spa-
ghettiCode-MethodNoParameter, because of the good use
of object-oriented concepts in Eclipse.

7. THREATS TO VALIDITY

We now discuss the threats to validity of our study fol-
lowing the guidelines provided for case study research [38].

Construct validity threats concern the relation between
theory and observation; in our context, they are mainly
due to errors introduced in measurements. The count of
changes occurred to classes is reliable as it is based on the
CVS change log. However, we are aware that we only distin-
guish classes undergoing changes between two releases from
classes that do not, neither quantifying the amount nor the
frequency of change. For issues, as in other previous works
[19, 14], we focus on those that can be linked to changes;
thus, we are aware that we are only considering a subset of
all issues posted on Eclipse Bugzilla and impacting classes.
For the same reason, we consider a limited set of UHE is-
sues. Also, we are aware that the detection technique used
include our subjective understanding of the antipattern def-
initions, although we followed previous works and they were
validated in our previous work.

Threats to internal validity do not affect this particular
study, being an exploratory study [38]. Thus, we cannot
claim causation, but just relate the presence of antipatterns
with the occurrences of changes, issues, and UHE. Neverthe-
less, we tried to explain why some antipatterns could have
been the cause of changes/issues/UHE.

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the statistical tests that we used (we

mainly used non-parametric tests).

Reliability validity threats concern the possibility of repli-
cating this study. We attempted here to provide all the nec-
essary details to replicate our study. Moreover, both Eclipse
source code repository and issue-tracking system are avail-
able to obtain the same data. Finally, the raw data on which
our statistics have been computed are available on the Web!.

Threats to external validity concern the possibility to gen-
eralise our findings. First, we are aware that our study has
been performed on Eclipse only and that, thus, generalisa-
tion will require further case studies. Yet, Eclipse is some-
what representative of large industrial systems. Second, we
used a particular yet representative subset of antipatterns.
Different antipatterns could have lead to different results
and should be studied in future work. However, within its
limits, our results confirm the conjecture in the literature.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we provided empirical evidence of the neg-
ative impact of antipatterns on classes change-proneness,
on their likelihood to be subject of some issues in an issue-
tracking system, and on their risk to throw unhandled excep-
tions (UHE). We studied the odds ratios of changes, issues,
and UHE on classes participating or not in certain kinds of
antipatterns. We showed that classes participating in an-
tipatterns are significantly more likely to be the subject of
changes, to be involved in issue-fixing changes, and to issue-
fixing changes related to unhandled exceptions, than others
classes. We also showed that some code smells defining the
antipatterns, similarly to roles in design patterns, are also
more likely to be of concern during evolution.

This exploratory study provides, within the limits of the
threats to its validity, convincing evidence that classes be-
longing to antipatterns are more change-, issue-, and UHE-
prone than classes not participating in antipatterns. There-
fore, we provide evidence for the conjecture in the literature
that antipatterns may have a negative impact on software
evolution. We justify a posteriori previous work on antipat-
terns and provide a basis for future research to understand
precisely the root causes of their negative impact.

The study also provides evidence to practitioners that
they should pay more attention to systems with a high
prevalence of antipatterns during development and main-
tenance. Indeed, systems containing a high proportion of
antipatterns are likely to be more change prone, and their
classes are more likely to be the root causes of issues and
unhandled exceptions. Therefore, the cost-of-ownership of
such systems will be higher than for other systems, because
developers will have to spend more time fixing issues.

Future work includes replicating this study on other sys-
tems than Eclipse to assess the generality of our results. It
also includes studying more antipatterns as well as studying
in detail the roles code smells in antipatterns and their indi-
vidual impact on software evolution notwithstanding their
composition in antipatterns.

Data. All data as well as a technical report with more
detailled results are available on the Web?.

Acknowledgements. This work has been partly funded by
the NSERC Research Chair in Software Change and Evolu-

"http://www.ptidej.net/downloads/experiments/
prop-FSE09

tion and by NSERC Discovery Grant #293213.

APPENDIX

A. DETAILLED DEFINITIONS OF THE DE-
SIGN SMELLS

In this study we focused on the following code smells:

Anti-Singleton: It is a class that declares public class
variable that are used as ”global variable” in proce-
dural programming. It reveals procedural thinking in
object-oriented programming and may increase the dif-
ficulty to maintain the program.

Blob: (called also God class [28]) corresponds to a large
controller class that depends on data stored in sur-
rounded data classes. A large class declares many
fields and methods with a low cohesion. A controller
class monopolises most of the processing done by a sys-
tem, takes most of the decisions, and closely directs the
processing of other classes [?].

Class Data Should Be Private: It occurs when the data
encapsulated by a class is public, thus allowing client
classes to change this data without the knowledge of
the declaring class.

Complex Class: It is a class that both declares many
fields and methods and which methods realise com-
plex treatments, using many if and switch instructions.
Such a class is probably providing lots of services while
being difficult to maintain and fragile due to its com-
plexity.

Large Class: It is a class with too many responsibilities.
This kind of class declares a high number of usually
unrelated methods and attributes.

Lazy Class: It is a class that does not do enough. The few
methods declared by this class have a low complexity.

Long Method: It is a method with a high number of
lines of code. A lot of variables and parameters are
used.Generally, this kind of method does more than
its name suggests it.

Long Parameter List: It corresponds to a method with
high number of parameters. This smell occurs when
the method has more than four parameters.

The Spaghetti Code: It is an antipattern that is charac-
teristic of procedural thinking in object-oriented pro-
gramming. Spaghetti Code is revealed by classes with
no structure, declaring long methods with no parame-

ters, and utilising global variables for processing. Names

of classes and methods may suggest procedural pro-
gramming. Spaghetti Code does not exploit and pre-
vents the use of object-orientation mechanisms, poly-
morphism and inheritance.

Speculative Generality: It is an abstract class without
child classes. It was added in the system for future
uses and this entity pollutes the system unnecessarily.

10

Swiss Army Knife:

C.

It refers to a tool fulfilling a wide
range of needs. The Swiss Army Knife design smell is a
complex class that offers a high number of services, for
example, a complex class implementing a high number
of interfaces. A Swiss Army Knife is different from a
Blob, because it exposes a high complexity to address
all foreseeable needs of a part of a system, whereas the
Blob is a singleton monopolising all processing and
data of a system. Thus, several Swiss Army Knives
may exist in a system, for example utility classes.

DETAILLED NUMBERS OF CODE SMELLS
PER RELEASES

DETAILLED LOGISTIC REGRESSION
RESULTS

This appendix provides Tables 9, 10, and 11 with more
details on the results of applying logistic regression for the
correlations between changes, issues, and UHE issues and
kinds of smells.

D.
(1]

2]

(3]

(4]

(5]

(6]

[7]

(8]
[9]

(10]

(11]

REFERENCES

E. H. Alikacem and H. Sahraoui. Generic metric extraction
framework. In Proceedings of the 16" International Workshop
on Software Measurement and Metrik Kongress
(IWSM/MetriKon), pages 383-390, 2006.

G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc. Is it a bug or an enhancement?: a text-based
approach to classify change requests. In Proceedings of the
2008 conference of the Centre for Advanced Studies on
Collaborative Research, October 27-30, 2008, Richmond Hill,
Ontario, Canada, page 23, 2008.

L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M. Di
Penta. An empirical study on the evolution of design patterns.
In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, pages 385—-394, New York, NY, USA, 2007. ACM
Press.

K. Ayari, P. Meshkinfam, G. Antoniol, and M. D. Penta.
Threats on building models from cvs and bugzilla repositories:
the mozilla case study. In IBM Centers for Advanced Studies
Conference, pages 215-228, Toronto CA, Oct 23-25 2007. ACM.
V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
Trans. Software Eng., 22(10):751-761, 1996.

J. M. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.
Alexander. Design patterns and change proneness: An
examination of five evolving systems. In 9th International
Software Metrics Symposium (METRICS’03), pages 40—49.
IEEE Computer Society, 2003.

‘W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick
III, and T. J. Mowbray. Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and Sons,
1%t edition, March 1998.

M. Cartwright and M. Shepperd. An empirical investigation of
an object-oriented software system. IEEE Trans. on Software
Engineering, 26(8):786—-796, August 2000.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Trans. on Software Engineering,
20(6):476-493, June 1994.

K. Dhambri, H. Sahraoui, and P. Poulin. Visual detection of
design anomalies. In Proceedings of the 12" Buropean
Conference on Software Maintenance and Reengineering,
Tampere, Finland, pages 279-283. IEEE Computer Society,
April 2008.

M. Di Penta, Luigi Cerulo, Y.-G. Guéhéneuc, and G. Antoniol.
An empirical study of the relationships between design pattern
roles and class change proneness. In H. Mei and K. Wong,
editors, Proceedings of the 24" International Conference on
Software Maintenance. IEEE Computer Society Press,
September—October 2008.

Design and Associated Code Smells

Numbers per Eclipse Versions]

[10] 20211212213 30]301]302] 32]321]322] 33331 |
AntiSingleton [392 [600 [767 [769 [770 [1370 [1223 [1224 [1560 [1568 [1568 [1985 [1986]
NotClassGlobalVariable [392 [600 [767 [769 [770 [1370 [1223 [1224 [1560 [1568 [1568 [1985 [1986]
Blob 311 450 556 558 559 | 1009 801 801 1055 1066 1067 | 1264 1265
ControllerClass 106 121 164 164 164 285 251 251 374 375 375 451 453
DataClass 399 591 664 665 665 | 1256 910 911 1011 1015 1021 1183 1184
BigClass 190 298 352 354 355 653 497 497 624 633 632 725 724
LowCohesion 15 31 40 40 40 71 53 53 57 58 60 88 88
ClassDataShouldBePrivate [411 [477 | 567 | 569 | 573 | 1050 | 1723 | 1723 | 2083 | 2100 | 2085 | 2398 | 2402 |
FieldPublic [411 | 477 | 567 | 569 | 573 | 1050 | 1723 | 1723 | 2083 | 2100 | 2085 | 2398 | 2402 |
ComplexClass [274] 408 [486 | 487 [488 [896 [702 [701 [879 [888 [888 [1001 [1002 |
LargeClassOnly [274 [408 [486 [487 [488 [896 [702 [701 [879 [888 [888 [1001 [1002]
LargeClass 1 1 1 1 1 2 5 4 4 4 4 8 8
VeryLargeClassOnly 1 1 1 1 1 2 5 4 4 4 4 8 8
LowCohesionOnly 1 1 1 1 1 2 5 4 4 4 4 8 8
LazyClass 2765 | 3530 | 4118 | 4118 | 4120 | 7650 5413 5414 | 7160 7171 7180 | 8966 8967
FewMethods 2765 | 3530 | 4118 | 4118 | 4120 | 7650 5413 5414 | 7160 7171 7180 | 8966 8967
NotComplexClass 2765 | 3530 | 4118 | 4118 | 4120 | 7650 5413 5414 | 7160 7171 7180 | 8966 8967
LongMethod 2840 | 4207 | 5131 5133 | 5168 | 9375 | 6344 | 6369 | 7033 7049 7046 | 8709 8737
LongMethodClass 2840 | 4207 | 5131 5133 | 5168 | 9375 | 6344 | 6369 | 7033 7049 7046 | 8709 8737
LongParameterList 1224 | 2229 2283 | 2283 | 2283 | 4512 2914 | 2918 | 2393 | 2445 2449 | 3342 3505
LongParameterListClass 1224 | 2229 2283 | 2283 | 2283 | 4512 2914 | 2918 | 2393 | 2445 2449 | 3342 3505
SpaghettiCode 2 1 1 1 1 2 1 1 0 0 0 1 1
ClassGlobalVariable 2 1 1 1 1 2 1 1 0 0 0 1 1
ComplexMethod 2 1 1 1 1 2 1 1 0 0 0 1 1
MethodNoParameter 2 1 1 1 1 2 1 1 0 0 0 1 1
Nolnheritance 2 1 1 1 1 2 1 1 0 0 0 1 1
SpeculativeGenerality 61 88 109 109 109 197 174 174 211 211 211 249 249
AbstractClass 61 88 109 109 109 197 174 174 211 211 211 249 249
OneChildClass 61 88 109 109 109 197 174 174 211 211 211 249 249
SwissArmyKnife [75] 56] 52 52 [52 [108] 73] 73] 78] 79 80 96 97|
MultipleInterface [75 56| 52| 52| 52| 108| 73| 73| 78| 79| 80| 96| 97|
Table 8: Summary of the numbers of smells in the analysed releases of Eclipse.

(12]

(13]

(14]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

S. D.J. Handbook of Parametric and Nonparametric
Statistical Procedures (fourth edition). Chapman & All, 2007.
K. E. Emam, S. Benlarbi, N. Goel, and S. Rai. The
confounding effect of class size on the validity of
object-oriented metrics. IEEE Trans. on Software
Engineering, 27(7):630-650, July 2001.

M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In Proceedings of the International Conference on
Software Maintenance, pages 23-32, Amsterdam Netherlands,
September 2003. IEEE Computer Society Press.

M. Fowler. Refactoring — Improving the Design of Existing
Code. Addison-Wesley, 1°* edition, June 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns — Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1°¢ edition, 1994.

J. Garzds and M. Piattini. Object-oriented Design Knowledge:
Principles, Heuristics, and Best Practices. IGI Publishing,
2007.

Y .-G. Guéhéneuc and G. Antoniol. DeMIMA: A multi-layered
framework for design pattern identification. Transactions on
Software Engineering, 34(5):667-684, September 2008.

T. Gyiméthy, R. Ferenc, and I. Siket. Empirical validation of
object-oriented metrics on open source software for fault
prediction. IEEE Transaction on Software Engineering,
31(10):897-910, 2005.

D. Hosmer and S. Lemeshow. Applied Logistic Regression (2nd
Edition). Wiley, 2000.

G. Langelier, H. A. Sahraoui, and P. Poulin.
Visualization-based analysis of quality for large-scale software
systems. In proceedings of the 20*h international conference
on Automated Software Engineering. ACM Press, Nov 2005.
M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

M. Mantyla. Bad Smells in Software - a Taxonomy and an
Empirical Study. PhD thesis, Helsinki University of
Technology, 2003.

R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In Proceedings of the 20"
International Conference on Software Maintenance, pages

11

(28]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

350-359. IEEE Computer Society Press, 2004.

N. Moha, Y.-G. Guéhéneuc, A.-F. L. Meur, and L. Duchien. A
domain analysis to specify design defects and generate
detection algorithms. In J. Fiadeiro and P. Inverardi, editors,
Proceedings of the 11" International Conference on
Fundamental Approaches to Software Engineering, pages
276-291. Springer-Verlag, 2008.

N. Moha, Y.-G. Guéhéneuc, A.-F. L. Meur, L. Duchien, and
A. Tiberghien. From a domain analysis to the specification and
detection of code and design smells. Formal Aspects of
Computing, 2009. Accepted for publication.

M. J. Munro. Product metrics for automatic identification of
“bad smell” design problems in java source-code. In F. Lanubile
and C. Seaman, editors, Proceedings of the 11*" International
Software Metrics Symposium. IEEE Computer Society Press,
September 2005.

A. J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.

F. Simon, F. Steinbriickner, and C. Lewerentz. Metrics based
refactoring. In Proceedings of the Fifth European Conference
on Software Maintenance and Reengineering (CSMR’01),
page 30, Washington, DC, USA, 2001. IEEE Computer Society.
Foutse Khomh and Y.-G. Guéhéneuc. Do design patterns
impact software quality positively? In C. Tjortjis and

A. Winter, editors, Proceedings of the 12" Conference on
Software Maintenance and Reengineering. IEEE Computer
Society Press, April 2008. Short Paper.

Naouel Moha, Amine Mohamed Rouane Hacene, P. Valtchev,
and Y.-G. Guéhéneuc. Refactorings of design defects using
relational concept analysis. In R. Medina and S. Obiedkov,
editors, Proceedings of the 4" International Conference on
Formal Concept Analysis. Springer-Verlag, February 2008.

G. Travassos, F. Shull, M. Fredericks, and V. R. Basili.
Detecting defects in object-oriented designs: using reading
techniques to increase software quality. In Proceedings of the
140 Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 47-56. ACM Press, 1999.
E. van Emden and L. Moonen. Java quality assurance by
detecting code smells. In Proceedings of the 9th Working
Conference on Reverse Engineering (WCRE’02). IEEE
Computer Society Press, Oct. 2002.

— N « — N ~ N ~

e e — — — < < < N D N « «
Smells — [\l [l [\l [l e} ™ e} e} ™ ™ ™ ™
AntiSingleton-NotClassGlobalVariable < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Blob-ControllerClass 0.10 < 0.01 0.03 < 0.01 < 0.01 0.21 < 0.01 < 0.01 0.59 0.23 0.01 < 0.01 0.01
Blob-DataClass 0.79 0.18 0.08 0.25 0.01 0.07 0.15 0.09 0.11 < 0.01 0.57 0.79 0.16
Blob-BigClass 0.02 0.81 0.26 0.36 0.05 0.15 0.18 0.07 0.29 0.41 0.20 0.42 0.69
Blob-LowCohesion 0.41 0.08 0.18 0.81 0.19 0.80 < 0.01 0.15 0.99 0.08 0.94 0.15 < 0.01
ClassDataShouldBePrivate-FieldPublic < 0.01 < 0.01 0.08 < 0.01 0.52 0.12 < 0.01 < 0.01 0.13 0.30 0.16 0.59 0.45
ComplexClass-LargeClassOnly < 0.01 < 0.01 < 0.01 < 0.01 0.08 0.93 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LargeClass-VeryLargeClassOnly 0.95 0.97 0.98 0.98 0.97 0.97 0.62 0.47 0.89 0.67 0.94 0.41 0.55
LargeClass-LowCohesionOnly - - - - - - - - - - - - -
LazyClass-FewMethods 0.33 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LazyClass-NotComplexClass — — — - - — - - - — — — —
LongMethod-LongMethodClass < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongParameterList-LongParameterListClass | < 0.01 < 0.01 < 0.01 0.32 < 0.01 0.32 < 0.01 < 0.01 0.19 0.48 0.07 0.90 0.66
SpaghettiCode-ClassGlobalVariable 0.25 0.97 0.97 0.98 0.97 0.98 0.96 0.93 - - - 0.94 0.92
SpaghettiCode-ComplexMethod - - - - - - - - - - - - -
SpaghettiCode-MethodNoParameter — — - — — — - - — — — — —
SpaghettiCode-Nolnheritance — — — - — — — - — — — — —
SpeculativeGenerality-AbstractClass 0.82 0.19 0.14 0.97 0.98 0.12 0.02 0.01 < 0.01 < 0.01 0.36 0.15 0.36
SpeculativeGenerality-OneChildClass - - - - - - - - - - - - -
SwissArmyKnife-MultipleInterface 0.30 0.76 0.82 0.34 0.35 0.63 0.42 0.02 0.39 0.08 0.43 0.98 < 0.01

Table 10: Logistic regression results for the correlations between issue-proneness and kinds of smells
ket « « e N — N —

e e — — — e e e N N N « «
Smells — [l [\l [l [l ™ e} o o o e} e} e}
AntiSingleton-NotClassGlobalVariable 0.55 0.21 < 0.01 0.59 < 0.01 0.59 0.05 0.23 < 0.01 < 0.01 0.32 < 0.01 0.01
Blob-ControllerClass 0.01 0.88 < 0.01 0.30 0.03 0.11 0.06 0.36 0.49 0.52 0.03 0.02 0.86
Blob-DataClass 0.01 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01
Blob-BigClass < 0.01 0.09 0.45 0.40 0.64 0.32 0.06 0.14 0.44 0.64 0.57 0.38 0.46
Blob-LowCohesion 0.16 0.39 0.33 0.03 0.05 0.24 < 0.01 0.61 0.01 0.82 0.29 0.92 0.47
ClassDataShouldBePrivate-FieldPublic 0.06 < 0.01 0.11 < 0.01 < 0.01 < 0.01 0.57 0.89 0.68 < 0.01 0.02 0.03 < 0.01
ComplexClass-LargeClassOnly < 0.01 0.01 0.03 0.01 0.50 < 0.01 0.32 0.44 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LargeClass-VeryLargeClassOnly 0.96 0.96 0.95 0.95 0.95 0.79 0.99 0.86 0.44 0.29 0.90 0.80 0.49
LargeClass-LowCohesionOnly - - - - - - - - - - - - -
LazyClass-FewMethods 0.16 0.10 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LazyClass-NotComplexClass - - - - - - - - - - - - -
LongMethod-LongMethodClass 0.02 0.69 < 0.01 < 0.01 < 0.01 0.16 < 0.01 0.04 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongParameterList-LongParameterListClass | < 0.01 < 0.01 0.12 0.32 < 0.01 < 0.01 0.06 0.50 0.10 < 0.01 0.91 < 0.01 < 0.01
SpaghettiCode-ClassGlobalVariable 0.96 0.95 0.95 0.96 0.95 0.93 0.92 0.92 - - - 0.92 0.92
SpaghettiCode-ComplexMethod
SpaghettiCode-MethodNoParameter - - - - - - - - - - - - -
SpaghettiCode-Nolnheritance — — — - — — — - — — — — —
SpeculativeGenerality-AbstractClass 0.03 0.69 0.03 0.15 0.85 0.31 0.18 0.52 0.16 0.05 0.19 0.27 0.03
SpeculativeGenerality-OneChildClass - - - - - - - - - - - - -
SwissArmyKnife-MultipleInterface 0.05 0.79 0.01 0.01 0.90 < 0.01 0.01 0.01 0.02 0.19 0.85 0.42 < 0.01

Table 9: Logistic regression results for the correlations between change-proneness and kinds of smells

12

reengineering: Lessons learned from a large commercial project.

In P. Sousa and J. Ebert, editors, Proceedings of 5"
for Eclipse. In Proceedings of the 3"% ICSE International

Workshop on Predictor Models in Software Engineering.

pages 77-84. IEEE Computer Society Press, March 2001.
IEEE Computer Society, 2007.

study of industrial code. pages 904 — 917, December 2004.

[35] W. C. Wake. Refactoring Workbook. Addison-Wesley Longman
Conference on Software Maintenance and Reengineering,

[38] R. K. Yin. Case Study Research: Design and Methods - Third

Publishing Co., Inc., Boston, MA, USA, 2003.
[36] B. F. Webster. Pitfalls of Object Oriented Development. M &

Edition. SAGE Publications, London, 2002.
[39] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects

T Books, 1°¢ edition, February 1995.
[37] P. Wendorff. Assessment of design patterns during software

[34] M. Vokac. Defect frequency and design patterns: An empirical

S[[ews Jo spury pue ssousuold-uor}dodxs pa[pueyun U29M)d(SUOIJR[SII0D 9} J0J S}NSaJI UOISSaISoa d13SIS0 T 9[qelL,

200 L6°0 9270 €0°0 8T°0 T0°0 Ggeo 86°0 €6°0 [4N0] 88°0 0€°0 9¢°0 90ry I UA[dI} NN -J U S AULI Y SSTMG
— — — — — — — — — — — — — sse[DPIIYDPU-AjI[eIouan)oAIjR[Ndadg
g6°0 09°0 T0°0 €8°0 96°0 €0°0 96°0 ¥6°0 6970 86°0 TL°0 [qN0] 86°0 sse[)10r1Isqy -L}I[eIousoariemoadg
2ouR)LIDYUION -opOoD111oysedyg
— — — - - — — — — — — — — I9jomrere JONPOYIRN-opoD11eysedg
— — — — — — — — — - - - - poyjeNxeiduion-epoHiyjeysedy
66°0 00°T - - - 86°0 00°T 00°T 00°T 00°T 00°T 00°T 00°T a[qeLIeATRqOTDSSR[D-opoD1eyseds
16°0 80°0 0Z°0 ¥0°0 6970 T0°0 > €€°0 T0°0 > ¥0°0 LL°0 0¥°0 740 90°0 SSB[))SITI0joWRIRJSUOT-)SITI0joUrR IR JSUOT
T0°0 > z0°0 T0°0 10°0 > T0°0 > T0°0 > T0°0 > 200 T0°0 > T0°0 > T0°0 > T10°0 > gac'o SSB[DPOYISINSUOT-POYRINFUOT
- - - - - - - - — - - - - sse[Hxo1dwo)joN-sse[D)Aze |
T0°0 > T0°0 > T0°0 > T0°0 > T0°0 T0°0 > T0°0 > T0°0 > vZ o0 T0°0 > T0°0 > €0°0 I1°0 SPOYIN MO -SSR AZer]
— — — — — — — — — — — — — ATuQuotsayo)mory-sse[H)odrer]
L6°0 €10 660 66°0 86°0 96°0 66°0 00T 00T 00T 00T 00T 00'T AuQsse[DoBIeTAIOA -sse[HoS IR
T0°0 0.0 T0°0 > 96°0 T0°0 > T0°0 > 90°0 010 c6°0 €0°0 T0°0 > S0°0 T0°0 > AQuossepesrery-sse[pxardwon)
80°0 9170 1€°0 €6°0 10°0 > T0°0 €0°0 10°0 > Gc'o 70°0 120 200 téa] Sqndpiatg-ejealigagpnoygeiedsser)
L6°0 L6°0 86°0 L6°0 0470 raN1] L6°0 66°0 L6°0 66°0 86°0 86°0 66°0 UOISaYOHMOT-qO[g
.00 ¥1°0 IT1°0 200 Gg8°0 200 90°0 €€°0 €0°0 €20 70 G0°0 62°0 sse[DSIg-qorg
€8°0 geo €20 €0°0 8%°0 G0 1710 0€°0 70°0 16°0 4N 98°0 68°0 sse[Delyed-qo1g
T0°0 96°0 TL°0 80 180 9€°0 €6°0 1€°0 9¢°0 €0°0 LG°0 T0°0 > T0°0 SSB[DI_[[01U0)-qOo1d
G0'0 10°0 > €€°0 €10 €0°0 10°0 > 10°0 > 10°0 > 90°0 €8°0 L1°0 cro 10°0 > SIqeRLIRA [R]O[D)SSR[DION-U0IR[SUISTIUY
@ w w w w w w w I I N N = S[ems

w w o N o =} =} =} — = — =} =}

= [\V) = [\V) = w no =

13

— N « - N - N =
< < - - - < < < N N N « «
Antipatterns — 3] 2] 2] N ™ ™ ™ ™ ™ ™ ™ ™
AntiSingleton < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Blob 0.39 0.15 0.24 0.02 0.30 0.77 < 0.01 < 0.01 0.85 0.27 0.06 0.03 0.20
ClassDataShouldBePrivate < 0.01 < 0.01 0.06 < 0.01 0.35 0.15 < 0.01 < 0.01 0.26 0.68 0.06 0.39 0.26
ComplexClass < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LargeClass 0.95 0.97 0.97 0.98 0.97 0.97 0.80 0.39 0.95 0.71 0.94 0.50 0.67
LazyClass 0.35 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongMethod < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongParameterList < 0.01 < 0.01 < 0.01 0.23 < 0.01 0.29 < 0.01 < 0.01 0.27 0.25 0.10 0.98 0.86
SpaghettiCode 0.26 0.97 0.97 0.98 0.97 0.98 0.96 0.93 - - 0.94 0.92
SpeculativeGenerality 0.78 0.15 0.14 0.94 0.94 0.10 0.02 0.01 < 0.01 < 0.01 0.38 0.16 0.36
SwissArmyKnife 0.49 0.75 0.79 0.30 0.39 0.64 0.42 0.02 0.37 0.05 0.28 0.81 < 0.01
Table 13: Logistic regression results for the correlations between issue-proneness and kinds of antipatterns
- N 0 = N = N =
< < - - - < < < N N N « «
Antipatterns — N [l [l [l el ™ ™ e} ™ e} e} e}
AntiSingleton 0.62 0.20 < 0.01 0.53 < 0.01 0.57 0.06 0.24 < 0.01 < 0.01 0.23 < 0.01 0.03
Blob < 0.01 < 0.01 0.16 < 0.01 0.71 0.05 < 0.01 < 0.01 0.23 0.01 0.56 < 0.01 < 0.01
ClassDataShouldBePrivate 0.09 < 0.01 0.23 < 0.01 < 0.01 < 0.01 0.70 0.89 0.49 < 0.01 0.05 0.03 < 0.01
ComplexClass 0.01 < 0.01 < 0.01 < 0.01 0.03 < 0.01 0.12 0.24 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LargeClass 0.96 0.95 0.95 0.95 0.95 0.76 0.97 0.87 0.54 0.28 0.91 0.72 0.71
LazyClass 0.09 0.12 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongMethod 0.02 0.82 < 0.01 < 0.01 < 0.01 0.30 < 0.01 0.07 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LongParameterList < 0.01 < 0.01 0.12 0.35 < 0.01 < 0.01 0.09 0.54 0.06 < 0.01 0.87 < 0.01 < 0.01
SpaghettiCode 0.96 0.95 0.95 0.96 0.95 0.93 0.92 0.92 - - 0.92 0.92
SpeculativeGenerality 0.03 0.68 0.03 0.14 0.83 0.31 0.18 0.51 0.16 0.05 0.19 0.27 0.03
SwissArmyKnife 0.03 0.79 0.01 0.01 0.89 < 0.01 0.01 0.01 0.01 0.15 0.68 0.38 < 0.01

Table 12: Logistic regression results for the correlations between change-proneness and kinds of antipatterns

14

surayjedijue Jo spuly pue ssouauoad-uorypdsdxs pajpueyuUN US9M)3(] SUOIJR[SIIOD 31} J0J SINSSJ UOISSaII01 I19S1S0T :FT O[qelL

T0°0 L6°0 G9°0 T0°0 8T°0 T0°0 6€°0 L6°0 06°0 80°0 880 €€°0 16°0 SJIUS[ATLIY SSTMS
86°0 09°0 T0°0 ¢80 L6°0 20'0 L8°0 G6°0 €9°0 L6°0 cL0 60°0 86°0 Ayrewduanaaryenoads
66°0 00T - - - 86°0 66°0 00T 86°0 00T 66°0 86°0 00°T apopeysedg
G6°0 L0°0 €0 c0'0 Gq'0 10°0 > 620 T0°0 > S0°0 G9°0 €70 TG0 010 ISTTIojeUIRIRJSUOT
T0°0 > 200 T0°0 > T0°0 > T0°0 > T0°0 > T0°0 > c0'0 T0°0 > T0°0 > T0°0 > T0°0 > cT0 POYIdNSUOT
T0°0 > T0°0 > T0°0 > 10°0 > T0°0 T0°0 > T0°0 > T0°0 > 110 T0°0 > T0°0 > T0°0 61°0 sse[DAzer|
L6°0 ce0 86°0 L6°0 86°0 96°0 86°0 66°0 86°0 00T 86°0 86°0 00'T sse[Hasre]
T0°0 > 12°0 T0°0 > T0°0 > T0°0 > T0°0 > T0°0 > €10 T0°0 > T0°0 > T0°0 > T0°0 > T0°0 > sse)xordwoy
8T°0 61T°0 99°0 290 T0°0 > T0°0 €0°0 10°0 > ce0 v0°0 920 200 vC0 oreAlIgagpInoyseledsser)
T0°0 99°0 7v'0 290 69°0 010 6€°0 ¥6°0 L€°0 L0°0 9L°0 T0°0 GL0 qorda
200 10°0 > g¥°0 ¥1°0 €0°0 10°0 > 10°0 > 10°0 > 70°0 81°0 710 01°0 10°0 > uoeSuIgIIuY
% % & & & & & & S S © o = suyyediuy
& & o b o o o o = = = ° °
= M = [V — w N =

15

