
IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 1

A Dynamic and Failure-aware Task
Scheduling Framework for Hadoop
Mbarka Soualhia, Student Member, IEEE , Foutse Khomh, Member, IEEE ,

and Sofiène Tahar, Senior Member, IEEE

Abstract—Hadoop has become a popular framework for processing data-intensive applications in cloud environments. A core
constituent of Hadoop is the scheduler, which is responsible for scheduling and monitoring the jobs and tasks, and rescheduling them in
case of failures. Although fault-tolerance mechanisms have been proposed for Hadoop, the performance of Hadoop can be significantly
impacted by unforeseen events in the cloud environment. In this paper, we introduce a dynamic and failure-aware framework that can be
integrated within Hadoop scheduler and adjust the scheduling decisions based on collected information about the cloud environment.
Our framework relies on predictions made by machine learning algorithms and scheduling policies generated by a Markovian Decision
Process (MDP), to adjust its scheduling decisions on the fly. Instead of the fixed heartbeat-based failure detection commonly used in
Hadoop to track active TaskTrackers (i.e., nodes that process the scheduled tasks), our proposed framework implements an adaptive
algorithm that can dynamically detect the failures of the TaskTracker. To deploy our proposed framework, we have built, ATLAS+, an
AdapTive Failure-Aware Scheduler for Hadoop. To assess the performance of ATLAS+, we conduct a large empirical study on a 100-
node Hadoop cluster deployed on Amazon Elastic MapReduce (EMR), comparing the performance of ATLAS+ with those of three
Hadoop schedulers (FIFO, Fair, and Capacity).Results show that ATLAS+ outperforms FIFO, Fair, and Capacity schedulers. ATLAS+
can reduce the number of failed jobs by up to 43% and the number of failed tasks by up to 59%. On average, ATLAS+ could reduce the
total execution time of jobs by 10 minutes, which represents 40% of the job execution times, and by up to 3 minutes for tasks, which
represents 47% of the task execution time. ATLAS+ also reduced CPU and memory usage by 22% and 20%, respectively.

Keywords—Adaptive Scheduling, Failure-Aware Scheduling, Hadoop, MapReduce, ATLAS+.

F

1 INTRODUCTION

MAPREDUCE [1] has become a major programming
model for processing large data sets in cloud com-

puting environments. Hadoop [2], an open-source imple-
mentation of MapReduce has become the cornerstone
technology of many big data and cloud applications.
It has been deployed in many leading companies (e.g.,
Yahoo!, and Facebook) to manage applications ranging
from web analytic, web indexing, image and document
processing, to high-performance scientific computing
and social network analysis [3]. A key advantage of
Hadoop over other big data processing frameworks is
that it allows for efficient data processing across clus-
ters of commodity servers. Despite the different failure
detection and recovery mechanisms integrated within
Hadoop cluster, many task failures still occur because of
unforeseen events in the cloud environment. In fact, in
the cloud, failures are the norm rather than exceptions.
Liu et al. [4] discusses the impact of different types of
failures (correlated and non-correlated) for nodes when
processing tasks and jobs in cloud environments. For
instance, they claim that tasks may fail because of data
loss, which is likely caused by correlated and non-
correlated machine failures in storage systems. Studies
report that a cluster can experience more than one thou-
sand individual node failures and thousands of hard-
drive failures during its first year of service [4] [5].
In addition, several power problems can also happen
bringing down between 500 and 1000 nodes for up to
6 hours. The recovery time of these failed nodes being

as high as 2 days. These frequent failures in data cen-
tres negatively impact the performance of applications
running Hadoop [5], [6]. Furthermore, in the current
implementations of Hadoop, the nodes send heartbeat
messages to the scheduler at fixed time intervals, and the
scheduler checks the received heartbeats from the nodes
also at fixed interval time [5]. Consequently, when a node
failure occurs, the scheduler can detect this failure only
within the next interval time. The scheduler considers
this node as dead, and the running tasks on it as failed
and will restart them from scratch on other nodes. In the
meantime, the scheduler can assign tasks to the failed
nodes, which would likely increase the task failures
rate. Therefore, the early detection of tasks and nodes
(e.g., TaskTracker: the node that processes the scheduled
tasks, DataNode: the node that manages the data stored
in Hadoop) failure in Hadoop clusters is important to
improve the performance of Hadoop applications. It is
also important to build efficient scheduling strategies
that adjust to the unpredictable changes of a cloud
environment.

In a previous work, we have shown that it is possible
to predict task and jobs failures in a cloud environ-
ment [7]. Based on the findings of this work, we have
proposed a new scheduler for Hadoop called ATLAS
(AdapTive faiLure-Aware Scheduler), that adapts its
scheduling decisions to events occurring in the cloud
environment. We have also shown that ATLAS can help
reduce tasks and jobs failures in Hadoop clusters by
up to 39% and 28%, respectively [8]. But, we observe

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 2

that some jobs and tasks are still failing, because the
approach proposed in [8] does not generate efficient
scheduling policies. Also, it does not consider the ma-
chines’ constraints and the dynamic behavior of the
environment where the tasks are executed (e.g., availabil-
ity of resources, reliability of the TaskTrackers, number
of running tasks on a machine, network congestion).
Moreover, it lacks mechanisms to decide whether it is
better to immediately process a task or to wait until
its success conditions are met. This can have a large
impact on failures rate, since it does not ensure making
efficient scheduling decisions. For instance, when a task
is waiting for reduce slots and the TaskTracker cannot
release these slots, a better decision could be to kill the
task and reschedule it on another TaskTracker. This is in
order to avoid a long waiting time in the queue on the
JobTracker especially when there are multiple jobs run-
ning concurrently. Furthermore, the approach proposed
in ATLAS [8] does not possess a dynamic mechanism
for detecting TaskTracker failures. In this paper, we
build on these early findings and propose a dynamic
and failure-aware scheduling framework for Hadoop
that adapts its scheduling decisions to events occurring
in the cloud environment. Using historical information
about events occurring in the cloud environment (e.g.,
resource depletion on a node of the cluster or failure of a
scheduled task), a machine learning algorithm (Random-
Forest algorithm), and a Markovian Decision Process
(MDP), our framework learns scheduling decisions that
reduce failures in the cluster. Specifically, we propose to
train different machine learning algorithms using past
task executions to predict the scheduling outcome of
each new task submitted for scheduling. The algorithm
providing the best performance (in terms of accuracy,
precision, and time) will be used to predict whether a
given task will fail or not, based on its collected at-
tributes. We implement the MDP model of our proposed
framework using reinforcement learning techniques to
guide the decision making process and evaluate the
scheduling decisions in the context of adaptive policy-
driven scheduling. In addition, our proposed framework
uses an adaptive algorithm to control the communica-
tion between the JobTracker and the TaskTrackers in
a Hadoop cluster and adjust the interval timeout to
consider a TaskTracker as dead based on the occurrence
of failures in the Hadoop environment. This is using
four well known algorithms from the network field in
our framework to predict the expected arrival time of
the next heartbeat from a TaskTracker node based on
information about recently received heartbeats messages.

To assess the benefits of our proposed solution, we
integrate our framework within Hadoop and build
ATLAS+, an AdapTive faiLure-Aware Scheduler for
Hadoop. We implement ATLAS+ in a 100-node Hadoop
cluster deployed on Amazon Elastic MapReduce (EMR)
and perform a case study with both single Hadoop jobs
(e.g., WordCount, TeraGen, Sort, and TeraSort) and chained
Hadoop jobs (these jobs are composed of single Hadoop

job), to compare the performance of ATLAS+ with those
of Hadoop main schedulers (i.e., FIFO, Fair, and Capac-
ity). Each analysis in our case study is repeated 30 times,
and we extend the execution of the jobs on a period
of 3 days, to ensure that the observations are robust.
We also evaluate the impact of continuous learning
on the scheduling decisions of ATLAS+. To assess the
performance of each scheduler, we compute the total
execution times of jobs, the amount of used resources
(CPU, memory, disk), the numbers of finished and failed
tasks and jobs. Experimental results show that ATLAS+
outperforms FIFO, Fair and Capacity. It can reduce the
number of failed jobs by up to 43% and the number of
failed tasks by up to 59%. Also, ATLAS+ could reduce
the total execution time of jobs by 10 minutes on average;
which represents 40% of the job execution times, and by
up to 3 minutes for the tasks, which represents 47% of
the task execution time. ATLAS+ also reduces CPU and
memory usage by 22% and 20%.

The remainder of this paper is organized as follows:
Section 2 describes the limitations of the existing Hadoop
schedulers. Sections 3 and 4 depict the architecture
and implementation of our proposed solution. Section
5 and 6 describe the findings of our work along with a
discussion of our approach. Section 7 summarizes the
related literature. Section 8 presents our conclusions.
Throughout the paper, we will refer to “JobTracker” by
JT, “TaskTracker” by TT, and “DataNode” as DN.

2 LIMITATIONS OF CURRENT HADOOP’S IM-
PLEMENTATION

2.1 Task Failure Detection
In Hadoop, when a component fails (e.g., TT, DN), all
tasks running on this node also fail and the recovery time
can be long, which can lead to unpredictable execution
times and resources wastage. For instance, the average
execution time of a job, which is 220 seconds, can
reach 1000 seconds under a TT failure and 700 seconds
under a DN failure [5]. Dinu et al. [5] who analyse
the performance of Hadoop clusters report that Hadoop
components do not share failure information between JT,
TTs, and DNs appropriately. For instance, when a task
experiences a failure, information about this failure is not
shared with other tasks that depend on the failed task.
In fact, when a map task fails, since map and reduce
tasks are scheduled separately and there is no exchange
of failure information between them, the failure is likely
to translate into the failure of the whole job as explained
in [8]. This is because reduce tasks may wait for the
results of the failed map task until they time out.
Moreover, when a DN fails, this can delay the starting
time of speculative execution of some tasks. This is be-
cause of the statistical nature of the speculative execution
algorithm, which is based on collected data about task
progress (e.g., straggling tasks). If a task is making a good
execution progress and suddenly a DN experiences a
failure, the speculative execution of this task will start

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 3

with a delay, since Hadoop expected the same progress
from that task. So that task will be speculatively executed
later than the time when straggling tasks are usually
speculatively executed. Furthermore, the speculative ex-
ecution of a task could face the same failure. Therefore,
a possible solution could be to equip schedulers with
mechanisms that enable the early identification of failed
tasks and a quick rescheduling of these tasks on available
nodes, to reduce the impact of task failures on job
execution time.

2.2 TaskTrackers Failure Detection
In [5] [8], it is shown that the JT cannot quickly de-
tect the failures of Hadoop TTs due to the nature of
communication over time between the JT and the TTs.
As a consequence, it may assign tasks to dead nodes,
which could significantly increase the failures rate of
tasks. Theoretically, the TTs send heartbeats to the JT
every 3 seconds. The JT checks every 200 seconds (3.33
minutes) the timeout condition of the received heartbeats
from the TTs. When a TT does not send heartbeats
for at least 600 seconds (10 minutes1), the JT considers
this TT node as dead, and the running tasks on it as
failed and will restart them from scratch on other TT
nodes, according to their availability [5]. In addition,
some heartbeats (may) arrive late to the JT because of
network delays or messages losses. In these cases, the
JT will consider their corresponding TTs as dead nodes,
despite their availability. Furthermore, it will not assign
them any load until it receives a new heartbeat from
them, which can result in resource wastage.

TT

.......
Δt (10 min)

m
1

m
2

m
n

trust suspect trust
.......

JT

TT = TaskTarcker JT = JobTracker

m = heartbeat message Δt = Interarrival time
= Failure

Fig. 1: Failure Detection Model in Hadoop Framework

Figure 1 shows examples of failures that can occur
while sending heartbeats between the TTs and the JT. For
example, a TT sends a heartbeat message m1 that arrives
before the next arrival time. So, the JT considers this TT
as alive. Next, it sends a new heartbeat message m2 that
does not arrive to its destination because of a network
problem. The JT considers this node as dead since it does
not receive its heartbeat although it is available. This
causes resources wastage as this node will not receive
new tasks until the next time interval. Another example
could be that the TT sends a heartbeat message mn that
arrives before the next time interval. However, this TT

1. This is the default value in Hadoop, as shown in the
“mapred.tasktracker.expiry.interval” property from “mapred-
default.xml”

experiences a failure and becomes inactive right after
sending the message. The JT will consider this node as
alive and will keep assigning it new tasks despite the
fact that it has failed; which could increase the failure
rates of tasks and the execution times of tasks and
jobs [5]. Consequently, integrating an adaptive approach
to adjust the interval at which the JT considers that a TT
is dead can be a possible solution and can help reduce
the failure rates of the Hadoop’s scheduler.
3 FRAMEWORK DESIGN

3.1 General Overview
In this section, we present the architecture of our
proposed framework that can predict the scheduling
outcomes of tasks (the final output of its execution:
either a finished task or a failed task.) using infor-
mation about the tasks and the cluster environment,
and adjust scheduling decisions accordingly. In addi-
tion, our proposed framework can adjust the commu-
nication between the JT and TTs in order to quickly
detect the failures of the TTs nodes. Figure 2 gives a
general overview of the structure of our framework. It
is comprised of three main components: “Task Failure
Prediction”, “Dynamic TaskTracker Failure Detection”, and
“Scheduling Policies Modelling”. Specifically, each of the
three components is characterized by its own design
with respect to its function. Nevertheless, they can be
integrated together and built on top of the Hadoop
scheduler. The remainder of this section elaborates more
on each of these components.

Hadoop Cluster

Log
Files
Log
Files

Scheduler

Hadoop
Master Node

Hadoop
DataNode

Hadoop
DataNodeHadoop

Slave Node 1

Cluster
Log
Files

Scheduling
Policies
Modelling

Scheduling
Policies Rules

Dynamic
TaskTracker

Failure Detection

Task
Failure

Prediction

Fig. 2: Architecture of the Proposed Framework

3.2 Task Failure Prediction
This component is responsible for collecting (logs) and
processing data about previously executed tasks in a
Hadoop cluster. Next, it analyses the correlation between
tasks attributes and tasks scheduling outcomes. The
results of the correlation analysis are used to identify
correlated task attributes, and attributes that are likely to
affect a task’s scheduling outcome. A machine learning
model is trained using these past task executions data.
This machine learning model is used to predict the
scheduling outcome of each new task submitted for
scheduling. The inputs of the machine learning model
are the values of the identified predictors (task attributes
retained in the model) and the output is the scheduling
outcome of a task (either failed or finished). This compo-
nent of our proposed framework can early identify the
tasks that are likely to fail if scheduled on certain nodes,
using historical information collected on the Hadoop
cluster.

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 4

3.3 Dynamic TaskTracker Failure Detection

This component of our proposed framework collects
and analyses information about the received heartbeat
messages from TTs. Using these information, it can
dynamically estimate the arrival time of next heartbeats
based on failure occurrences on the TTs. More details
about the estimation of next heartbeat arrival time will
be presented in Section 4. After this estimation, it cal-
culates the median of the obtained arrival time values.
This value will be used to update and adjust the timeout
interval at which TT is considered as dead. Specifically,
when there are many TT failures, it is expected that the
JT will receive heartbeats with a delay. In such case, this
component of our framework will notify the scheduler to
shorten the interval time of communication between the
JT and TTs, in order to quickly detect TTs failures. Fol-
lowing this approach, the scheduler can avoid assigning
tasks to dead nodes and resources wastage, and hence
reduce task failure rates.

3.4 Scheduling Policies Modelling

To cope with the dynamic nature of cloud environments,
our proposed framework requires adaptive scheduling
strategies in order to reduce the cost associated with
tasks execution. To do so, we propose to consider the
scheduling decision process as an MDP [9]. So, the
processing of a task can be modelled in terms of a life
cycle, where the task progresses through this life cycle
and goes from one state to another. The task states in the
MDP model are: submitted, scheduled, waiting, executed,
finished, and failed. The scheduling decision making can
be considered as a mapping of states over actions to
select a policy according to a derived reward. As shown
in Equation 1, the decision process is characterized by
two metrics: π∗ represents the policy to be applied from
one state S(t) to another S(t+1), and R which contains the
earned reward by following the selected action A(t). This
modelling allows the scheduler to estimate and compare
the reward associated with all possible actions to select
the scheduling strategy that minimises the risk of failure
for each submitted task.

π∗ = argmax
π

E[

A∑
t=1

R(S(t), A(t), S(t+1))|π] (1)

More concretely, this component of our framework is
responsible for observing the current state of a scheduled
task, selecting the possible actions from the current state
and observing the derived reward/cost from each transi-
tion. The MDP allows to model decision making in envi-
ronments where the outcomes depend on random factors
and are under the control of a decision maker, which
corresponds well to the situation of an Hadoop cluster.
In fact, MDP models are widely applied to solve decision
problems in cloud environment, e.g., resources allocation
problems [10], virtual machines scheduling [11], etc.
These past successes with MDP models motivated our
choice of MDP for Hadoop scheduling.

4 FRAMEWORK IMPLEMENTATION

In this section, we describe the implementation details
of our proposed framework.

4.1 Task Failure Prediction

Using logs collected from previously executed tasks in
a Hadoop cluster, we extract job and task attributes to
identify correlations between these attributes and the
scheduling outcome of a task. To do so, we first propose
a formal model to describe task attributes: Task attributes
= {Identification, Structure, Execution, Environment}. The
proposed attributes’ model can be applied to different
processing platforms to collect tasks attributes (to be
used later in our proposed framework). In addition, it
can give a complete description about the task since it
gives an overview about its internal description as well
as the way it is executed on its environment. Specifically,
we collect the following task attributes according to
our proposed model for our proposed framework. The
identification attributes include ID, priority, and type of
a task. The structural attributes represent the dependent
running/finished/failed tasks belonging to the same job.
The execution attributes can include the execution time,
resources utilization (CPU, memory, bandwidth), execu-
tion type (local or non-local), and scheduling outcome
(either finished or failed) of the task. The environment at-
tributes describe the status of the node where to execute
the tasks including the running load (number of running
map and reduce tasks), the status of the queue, etc. Here,
we apply the Spearman rank correlation [12] to test the
correlation between these attributes and task scheduling
outcome.

Next, we train six machine learning models including
GLM (General Linear Model), Neural Network, Boost,
Tree, Random Forest, and CTree (Conditional Tree), us-
ing data collected from past tasks’ executions in the
cluster [13]. GLM is an extension of linear multiple re-
gression for a single dependent variable. It is extensively
used in regression analysis. Neural networks represent
interconnected nodes organized in layers. The inputs of
the bottom layer represent the predictors, and the out-
puts of the top layer represent the forecasts of this model.
Boost creates a collection of interconnected models iter-
atively. These successive models are weighted according
to their success and their outputs are combined using
voting or averaging to create a final model. Decision
Tree is extensively used to predict binary outcomes.
Random Forest uses a majority voting of decisions for
classification and regression results. It offers good out-
of-the-box performance and has performed very well in
different prediction benchmarks. CTree is an extended
implementation of the Decision Tree. The machine learn-
ing models aim to predict the scheduling outcome of
tasks (i.e., successful completion or failure) based on
information about the tasks attributes and Hadoop clus-
ter environment (i.e., availability of resources, failure
occurrences in TT, network congestion). The predictors
for each model are the task attributes. The output of each

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 5

model is the scheduling outcome of a task (either failed
or finished). For each model, we use the implementa-
tion provided in the statistical framework R [13]. Next,
we compare the performance of the selected models.
The model providing the best results will be used to
predict whether a given task will fail or not, based on
its collected attributes. More details about the collected
attributes and the used predictive models can be found
in [8]. Algorithm 1 describes the steps followed by the
“Task Failure Prediction” component in our framework
to predict successes or failures of scheduled tasks.

Algorithm 1 Task Failure Prediction Algorithm
1: for (Each 10 minutes) do
2: logs = Collect-logs(Cluster)
3: /* Analyse correlations between task attributes and scheduling outcome */
4: Analyse-Correlation(logs)
5: /* Apply Machine Learning predictive models on collected data */
6: Machine-Learning(logs, models)
7: 10-fold-Cross-Validation(logs, models)
8: /* Measure accuracy, precision, recall, error and time of predictive models */
9: Performance = Measure-Performance(logs, models)

10: Model = Select-Model(models, Performance)
11: Update-logs(Cluster, logs)
12: /** Integrate the predictive model within the scheduler **/
13: while (There is a new task to be scheduled) do
14: Attributes = Collect-Attributes(Task, TT)
15: /* Selected predictive model will predict if task will be finished/failed */
16: Predicted-Status = Predict(Model, Task, Attributes)
17: end while
18: end for

4.2 Dynamic TaskTracker Failure Detection
To address the limitations of the current heartbeat-based
communication between JT and TTs, we use four well
known algorithms from the network field: Chen Failure
Detector (Chen-FD) [14], Bertier Failure Detector (Bertier-
FD) [15], φ Failure Detector (φ-FD) [16] and Self-tuning
Failure Detector (SFD) [17]. We select these algorithms
because they have been designed to address message
synchronization issues, and have achieved good results
when used for detecting failures in network systems.
They can significantly reduce the number of false failure
detections [18]. We implement (and adapt) these algo-
rithms in our framework to predict the expected arrival
time of the next heartbeats from a TT node based on
information about recently received heartbeats messages.
The four algorithms can adjust the interval timeout at
which the JT can consider a TT as dead using collected
information about the received heartbeats and TT nodes
failure occurrences. More precisely, they use historical
information about the arrival time of received heartbeats
to estimate the expected arrival times of future heartbeat
messages from each TT using the equations described
for each algorithm. The selection of these algorithms in
our framework is based on their performance in terms
of detection time of the TT failures over time. In other
terms, we select the algorithm that is able to quickly
detect the TT failures when compared to the other
algorithms. A formal description of the four algorithms
and their equations is presented in Appendix A. The
steps followed by our “Dynamic TaskTracker Failure
Detection” component to dynamically adjust the sending

of heartbeats between the TTs and the JT are presented
in Algorithm 2.

Algorithm 2 TaskTracker Failure Detection Algorithm
1: HB-data = Collect-data(TT, heartbeats)
2: /* Apply the algorithms to control the communication between JT-TTs */
3: Adaptive-Algorithms(HB-data, algorithms)
4: Performance = Measure-Performance(algorithms)
5: /* Select Algorithm giving best results (detection time and mistake rate) */
6: Algorithm = Select-Model(algorithms, Performance)
7: /** Integrate the adaptive algorithm within the scheduler **/
8: while (For each new interval time of communication) do
9: HB-next-arrival = Estimate-arrival(Algorithm, TTs, HB-data)

10: HB-median= Get-Median(TTs, HB-next-arrival)
11: /* Update the next interval timeout of the following communication */
12: Update-Communication(JT, TTs, HB-median)
13: Notify-Scheduler(JT, TTs, HB-median)
14: end while

4.3 Scheduling Policies Modelling
To implement the MDP model of our proposed frame-
work, we opt for reinforcement learning techniques [19],
to guide the decision making process and evaluate the
scheduling decisions in the context of adaptive policy-
driven scheduling. We choose to follow a reinforcement
learning approach because it allows learning from past
experiences (e.g., scheduling policies) to predict potential
future actions that guarantee the successful completion
of scheduled tasks. Indeed, the reinforcement learning
techniques have been applied to solve several problems
in the cloud computing system including resource alloca-
tion [20], selection of virtual machines [21], job schedul-
ing [22], virtual machines consolidation [23]. They show
good performance when applied to such problems sim-
ilar to the scheduling decisions modeling in the cloud.
Furthermore, reinforcement learning techniques allow to
consider the dynamic events occurring in the scheduler
environment (availability, resources, size of queue, etc.)
and adjust the decisions making procedures under un-
certainty.

There exist a multitude of reinforcement learn-
ing approaches in the open literature. Among them,
the TD-learning (Temporal-Difference learning) [9], Q-
learning [24], and SARSA (State-Action-Reward-State-
Action) [25] are the most used ones. In [26], the authors
analyse these algorithms and find that Q-learning and
SARSA algorithms outperform the TD-learning algo-
rithm in terms of state exploration (the number of times
the system change its state after applying an action).
This is because the TD-learning uses only one state
network and hence, it cannot easily exploit particular
action sequences. Therefore, in our proposed framework,
we use a combination of the Q-learning and SARSA
algorithms to implement the action selection procedure
for the MDP model of the scheduler. For instance, Q-
learning is an Off-Policy algorithm that updates a Q-
function according to a random policy that maximizes
the expected reward. SARSA is an On-Policy algorithm
that selects the next state and action according to a
random policy and updates the Q-function accordingly.
We integrate these two different approaches within the
scheduler to evaluate their impact and identify if the

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 6

algorithm can allow the scheduler to explore more possi-
ble policies and to find policies leading to task execution
success. The procedural form of SARSA and Q-Learning
are presented respectively in Algorithms 2 and 3 from
the Appendix B. We describe the approach followed in
our framework to obtain better scheduling policies in
Algorithm 3.

Algorithm 3 Scheduling Policies Algorithm
1: while (There is a new task to be scheduled) do
2: data = Collect-Env(Cluster)
3: /* Calculate the reward associated with action using Q-Learning or SARSA */
4: Action = Select-Action(Task, State)
5: Reward = MDP-Solver(Task, State, Action)
6: Policy = Select-Policy(Task, State, Action, data)
7: /* Apply the scheduling policy and update the scheduling policies rules */
8: Outcome = Apply-Policy(Task, State, Action)
9: Update-Policies-Rules(Task, State, Action, Policy, Outcome)

10: end while

4.4 ATLAS+
We integrate the three different components of the pro-
posed frameworks, described in the previous sections,
into the JT through ATLAS+ (an AdapTive faiLure-
Aware Scheduler) algorithm described in Algorithm 4.
ATLAS+ builds on top of the Hadoop’s existing sched-
ulers to provide adaptive scheduling decisions according
to events occurring in the cluster.

This algorithm requires firstly to get the status of
the Hadoop cluster (including the number of TTs and
their status). Next, the Algorithm 2 dynamically updates
the communication interval timeout and notifies the JT
based on the algorithm giving the best performance
results (as described in Algorithm 2). This proactive
approach allows ATLAS+ to quickly detect TTs failures.
This part of the algorithm runs in parallel with the rest
of ATLAS+ algorithm (i.e., as shown by lines 1 to 5 in
Algorithm 4).

For a new submitted task, ATLAS+ collects the
attributes of the tasks (map/reduce). Using the values
of these attributes, the Algorithm 1 predicts whether
the submitted task will be finished or failed if executed
(line 11 in Algorithm 4). We implement two different
prediction algorithms for the mappers and the reducers
(since the mappers/reducers have different input
parameters). Next, the Algorithm 3 will be executed
to get a candidate policy that can be either a process,
a reschedule or a kill policy. Specifically, a process
policy is a request to the scheduler to execute the
submitted tasks on a given TT. Whereas, a reschedule
policy is a request to resubmit the task to the queue
and wait until its success conditions are met. The
success conditions of a task represent the environment
circumstances/specifications that eventually lead to a
successful execution of that task (i.e., terms to a finish
event at the scheduler level). A kill policy is sent to the
scheduler to kill an executed or a waiting task.

When the task is predicted to succeed (line 12 in Al-
gorithm 4), ATLAS+ determines a candidate scheduling

policy for this task using Algorithm 3 (line 13 in Algo-
rithm 4). When the candidate policy is a process policy
(line 14 in Algorithm 4), ATLAS+ checks the availability
of the TT and DN to verify if they are activated or
not before applying the policy (line 15 in Algorithm 4).
Then, ATLAS+ runs the policy (line 18 in Algorithm 4)
when the TT and the DN needed to process the task are
available (line 16 in Algorithm 4). It saves the outcome
result of the processed policy (e.g., finished/failed task,
environment status, used resources) in the scheduling
policies database (as shown in our proposed framework
in Section 2). If the TT and DN are not available, ATLAS+
resubmits the task to the queue and assigns it a penalty
(line 21 in Algorithm 4). When the policy is to reschedule
(line 24 in Algorithm 4) or to kill (line 26 in Algorithm 4),
ATLAS+ runs the policy, assigns a penalty to the task and
stores the scheduling policy in the database rules. This
penalty reduces their execution priority, causing them to
wait in the queue until enough resources are available
to enable their speculative execution on multiple nodes.

If the task is predicted to fail (line 29 in Algorithm 4)
and the Algorithm 3 selects a process candidate policy
(line 31 in Algorithm 4), ATLAS+ will launch the task
speculatively on many nodes that have enough resources
(line 33 in Algorithm 4), in order to speed up the execu-
tion of the task and increase the chances of its success.
When the policy is to reschedule (line 35 in Algorithm 4)
or to kill (line 37 in Algorithm 4) the task, ATLAS+ runs
the policy and saves its outcome in the database rules.
All decisions made by the ATLAS+ are controlled by a
time-out metric from Hadoop’s base scheduler. Hence,
if a task reaches its time-out, its associated attempt will
be considered as failed and the task will be rescheduled
again but with a lower priority.

5 FRAMEWORK EVALUATION

In this section, we present the setup and results of the
experiments performed to assess the effectiveness of the
proposed framework.

5.1 Experiment Setup
Cluster: We create a 100-node Hadoop 1.2.0-cluster on
Amazon EMR; one node is the master, another node
is the secondary master to replace the master when it
crashes, and 98 slave nodes. The nodes have different
characteristics since we select different types of nodes
from Hadoop Amazon EMR list. The selected types are
m3.large (30 nodes), m4.xlarge (30 nodes), and c4.xlarge (40
nodes) [27], details about their characteristics are listed
in Table 1. We select different types of nodes to obtain a
heterogeneous set of nodes as in a real world cluster, and
to support different workloads. In addition, we vary the
number of map and reduce slots (e.g., 100, 150, 200, 1500)
for the nodes in order to obtain Hadoop nodes having
different capacities and characteristics.
Scheduler: We evaluate the performance of three differ-
ent types of task scheduling algorithms in Hadoop in-
cluding First-In-First-Out (FIFO), Fair, and Capacity [28]

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 7

Algorithm 4 ATLAS+ Scheduling Algorithm
1: while (Cluster is running) do
2: Cluster-Status = Get-Status-Cluster(Cluster)
3: /* Adjust the Communication between JT and TTs */
4: TaskTarcker-Failure-Detection(Cluster-Status, JT,TTs)
5: end while
6: /* Lines 1 to 5 run in parallel with the rest of the algorithm */
7: while (There are free slots on TTs) do
8: while (There is a new task to be scheduled) do
9: /*Select TT and DN where to execute the task by basic scheduler functions*/

10: TT-DN = Machine-Selection-Basic-Function-Scheduler(Task)
11: Predicted-Status = Task-Failure-Detection(Task, TT)
12: if (Predicted-Status == ”SUCCESS”) then
13: Policy = Scheduling-Policies-Modelling(Task)
14: if (Policy == ”Process”) then
15: Check-Availability(TT,DN)
16: if (TT and DN are available) then
17: /* Execute Task in the TaskTracker TT */
18: Execute(Task, TT, Policy)
19: else
20: /* Resubmit Task since it will fail in such conditions */
21: Send to Queue + Penalty
22: end if
23: end if
24: if (Policy == ”Reschedule”) then Send to Queue + Penalty
25: end if
26: if (Policy == ”Kill”) then Kill(Task)
27: end if
28: end if
29: if (Predicted-Status == ”FAILURE”) then
30: Policy = Scheduling-Policies-Modelling(Task)
31: if (Policy == ”Process”) and (There are Enough Resources on Nodes)

then
32: /* Launch Many Speculative Instance of Task */
33: Execute-Speculatively(Task,N,Policy)
34: end if
35: if (Policy == ”Reschedule”) then Send to Queue + Penalty
36: end if
37: if (Policy == ”Kill”) then Kill(Task)
38: end if
39: end if
40: end while
41: end while

TABLE 1: Amazon EC2 Instance Specifications [27]
Machine

Type vCPU Memory
(GiB)

Storage
(GB)

Network
Performance

m3.large 1 3.75 4 Moderate
m4.xlarge 2 8 EBS-Only High
c4.xlarge 4 7.5 EBS-Only High

algorithms. In the FIFO algorithm, the tasks are queued
and processed in the order in which they are received,
regardless of their types and their sizes [28]. The Fair
algorithm ensures that the resources in the cluster are
fairly distributed across the received tasks so that all
users receive the required resources over time [28]. Fi-
nally, the Capacity algorithm splits the Hadoop cluster
into different queues with different amounts of resources
(i.e., CPU, memory). Next, these queues process the
received tasks using FIFO scheduling principles [28].
Workload: We run different workload on Amazon EMR
Hadoop [27] clusters. To determine the characteristics of
the workload to be executed, we collect data about the
Hadoop jobs executed on Google cluster [7] and identify
their profiles to obtain a representative workload [7]. The
running workload include single jobs (e.g., WordCount,
TeraGen, Sort, and TeraSort [29]), and chained jobs (se-
quential, parallel, and mix chains) composed of Hadoop
single jobs. To obtain different types of workload, we
vary the configurations of the running jobs (e.g., size of
the job or the chain, number of map and reduce, size

of input file). The log data were collected over a fixed
period of time of 10 minutes.
Injected Failures: The AnarchyApe tool [30] is used to
inject failures to the created cluster at different rates.
For instance, we create different scenarios to inject fail-
ures to TTs, DNs, network (drop or slowdown), in-
put data (loss of data), tasks and jobs. Specifically, we
kill/suspend TTs, DNs; disconnect/slow/drop network;
and randomly kill/suspend threads within the TTs in
the running executions. To determine the failure rates to
be injected to the Hadoop cluster, we use public Google
traces [7] to perform a quantitative analysis about the
number of failed jobs and tasks, and identify the typical
failure rates to be injected to a typical cluster. The Google
traces provide information about previously executed
tasks and jobs, including Hadoop jobs, in real world
Google clusters. The obtained results reveal that the
failure of a real world cluster can be as high as 40%,
hence, we vary the failure rates in our experiments from
5% to 40% while injecting different types of failures [7].

5.1.1 Task Failure Prediction
We collect logs from the cluster and extract data re-
lated to 120,000 jobs and 300,000 tasks. For each job,
we extract: job ID, priority, execution time, number of
map/reduce, number of local map/reduce tasks, num-
ber of finished/failed map/reduce tasks and the final
status of the job. For each task, we extract: job ID, task
ID, priority, type, execution time, locality, execution type,
number of previous finished/failed attempts of the task,
number of reschedule events, number of previous fin-
ished/failed tasks, number of running/finished/failed
tasks running on the TT, the amount of used resources
(CPU, Memory and HDFS (Hadoop Distributed File
System) Read/Write) and the final status of the task.
The predictors or the input of the predictive models
are the collected attributes of the tasks. The proposed
failure prediction models use the values of these input
attributes to determine whether a task will be finished
or failed when executed. More details about this step
can be found in [8]. The obtained data from logs of
the created Hadoop cluster is used to train and test the
predictive models to select the model to implement in
ATLAS+. So, we split the data into training data and
testing data and we evaluate the performance of the
selected machine learning models. We perform this step
for the map and reduce tasks separately; predicting the
scheduling outcome of these tasks for the three studied
schedulers (FIFO, Fair and Capacity). Next, a 10-fold
random cross validation is applied on the models to
determine the model that can identify the scheduling
outcome of a task with the best accuracy, precision and
execution time. In the cross validation, each data set is
randomly split into ten folds. Nine folds are used as
the training set, and the remaining fold is used as the
testing set. Furthermore, we vary the training rates for
each model to evaluate the performance of the models
at different training rates and analyze the impact of

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 8

the training rate on the performance of the predictive
models. This is to test how the performance of the
models relies on the training rate. The training rates are
respectively: 10%, 30%, 50%, 70%, and 90%.

5.1.2 Dynamic TaskTracker Failure Detection
Different types of failures are injected to the
TTs (e.g., slowing down/dropping the network,
killing/suspending TTs) in order to evaluate the
performance of the four proposed algorithms, presented
in Section 4.2 and Appendix A, and the basic algorithm
used by Hadoop, in terms of detection time (TD)
over time. This is in order to select the appropriate
algorithm to implement in ATLAS+. The injected failure
rates are 10%, 20%, 30%, 40%, and 50% of TTs. The
injection of failures is regular over the intervals of
communications (e.g., 2 minutes after the beginning
of a new interval). Next, in the following interval, we
implement a procedure to revive dead nodes. Also, we
vary the time of the recovery of TTs (e.g., 1, 2 and 3
minutes after the beginning of a new interval) to see the
impact of different recovery times on the mistake rate
(i.e., the number of times that the scheduler considers
an alive node as dead). For example, if the recovery
time is one minute, then the TT has more time to send
its heartbeat whereas, if the recovery time is within
3 minutes, then there is a shorter time to send the
heartbeat. Here, we specify a limit for adjusting the
interval of sending heartbeats to 4 minutes, to reduce
the overhead of communication between the TTs and
the JT.

5.1.3 Scheduling Policies Modelling
We train the SARSA and Q-learning algorithms
proposed to solve the MDP model while scheduling
around 22,000 tasks (map and reduce tasks). Specifically,
we submit 1500 different tasks each 5 minutes to the
Hadoop scheduler. So, we integrate each algorithm
separately to ATLAS+ and we compute the number of
explored policies and the outcome associated with the
used policies (either finished or failed task) for each
algorithm. Particularly, we measure the policy success
rate that can be defined as the ratio between the number
of policies leading to a successful event divided by
the total of the explored policies in each interval. This
experiments are repeated 30 times in order to measure
the variance of the two algorithms when integrated with
ATLAS+. Here, our aim is to evaluate the performance
of the two algorithms over time to compare them.
We perform this step in order to select the algorithm
that allows our proposed framework to explore more
policies and to select the policy that maximizes the
number of finished tasks. Next, we implement two
procedures; one to collect and store data about the used
scheduling policies within the scheduler, another to
select the scheduling policies for the scheduler when
there is a new task to be scheduled.

For the scheduling policies, we characterize each
policy by the following metrics: policy ID, local-
ity/execution Type (local or non-local), time to find the
policy (time to access the database and find the pol-
icy), selected TT, policy reward (reward collected from
the proposed model), number of speculative executions,
number of tasks pending in a queue, policy Q-Value (ob-
tained according to the Q-learning or SARSA algorithm),
load (number of finished, failed, killed, straggling and
running tasks), available slots on selected TT, requested
slots on selected TT, used slots on selected TT, frequency
of policy usage, frequency of policy positive usage (pol-
icy leading to task success), frequency of policy negative
usage (policy leading to task failure) and policy outcome
(task final status; finished or failed). These metrics are
selected because they capture the characteristics of the
environment where the scheduling policies are applied.
In addition, we perform a multi-collinearity analysis to
identify correlated metrics. More specifically, we com-
pute the Variance Inflation Factor (VIF) of the metrics
and use a threshold value of 5 to decide whether the
metrics are correlated or not. Metrics having a VIF
value greater than 5 are considered to be correlated. To
evaluate the importance of the metrics of the scheduling
policies, we apply the MeanDecreaseGini criteria, select-
ing metrics with higher values, since they represent the
most important ones. Next, the second procedure selects
the scheduling policy having the highest probability of
success (e.g., having the greatest value of positive usage)
based on the characteristics of the workload running on
the system.

5.2 Evaluation Results
5.2.1 Task Failure Prediction
When analysing the correlation between task attributes
and the scheduling outcome of map and reduce tasks, we
find that there is a strong correlation between the num-
ber of running/finished/failed tasks on a TT, the locality
of the tasks, the number of previous finished/failed
attempts of a task, and the scheduling outcome of the
task. In other terms, tasks characterized by multiple
failure events on its environment (including multiple
past failed previous attempts and many concurrent tasks
(running on the same TT) that experienced multiple
failed attempts) have a high probability to fail in the
future. Table 2 presents the performance of our studied
predictive models. In general, Random Forest outper-
forms the other predictive models and achieves the best
results in terms of precision, recall, accuracy, error, and
execution time for the three studied schedulers. This is
because the Random-Forest algorithm uses the majority
voting on decision trees to generate results which makes
it robust to noise, resulting usually in highly accurate
predictions. Here, we discuss only the results of the
Fair scheduler, because we find that the three schedulers
performance follow the same trend. For map tasks, the
Random Forest model can achieve an accuracy up to
88.5%, a precision up to 87.6%, a recall up to 93.4%,

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 9

an error rate of to 25.1%, and an execution time of
29.33 ms. For reduce tasks, the Random Forest model
achieves an accuracy up to 94.5%, a precision up to
97.4%, a recall up to 96.5% and an error up to 15.4%.
The total execution time of the evaluation of Random
Forest for reduce tasks is 38.41 ms. We also analyse the

TABLE 2: Accuracy, Precision, Recall, Error (%) and
Execution Time(ms) for different Algorithms

Map Task

Algorithm Acc. Pre. Rec. Err. Time
Tree 68.6 75.8 63.4 9.14 10.02

Boost 67.3 84.2 69.7 34.9 201.4
Glm 65.6 89.5 65.4 39.9 13.54

CTree 69.4 84.4 68.3 32.6 17.34
Random Forest 79.9 81.8 93.5 23.6 23.9

Neural Network 64.8 86.3 74.1 31.3 63.61

Reduce Task

Algorithm Acc. Pre. Rec. Err. Time
Tree 74.5 85.4 74.0 29.8 15.23

Boost 84.4 81.7 74.7 10.9 268.77
Glm 77.2 94.3 71.3 25.3 19.19

CTree 82.4 88.4 79.4 25.4 20.52
Random Forest 94.12 92.3 96.5 15.4 29.77

Neural Network 84.3 85.4 75.6 19.6 98.14

results of the different models under different training
rates in terms of accuracy, precision, and recall. Here,
we find that the performance of the FIFO, Fair, and
Capacity schedulers is following the same trend and
hence, we only discuss the results of only one scheduler:
Fair scheduler. We can report that the Random Forest has
the highest values for the accuracy, precision, and recall
when compared to the other algorithms for the map and
reduce tasks. Furthermore, the accuracy, precision, and
recall values increase when the training rate increases,
and can reach 83.9%, 94.3%, and 94.3%, respectively,
under 90% training rate for the map tasks. For the re-
duce tasks, the accuracy, precision, and the recall values
are 93.4%, 97.8%, and 93.9%, respectively, when trained
with 90%. Consequently, we can claim that the Random
Forest is highly dependent on the training rate and can
achieve better results when the training rate is large. In
light of these results, we select Random Forest for the
implementation of the ATLAS+ scheduler (at line 13 of
Algorithm 1) and retrain its model to collect data each
10 minutes.

5.2.2 Dynamic TaskTracker Failure Detection

Figures 3 and 4 present the performance of the five
algorithms used to detect the failures of TT nodes.
Specifically, they represent the variation of detection time
of these algorithms over time when the same number
of failures are injected. We find that the performance of
the five algorithms under the different failure rates is
following the same trend. Hence, we only present here
the results of 30%, and 50% TT failures. The obtained
results show that the SFD algorithm is characterized by
a smaller detection delay over time when compared to
the other algorithms for the same number of injected
failures. The Bertier-FD and the φ-FD do not give good
results as their detection times under different failure
rates are close to that of the basic Hadoop algorithm,
which is giving the worst performance (8 minutes as

detection time). This can be explained by the fact that the
Bertier-FD and the φ-FD rely on historical information to
identify good failure predictors. For instance, the φ-FD
requires a large window size to obtain more data for
the normal distribution function and hence computes
a more adaptive normal distribution function. For the
Bertier-FD, it does not have dynamic parameters to tune,
which is why the window size does not affect the
behavior of the algorithm over time. For the Chen-FD, its
performance is close to that of SFD. This is because they
use the same function to estimate the expected arrival
time of the next heartbeat as explained in Appendix A.
The main difference between the two is how they update
the safety margin. For the SFD, it uses an adaptive
function to update it according to the occurrence of
failures in the cluster. However, the Chen-FD uses a
constant safety margin. Therefore, the SFD can find the
value for sending the heartbeats in less time compared
to the Chen-FD.

0 1 2 3 4 5 6 7

2

4

6

8

10

Interval Time Number

D
et
ec
ti
on

T
im

e
(m

in
)

Basic FD φ FD Bertier FD

Chen FD SFD

Fig. 3: TD (30% Failure)

0 1 2 3 4 5 6 7

2

4

6

8

10

Interval Time Number

D
et
ec
ti
on

T
im

e
(m

in
)

Basic FD φ FD Bertier FD

Chen FD SFD

Fig. 4: TD (50% Failure)

Table 3 presents the results of the failure detection
algorithms in terms of mistake rate, for different recov-
ery times of TTs (1, 2, and 3 minutes) and different
failure rates (from 10% to 50%). Here, we notice that
the performance of the algorithms are following the
same trend for the three different recovery times. Hence,
we only present the results for a recovery time of 2
minutes. We observe that the SFD algorithm is making
more mistakes over time. Whereas, the Bertier-FD and
the φ-FD makes less errors when identifying failures of
nodes. This is because their interval timeout is longer
than that of the SFD algorithm. In other words, there is a
compromise between the mistake rate and the detection
time. The longer is the detection time, the less would
be the number of mistakes and vice versa. For instance,
the Basic FD is characterized by a constant detection
time (8 minutes according to Figures 3), when injecting
40% TT failures and the recovery time is 2 minutes.
Overall, it is characterized by a normalized values of
wrong failure detection equal to 0.48 (see Table 3). While
the SFD is characterized by a decreasing detection time
over time (which reaches 2 minutes: see Figures 3) and
by a normalized value of wrong failure detection equal
to 0.56 (see Table 3). These observations are valid for
other algorithms, failure rates, and recovery times. In this
context, we should mention also that some heartbeats
are lost when sent to the JT. This is due to network
conditions and not because of a failure of a TT. For
ATLAS+, we select the following algorithms: φ-FD and

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 10

SFD and integrate them within our proposed scheduler.
This is to evaluate the scheduler performance under
shorter detection times and lower mistake rates.

TABLE 3: Normalized Values of Wrong Failure Detection
Rate of TT

TT Recovery Time (2 min)
Failure

Rate
Basic
FD

φ
FD

Bertier
FD

Chen
FD SFD

10% -1.41 -1.17 -1.06 -1.18 -1.27
20% -0.46 -0.65 -0.62 -0.51 -0.47
30% 0.14 -0.16 -0.42 -0.28 -0.16
40% 0.48 0.71 0.88 0.65 0.56
50% 1.23 1.28 1.23 1.34 1.34

5.2.3 Scheduling Policies Modelling
Figures 5 and 6 present the cumulative performance of
the two algorithms Q-learning and SARSA in terms of
number of explored policies and policy success rate for
30 experiments such that the confidence level is 95%.
We observe that the SARSA algorithm shows better
results on the generation of policies. It can explore
more scheduling policies than the Q-learning algorithm.
For example, it can explore 2896 policies while the Q-
learning selects only 1345 in 20 minutes (see Figure 5).
This is expected since the SARSA algorithm uses a
random policy to select the next state and action, which
allows it to select more policies. However, we find that
Q-learning achieves a success rate of 0.67% while the
SARSA only achieves a success rate of 0.52% . This is
because the Q-learning algorithm has a function to select
the next possible action that maximizes the reward of the
next action for each policy (as explained in Appendix B).
Furthermore, we notice that after 30 minutes, the two
algorithms have almost the same performance. This is
because SARSA and Q-learning explored most of the
possible policies for the submitted tasks, and the sched-
uler is mostly using the previously generated scheduling
policies.

0 20 40 60 80
0

1,000

2,000

3,000

4,000

Time (minutes)

N
u
m
b
er

o
f
E
x
p
lo
re
d
P
ol
ic
ie
s

SARSA
Q-Learning

Fig. 5: Explored Policies

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time (minutes)

P
o
li
cy

S
u
cc
es
s
R
a
te

SARSA
Q-Learning

Fig. 6: Policy Success Rate

We analyse the relation between the policy attributes
and their outcomes using the VIF, and obtain a strong
correlation between the policy reward (0.45), selected TT
(1.34), Q-Value (0.83), load (1.41), available slots (2.07),
selected slots (2.42), requested slots (2.58), used slots
(2.25), frequency of policy positive (3.18)/ negative usage
(3.24)and the policy outcome. The other attributes have
a VIF greater than 5 and hence, we do not consider
them in the analysis. Next, we measure the importance
of the obtained attributes using the Random Forest
model. According to the “MeanDecreaseGini” score, the

most important attributes affecting the policy outcome
(success or failure) are ordered as follows: load, avail-
able/selected slots on selected TT, policy Q-Value, fre-
quency of policy positive/negative usage, policy reward,
locality/execution Type, and number of tasks in queue.

Given these results, we decide to train our scheduler
using these selected attributes and the SARSA algorithm,
at the beginning (to explore more scheduling policies)
and then to switch to the Q-learning algorithm (to
guarantee that the scheduler explores more policies and
selects the policy that gives a maximum reward). For
ATLAS+, we run the SARSA algorithm for a given
interval of time; 30 minutes (since the two algorithms
have the same trend starting at 30 minutes as shown in
Figure 5) and then switch to the Q-learning algorithm
(at lines 10 and 30 of Algorithm 4).

5.2.4 ATLAS+
In the sequel, we first discuss the performance of our
proposed scheduler ATLAS+. Next, we evaluate the
scalability of our proposed framework.

5.2.4.1 Performance Analysis: We compare the
performance of our proposed scheduler ATLAS+ when
integrated respectively with the FIFO, the Fair, and the
Capacity schedulers. All comparisons are done using
the exact same jobs, tasks and data. Specifically, we
run 2000 Hadoop jobs (10% single jobs, 30% sequential
chains, 30% parallel chains, and 30% mix chains), and
around 50,000 map/reduce tasks. The performance of
each Hadoop’s scheduler is measured using the total
execution times of jobs, the amount of used resources
(CPU, memory, HDFS Read/Write), the numbers of
finished and failed tasks and jobs. We calculate the
upper and lower bounds of these values, obtained for
30 runs, with a confidence level of 95%. We implement
ATLAS+, for these evaluations, using: (1) the Random
Forest algorithm, (2) our proposed MDP-model, (3) and
an algorithm to control the communication between
the TTs and the JT (the φ-FD and the SFD algorithms).
In summary, we consider the following configurations
of our ATLAS+ scheduler: (1) ATLAS+ with MDP, (2)
ATLAS+ with MDP and φ-FD, and (3) ATLAS+ with
MDP and SFD, such that ATLAS+ is built on top of
these three existing schedulers.

Figures 7, 9, and 11 present, respectively, the
number of finished jobs, map, and reduce tasks, with a
confidence level of 95%, for the three schedulers together
(as shown in the x-axis: FIFO, Fair, and Capacity).
Overall, we observe that ATLAS+MDP increases the
number of finished jobs, map, and reduce tasks when
compared to the FIFO, Fair, and Capacity schedulers.
These results are expected since the early identification
of failures allows ATLAS+ to quickly reschedule the
potential failed tasks accordingly. Also, we notice that
the numbers of finished jobs and tasks (map and
reduce) are higher for the ATLAS+MDP+SFD-based

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 11

algorithm in comparison to the ATLAS+MDP+φFD-
based algorithm, ATLAS+MDP-based algorithm, and
the basic algorithms for the FIFO, Fair, and Capacity
schedulers. Hence, despite the fact that it can make more
wrong TT failure detections, the SFD-based algorithm
can quickly detect the failures of the TTs, in comparison
to the φ-FD, and dynamically adjusts the interval to
detect TTs’ failures. The FIFO and Fair schedulers show
good performance when compared to the Capacity
scheduler because the Capacity scheduler forces the
killing of tasks that consume large amounts of memory.
Moreover, we observe that the number of finished jobs
is lower than the improvement observed on the number
of finished tasks. This can be explained by the fact that
a single task failure can cause the failure of the whole
job. Overall, the number of finished tasks is improved
by up to 54% when using ATLAS+ instead of the Fair
scheduler (see ATLAS+MDP+SFD-Fair in Figure 11),
and the number of finished jobs increased by 41%
when using ATLAS+ instead of the Fair scheduler (see
ATLAS+MDP+SFD-Fair in Figure 7). Overall, we find
that ATLAS+MDP+SFD-based algorithm (particularly,
when integrated with the Fair scheduler) is the “winner”
compared to the other ATLAS+ implementations.

Figures 8, 10, and 12 present, respectively, the number
of failed jobs, map, and reduce tasks with a confi-
dence level of 95%, for the three schedulers together
(as shown in the x-axis: FIFO, Fair, and Capacity).
The number of failed tasks is decreased by up to 59%
(see ATLAS+MDP+SFD-Capacity in Figure 12) and the
number of failed jobs is decreased by up to 43% (see
ATLAS+MDP+SFD-Capacity in Figure 8). Moreover, we
notice that ATLAS+ can reschedule the reduce tasks
more efficiently since most of their failures are caused
by the failure of their corresponding map task. ATLAS+
is able to achieve better scheduling decisions thanks
to the shared failure information in the cluster. This is
expected because ATLAS+ can quickly detect the failures
of the TTs and update the list of dead nodes, so that the
scheduler does not assign new tasks to them. Moreover,
ATLAS+ enables the successful processing of single and
chained jobs because of the dependency between the
jobs within the chained jobs. Specifically, we observe
that the number of successful single jobs is higher than
the successful chained jobs because of the dependency
between the jobs composing these chains. The obtained
results show that the number of failed jobs is reduced by
up to 43% and that the failure rates of tasks (map and
reduce) are also reduced by up to 59% for FIFO, Fair,
and Capacity schedulers, respectively. In addition, the
ATLAS+MDP+SFD-based algorithm (particularly, when
integrated with the Capacity scheduler) outperforms the
other implementations of the scheduler and achieves the
best performance.

The execution time of ATLAS+ is lower compared
to other existing schedulers. ATLAS+ can reduce the

FIFO Fair Capacity

800

1,000

1,200

1,400

1,600

N
u
m
b
er

o
f
F
in
is
h
ed

J
o
b
s

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 7: Finished Jobs
FIFO Fair Capacity

200

400

600

800

1,000

N
u
m
b
er

o
f
F
a
il
ed

J
o
b
s

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 8: Failed Jobs

FIFO Fair Capacity

1

1.5

2

2.5

3

3.5

4
·104

N
u
m
b
er

o
f
F
in
is
h
ed

M
a
p
T
a
sk
s

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 9: Finished Map
FIFO Fair Capacity

0.5

1

1.5

2

2.5

3

3.5

4
·104

N
u
m
b
er

o
f
F
a
il
ed

M
a
p
T
a
sk
s

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 10: Failed Map

FIFO Fair Capacity

1

1.5

2

2.5

3

3.5

4
·104

N
u
m
b
er

o
f
F
in
is
h
ed

R
ed

u
ce

T
a
sk
s

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 11: Finished Reduce
FIFO Fair Capacity

0.5

1

1.5

2

2.5

3

3.5

4
·104

N
u
m
b
er

o
f
F
a
il
ed

R
ed

u
ce

T
a
sk
s

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 12: Failed Reduce

number of failed attempts of map/reduce tasks and
consequently it can reduce their execution times. Fig-
ures 13 and 14 present the execution times of the jobs,
tasks (map and reduce), respectively. We observe that
the execution times of tasks are decreased on average
by 3 minutes (see ATLAS+MDP+SFD-Capacity in Fig-
ure 14). Consequently, the total execution time of jobs
is decreased on average by 10 minutes, representing
a 40% reduction on the total execution time of these
jobs (see ATLAS+MDP+SFD-Capacity in Figure 13). We
also observe that the execution times of long running
jobs are reduced from 30-40 minutes to less than 20
minutes, which represents approximately a 50% reduc-
tion. Furthermore, the reduction in the number of fail-
ures compensates largely the time spent on the training
phase of the predictive algorithm and on adjusting the
communication between the JT and TTs. In general,
our proposed scheduler ATLAS+ can reduce the overall
execution times of tasks and jobs in Hadoop.

By early identifying the failure of tasks and reschedul-
ing them, ATLAS+ is able to improve the resource
utilisation of the cluster. This is expected since the
amount of resources that would have been assigned
to failed tasks is reduced along with the number of
failed tasks. The results presented in Table 4 confirm this
anticipated outcome. Table 4 presents the results of the
Fair scheduler, which are similair to those for the FIFO
and Capacity schedulers. Overall, the jobs and tasks

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 12

executed using ATLAS+ policies consume less resources
than those executed using the FIFO, Fair, or Capacity
schedulers (in terms of CPU (22%), memory (20%), and
disk (29%)).

FIFO Fair Capacity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·106

E
x
ec
u
ti
o
n
T
im

e
o
f
J
o
b
s
(m

s)

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 13: Exec. Time Jobs
FIFO Fair Capacity

0

1

2

3

4

·105

E
x
ec
u
ti
o
n
T
im

e
o
f
T
a
sk
s
(m

s)

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 14: Exec. Time Tasks

TABLE 4: Resources Utilisation of Hadoop Schedulers

Job/
Task

Scheduler Fair

Basic ATLAS
MDP

ATLAS
MDP
φ-FD

ATLAS
MDP
SFD

Resource Avg. Avg. Avg. Avg.

Job

CPU (ms) 14251 12783 11370 11150
Memory (105 bytes) 9458 8766 8042 7647

HDFS Read (103 bytes) 10568 8615 8339 8257
HDFS Write (103 bytes) 9943 7453 7124 7066

Task

CPU (ms) 4730 4672 4513 4313
Memory (105 bytes) 3007 2955 2912 2496

HDFS Read (103 bytes) 1954 1834 1809 1783
HDFS Write (103 bytes) 1963 1893 1811 1776

Figure 15 and 16 present the number of failed jobs, and
tasks (map and reduce) of the four implementations of
ATLAS+ after an execution period of 3 days (120,000,000
jobs and 350,000,000 tasks). Here, we observe that the
ATLAS+MDP+SFD based algorithm outperforms the
other three implementations of ATLAS+, and it is able
to reduce the job failures rate by up to 56.33% for the
three schedulers. Furthermore, the obtained results show
that ATLAS+MDP+SFD based algorithm can reduce the
failures rate by up to 60.21% for the three schedulers.
In addition, it can reduce the execution time of the
running jobs and tasks (particularly the long running-
execution jobs) and improve the resources utilisation.
These findings can be explained by the fact that the
learning time has an impact on the performance of
ATLAS+. Indeed, the more data the scheduler collects,
the better the scheduling decisions would be, because it
allows the scheduler to learn from its previous decisions.
Furthermore, the MDP-based model learns new policies
and obtains more knowledge about when and where to
apply them.

FIFO Fair Capacity

0

0.2

0.4

0.6

0.8

1

1.2

·108

N
u
m
b
er

o
f
F
a
il
ed

J
o
b
s

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 15: Failed Job [3 Day]
FIFO Fair Capacity

0

0.5

1

1.5

2

2.5

3

3.5
·108

N
u
m
b
er

o
f
F
a
il
ed

T
a
sk
s

Basic Scheduler ATLAS+MDP

ATLAS+MDP+φFD ATLAS+MDP+SFD

Fig. 16: Failed Task [3 Day]

In addition, ATLAS+ learns new strategies to allocate
the resources among the scheduled tasks in order to
improve their utilisation and hence, reduce the total
execution time of the jobs and tasks. However, we notice
that ATLAS+ requires time to access the scheduling rules
database and select the appropriate decisions to apply.
This is because of the size of the database, the more it
generates scheduling rules the longer would be their
selection process. We solve this issue by sorting the
scheduling decisions by the frequency of usage and the
scheduling outcome (finished or failed). We find that this
approach can reduce the selection time but, it penalizes
some policies since they are not on top of scheduling
policies database. On the other hand, we affirm that
ATLAS+ is able to identify and catch more failures of
tasks and TTs within Hadoop based on the shared failure
information, in a comparison with ATLAS [8]. This is
because it integrates new strategies to better schedule
tasks when there is network congestion, overloaded
TTs, straggling tasks, etc. Table 5 presents the benefits
of each component in our proposed framework and a
comparison between ATLAS and ATLAS+. Overall, we
find that ATLAS is able to early identify the failures of
tasks within Hadoop by up to 26%. Whereas, ATLAS+
was able catch more failures and reduce the failures rate
by up to 33%.

TABLE 5: Comparison ATLAS vs. ATLAS+ (%)
Failure

Rate
Execution

Time
CPU

Usage
Memory

Usage

ATLAS Task Failure
Prediction 26 17 16 14

ATLAS+
Scheduling Policies

Modelling 19 14 9 8

TaskTracker Failure
Detection 14 8 7 5

5.2.4.2 Scalability Analysis: To evaluate the scal-
ability of our proposed framework, we assess the per-
formance of ATLAS+ when executing a large workload
on a larger cluster. To do so, we performed new exper-
iments on a Hadoop cluster composed of 1,000 nodes
using different workloads. More precisely, we performed
experiments to execute a different number of jobs: 30,000,
60,000, and 90,000 jobs composed of 750,000, 900,000, and
2,250,000 tasks, respectively. In addition, we used dif-
ferent sizes of tasks (identified as: small/medium/large
tasks). We varied the failures rates in our experiments
from 5% to 40% while injecting different types of failures.
We repeated the experiments 30 times and measured the
median values.

We first measured the overhead generated by ATLAS+
by calculating the Worst Case Execution Time (WCET)
of each of our proposed algorithms given the running
workload. The obtained results showed that when the
size of the Hadoop cluster and a number of scheduled
jobs/tasks increase, the overhead associated with AT-
LAS+ increases as presented in Table 6. For Algorithms
1 and 3, the WCET can reach up to 117 and 183 seconds,
respectively. While, it can reach up to 258 seconds for

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 13

TABLE 6: Worst-Case Execution Time (Seconds) of Algorithms 1, 2 and 3
Number of Jobs 30,000 Jobs

(750,000 Tasks)
60,000 Jobs

(900,000 Tasks)
90,000 Jobs

(2,250,000 Tasks)
Type of Task Small Medium Large Small Medium Large Small Medium Large
Algorithm 1 27 63 98 29 74 103 35 96 117
Algorithm 2 211 234 258
Algorithm 3 45 105 143 53 127 159 71 148 183

TABLE 7: Reduction Rates (%) of Algorithms 1, 2 and 3
Number
of Jobs

30,000 Jobs
(750,000 Tasks)

60,000 Jobs
(900,000 Tasks)

90,000 Jobs
(2,250,000 Tasks)

Reduction
Rate (%)

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Algorithm 1 32 19 18 19 36 21 19 16 35 23 20 20
Algorithm 2 11 15 10 13 17 17 14 10 11 17 15 14
Algorithm 3 24 21 19 12 21 19 18 13 25 19 18 14

Algorithm 2. This result was expected due to the higher
number of running jobs/tasks and nodes. We can explain
this result by the fact that ATLAS+ requires more time to
collect more data about the running tasks, the scheduler
environment, received heartbeats from 1,000 nodes, etc.,
to generate its scheduling strategies.

Second, we evaluate the performance of ATLAS+, in
the newly created cluster, in terms of failures rates,
execution time, and resources usage. Although ATLAS+
is characterized by an added overhead, we found out
that it could improve the performance of the existing
Hadoop schedulers. Concretely, we found out that the
generated overhead due to the training time of the
prediction model, the scheduling policy calculation time
and the time spent to adjust the sending of heartbeats
messages, is largely compensated by the time saved on
the failed tasks that would have been executed other-
wise. To better explain these findings, Table 7 presents
the obtained results of the three proposed algorithms
in ATLAS+ in terms of reduction rates of the number
of tasks’ failures, execution time, CPU and memory
usage for the different workloads (30,000, 60,000, and
90,000 jobs). Here, we discuss only the results of the Fair
scheduler, because we observed that the three schedulers
performance follow the same trend. At this level, we
can report that ATLAS+ could identify up to 74% tasks’
failures and reschedule these tasks accordingly. It was
also able to reduce the execution times of tasks by up
to 59%. Furthermore, it could improve the resources
utilization by reducing the amount of used CPU and
memory by up to 53% and 48%, respectively. We should
also mention that Algorithm 2 was able to early catch
up to 58% of the failures of TaskTrackers in the new
created Hadoop cluster. Upon these failures’ detections,
Algorithm 2 could help ATLAS+ better assign tasks to
alive nodes and avoid poor scheduling decisions leading
to tasks’ failures.

In light of these results, we can confirm that the
sizes of the cluster and workloads have a direct impact
on ATLAS+ performance. Indeed, the more data the
scheduler collects from its environment (nodes, tasks,
failures, etc), the better scheduling decisions would be.
In other words, this would allow the scheduler to learn

more about the failures and obtain more knowledge
about how to avoid them.

6 THREATS TO VALIDITY
6.1 Construct Validity

Construct validity threats is about analysing the relation
between theory and observation. Our proposed algo-
rithm for ATLAS+ considers that tasks characteristics are
the main factors that impact the scheduling outcome of
a task, this may not be the case. Particularly, the resource
allocation strategy can affect the scheduling decision.
But, while building ATLAS+, we find a low correla-
tion between the amount of allocated resource and the
scheduling outcome of a task. So, the resource allocation
is more likely to affect resource usages than scheduling
outcomes. Nevertheless, ATLAS+ may identify task fail-
ures that are due to shortage of resources using data
from its environment by collecting information about
the available resources on the TTs to reschedule tasks
on under-loaded nodes. This will allow the scheduler to
make scheduling decisions based on usage characteris-
tics. Hence, it can offer better resource utilization and
provide improvement in job running time for ATLAS+.

6.2 Internal Validity

Internal validity threats concern the techniques and tools
used to build and evaluate our proposed solution. For
instance, we adapt and apply four existing algorithms
that are used to adjust the sending of heartbeats between
the master and the workers of network applications in
the cloud. The drawback of doing this is that if the
communication interval is small (e.g., 2 minutes), the
TTs can send many heartbeats to the JT resulting in too
frequent messages exchanges and an overhead on the
JT. Furthermore, ATLAS+ can consider alive nodes as
dead because of receiving their messages after the expiry
interval (due to the small time interval). In addition, we
use data from Google clusters [7] to specify the amount
of injected failures (up to 40%). Also, we use Amazon
EMR to create the Hadoop nodes, which is a real world
environment, where other failures can occur. However,
it is possible that such Hadoop clusters do not face this
failure rate. Therefore, we perform more experiments to
demonstrate the benefits of our framework under low

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 14

failure rates of 1-2%. The obtained results show that
ATLAS+ can reduce the number of failed jobs by up
to 9% and the number of failed tasks by up to 12%.
These results confirm our claim that the more data the
scheduler collects about failures from its environment,
the better the scheduling decisions would be, because it
allows the scheduler to learn from its previous decisions.
On the other hand, the injected failure cases may not
represent real failure scenarios, which can affect the
performance of the proposed scheduler. Therefore, it is
very important to validate our case study with a more
diverse set of Hadoop clusters and different failure rates.

6.3 Conclusion Validity

Conclusion validity threats is about analysing the rela-
tion between the treatment and the outcome. The main
goal of ATLAS+ is to provide better scheduling decisions
with a minimal impact on the execution time of the
received tasks. Although we integrate new procedures
to current Hadoop schedulers, we have verified that
they do not introduce a large overhead. In addition to
the performed experiments to evaluate the scalability of
ATLAS+ (Section 5.2.4.2), we measured the Worst Case
Execution Time (WCET) of our proposed algorithms for
different other scenarios (small/medium/large tasks and
cluster). Specifically, we performed experiments to exe-
cute 10,000 tasks using ATLAS+ to measure the added
overhead for each single task separately. We repeated the
experiments 100 times and measured the median values.
In the following, we present the performance results of
the Fair scheduler that achieves similar results to the
ones of the FIFO and Capacity scheduler.

For Algorithm 2, we measure the WCET for three
types of clusters: 10-nodes, 50-nodes, and 100-nodes
Hadoop cluster. The obtained WCET values of Algo-
rithm 2 are 54, 132 and 216 seconds for 10-nodes, 50-
nodes, and 100-nodes cluster, respectively. At this level,
we should mention that all steps of Algorithm 2 are off
the critical path of the scheduler. This is because they are
used to collect data about the received heartbeats and
to adjust the expiry interval timeout accordingly. Hence,
the integration of Algorithm 2 within Hadoop does not
impact the execution time of the scheduled tasks; it only
impacts the communication time between the JT and TTs.

For Algorithms 1 and 3, the obtained results when
executing three different types of tasks including “small,
medium, and large” tasks can be summarized in Table 8.
For Algorithm 1, the steps from line 2 to 11 are required
to collect the log files and retrain/select the models, and
hence do not generate an overhead to the scheduler. The
only steps that are on the critical path of the scheduler
are from line 13 to 17 in Algorithm 1. We measured the
complexity of these steps in terms of time, and found
that it can reach 73 seconds. For Algorithm 3, all the steps
are on the critical path of the scheduler. We measured the
complexity of this algorithm in terms of time, and found
that it can reach 158 seconds. Overall, we can claim that

by reducing the number of failed tasks and the overall
resources utilisation ATLAS+ was able to compensate the
added overhead of its different components.

TABLE 8: Worst-Case Execution Time of Algorithms 1
and 3

Worst-Case Execution Time (Seconds)
Small Tasks Medium Tasks Large Tasks

Algorithm 1 20 58 73
Algorithm 3 57 104 158

6.4 Reliability Validity
Reliability validity threats are related to the replication of
our study on other platforms. The proposed framework
can be integrated with other cloud platforms like Mi-
crosoft Azure, or Google platform. To do so, it requires
to collect logs from these platforms, build the statis-
tical predictive models and validate them, and finally
adjust the proposed MDP-model and its corresponding
reinforcement learning algorithms. Then, the proposed
framework can be integrated and built on top of any
cloud scheduler to reduce task failure rates and provide
better resources utilisation and execution time.

6.5 External Validity
External validity threats concern the generalization of
our results. Our case study is performed on a 100-
nodes Hadoop cluster running on Amazon EMR. Further
studies can be done to validate the results of ATLAS+ on
a larger scale. In addition, it is necessary to use different
failure cases and rates, to validate the failure detection
mechanism on ATLAS+. To generalize these findings, we
plan to extend and evaluate our proposed framework
on Spark [31], a novel in-memory computing framework
for Hadoop. Specifically, we will extend Spark using the
three components of the proposed framework described
in Section 3 and evaluate the performance of the used
algorithms on Hadoop to integrate them within Spark.

7 RELATED WORK

Many approaches have been proposed to improve
scheduling decisions in Hadoop. We discuss the most
relevant to our work in the following:

7.1 Fault-Tolerance Mechanisms in Hadoop
Hadoop tracks the processing of the received tasks using
the JT which will re-schedule map and reduce tasks on
other nodes in case of a failure. Despite the fact that
this solution is simple and guarantees the successful
processing of failed tasks, it is not always effective and
comes with additional costs (e.g., resources usage, extra
delays in execution time). For instance, the JT has to
reschedule all tasks belonging to the failed jobs including
the finished tasks despite their successful completion. To
alleviate this issue, some studies have proposed fault-
tolerant mechanisms for Hadoop. Dinu et al. [5], who
analyse the performance of Hadoop under failure, claim
that many failures occur in Hadoop due to the lack
of sharing failure information (e.g., straggling tasks, TT

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 15

failure, etc). Therefore, they design RCMP [32] , as
a first order failure resilience strategy, that allows for
efficient job recomputation upon failure by recomputing
the necessary tasks rather than data replication. But,
RCMP is only valid for I/O intensive jobs, which makes
it not valid for all types of Mapreduce workload (e.g.,
CPU intensive jobs). Hao et al. [33] implement an adap-
tive module to track the heartbeat-based communication
between the TTs and the JT. This module can adjust
the expiry interval for the JT to detect whether a TT
is considered as dead or not, according to various job
sizes in a Hadoop cluster. Moreover, they develop a
reputation-based detector to decide whether a worker is
failed or not; when its reputation is lower than a spec-
ified threshold. This approach can help detect failures
of TT early, and reduce the total execution time of jobs.
RAFT [34], a Recovery Algorithm for Fast-Tracking in
MapReduce, is proposed by Quiane-Ruiz et al. to track
tasks at different checkpoints. The checkpoints are re-
sponsible for storing the execution status of tasks. When
a task encounters a failure, the JT will re-schedule the
task from the last available checkpoint. RAFT does not
re-execute the finished tasks belonging to the failed jobs
and only failed tasks will be re-executed; which would
reduce some additional costs (e.g., reduce the total exe-
cution time by 23%). Yildiz et al. [35] propose Chronos,
a failure-aware scheduling strategy that enables an early
action to recover the failed tasks in Hadoop. Chronos
is characterized by a pre-emption technique to carefully
allocate resources to the recovered tasks. It could reduce
the job completion times by up to 55%. However, it
is still relying on wait and kill pre-emptive strategies,
which could lead to resource wastage and degrade the
performance of Hadoop clusters. Our work is different in
early detecting the task failure before its occurrence and
an early recovery action, which allow to avoid resource
wastage compared to Chronos.

7.2 Adaptive Scheduling in Hadoop

There are also related work on adaptive scheduling in
Hadoop. LATE [36] is proposed to prioritize tasks wait-
ing in the queue based on collected information about
running tasks and their progress. LATE can improve the
scheduling decisions by considering the progress rate of
the running tasks and the availability of resources in the
cluster; which could reduce the total execution time by
a factor of 2 in Hadoop clusters. Hadoop clusters are a
heterogeneous environment, where there are machines
with different software and hardware configurations.
Quan et al. [37] show that these configurations can
help improve scheduling decisions in Hadoop. To do
that, they propose the SAMR (Self-Adaptive MapReduce
scheduling) algorithm, which estimates the progress of
tasks based on collected hardware system information.
While SAMR could integrate different information about
the hardware system, it does not considered other impor-
tant factors about job characteristics (e.g., the task size,
data locality, etc). To overcome these limitations, ESAMR

(Enhanced Self-Adaptive MapReduce scheduling) [38] is
proposed to take into account new information about
straggling tasks, job size, and remaining time. SARS
[39] (Self-Adaptive Reduce Start time) was proposed as
a scheduling algorithm to decide when to start a reduce
task. SARS uses information about the completion time
of maps and reduce tasks and the job total completion
time to evaluate the impact of different times to start
the reduce tasks on the total execution time. SARS could
reduce response time on average by 11%.

8 CONCLUSION

In this paper, we propose a dynamic and failure-aware
scheduling framework for Hadoop that can adjust its
scheduling strategies based on collected information
from the Hadoop cluster. We demonstrate the possibility
of predicting potential task failures early, using histor-
ical information about events occurring in the cloud.
Second, we propose an MDP-based model to guide the
scheduler, to make better scheduling decisions. Finally,
we propose to use adaptive algorithms to adjust the fre-
quency of communication between nodes in a Hadoop
cluster. To show the benefits of our solution, we integrate
our framework within Hadoop and build ATLAS+ (An
AdapTive faiLure-Aware Scheduler), a new scheduler for
Hadoop. To the best of our knowledge, ATLAS+ is the
first adaptive scheduler that can early identify failure of
tasks and TTs using collected information from cloud
environment, and adjust its scheduling decisions on the
fly. We implement ATLAS+ in Hadoop and deploy it on a
100-node Hadoop cluster in Amazon Elastic MapReduce
(EMR). We compare the performance of ATLAS+ with
those of three main Hadoop schedulers. The obtained re-
sults show that ATLAS+ outperforms the three common
schedulers of Hadoop. It can reduce the number of failed
jobs by up to 43% and the number of failed tasks by up to
59%. Also, ATLAS+ can reduce the total execution time
of jobs and tasks and reduce CPU and memory usage.
As a future work, we plan to extend ATLAS+ using
scheduling procedures to optimize the resources alloca-
tion across tasks. In addition, we can use unsupervised
algorithms to train the prediction algorithm in ATLAS+,
and evaluate their impacts on Hadoop scheduler.

REFERENCES

[1] K. Lee, Y. Lee, H. Choi, Y. Chung, and B. Moon, “Parallel Data
Processing with MapReduce: A Survey,” SIGMOD Record, vol. 40,
no. 4, pp. 11–20, 2012.

[2] S. Kurazumi, T. Tsumura, S. Saito, and H. Matsuo, “Dynamic
Processing Slots Scheduling for I/O Intensive Jobs of Hadoop
MapReduce,” in International Conference on Networking and Com-
puting, 2012, pp. 288–292.

[3] T. Jian, M. Shicong, M. Xiaoqiao, and Z. Li, “Improving Reduc-
eTask Data Locality for Sequential MapReduce Jobs,” in IEEE
INFOCOM, 2013, pp. 1627–1635.

[4] L. Jinwei and S. Haiying, “A Low-Cost Multi-Failure Resilient
Replication Scheme for High Data Availability in Cloud Storage,”
in Proceding of IEEE International Conference on High Performance
Computing, Data, and Analytics, 2016, pp. 1–10.

IEEE TRANSACTIONS ON CLOUD COMPUTING,, VOL. XX, NO. XX, 16

[5] F. Dinu and N. Eugene, “Understanding the Effects and Im-
plications of Compute Node Related Failures in Hadoop,” in
Symposium on High-Performance Parallel and Distributed Computing,
2012, pp. 187–198.

[6] Y.-P. Kim, C.-H. Hong, and C. Yoo, “Performance Impact of Job-
Tracker Failure in Hadoop,” International Journal of Communication
Systems, vol. 28, no. 7, pp. 1265–1281, 2015.

[7] M. Soualhia, F. Khomh, and S. Tahar, “Predicting Scheduling
Failures in the Cloud: A Case Study with Google Clusters and
Hadoop on Amazon EMR,” in IEEE High Performance Computing
and Communications, 2015, pp. 58–65.

[8] ——, “ATLAS: An Adaptive Failure-Aware Scheduler for
Hadoop,” in International Performance Computing and Communica-
tions Conference, 2015, pp. 1–8.

[9] B. Jeannet, P. D’Argenio, and K. Larsen, “Rapture: A Tool for
Verifying Markov Decision Processes,” in International Conference
on Concurrency Theory, 2002, pp. 84–98.

[10] G. Oddi, M. Panfili, A. Pietrabissa, L. Zuccaro, and V. Suraci, “A
Resource Allocation Algorithm of Multi-cloud Resources Based
on Markov Decision Process,” in IEEE International Conference on
Cloud Computing Technology and Science, 2013, pp. 130–135.

[11] V. D. Valerio and F. L. Presti, “Optimal Virtual Machines Allo-
cation in Mobile Femto-Floud Fomputing: An MDP Fpproach,”
in IEEE Wireless Communications and Networking Conference Work-
shops, 2014, pp. 7–11.

[12] D. L. et al., “A Spearman Correlation Coefficient Ranking for
Matching-score Fusion on Speaker Recognition,” in IEEE Region
10 Conference TENCON, 2010, pp. 736–741.

[13] The R Project for Statistical Computing. [Online]. Available:
http://www.r-project.org/,2017

[14] W. Chen, S. Toueg, and M. K. Aguilera, “On The Quality of Ser-
vice of Filure Detectors,” IEEE Transactions on Computers, vol. 51,
no. 5, pp. 561–580, 2002.

[15] M. Bertier, O. Marin, and P. Sens, “Implementation and Perfor-
mance Evaluation of an Adaptable Failure Detector,” in IEEE
Conference on Dependable Systems and Networks, 2002, pp. 354–363.

[16] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The
phi; Accrual Failure Detector,” in IEEE International Symposium
on Reliable Distributed Systems, 2004, pp. 66–78.

[17] X. Naixue, V. Athanasios, W. Jie, Y. Richard, R. Andy, Z. Yuezhi,
S. Wen-Zhan, and P. Yi, “A Self-tuning Failure Detection Scheme
for Cloud Computing Service,” in IEEE International Parallel and
Distributed Processing Symposium, 2012, pp. 668–679.

[18] N. Xiong, A. V. Vasilakos, J. Wu, Y. R. Yang, A. Rindos, Y. Zhou,
W. Z. Song, and Y. Pan, “A Self-tuning Failure Detection Scheme
for Cloud Computing Service,” in IEEE International Parallel Dis-
tributed Processing Symposium, 2012, pp. 668–679.

[19] N. Mastronarde and M. van der Schaar, “Online Reinforcement
Learning for Dynamic Multimedia Systems,” IEEE Transactions on
Image Processing, vol. 19, no. 2, pp. 290–305, 2010.

[20] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang,
“A Hierarchical Framework of Cloud Resource Allocation and
Power Management Using Deep Reinforcement Learning,” in
IEEE International Conference on Distributed Computing Systems,
2017, pp. 372–382.

[21] M. Duggan, K. Flesk, J. Duggan, E. Howley, and E. Barrett, “A
Reinforcement Learning Approach for Dynamic Selection of Vir-
tual Machines in Cloud Data Centres,” in International Conference
on Innovative Computing Technology, 2016, pp. 92–97.

[22] Z. Peng, D. Cui, Y. Ma, J. Xiong, B. Xu, and W. Lin, “A Re-
inforcement Learning-Based Mixed Job Scheduler Scheme for
Cloud Computing under SLA Constraint,” in IEEE International
Conference on Cyber Security and Cloud Computing, 2016, pp. 142–
147.

[23] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-Efficient
Virtual Machines Consolidation in Cloud Data Centers Using
Reinforcement Learning,” in Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, 2014, pp. 500–
507.

[24] F. Alexander and H. Matthias, “Improving Scheduling Perfor-
mance Using a Q-learning-based Leasing Policy for Clouds,” in
International Conference on Parallel Processing, 2012, pp. 337–349.

[25] R. Jia, B. Xiangping, X. Cheng-Zhong, W. Leyi, and Y. George,
“VCONF: A Reinforcement Learning Approach to Virtual Ma-
chines Auto-configuration,” in International Conference on Auto-
nomic Computing, 2009, pp. 137–146.

[26] M. van der Ree and M. Wiering, “Reinforcement learning in

the game of Othello: Learning against a fixed opponent and
learning from self-play,” in IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, 2013, pp. 108–115.

[27] Amazon EC2 Instances. [Online]. Available: http://
aws.amazon.com/ec2/instance-types/,2017

[28] Apache Hadoop Documentation. [Online]. Available: http:
//hadoop.apache.org/,2017

[29] M. K. et al., “Hadoop Performance Modeling for Job Estimation
and Resource Provisioning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 2, pp. 441–454, 2016.

[30] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. Campbell, and
W. H. Sanders, “Failure Scenario As a Service (FSaaS) for Hadoop
Clusters,” in Workshop on Secure and Dependable Middleware for
Cloud Monitoring and Management, 2012, pp. 5:1–5:6.

[31] W. Huang, L. Meng, D. Zhang, and W. Zhang, “In-Memory
Parallel Processing of Massive Remotely Sensed Data Using an
Apache Spark on Hadoop YARN Model,” Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, pp. 1–17, 2016.

[32] F. Dinu and T. S. E. Ng, “RCMP: Enabling Efficient Recomputation
Based Failure Resilience for Big Data Analytics,” in International
Parallel and Distributed Processing Symposium, 2014, pp. 962–971.

[33] H. Zhu and H. Chen, “Adaptive Failure Detection via Heartbeat
under Hadoop,” in IEEE Asia-Pacific Services Computing Conference,
2011, pp. 231–238.

[34] J.-A. Quiane-Ruiz, C. Pinkel, J. Schad, and J. Dittrich, “RAFTing
MapReduce: Fast recovery on the RAFT,” in International Confer-
ence on Data Engineering, 2011, pp. 589–600.

[35] O. Yildiz, S. Ibrahim, and G. Antoniu, “Enabling Fast Failure
Recovery in Sshared Hadoop Clusters: Towards Failure-aware
Scheduling,” Future Generation Computer Systems, vol. 74, pp. 208
– 219, 2017.

[36] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce Performance in Heterogeneous Environ-
ments,” in International Conference on Operating Systems Design and
Implementation, 2008, pp. 29–42.

[37] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, “SAMR:
A Self-adaptive MapReduce Scheduling Algorithm in Heteroge-
neous Environment,” in International Conference on Computer and
Information Technology, 2010, pp. 2736–2743.

[38] X. Sun, C. He, and Y. Lu, “ESAMR: An Enhanced Self-Adaptive
MapReduce Scheduling Algorithm,” in International Conference on
Parallel and Distributed Systems, 2012, pp. 148–155.

[39] Z. Tang, L. Jiang, J. Zhou, K. Li, and K. Li, “A Self-Adaptive
Scheduling Algorithm for Reduce Start Time,” Future Generation
Computer Systems, vol. 4344, no. 10, pp. 51–60, 2015.

Mbarka Soualhia holds an M.Sc degree in
Engineering concentration Information Tech-
nology from École de Technologie Suprieure
(ÉTS),Canada. She is currently a Ph.D candi-
date at Concordia University, and she is working
as research assistant under the supervision of
Prof. Sofiène Tahar and Prof. Foutse Khomh.
Her research focuses on designing adaptive
software components and software architecture
in distributed systems and their verification.
Foutse Khomh is an associate professor at
the École Polytechnique de Montral, where he
heads the SWAT Lab. on software analytics and
cloud engineering research. He received a Ph.D
in Software Engineering from the University of
Montreal in 2010. His research interests include
software maintenance and evolution, cloud en-
gineering, service-centric software engineering,
empirical software engineering, and software
analytic.
Sofiène Tahar received the Ph.D. degree with
distinction in computer science from the Univer-
sity of Karlsruhe, Germany, in 1994. Currently,
he is a professor and the research chair in
formal verification of system-on-chip at the De-
partment of Electrical and Computer Engineer-
ing, Concordia University. His research interests
are in the areas of formal hardware verification,
system-on-chip verification, analog and mixed
signal circuits verification.

