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Abstract—JavaScript is a powerful scripting programming
language that has gained a lot of attention this past decade.
Initially used exclusively for client-side web development, it
has evolved to become one of the most popular programming
languages, with developers now using it for both client-side
and server-side application development. Similar to applications
written in other programming languages, JavaScript applications
contain code smells, which are poor design choices that can
negatively impact the quality of an application. In this paper, we
investigate code smells in JavaScript server-side applications with
the aim to understand how they impact the fault-proneness of
applications. We detect 12 types of code smells in 537 releases of
five popular JavaScript applications (i.e., express, grunt, bower,
less.js, and request) and perform survival analysis, comparing
the time until a fault occurrence, in files containing code smells
and files without code smells. Results show that (1) on average,
files without code smells have hazard rates 65% lower than
files with code smells. (2) Among the studied smells, “Variable
Re-assign” and “Assignment In Conditional statements” code
smells have the highest hazard rates. Additionally, we conduct
a survey with 1,484 JavaScript developers, to understand the
perception of developers towards our studied code smells. We
found that developers consider “Nested Callbacks”, “Variable
Re-assign” and “Long Parameter List” code smells to be serious
design problems that hinder the maintainability and reliability
of applications. This assessment is in line with the findings of
our quantitative analysis. Overall, code smells affect negatively
the quality of JavaScript applications and developers should
consider tracking and removing them early on before the release
of applications to the public.

I. INTRODUCTION

“Any application that can be written in JavaScript,
will eventually be written in JavaScript.”
— Jeff Atwood —

JavaScript is a highly dynamic scripting programming
language that is becoming one of the most important pro-
gramming languages in the world. Recent surveys by Stack
Overflow [1] show JavaScript topping the rankings of popular
programming languages for four years in a row. Many develop-
ers and companies are adopting JavaScript related technologies
in production and it is the language with the largest number
of active repositories and pushes on Github [2]. JavaScript
is dynamic, weakly-typed, and has first-class functions. It is
a class-free, object-oriented programming language that uses
prototypal inheritance instead of classical inheritance. Objects
in JavaScript inherits properties from other objects directly
and all these inherited properties can be changed at run-
time [3]. This trait can make JavaScript programs hard to
maintain. Moreover, JavaScript being an interpreted language,

developers are not equipped with a compiler that can help them
spot erroneous and unoptimized code. As a consequence of
all these characteristics, JavaScript applications often contain
code smells [4], i.e., poor solutions to recurring design or
implementation problems. However, despite the popularity of
JavaScript, very few studies have investigated code smells in
JavaScript applications, and to the best of our knowledge,
there is no work that examines the impact of code smells
on the fault-proneness of JavaScript applications. This paper
aims to fill this gap in the literature. Specifically, we detect 12
types of code smells in 537 releases of five popular JavaScript
applications (i.e., express, grunt, bower, less.js, and request)
and perform survival analysis, comparing the time until a fault
occurrence, in files containing code smells and files without
code smells. We address the following two research questions:

(RQ1) Is the risk of fault higher in files with code smells
in comparison with those without code smell? Previous
works [5], [6] have found that code smells increase the risk of
faults in Java classes. In this research question, we compare
the time until a fault occurrence in JavaScript files that contain
code smells and files without code smells, computing their
respective hazard rates. Results show that on average, across
our five studied applications, JavaScript files without code
smells have hazard rates 65% lower than JavaScript files with
code smells.

(RQ2) Are JavaScript files with code smells equally
fault-prone? A major concern of developers interested in
improving the design of their application is the prioritization
of code and design issues that should be fixed, giving their
limited resources. This research question examines faults in
files affected by different types of code smells, with the aim to
identify code smells that developers should refactor in priority.
Our findings show that “Variable Re-assign” and “Assignment
in Conditional Statements” code smells are consistently asso-
ciated with high hazard rates across the five studied systems.
Developers should consider removing these code smells, in
priority since they make the code more prone to faults. We
also conducted a survey with 1,484 JavaScript developers, to
understand the perception of developers towards the 12 studied
code smells. Results show that developers consider “Nested
Callbacks”, “Variable Re-assign” and “Long Parameter List”
code smells to be the most hazardous code smells. Developers
reported that these code smells negatively affect the maintain-
ability and reliability of JavaScript applications.

The remainder of this paper is organized as follows.



Section II describes the type of code smells we used in our
study. Section III describes the design of our case study.
Section IV presents and discusses the results of our case study.
SectionV presents and discusses the results of our qualitative
study. Section VI discusses the limitation of our study. Section
VII discusses related works on code smells and JavaScript
systems, while Section VIII concludes the paper.

II. BACKGROUND

To study the impact of code smells on the fault-proneness
of server-side JavaScript applications, we first need to identify
a list of JavaScript bad practices as our set of code smells.
Hence, we select the following 12 popular code smells from
different JavaScript Style Guides [3], [7]–[11].

1) Lengthy Lines: Too many characters in a single line
of code would decrease readability and maintainability of
the code. Lengthy lines of code also make the code review
process harder. There are different limits indicated in different
JavaScript style guides. NPM’s coding style [7] and node style
guide [8] suggest that 80 characters per line should be the
limit. Airbnb’s JavaScript style guide [9] which is a popular
one with around 42,000 Github stars, suggests a number of
characters per line of code less than 100. Wordpress’s style
guide [12] encourages jQuery’s 100-character limit [10]. All
the style guides include white spaces and indentations in the
limit. As mentioned in jQuery’s style guide, there are some
cases that should be considered exceptions to this limit: (i)
comments containing long URLs and (ii) regular expressions
[10].

2) Chained Methods: Method chaining is a common prac-
tice in object-oriented programming languages, that consists
in using an object returned from one method invocation to
make another method invocation. This process can be repeated
indefinitely, resulting in a “chain” of method calls. The nature
of JavaScript and its dynamic behavior have made creating
chaining code structures very easy. jQuery1 is one of the many
libraries utilizing this pattern to avoid overuse of temporary
variables and repetition [13]. Chained methods allow develop-
ers to write less code. However, overusing chained methods
makes the control flow complex and hard to understand [3].
Below is an example of chained methods from a jQuery
snippet:

1 $(’a’).addClass(’reg -link’)
2 .find(’span’)
3 .addClass(’inner ’)
4 .end()
5 .end()
6 .find(’div’)
7 .mouseenter(mouseEnterHandler)
8 .mouseleave(mouseLeaveHandler)
9 .end()

10 .explode ();

3) Long Parameter List: An ideal function should have no
parameters [14]. Long lists of parameters make functions hard
to understand [15]. It is also a sign that the function is doing
too much. The alternatives are to break functions into simpler
and smaller functions that do more specific tasks or to create
better data structures to encapsulate the data. To handle a

1jquery.com

large amount of configurations passing to functions, JavaScript
developers tend to use a single argument containing all the
configurations. This is a better practice since it eliminates
the order of parameters when the function calls, and it is
easier to add more parameters later on while maintaining the
backward compatibility. Below are examples of this code smell
and suggested refactorings.

1 // considered bad
2 function distance(x1 , y1 , x2 , y2) {
3 return Math.sqrt(Math.pow(x1 -x2 , 2) +
4 Math.pow(y1 -y2 , 2));
5 }
6
7 // alternative
8 function distance(p1 , p2) {
9 return Math.sqrt(Math.pow(p1.x-p2.x, 2) +

10 Math.pow(p1.y-p2.y, 2));
11 }

1 // considered bad
2 function send(from , to , subject , body) {
3 // ...
4 }
5
6 // alternative
7 function send(options) {
8 // using options.from , options.to
9 // options.subject , options.body

10 }

4) Nested Callbacks: JavaScript I/O operations are asyn-
chronous and non-blocking [16]. Developers use callback
functions to execute tasks that depend on the results of other
asynchronous tasks. When multiple asynchronous tasks are
invoked in sequence (i.e., the result of a previous one is needed
to execute the next one), nested callbacks are introduced in
the code [17], [18]. This structures could lead to complex
pieces of code which is called “callback hell” [3], [17], [19].
There are several alternatives to nesting callback functions like
using Promises [17] or the newest ES7 features [20]. Below
is an example of Nested Callbacks smell and an alternative
implementation that uses Promises.

1 // considered bad
2 db.getUser ({id: 1}, function (user) {
3 twitter.getTweets ({ handle: user.twitter}, function (tweets) {
4 sendEmail(tweets , function (done) {
5 console.log(’Done’)
6 })
7 })
8 })
9

10 // Alternative implementation using Promises
11 db.getUser ({id: 1})
12 .then(function (user) {
13 return twitter.getTweets ({ handle: user.twitter });
14 })
15 .then(function (tweets) {
16 return sendEmail(tweets);
17 })
18 .then(function () {
19 console.log(’Done’)
20 })

5) Variable Re-assign: JavaScript is dynamic and weakly-
typed language. Hence, it allows changing the types of the
variables at run-time, based on the assigned values. This allows
developers to reuse variables in the same scope for different
purposes. This mechanism can decrease the quality and the
readability of the code. It is recommended that developers
use unique names, based on the purpose of the variables [3].
Below is an example of Variable Re-assign code smell and a
suggested refactoring.

1 // considered bad
2 function parse(url) {
3 url = url.split(’/’); // bad practice
4 var page_id = url.pop();
5 var category = url.pop();
6 url = url [0]; // bad practice
7 return {
8 id: page_id ,



9 category: category ,
10 url: url
11 };
12 }
13 parse(’example.com/article /12’);
14
15 // using unique names
16 function parse(url) {
17 const url_parts = url.split(’/’);
18 const page_id = url_parts.pop();
19 const category = url_parts.pop();
20 const domain = url_parts [0];
21 return {
22 id: page_id ,
23 category: category ,
24 url: domain
25 };
26 }
27 parse(’example.com/article /12’);

6) Assignment in Conditional Statements:2 JavaScript has
three kinds of operators that use the = character.

• “=” For assignment.
1 var pi = 3.14;

• “==” For comparing values.
1 if (username == "admin") {}

• “===” For comparing both values and types.
1 if (input === 5) {}

The operator == compares only values and allows different
variable types to be equal if their value is the same. On the
other hand, the operator === compares both the types and the
values of variables and evaluates to false if operands’ types
are different even if their values are equal.

1 ’5’ == 5 // true
2 ’5’ === 5 // false

The operator = not only assigns a value to a variable but
also returns the value. This allows multiple assignments in a
single statement:

1 var a, b, c;
2 a = b = c = 5;

Which translates into:
1 var a, b, c;
2 (a = (b = (c = 5)));

The = operator also could be used in conditions:
1 function getElement(arr , i) {
2 if (i < arr.length) return arr[i];
3 return false;
4 }
5 var element;
6 if (element = getElement(arr , 5)){
7 console.log(element);
8 }

Sometimes developers use assignments in conditional state-
ments to write less code. It could also happen by mistyping
= instead of ==. IDEs3 often flag the usage of assignment in
conditions with a warning sign. Compilers like g++ will warn
about these patterns if -Wall switch is passed to it. It is a
common pattern for iterating over an array or any other iterable
object and extracting values from them, such as iterating over
the result of executing a regular expression on a string. Below
is an example of Assignment in Conditions code smell and a
suggested refactoring.

2http://eslint.org/docs/rules/no-cond-assign
3Integrated Development Environment

1 var str = ’this is a string ’;
2 var rx = /\w+/g;
3 var word;
4 while(word = rx.exec(str)){
5 console.log(word [0]); // matched word
6 console.log(word.index); // matched index
7 }
8
9 // better approach

10 var str = ’this is a string ’;
11 var rx = /\w+/g;
12 var word;
13 while(true){
14 word = rx.exec(str);
15 if (!word) break;
16 console.log(word [0]); // matched word
17 console.log(word.index); // matched index
18 }

While assignment in conditions could be intentional, it is
often the result of a mistake, i.e., = is used instead of == [21].

7) Complex code: The cyclomatic complexity of a code
is the number of linearly independent paths through the
code [22]. JavaScript files with the Complex code smell are
characterized by high cyclomatic complexity values.

8) Extra Bind:4 The “this” keyword in JavaScript func-
tions is contextual and is going to be initialized with the
context which the function is being called within.

1 var obj = {
2 a: 5,
3 f: function () {
4 return this.a;
5 }
6 }
7 obj.f(); // ’this’ in f is ’obj’

This design of JavaScript leads to this to be bound to a
global scope whenever the function is called as a callback
if not bound explicitly. So the scope of variable this is not
lexical. In other words this in inner functions is not going
to be bound to the this of the outer function [3]. Using
“.bind(ctx)” on a function will change the context of the
function and should be used with caution.

The example below shows the usage of .bind(ctx) to
explicitly bind the context of the callback function to the
context of its outer function.

1 function downloader(id) {
2 this.path = ’/’ + id;
3 this.result = null;
4 function callback(data) {
5 this.result = data;
6 console.log(’done’, this.path);
7 }
8 download(this.path , callback.bind(this)); // note the usage of ‘this ‘
9 }

Sometimes the this variable is removed from the body of
the inner function in the course of maintenance or refactoring.
Keeping .bind() in these cases is an unnecessary overhead. In
ES6, there is another type of functions called arrow functions
which solved the problem mentioned above. In arrow functions
the scoping of this is lexical.

The example below shows how arrow functions could be
used to have lexical this inside functions.

1 function downloader(id) {
2 this.path = ’/’ + id;
3 this.result = null;
4 download(this.path , (data) => {
5 this.result = data;
6 console.log(’done’, this.path);
7 });
8 }

9) This Assign:5 If the context in a callback function is
not bound at the definition level, it will be lost. When there

4http://eslint.org/docs/rules/no-extra-bind
5https://github.com/amir-s/eslint-plugin-smells



are large numbers of inner functions or callbacks in which
the context should be preserved, developers often use a hacky
solution such as storing this in another variable to access to
the parent scope’s context. If the context of the parent scope is
stored in another variable besides this, usually named self
or that [23], it would not be overridden and it is going to be
bound to the same variable for all the defined functions in the
same scope tree.

The example below is an example of storing this in another
variable to be used in callback functions.

1 function User(id) {
2 var self = this;
3 self.id = id;
4 getPropertiesById(id , function(props) {
5 // self is bound to its value on parent scope
6 // since there is no self in the current scope
7 self.props = props;
8 });
9 }

Assigning this to other variables could work for small
classes, but it decreases the maintainability of code as the size
of the project grows. Having a substitute variable for this
could also break if the substitute variable is overridden by a
callback function. It is a bad practice to use this hacky solution
since there are other built-in language features to have lexical
this.

The code below shows how to use built-in language features
to achieve lexical this in callback functions.

1 function User(id) {
2 this.id = id;
3 getPropertiesById(id , function(props) {
4 this.props = props;
5 }.bind(this)); // note the .bind
6 }
7
8 // ES6 feature:
9 function User(id) {

10 this.id = id;
11 // arrow functions use lexical ‘this ‘
12 getPropertiesById(id , props => {
13 this.props = props;
14 });
15 }

10) Long Methods: Long method is a well-known code
smell [3], [15], [24]. Long methods should be broken down
into several smaller methods that do more specific tasks.

11) Complex Switch Case: Complex switch-case struc-
tures are considered a bad practice and could be a sign of
violation of the Open/Close principle [25]. Switch statements
also induce code duplication. Often there are similar switch
statements through the software code and if the developer
needs to add/remove a case to one of them, it has to go through
all the statements, modifying them as well [3], [26], [27].

12) Depth:6 The depth or the level of indentation is the
number of nested blocks of code. Higher depth means more
nested blocks and more complexity. The following statements
are considered as an increment to the number of blocks if
nested: function, If, Switch, Try, Do While, While, With,
For, For in and For of.

These two functions have the same functionality. But the
depth of the second implementation is less than the first one.

1 // max depth = 4
2 function get(array , cb) {
3 var result = [];
4 for (var i=0;i<array.length;i++) {
5 download(array[i], function (data) {

6http://eslint.org/docs/rules/max-depth

6 result.push(data);
7 if (result.length == array.length) {
8 cb(result);
9 }

10 })
11 }
12 }
13
14 // max depth = 2
15 function get(array , cb) {
16 var result = [];
17 function inner_cb(data) {
18 result.push(data);
19 if (result.length != array.length) return;
20 cb(result);
21 }
22 for (var i=0;i<array.length;i++) {
23 download(array[i], inner_cb)
24 }
25 }

III. STUDY DESIGN

The goal of our study is to investigate the relation between
the occurrence of code smells in JavaScript files and files
fault-proneness. The quality focus is the source code fault-
proneness, which, if high, can have a concrete effect on
the cost of maintenance and evolution of the system. The
perspective is that of researchers, interested in the relation
between code smells and the quality of JavaScript systems.
The results of this study are also of interest for developers
performing maintenance and evolution activities on JavaScript
systems since they need to take into account and forecast
their effort, and to testers, who need to know which files
should be tested in priority. Finally, the results of this study
can be of interest to managers and quality assurance teams,
who could use code smell detection techniques to assess the
fault-proneness of in-house or to-be-acquired systems, to better
quantify the cost-of-ownership of these systems. The context
of this study consists of 12 types of code smells identified
in five JavaScript systems. In the following, we introduce our
research questions, describe the studied systems, and present
our data extraction approach. Furthermore, we describe our
model construction and model analysis approaches.

(RQ1) Is the risk of fault higher in files with code smells
in comparison with those without code smell? Prior works
show that code smells increase the fault-proneness of Java
classes [5], [6]. Since JavaScript code smells are different
from the code smells investigated in these previous studies
on Java systems, we are interested in examining the impact
that JavaScript code smells can have on the fault-proneness of
JavaScript applications.

(RQ2) Are JavaScript files with code smells equally
fault-prone? During maintenance and quality assurance activ-
ities, developers are interested in identifying parts of the code
that should be tested and–or refactored in priority. Hence, we
are interested in identifying code smells that have the most
negative impact on JavaScript systems, i.e., making JavaScript
applications more prone to faults.

A. Studied Systems

In order to address our research questions, we perform a
case study with the following five open source JavaScript
projects. Table I summarizes the characteristics of our subject
systems.



Table I: Descriptive statistics of the studied systems.
Module Domain # Commits # Contributors # Github stars # Releases Project start date
Express Web framework 5200+ 190+ 28000+ 260 Jun 21, 2009
Request HTTP client utility 2000+ 200+ 12000+ 118 May 2, 2010
Less.js CSS pre-processor 2600+ 200+ 14000+ 48 Feb 21, 2010
Bower.io Package manager 2600+ 200+ 14500+ 100 Sep 2, 2012
Grunt Task Runner 1300+ 60+ 11000+ 11 Sep 18, 2011

Express7 is a minimalist web framework for Nodejs. It is
one of the most popular libraries in NPM [28] and it is used
in production by IBM, Uber and many other companies8. Its
Github repository has over 5,200 commits and more than 190
contributors. It has been forked 5,000 times and starred more
than 28,000 times. Express is also one of the most dependent
upon libraries on NPM with over 8,800 dependents. There are
more than 2,300 closed Github issues on their repository.
Bower.io9 is a package manager for client-side libraries. It is
a command line tool which was originally released as part
of Twitter’s open source effort10 in 2012 [29]. Its Github
repository has more than 2,600 commits from more than 200
contributors. Bower has been starred over 14,500 times on
Github and has over 1,500 closed issues.
LessJs11 is a CSS12 pre-processor. It extends CSS and adds
dynamic functionalities to it. There are more than 2,600
commits by over 200 contributors on its Github repository.
LessJs’s repository has more than 2,000 closed issues and it
is starred more than 14,000 times and forked over 3,200 times.
Request13 is a fully-featured library to make HTTP calls.
More than 8,300 other libraries are direct dependents of
Request. Over 2,000 commits by more than 260 contributors
have been made into its Github repository and 12,000+ users
starred it. There are more than 1,100 closed issues on its
Github repository.
Grunt14 is one of the most popular JavaScript task runners.
More than 1,600 other libraries on NPM are direct dependents
of Grunt. Grunt is being used by many companies such as
Adobe, Mozilla, Walmart and Microsoft [30]. The Github
repository of Grunt is starred by more than 11,000 users.
More than 60 contributors made over 1,300 commits into this
project. They also managed to have more than 1,000 closed
issues on their github repository. We selected these projects
because they are among the most popular NPM libraries, in
terms of the number of installs. They have a large size and
possess a Github repository with issue tracker and wiki. They
are also widely used in production.

B. Data Extraction

To answer our research questions, we need to mine the
repositories of our five selected systems to extract information
about the smelliness of each file at commit level, identifying

7https://github.com/expressjs/express
8https://expressjs.com/en/resources/companies-using-express.html
9https://github.com/bower/bower
10https://engineering.twitter.com/opensource
11https://github.com/less/less.js
12Cascading Style Sheet
13https://github.com/request/request
14https://github.com/gruntjs/grunt

whether the file contains a code smell or not. In addition, we
need to know for each commit, if the commit introduces a
bug, fixes a bug or just modifies the file in a way that a code
smell is removed or added. Figure 1 provides an overview of
our approach. We describe each step in our data extraction
approach below. We have implemented all the steps of our
approach into a framework available on Github15.

Snapshot Generation: Since all the five studied systems are
hosted on Github, at the first step, the framework performs a
git clone to get a copy of a system’s repository locally. It
then generates the list of all the commits and uses it to create
snapshots of the system that would be used to perform analysis
at commits level.

Identification of Fault-Inducing Changes: Our studied
systems use Github as their issue tracker and we use Github
APIs to get the list of all the resolved issues on the systems.
We leverage the SZZ algorithm [31] to detect changes that
introduced faults. We first identify fault-fixing commits using
the heuristic proposed by Fischer et al. [32], which consists in
using regular expressions to detect bug IDs from the studied
commit messages. Next, we extract the modified files of each
fault-fixing commit through the following Git command:

git log [commit-id] -n 1 --name-status

We only take modified JavaScript files into account. Given
each file F in a commit C, we extract C’s parent commit
C ′. Then, we use Git’s diff command to extract F ’s deleted
lines. We apply Git’s blame command to identify commits that
introduced these deleted lines, noted as the “candidate faulty
changes”. We eliminate the commits that only changed blank
and comment lines. Finally, we filter the commits that were
submitted after their corresponding bugs’ creation date.

AST Generation and Metric Extraction: To automatically
detect code smells in the source code, we first extract the
Abstract Syntax Tree from the code. Abstract Syntax Trees
(AST) are being used to parse a source code and generate a tree
structure that can be traversed and analyzed programmatically.
ASTs are widely used by researchers to analyze the structure
of the source code [33]–[35]. We used ESLint16 which is a
popular and open source lint utility for JavaScript as the core
of our framework. Linting tools are widely used in program-
ming to flag the potential non-portable parts of the code by
statically analyzing them. ESLint is being used in production
in many companies like Facebook, Paypal, Airbnb, etc. ESLint
uses espree17 internally to parse JavaScript source codes and

15https://github.com/amir-s/smelljs
16http://eslint.org/
17https://github.com/eslint/espree
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Figure 1: Overview of our approach to answer RQ1 and RQ2.

extracts Abstract Source Trees based on the specs18. ESLint
itself provides an extensible environment for developers to
develop their own plugins to extract custom information from
the source code. We developed our own plugins and modified
ESLint built-in plugins to traverse the source tree generated
by ESLint to extract and store the information related to our
set of code smells described in section II. Table II summarizes
all the metrics our framework reports for each type of code
smell.

Code Smell Detection: Among of 12 metric values reported
by our framework, 4 are boolean. The boolean metrics concern
This Assign, Extra Bind, Assignment in Conditional State-
ments, and Variable Re-assign smells. The 8 remaining metrics
are integers. To identify code smells using the metric values
provided by our framework, we follow the same approach as
previous works [36], [37], defining threshold values above
which files should be considered as having the code smell.
We define the thresholds relative to the systems using Box-
plot analysis. We chose to define threshold values relative to
the projects because design rules and programming styles can
vary from one project to another, and hence it is important to
compare the characteristics of files in the context of the project.
For each system, we obtain the threshold values as follows.
We examined the distribution of the metrics and observed a
big gap around the first 70% of the data and the top 10%.
Hence, we decided to consider files with metric values in the
top 10% as containing the code smell. For files that contain
multiple functions, we aggregated the metric values reported
for each functions using the maximum to obtain a single value
characterizing the file.

C. Analysis

To assess the impact of code smells on the fault-proneness
of JavaScript files we perform survival analysis, comparing the
time until a fault occurrence, in files containing code smells
and files without code smells.
Survival analysis is used to model the time until the occur-
rence of a well-defined event [38]. One of the most popular
models for survival analysis is the Cox Proportional Hazards
(Cox) model. A Cox hazard model is able to model the instan-
taneous hazard of the occurrence of an event as a function of
a number of independent variables [39] [40]. Particularly, Cox
models aim to model how long subjects under observation can
survive before the occurrence of an event of interest (a fault
occurrence in our case) [40] [41].

18https://github.com/estree/estree

Survival models were first introduced in demography and
actuarial sciences [42]. Recently, researchers have started
applying them to problems in the domain of Software En-
gineering. For example, Selim et al. [41] used the Cox model
to investigate characteristics of cloned code that are related
to the occurrence of faults. Koru et al. [43] also used Cox
models to analyze faults in software systems. In Cox models,
the hazard of a fault occurrence at a time t is modeled by the
following function:

λi(t) = λ0(t) ∗ eβ∗Fi(t) (1)

If we take log from both sides, we obtain:

log(λi(t)) = log(λ0(t)) + β1 ∗ fi1(t) + ...+ βn ∗ fin(t) (2)

Where:
• Fi(t) is the time-dependent covariates of observation i at

the time t.
• β is the coefficient of covariates in the function Fi(t).
• λ0 is the baseline hazard.
• n is the number of covariates.
When all the covariates have no effect on the hazard, the

baseline hazard can be considered as the hazard of occurrence
of the event (i.e., a fault). The baseline hazard would be
omitted when formulating the relative hazard between two
files (in our case) at a specific time, as shown in the following
Equation 3.

λi(t)/λj(t) = eβ∗(fi(t)−fj(t)) (3)

The proportional hazard model assumes that changing each
covariate has the effect of multiplying the hazard rate by a
constant.

Link function. As Equation 2 shows, the log of the hazard
is a linear function of the log of the baseline hazard and all the
other covariates. In order to build a Cox proportional model, a
linear relationship should be available between the log hazard
and the covariates [44]. Link functions are used to transform
the covariates to a new scale if such relationship does not
exist. Determining an appropriate link function for covariates
is necessary because it allows changes in the original value of
a covariate to influence the log hazard equally. This allows the
proportionality assumption to be valid and applicable [44].

Stratification. In addition to applying a link function, a
stratification is sometimes necessary to preserve the propor-
tionality in Cox hazard models [39]. For example, if there



Table II: Metrics computed for each type of code smell.
Smell Type Type Metric
Lengthy Lines Number The number of characters per line considering the exceptions described in section II.
Chained Methods Number The number chained methods in each chaining pattern.
Long Parameter List Number The number of parameters of each function in source code.
Nested Callbacks Number The number of nested functions present in the implementation of each function.
Variable Re-assign Boolean The uniqueness of variables in same scope.
Assignment in Conditional Statements Boolean The presence of assignment operator in conditional statements.
Complex code Number The cylcomatic complexity value of each function defined in the source code.
Extra Bind Boolean Whether a function is explicitly bound to a context while not using the context.
This Assign Boolean Whether this is assigned to another variable in a function.
Long Methods Number The number of statements in each function.
Complex Switch Case Number The number of case statements in each switch-case block in the source code.
Depth Number The maximum number of nested blocks in each function.

is a covariate that needs to be controlled because it is of no
interest or secondary, stratification can be used to split the data
set so that the influence of more important covariates can be
monitored better [39].

Model validation. Since Cox proportional hazard models
assume that all covariates are consistent over time and the
effect of a covariate does not fluctuate with time, hence, to
validate our model, we apply a non-proportionality test to
ensure that the assumption is satisfied [44] [41].

In this paper, we perform our analysis at commit level. For
each file, we use Cox proportional hazard models to calculate
the risk of a fault occurrence over time, considering a number
of independent covariates. We chose Cox proportional hazard
model for the following reasons:
(1) In general, not all files in a commit experience a fault. Cox
hazard models allow files to remain in the model for the entire
observation period, even if they don’t experience the event
(i.e., fault occurrence). (2) In Cox hazard models, subjects
can be grouped according to a covariate (e.g., smelly or non-
smelly). (3) The characteristics of the subjects might change
during the observation period (e.g., size of code), and (4) Cox
hazard models are adapted for events that are recurrent [44],
which is important because software modules evolve over time
and a file can have multiple faults during its life cycle.

IV. CASE STUDY RESULTS

In this section, we report and discuss the results for each
research question.

(RQ1) Is the risk of fault higher in files with code smells in
comparison with those without code smell?

Approach. We use our framework described in Sec-
tion III-B to collect information about the occurrence of the
12 studied code smells in our five subject systems. For each
file and for each revision r (i.e., corresponding to a commit),
we also compute the following metrics:

• Time: the number of hours between the previous revision
of the file and the revision r. We set the time of the first
revision to zero.

• Smelly: this is our covariate of interest. It takes the value
1 if the revision r of the file contains a code smell and
0 if it doesn’t contain any of the 12 studied code smells.

• Event: this metric takes the value 1 if the revision r is
a fault-fixing change and 0 otherwise. We use the SZZ

algorithm to insure that the file contained a code smell
when the fault was introduced.

Using the smelly metric, we divide our dataset in two
groups: one group containing files with code smells (i.e.,
smelly = 1) and another group containing files without any of
the 12 studied code smells (i.e., smelly = 0). For each group
we create an individual Cox hazard model. In each group, the
covariate of interest (i.e., smelly) is a constant function (with
value either 1 or 0), hence, there is no need for a link function
to establish a linear relationship between this covariate and
our event of interest, i.e., the occurrence of a fault. We use
the survfit and coxph functions from R [45] to analyze our
Cox hazard models.

In addition to building Cox hazard models, we test the
following null hypothesis: H1

0 : There is no difference between
the probability of a fault occurrence in a file containing code
smells and a file without code smells. We use the log-rank test
(which compares the survival distributions of two samples), to
accept or refute this null hypothesis.

Findings. Results presented in Figure 2 show that files
containing code smells experience faults faster than files
without code smells. The Y -axis in Figure 2 represents the
probability of a file surviving a fault occurrence. Hence a
low value on the Y -axis means a low survival rate (i.e., a
high hazard or high risk of fault occurrence). For all five
projects, we calculated relative hazard rates (using Equation 3
from Section III-C) between files containing code smells and
files without code smells. Results show that, on average, files
without code smells have hazard rates 65% lower than files
with code smells. We performed a log-rank test comparing
the survival distributions of files containing code smells and
files without any of the studied code smells and obtained p-
values lower than 0.05 for all the five studied systems. Hence,
we reject H1

0 . Since our detection of code smells depends on
our selected threshold value (i.e., the top 10% value chosen in
Section III-B), we conducted a sensitivity analysis to assess the
potential impact of this threshold selection on our result. More
specifically, we rerun all our analysis with threshold values at
top 20% and top 30%. We observed no significant differences
in the results. Hence, we conclude that:

JavaScript files without code smells have hazard rates
65% lower than JavaScript files with code smells and
this difference is statistically significant.
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(b) request.js

0 1000 2000 3000 4000

0.
6

0.
7

0.
8

0.
9

1.
0

Hours

Su
rv

iva
l P

ro
ba

bi
lit

y

Smelly
NotSmelly

(c) less.js
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Figure 2: Survival probability trends of smelly codes vs. non-smelly codes in our five JavaScript projects.
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Figure 3: Determining a link function for express.js (left figure) and
grunt.js (right figure) modules for two covariates: LOC and Code
Churn respectively.
Table III: Hazard ratios for each type of code smells. Higher
exp(coef) values means higher hazard rates.

module covariate exp(coef) p-value
(Cox
hazard
model)

p-value
(Propor-
tional
hazards
assumption)

express

No.Previous-Bugs 1.013 0.05e-3 0.870
Chained Methods 7.931 0.003 0.961

This Assign 2.584 0.038e-8 0.716
Variable Re-assign 1.488 0.007 0.253

grunt
Nested Callbacks 3.534 0.002 0.204

Variable Re-assign 1.514 0.039 0.913
Assign. in Cond. State. 2.212 0.001 0.829

bower
No.Previous-Bugs 1.019 0.019 0.451

Depth 7.786 0.065e-4 0.910
LOC 1.008e-1 0.029 0.241

less
No.Previous-Bugs 1.036 0.02e-14 0.741

Complex Switch Case 0.481 0.027 0.417
Assign. in Cond. State. 1.646 0.019e-2 0.940

request
No.Previous-Bugs 1.067 0.002 0.407

Depth 0.172 0.052e-3 0.620
Variable Re-assign 3.277 0.088e-2 0.733

(RQ2) Are JavaScript files with code smells equally fault-
prone?

Approach. Similar to RQ1, we use our framework from
Section III-B to collect information about the occurrence of
the 12 studied code smells in our five subject systems. For
each file and for each revision r (i.e., corresponding to a
commit), we also compute the Time and Event metrics defined
in RQ1. For each type of code smell i we define the metric
Smellyi: which takes the value 1 if the revision r of the file
contains the code smell i and 0 if it doesn’t contain any
of the 12 studied code smells. When computing the Event
metric, we used the SZZ algorithm to ensure that the file
contained the code smell i when the fault was introduced.
Because size, code churn, and the number of past occurrence

of faults are known to be related to fault-proneness, we add
the following metrics to our models, to control for the effect
of these covariates : (i) LOC: the number of lines of code
in the file at revision r; (ii) Code Churn: the sum of added,
removed and modified lines in the file prior to revision r;
(iii) No. of Previous-Bugs: the number of fault-fixing changes
experienced by the file prior to revision r. We perform a
stratification considering the covariates mentioned above, in
order to monitor their effect on our event of interest, i.e., a
fault occurrence. Next, we create a Cox hazard model for each
of our five studied systems. In order to build an appropriate
link function for the new covariates considered in this research
question (i.e., LOC, Code churn, and No. of Previous-Bugs),
we follow the same methodology as [39] [41] and plot the
log relative risk vs. each type of code smell, the No. of
Previous-Bugs, LOC and Code Churn in each of our five
datasets (corresponding to the five subject systems). For all
types of code smells and No. of Previous-Bugs covariates, we
observed that a linear relationship exists. Since the plots for
LOC and Code Churn covariates were similar to each other,
for all of the five systems, and because of space limitation,
in this paper, we present only the plot of LOC (obtained on
express.js) and Code Churn (obtained on grunt.js) covariates
(see Figure 3). Figure 3 shows that for LOC, we do not have
a linear relationship, hence we visually identified a suitable
function (i.e., a logarithmic function) to establish a linear
relationship. In the case of Code Churn, we identified that
a negative linear function should be applied. We generated
summaries of all our Cox models and removed insignificant
covariates, i.e., those with p-values greater than 0.05. Finally,
for each system, we performed a non-proportional test to verify
if the proportional hazards assumption holds.

Findings. Table III summarizes the hazard ratios for the 12
studied code smells. The value in the column exp(coef) shows
the amount of increase in hazard rate that one should expect for
each unit increase in the value of the corresponding covariate.
The last column of Table III shows that the p-values obtained
for the non-proportionality tests are above 0.05 for all the five
systems; meaning that the proportional hazards assumption is
satisfied for all the five studied systems.

Overall, the hazard ratios of the studied code smells vary
across the systems, with Chained Methods, This Assign, and
Variable Re-assign having the highest hazard ratios in express;



Nested Callbacks, Assignment in Conditional Statements, and
Variable Re-assign having the highest hazard rates in grunt,
and Depth being the most hazard code smell in bower.
Assignment in Conditional Statements has the highest hazard
ratio in less and Variable Re-assign has the highest hazard
ratio in request.

As we expected, the covariates No.Previous-Bugs is signif-
icantly related to fault occurrence, however, its hazard rate is
lower than those of many of the studied code smells. LOC
is significantly related to fault occurrence in only one system
(i.e., bower), meaning that JavaScript developers cannot sim-
ply control for size and monitor files with previous fault occur-
rences, if they want to track fault-prone files effectively. Since
Variable Re-assign and Assignment in Conditional Statements
are related to high hazard ratios in three out of five systems
(60%), we strongly recommend that developers prioritize files
containing these two types of code smells during testing and
maintenance activities.

JavaScript files containing different types of code smells
are not equally fault-prone. Developers should consider
refactoring files containing Variable Re-assign code smell
or Assignment in Conditional Statements code smell in
priority since they seem to increase the risk of faults in
the system.

Similar to RQ1, we conducted a sensitivity analysis to as-
sess the potential impact of our threshold selection (performed
during the detection of code smells) on the results; rerunning
the analysis using threshold values at top 20% and top 30%.
We did not observed any significant change in the results.

V. PERCEIVED CRITICALITY OF CODE SMELLS BY
JAVASCRIPT DEVELOPERS

To understand the perception of developers towards our
studied code smells, we conducted a qualitative study with
JavaScript developers. In total 1,484 developers took part in
our qualitative study. The survey consisted of 3 questions about
the participant background and 15 questions about the studied
code smells. We designed a website 19 to run the survey. The
study took place between October 4th and October 17th, 2016.
The link to the survey was shared within the Hacker News
community 20 and the EchoJS community 21. Participants were
free to skip any question and they could leave the survey at any
time. However, none of the participants used the skip button.
68% of the participants to our survey had more than 3 years
of experience writing Javascript applications. We asked the
participants about their usages of JavaScript and found that
92% of them use JavaScript to write client-side applications
and 51% use it for server side applications. Over 63% of
participants were familiar with the concept of code smell and
19% never heard of it.

19https://srvy.online/js
20https://news.ycombinator.com/
21http://www.echojs.com/

The results of our survey showed that 20% of participants
use pure callbacks to handle asynchronous logic, while 66%
use Promises and 13% use the newest ES6 and ES7 features
to control the flow of asynchronous codes. 92% of participants
indicated that nesting the callbacks makes the code harder to
maintain.

86% of our participants reported that they prefer codes using
const instead of var to declare variables and not re-using
them in the same scope. 73% indicated that re-using variables
makes the code harder to maintain.

Surprisingly, 74% of our participants said they preferred
having assignments in conditional statements while using
Regular Expressions, however, 54% of them acknowledged
that this practice makes the code harder to maintain.

55% of our participants reported that they prefer using
.bind(this) instead of assigning this to other variables.
However, only 16% of the participants indicated that they use
.bind. 55% of the participants indicated that they use arrow
functions to have lexical this.

Although the JavaScript documentation lists Complex
Switch Case as a code smell, only 14% of our participants
preferred if/else structures over switch/case.

In the survey, we asked participants to rank the 12 stud-
ied code smells on a Likert scale from 1 to 10, based on
their impact on the software understandability, debugging and
maintenance efforts. Results show that participants consider
Nested Callbacks to be the most hazardous code smells (with
a rating of 8.1/10), followed by Variable Re-assign (with a
rating of 6.5/10) and Long Parameter List (with a rating of
6.2/10). They claimed that these code smells negatively affect
the maintainability and reliability of JavaScript systems. This
assessment is in line with the findings of our quantitative
analysis.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our study
following common guidelines for empirical studies [46].

Construct validity threats concern the relation between
theory and observation. In our study, threats to the construct
validity are mainly due to measurement errors. The number
of previous faults in each source code file was calculated by
identifying the files that were committed in a fault fixing
revision. This technique is not without flaws. We identi-
fied fault fixing commits by mining the logs searching for
certain keywords (i.e., “bug”,“fix”’,“defect” and “patch”) as
explained in Section III-B. Following this approach, we are
not able to detect fault fixing revisions if the committer either
misspelled the keywords or failed to include any commit
message. Nevertheless, this heuristic was successfully used in
multiple previous studies in software engineering [6], [47].
The SZZ heuristic used to identify fault-inducing commits is
not 100% accurate. However, it has been successfully used in
multiple previous studies from the literature, with satisfying
results. In our implementation, we remove all fault-inducing
commit candidates that only changed blank or comment lines.



When analyzing the smelliness of files that experienced fault-
inducing changes, we only tracked the presence of the smell
in the file as a whole. Hence, the smell contained in the file
may not have been involved in the changed lines that induced
the fault.

Internal validity threats concern our selection of systems
and tools. The metric extraction tool used in this paper is based
on the AST provided by ESLint. The results of the study are
therefore dependent on the accuracy of ESLint. However, we
are rather assured that this tool functions properly as it is
being used widely by big companies. e.g., Facebook, Paypal,
Airbnb. We chose a logarithmic link function for some of our
covariates in the survival analysis. It is possible that a different
link function would be a better choice for these covariates.
However, the non-proportionality test implies that the models
were a good fit for the data. Also, we do not claim causation
in this work, we simply report observations and correlations
and tries to explain these findings.

Threats to conclusion validity address the relationship
between the treatment and the outcome. We are careful to
acknowledge the assumptions of each statistical test.

Threats to external validity concern the possibility to
generalize our results. In this paper, we have studied five
large JavaScript projects. We have also limited our study to
open-source projects. Still, these projects represent different
domains and various project sizes. Table I shows a summary
of the studied systems, their domain and their size. Neverthe-
less, further validation on a larger set of JavaScript systems,
considering more types of code smells is desirable.

Threats to reliability validity concern the possibly of
replicating our study. In this paper, we provide all the details
needed to replicate our study. All our five subject systems are
publicly available for study. The data and scripts used in this
study is also publicly available on Github22.

VII. RELATED WORK

In this section, we discuss the related literature on code
smell and JavaScript systems. Code Smells [4] are poor design
and implementation choices that are reported to negatively
impact the quality of software systems. They are opposite
to design patterns [48] which are good solutions to recur-
rent design problems. The literature related to code smells
generally falls into three categories: (1) the detection of code
smells (e.g., [3], [49]); (2) the evolution of code smells in
software systems (e.g., [50]–[53]) and their impact on software
quality (e.g., [6], [53]–[56]); and (3) the relationship between
code smells and software development activities (e.g., [56],
[57]).

Our work in this paper falls into the second category. We
aim to understand how code smells affect the fault-proneness
of JavaScript systems. Li and Shatnawi [54] who investigated
the relationships between code smells and the occurrence of
errors in the code of three different versions of Eclipse reported
that code smells are positively associated with higher error

22https://github.com/amir-s/smelljs

probability. In the same line of study, Khomh et al. [55]
investigated the relationship between code smells and the
change- and fault-proneness of 54 releases of four popular
Java open source systems (ArgoUML, Eclipse, Mylyn and
Rhino). They observed that classes with code smells tend to
be more change- and fault-prone than other classes. Tufano
et al. [53] investigated the evolution of code smells in 200
open source Java systems from Android, Apache, and Eclipse
ecosystems and found that code smells are often introduced in
the code at the beginning of the projects, by both newcomers
and experienced developers. Sjoberg et al. [57], who investi-
gated the relationship between code smells and maintenance
effort reported that code smells have a limited impact on
maintenance effort. However, Abbes et al. [56] found that code
smells can have a negative impact on code understandability.
Recently, Fard et al. [3] have proposed a technique named
JNOSE to detect 13 different types of code smells in JavaScript
systems. The proposed technique combines static and dynamic
analysis. They applied JNOSE on 11 client-web applications
and found “lazy object” and “long method/function” to be
the most frequent code smells in the systems. WebScent [58]
is another tool that can detect client-side smells. It identifies
mixing of HTML, CSS, and JavaScript, duplicate code in
JavaScript, and HTML syntax errors. ESLint [11], JSLint [59]
and JSHint [60] are rule based static code analysis tools that
can validate source codes against a set of best coding practices.
Despite this interest in JavaScript code smells and the growing
popularity of JavaScript systems, to the best of our knowledge,
there is no study that examined the effect of code smells on the
fault-proneness of JavaScript server-side projects. This paper
aims to fill this gap.

VIII. CONCLUSION

In this study, we examine the impact of code smells
on the fault-proneness of JavaScript systems. We present a
quantitative study of five JavaScript systems that compare the
time until a fault occurrence in JavaScript files that contain
code smells and files without code smells. Results show that
JavaScript files without code smells have hazard rates 65%
lower than JavaScript files with code smells. In other terms,
the survival of JavaScript files against the occurrence of faults
increases with time if the files do not contain code smells.
We further investigated hazard rates associated with different
types of code smells and found that “Variable Re-assign”
and “Assignment in Conditional Statements” code smells have
the highest hazard rates. In addition, we conducted a survey
with 1,484 JavaScript developers, to understand the perception
of developers towards our studied code smells, and found
that developers consider Nested Callbacks, Variable Re-assign,
Long Parameter List to be the most hazardous code smells.
JavaScript developers should consider removing Variable Re-
assign code smells from their systems in priority since this
code smell is consistently associated with a high risk of
fault. They should also prioritize Assignment in Conditional
Statements, Nested Callbacks, and Long Parameter List code
smells for refactoring.
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