
Extracting RESTful Services from Web Applications

 Bipin Upadhyaya, Foutse Khomh, Ying Zou
Department of Electrical and Computer Engineering

Queen’s University
Kingston, Canada

{bipin.upadhyaya, foutse.khomh, ying.zou}@queensu.ca

Abstract— The Web contains large amount of information and
services primarily intended for human users. A Web
application offers high user experience and responsiveness. A
user performs different task, such as reserving flight tickets
from a Web application. A task is a set of activities required
for a user to achieve a goal. Similar tasks are often used in
different websites. Therefore, facilitating their reuse would
improve development productivity and ease maintenance of
Web applications. However, designing a reusable Web
application component is often neglected by Web developers
due to the pressure for the time-to-market. To circumvent this
limitation, we propose an approach to interactively identify
tasks from Web applications and represent these tasks as
services.

Keywords- RESTful Service, Service Design, Service Extraction

I. INTRODUCTION

A Web application is coded in a browser-supported
language such as JavaScript (JS) and combined with a
browser-rendered markup language, such as the hypertext
markup language (HTML). Web applications are popular
due to the ubiquity of Web browsers and the possibility to
update and maintain Web applications without distributing
the clients. Web pages of Web applications are defined in
HTML and represented using the Document Object Model
(DOM). All client side interactions are realized with
modifying JS of the DOM. The presentation of a Web page
is handled by Cascading Style Sheets (CSS). To understand a
Web application, a developer must be familiar with HTML,
JS and CSS, and the interactions between them. A Web
application is accessed through a Web browser running on
client’s machine whereas a Web service is a system of
software that allows different machines to interact with each
other through a network. Similar to the problems in early
traditional applications, many Web Applications become
legacy systems. Web applications are facing new challenges
such as the integration of software provided by different
organizations and the ability to create combined business
scenarios. Web services provide system-to-system
interaction and permit the implementation of business
constraints using process control primitives to adapt the new
challenges.

Web services are self-contained and self-describing. The
two most used style architectures in Web services are SOAP
(Simple Object Access Protocol) and REST
(Representational State Transfer). Compared with SOAP,
REST is lightweight, easy to build and frequently favored by
developers [2]. However, most of research [1, 3, 7, and 8] in

migrating Web applications to SOA uses SOAP based
services and require the analysis of the entire source code of
Web application. Analyzing source code to extract reusable
tasks is complex and error-prone, because there is no trivial
mapping between source code and the page displayed in the
browser [5]. Our approach focuses on the task that a Web
application performs and abstracts the task as a RESTful
service. A task is a goal specific functionality, such as
searching for a restaurant, and reserving a table in a
restaurant. A goal may be defined as a state of affairs that a
user wishes to achieve; a task is the course of actions that a
user goes through in order to achieve this state. In a Web
application, the code responsible for a task is usually
scattered between several files. It is often intermixed with
code irrelevant for the extracted task. The code is written in
different languages, such as PHP, SQL, JS, and HTML using
different development paradigms. In this paper, we provide
an approach to extract reusable tasks from a Web application
by analyzing the client-side representation returned from a
Web application. Similar to Insight [6] and FireCrystal [4],
our work analyzes client side representation along with the
change in URL and request parameters. However our work
focuses on extracting task as a service. The extracted tasks
are specified in terms of RESTful services and deployed
through proxies accessing the original Web server and
parsing its responses. The objective of our approach is to
discover resources needed to accomplish a particular task.
Our contributions in this paper are as follows:
1) Provide a model to represent a task. We identify Web

pages that are browsed to accomplish a task and represent
the functionality of the Web pages as a RESTful service.

2) Extract logical data from data decorated with HTML for
human users. The extracted data encode semantic
information making it easier for machine to invoke the
service.

3) Identify relations between tasks. We automate the
transition from one task to another and migrate such tasks
as a RESTful service once the relations are identified.

The remainder of this paper is organized as follows.
Section II introduces a meta-model for tasks. Section III
presents an overview of our approach. Finally, Section VI
concludes the paper and explores some avenues for future
work.

II. MODELING A TASK

A task is a set of resource grouped in a meaningful way
to accomplish a goal. Basically, identifying a task is centered

on the question: What will a user do with a Web
application? A task is a course of actions that a user might
want to accomplish on the Web application. A task is
identified on the basis of three major characteristics: 1) be
reusable; 2) perform a goal; and 3) be state independent. The
resource interaction may be performed by a user when
clicking a link or filling a Web Form or by the Web browser
without the knowledge of the user (e.g., a Web redirection).
We have identified three types of resources used in Web
applications: Type I resources1 have fixed URLs; Type II
resources2 take URL parameters or payload as input; and
Type III resources3 take input from a user and then a client
side code executes something locally. A user event, such as
a button click, calls the JS function. The HTTP protocol is
invoked from the JS function. A resource interaction may
execute a client-side script before issuing a request to a
resource. Basically each resource interaction performs a
HTTP-method on a URL with some parameters. We model a
task as a series of resource interaction with a Web server.

Figure 1: Meta-model for users’ tasks

Figure 1 show the meta-model to model users’ tasks. A
task can be accomplished by one or more resources. A task
starts with an initial resource (i.e., initial state) and ends with
one or more final resource. Each resource has a URL and
one or more representation. Each URL has request and
response headers. The request and response headers are
components of the message header in HTTP. They define the
operating parameters of an HTTP transaction. While
completing a task, a resource undergoes a series of
transitions. A transition occurs by user action or by system
events

III. OUR APPROACH

Figure 2 shows the overall process of our approach to
represent a task as a RESTful service. Our approach consists
of two steps as shown in Figure 2. The first step is to select
and execute a task to migrate. A user chooses a task to

migrate as a RESTful service in a Web application. A user
does not necessarily need to be an expert in the technologies
used to develop the Web application. We provide a tool to
denote the start and completion of a task. A user runs a Web
application multiple times denoting the start and the
completion of tasks to capture all scenarios involved in
completion of a task.

Figure 3(a) shows a menu to denote the start and
completion of a task in our Firefox plugin. A user denotes
the start and the completion by clicking the menu. Figure
3(b) shows a task completion process for a login task. In a
login task, a user clicks the login link and fills a login form.
Based on the data entered, this task can have one of the two
final states. We instrumented the browser to record all events
generated by a Web application in a client-side. The second
step is the analysis of the annotation logs and the execution
logs to identify input, output and HTTP methods of a task.

 Figure 2: Overview of our approach to Identify service from Web pages

A. Identifying Inputs of a Task

The meta-model in Figure 1 shows that a resource
transition can be either a user event or a system event. Web
forms and hyperlinks are used to provide input to a Web
application. A Web form submission doesn’t always invoke
a resource. Web forms generally generate a number of
events. These events are handled by client side JS functions.
JS programs are executed by a client’s Web browser and
have access, via a document object model, to the resources of
the browser, in particular, to the HTML document shown in
the browser.

 Our plugin keeps track of all the events generated during
the completion of a task. Web forms and hyperlinks contain
semantic information (i.e., labels). The positions of labels in
a Web form depend on the designer of the Web page. Labels
can be placed above, below, to the left, or to the right of an
input element. To identify the label representing an input
element, we analyze the content of a Web page delimited by
the opening and closing tags of a HTML partitioning element

Figure 3: Different phase of task Identificatication process

1. Weather Forecast http://www.theweathernetwork.com/weather/caon0349
2. EBay http://www.ebay.ca/sch/i.html?_nkw=IPhone
3. Google Accounts https://accounts.google.com/ServiceLogin

 Figure 4: HTML and DOM representation of Web query interface
that separates different sections of a Web page. For
example, paragraph tag (i.e., <p>) separates a paragraph in
HTML. The text nodes under the partitioning element are
part of the same blob (i.e., a text contained within a
partitioning element). However, style tags, such as the italic
tag (i.e., <i>) and the bold tag (i.e.,) are generally used
to add styles within a section of text. Therefore, styling tags
are not considered as partitioning elements.

Web form labels and input elements are hierarchically
nested in a DOM tree. Hierarchical proximity between the
elements helps to associate the input elements with the text
blob. Figure 4(a) shows a screenshot of a Web query
interface. Figure 4(b) shows a fragment of the DOM tree of
the query Web form shown in Figure 4(a). In Figure 4(b), the
input field r1 is in closer hierarchical proximity with the
label l1 (i.e., “Search Criteria”) than the label l2 (i.e.,
“Categories”).Therefore, the label l1 should be associated
with the input r1. To identify the association between input
elements and labels, we traverse and analyze the DOM tree
to find the text nodes that constitute a label. When a
partitioning element (such as <p>,
, and < hr>) is
reached, we create a new label. The text node under the
partitioning element is added to the label. If the partitioning
element contains another partitioning element as a child, then
the text nodes that appear under the sub-partitioning child
belong to the text blob of the sub-partitioning child. For each
input element, we compare the hierarchical proximity
between the input element and the text blob. The label with
the least distance is considered a candidate of an input
description tag for the input element. The distance between a
text blob and an input element is given by the number of
nodes visited from the text blob to reach the input element.
For example in Figure 4(b), the distance between the nodes
r1 and l2 is 2; the distance between the nodes, r1 and l3, is 4;
and the distance between the nodes, r1 and l4, is 5. The node
r1 has the least distance with the text blob l2; and hence the
node l2 is selected as the description tag for the node r1. If
more than one candidate is identified, we calculate the edit
distance [9] between the candidates and the “name” attribute
of the input element to choose the candidate for the input
description tag. We track changes in cookies and HTTP
header fields and consider them as input parameters.

B. Identifying Output of a task

The result of a Web form submission is generated in a
template. The template generated content contains
advertisements, navigational panels and so on. Although
these parts of a Web page may be helpful for user browsing,

they can be considered as “noisy data” that may complicate
the process of extracting data objects from Web pages. When
dealing with Web pages containing data objects and “noisy
data”, the “noisy data” could be wrongly matched as correct
data resulting in either inefficient or even incorrect wrappers.
Consequently, given a Web page, the first task is to identify
which part of the page is the data rich section, i.e., the
section or frame that contains the data objects of interest to
the user. The annotation tool helps to select data record that
is used as output of a task. Whenever a user submits a form,
there are basically two kinds of data send by the Web server
header information containing a status code and a resource
representation. We keep track of all the changes in the
header fields. To identify the output of a task, a user can
select the region in an HTML representation that represents
the output using our annotation tool. The following steps are
performed on the selected region of representation.
1) Select a portion of an HTML representation. A user

selects a segment of HTML representation. Figure 5(a)
shows the example that a user selects specific part of a
HTML page.

2) Parse the HTML of the source document and find the
starting (SP) and ending (EP) positions of the selected
region.

3) Identify regions with similar DOM structures between
SP and EP. Our approach identifies segments of DOM
regions with similar DOM structures. Similar DOM
structures indicate similar types of data. Figure 5(b)
shows an example of similar DOM structures. We use
the following heuristic to identify the semantics of the
extracted elements. To apply the heuristic, we proceed
in two steps: First, we match Web form labels with
responses. We examine if any labels discovered from a
Web form are presented in the response page. Second,
we search for labels in table headers. HTML
specifications define tags, such as header cells and
header contents in HTML tables. We list the columns of
HTML tables; and search for voluntary labels encoded
in the response pages. For example, if a page contains a
column with the symbol ‘$’, we consider the data item
represents currency related fields such as price.

Our approach identifies and refines the semantics of the
extracted data template. A user can import an available
ontology or define her own ontology if there is no available
ontology. Figure 5(c) shows a screenshot of the GUI of our
tool to help users to refine the extracted data templates.
Based on selections, we identify different parts that can be
named by a user. XPath and ontology mapping are described
in a single file for each task. These description files can be
modified and reused easily, without affecting other parts of
the generated services.

C. Identifying Resources and HTTP Methods for a Task

In this step we identify resources required to accomplish
a task and the execution sequence between the resources. A
task uses one or more resource with different HTTP-
methods. We select unsafe methods over safe methods and

Figure 5: Identifying the data segment in the HTML Representation

un-idempotent methods over idempotent methods. For
example, if a task uses two resources one using HTTP
method GET and the other using POST, the HTTP method
for that task is POST. If an intermediate resource changes the
parameters of cookies during the completion of a task, the
most recent change in the cookie is propagated to the client.

D. Identifying Task Relations

Web developers embed links in a HTML representation
that guides a user from one state to another. We analyze
next-state elements (i.e., links and Web forms) to determine
the transition sequence. We propose the following four rules
to extract task relations from a client-side representation.
Identify state changes without requests and responses: A
client state may change without requests and responses of
URLs. In this case, the URL, HTTP-methods and parameters
remain the same, whereas there is a change in the
representation. This kind of change is due to the client slide
scripts, such as client validations of Web forms. For example
shown in Figure 3(b), when a user submits a form without
username and password, the representation displays a
validation error. This rule relates the client side script to a
Web user interface control.
Identify related tasks: This rule helps to identify dependent
resources. The resources may have one to many relationships
with other resources. We cluster URLs with similar
parameters and resource paths. For example, if the URL of a
product resource is http://../product?pid=xx and the URL of
the review resource is http://../reveiw?pid=xx, the parameter
names in the URLs of the product info task and the product
review task are similar and belong to the same cluster. Hence
the two tasks are related.
Identify the next task to perform: A Web developer
embeds a link or a Web form that helps a user to decide what
to do next. This rule identifies embedded next-state elements
and the tasks associated with the next-state elements. We
extract the next-state elements from all the resources used to
accomplish a task and choose non-reoccurring elements. A
non-reoccurring element is a symmetric difference between
the next-state elements of two resources. For each resource,
we identify non-reoccurring elements. We identify tasks
whose initial states are present in the non-reoccurring
elements list. For example shown in Figure 3(c), after a user
logs in, the logoff link appears in response representation.
Identify dependent task: Dependent tasks require an
authorization from another task. These relations are
identified by finding subset relations among tasks. For

example the checkout of a shopping cart resource needs the
login task to be invoked first.

IV. CONCLUSION

Our work addresses the problem of migrating reusable
tasks of Web applications towards service oriented
architecture. Our approach considers a Web application as a
special type of form-based system containing one or more
Web pages. The processes of RESTful service extraction run
at client-side and do not depend on server side code. Our
approach extracts reusable tasks by analyzing client side
Web user interface controls and fragments of HTML
representation developed with a combination of JS, HTML
and CSS code. However, our approach currently does not
support the extraction of Silverlight nor Flash. Our initial
experiment shows that our approach can extract task and task
relations as RESTful services. In future, we plan to perform a
detailed case study on different real-life Web sites to extract
services.

REFERENCES
[1] A. Almonaies, J.R. Cordy and T.R. Dean. Legacy System Evolution

towards Service-Oriented Architecture. In International Workshop on
SOA Migration and Evolution, pages 53–62, 2010.

[2] R.T. Fielding. “Architectural Styles and The Design of Network-
based Software Architectures”. PhD thesis, University of California,
Irvine (2000)

[3] G. Lewis, E. Morris, L OBrien, D. Smith, and L. Wrage. Smart: The
service oriented migration and reuse technique. In Proceedings of the
13th IEEE International Workshop on Software Technology and
Engineering Practice, pages 222–229,2005.

[4] Oney S., Myers. B., FireCrystal: Understanding interactive behaviors
in dynamic Web pages , IEEE Symposium on Visual Languages and
Human-Centric Computing, 2009.

[5] R. Holmes, T. Ratchford, M. Robillard, and R. J. Walker.
Automatically Recommending Triage Decisions for Pragmatic Reuse
Tasks. In Proc. Of 24th IEEE International Conference on
Automated Software Engineering, 2009.

[6] Li P., Wohlstadter E., Script InSight: Using Models to Explore
JavaScript Code from the Browser View, Proceedings of the 9th
International Conference on Web Engineering Pages 260 - 274

[7] Almonaies A., Alalfi M., Cordy J.R. and Dean T.R. , Towards a
Framework for Migrating Web Applications to Web Services, Proc.
CASCON'11, Toronto, November 2011, pp. 229-241.

[8] Ajlan A. and Zedan H,. E-learning (MOODLE) Based on Service
Oriented Architecture. In the EADTU’s 20th Anniversary
Conference, Lisbon, Portugal, 8-9 November pages 62–700, 2007.

[9] Baeza-Yates, R. Algorithms for string matching: A survey. ACM
SIGIR Forum, 23(3-4):34-58, 1989.

All URLs are last accessed on 20th October, 2012

