
Optimizing User Experience
in Choosing Android Applications

Rubén Saborido1, Giovanni Beltrame2, Foutse Khomh3, Enrique Alba4, Giuliano Antoniol1
SOCCER1–MIST2–SWAT3 1 Labs., DGIGL, Polytechnique Montréal, Canada

4 Dep. of Computer Science, University of Málaga

Abstract—Why is my cell phone battery already low? How
did I use almost all the data of my monthly Internet plan?
Is my recently released new application more efficient than
similar competing applications? These are not easy questions to
answer. Different applications implementing similar or identical
functionalities may have different energy consumptions.

In this paper, we present a recommendation system aimed
at helping users and developers alike. We help users to choose
optimal sets of applications belonging to different categories (e.g.,
browsers, e-mails, cameras) while minimizing energy consump-
tion, transmitted data, and maximizing application rating. We
also help developers by showing the relative placement of their
application’s efficiency with respect to selected others. When the
optimal set of applications is computed, it is leveraged to position
a given application with respect to the optimal, median and worst
application in its category (e.g., browsers).

Out of eight categories we selected 144 applications, manually
defined typical execution scenarios, collected the relevant data,
and computed the Pareto optimal front solving a multi-objective
optimization problem. We report evidence that, on the one
hand, ratings do not correlate with energy efficiency and data
frugality. On the other hand, we show that it is possible to help
developers understanding how far is a new Android application
power consumption and network usage with respect to optimal
applications in the same category.

From the user perspective, we show that choosing optimal sets
of applications, power consumption and network usage can be
reduced by 16.61% and 40.17%, respectively, in comparison to
choosing the set of applications that maximizes only the rating.

Index Terms—Software Energy Consumption, Performance,
Android, Multi-objective Optimization.

I. INTRODUCTION

The Android market is a place where Android users and
developers meet to find and provide applications. They have
different concerns as a developer may wish to maximize the
number of downloads and the application ratings, while a
user may be more interested in finding the best and cheapest
application to fulfill some tasks. However, they are also likely
to share concerns about the power consumption and data
frugality of the applications. A developer may wonder if
her/his application consumes more energy or data with respect
to the top ranked applications in the same category (e.g.,
browsers). The user, on the other hand, may wonder why the
cell phone’s battery is already low or why she/he already used
almost all the data of her/his monthly phone plan.

For the Android ecosystem, a given application category
(e.g., weather forecast, business, communication, etc.), con-
tains many applications, often implementing very similar
features. Within this broad range of applications, the user

finds very limited support to help her/him determine which
application is more energy hungry, uses more data or matches
his preferences or needs. For example, a popular application
can be greedy in energy and/or network bandwidth without
users noticing it. This is the case for a weather forecasting
application, which, considering our experiments in this work,
transmits more than 14MB over the network in a typical usage
scenario to get the weather forecast.

Power consumption and data traffic of mobile applications
are nowadays a hot topic given the popular use of mobile
devices. These issues have been addressed in many papers,
see for example [8], [10], [15], [18], just to name a few
contributions. Most users data plans have a fixed monthly data
transmission budget and they have to pay more money or the
connection speed is slowed down if additional data is used.
For this reason, network usage is important and, in this sense,
we know that free applications may have hidden costs [5].

Comparing applications is not an easy task. From the
user perspective, the best applications combination depends
on the user preferences, the frequency of usage of different
features, the performance of the features, the application’s
energy consumption, and the applications (hidden) costs such
as the data transmission overhead [5]. In a similar way, the
developer needs to access details of competing applications.
Overall, users and developers need some means to compare,
given a set of categories, similar applications and select the
best possible combination of applications to install (user point
of view) or to compare against (developer point of view).

In this paper we present ADAGO, an Android Application
DAta enerGy Overhead advisor, to support both users
and developers of Android applications. ADAGO models
the application selection problem as a multi-objective
optimization problem. ADAGO’s goal is to select the most
energy and data frugal set of applications, maximizing the
user rating for a given set of categories. More precisely,
ADAGO is based on multi-objective optimization and it aims
at finding Pareto optimal solutions, non dominated solutions
representing combinations of applications, minimizing energy
consumption and network usage, and maximizing the rating (a
number between one and five associated to each application
in Google Play). To obtain a realistic evaluation of the
approach’s feasibility and usefulness, we selected a set of
eight categories and, for each category, we downloaded the
100 most popular applications considering the number of
downloads. Then, for the top 20, we manually defined per

category of applications, realistic execution scenarios, which
we played several times recording both power consumption
and network traffic. We use the collected data to answer the
following high level research question:

Is ADAGO effective in finding a set of optimal applications
and quantifying the energy/data overhead gap between
similar applications?

Results show that just considering the application’s rating
is not an effective strategy to select applications to install
or compare against. In addition, we show that ADAGO is
able to generate optimal sets of applications reducing the
power consumption and network usage, and how we can help
developers to measure how far is a new application to the
optimal applications in the same category.

The remainder of the paper is organized as follows. In
Section II we describe the related work. In Section III we
present basic concepts related to multi-objective optimization.
In Section IV, we define our approach to define a recommen-
dation system to choose optimized sets of Android applica-
tions. In Section VI, we report and discuss the results of our
measurements and we compare the optimal sets of applications
generated by the proposed recommendation system respect to
a set of applications selected by the user, based on rating.
Finally, in Section VII, we discuss the threats to the validity
of our experiments and we conclude the paper in Section VIII.

II. RELATED WORK

There has been a recent surge in the number of studies
related to the Android market, energy consumption (of mo-
bile applications), privacy concerns, application monitoring,
and application analysis. The earliest works are focused on
modeling, monitoring, and improving energy consumption at
the hardware level (e.g., [3]). A detailed survey of energy
measurement works is presented in [8]. Later, attention has
shifted to techniques that model, monitor, and improve en-
ergy consumption at the level of the operating system and
applications [21]. In [7], the energy consumption of Android
applications is estimated at instruction level using a Low
Power Energy Aware Processing measurement device (Atom-
LEAP). Regarding the same measurement device, the energy
consumption at code line level is measured in [13] and the API
level energy consumption patterns of 405 mobile applications
is studied in [12]. Several previous works (see [7], [12], [13])
have adapted Ball-Larus path enumeration technique [2] to
obtain statement level execution details. Researchers have also
recognized the importance of threads, methods and procedures
[18]. In this paper, we take the same stance as in many
previous works, such as [5], [15], and we are not interested to
the instruction or method energy level but the overall scenario
of the energy consumption.

Early works were directed to improve code practices and
provide users with guidelines to extend battery life, see for
example [11]. In [20], authors mined Android energy-greedy
API usage patterns. The idea is to make developers aware of

which components and API is more energy efficient. Similarly,
a set of recommendations to support developers in coding
more energy aware applications is developed in [6]. A set
of 21 Android applications is studied in [5], and results show
that the use of ads in applications leads to an increase of
energy consumption and network traffic. Recently, compiler
optimization techniques have been used (see [17]) to reduce
design patterns energy consumption.

We share with previous works the idea of supporting both
users and developers. In this way we are closer to [14], [15],
where screen colors are tuned to save energy. However, we
have a different formalization and we tackle a totally different
problem with different variables and objectives.

III. BACKGROUND IN MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization problems are mathematical
programming problems with a vector-valued objective func-
tion, which is usually denoted by f(x) = (f1(x), ..., fn(x)),
where fj(x), for j = 1, . . . , n, is a real-valued function defined
on the feasible region F ⊆ <N . Consequently, the decision
space belongs to <N while the criterion space belongs to <n,
and the multi-objective optimization problem can be stated as
follows:

optimize [f1(x), ..., fn(x)]
s.t. x ∈ F

In the functional space of criterion, some objective functions
should be maximized (j ∈ J1) while others should be
minimized (j ∈ J2), these subsets of indices verifying that
J1 ∪ J2 = {1, ..., n}. In this context, optimality is defined
on the basis of the concept of dominance, in such a way
that solving the above problem implies finding the subset
of non-dominated solutions, that is those feasible solutions
which are not dominated by any other feasible one. A feasible
solution x0 dominates another solution x ∈ F if and only
if fj(x0) ≥ fj(x), for every j ∈ J1 and fj(x0) ≤ fj(x),
for every j ∈ J2, with at least one strict inequality. The set
of non-dominated solutions will also be referred by Pareto
optimal solutions and define the efficient frontier or Pareto
optimal front of the multi-objective optimization problem (see,
for instance, [16]). In general, in multi-objective optimization,
there is not one single optimal solution but a set of “good” or
non-dominated solutions.

Metaheuristics [19], as Evolutionary Algorithms (EA) and,
specially, Evolutionary Multi-objective Optimization (EMO)
algorithms [9] work well handling multi-objective optimiza-
tion problems.

IV. THE ADAGO APPROACH

ADAGO is an advisor, a recommendation system mimicking
what an user/developer will likely do to select one or more
applications in one or more application categories. Application
selection will likely be based on application ratings and, if
available, on energy and network data overhead footprints. The
lower the energy and data overhead footprints, the longer the
battery will last and the less costly data transmission will be.

The ADAGO process can be divided in different steps,
as it is shown in Figure 1 (each step will be detailed in
the following sections). Here, in this section, we focus on
the core ADAGO part, the generation of a set of optimal
solutions (Step four). The user can manually specify different
categories and select for each category a set of applications.
Power consumption and data overhead can be measured in
different ways. ADAGO is transparent to the data collection
process and its inputs are a set of categories and application
measures; its output is a set of Pareto optimal solutions.

Select popular applications

for different categories

Stress-test to remove

applications which crash

Subset of the most

popular Android applications

Selecting Most Popular

Android Applications

Define a typical usage

scenario for each category

Play scenario recording user

interaction using HiroMacro

Export HiroMacro script

to Monkeyrunner format

Definition of Typical

Usage Scenarios

For each application play

scenario measuring power

and network usage

Data Collection

and Processing

Generation of Optimal Sets

of Android Applications

Save rating, average power

and network usage values

optimize [power(x), network(x), rating(x)

s.t. x in F

(1)

(2)

(3)

(4)

Fig. 1. ADAGO conceptual sequence of steps.

Let C = {C1, ..., CN} be a set of categories. Further
assume that, for each category Ci, a set Ai of applications
has been selected. In other words, A = {A1, ..., AN} is the
application set of sets. An element x of the search space
F, x = (x1, . . . , xN), is a set of applications where xj is an
application selected from Aj and an application from each
category in C has been chosen. In other words, a solution must
contain an application per category and all categories must be
present.

ADAGO goal is to analyze the trade-off between power con-
sumption, network usage and global rating, and it models the
following combinatorial multi-objective optimization problem:

optimize [power(x), network(x), rating(x)]
s.t. x ∈ F (1)

Given a solution x, the objective functions used in (1) are
calculated as follow:

power(x) =
∑N

i=1 power(xi)

N
(2)

network(x) =
∑N

i=1 network(xi)

N
(3)

rating(x) =
∑N

i=1 rating(xi)

N
(4)

In equations (2) and (3), power(xi) and network(xi) are the
average values of power (in Watts) and network usage (in
megabytes) for application xi in a certain number of runs and
for a given number of exercised application functionalities.
In equation (4), rating(xi) is the rating of the application
xi in Google Play (it is a number, between one and five,
calculated as the weighted average of user ratings). Notice
that the constant N is just a rescaling factor and thus, in
this case, optimizing

∑N
i=1 power(xi)

N is the same as optimizing∑N
i=1 power(xi). The same holds for network usage and

application ratings.

V. CASE STUDY DESIGN

The goal of this study is to assess ADAGO capabilities
with the purpose of understanding ADAGO applicability, to
help users and developers to select and compare an optimal
set of applications. The quality focus is, on the one hand, the
ability to select an optimal set of applications and, on the
other hand, reducing users’ effort during the selection of an
application. The perspective is the point of view of a user who
wishes to select and install a set of applications (selected from
a set of categories) and the point of view of a developer who
needs to benchmark her/his applications against the best/worst
applications in the same category.

The context consists of eight application categories and 144
applications. The eight application categories are: Browsers,
Cameras, Email managers, Flash Lights, Music Players,
News viewers, Video Players, and Weather forecast. The
categories have been selected based on 1) the categories
used in [12], and 2) the number of downloads in the Play Store.

The high level research question stated in Section I
has been refined into the following three detailed research
questions:

• RQ1: To what extent is rating a good indication of energy
and data overhead frugality?
The rationale of this research question is to analyze
whether ADAGO has a reason to exist. If, indeed, ratings
are a good proxy for energy usage and data overhead
then there is no need for ADAGO. Here we mimic a user
selecting one application at a time, per category, solely
based on ratings versus (1) ADAGO applied to each
single category and (2) ADAGO selecting simultaneously
the N applications, i.e., comparing user naive solution

against ADAGO Pareto optimal front. Notice that this
RQ is relevant to both an application developer and an
application user.

• RQ2: Given ADAGO optimal solutions, is there a trade-
off between power consumption, network usage and ap-
plication rating?
This research question is a follow-up of the previous
one and aims to quantify the potential gain offered by
ADAGO in terms of saved energy and data overhead.
However, here the focus is mostly on the application
end-user.

• RQ3: For a given category, how much better is a new
application with respect to the others?
This research questions looks, mainly from a developer
point of view, at how different applications in the same
category compare to each other. This allows us to achieve
a deeper understanding of how spread power consumption
and data overhead are. Using this information, a devel-
oper will be able to compare her/his application against
similar applications from its competitors.

A. Data Extraction and Optimization

In this subsection we describe how we extract data with the
aim of addressing the research questions formulated above.
In our experiments, we use a LG Nexus 4 Android phone,
equipped with Android Lollipop operating system (version
5.1.1, Build number LMY47V). In the following, we detail
the steps from one to four that are shown in Figure 1.

1) Selecting Most Popular Android Applications: We select
a set of free Android applications belonging to eight different
categories. These applications are chosen considering the
number of downloads in Play Store, because, somehow, this
fact describes the tendency of Android users. Based on the
categories used in [12], we define a subset of these categories
considering the most common applications used nowadays
by smart-phone’s users: Browsers, Cameras, Email managers,
Flash Lights, Music Players, News viewers, Video Players,
and Weather forecast. For each category, 100 applications are
selected and their descriptions, statistics (including the rating),
and apk files are downloaded automatically using a Perl script
developed by us and the tool Play Store Crawler1. In addition,
we have developed a stress-test Python script which uses the
adb2 and Monkey3 Android tools to remove the applications
that crashed during their execution in the real phone used in
our experiments. This stress-test is similar to the approach
proposed in [12], configuring Monkey to generate 180 random
events during 60 seconds (three events per second). Around
2% of the applications crashed during this test and, therefore,
were removed. Considering the rest of applications, the subset
of most downloaded 20 applications are finally selected for
each category, except for email managers where the number

1https://github.com/Akdeniz/google-play-crawler
2http://developer.android.com/tools/help/adb.html
3http://developer.android.com/tools/help/monkey.html

of applications is four. In total, we analyze 144 applications
for all of the eight selected categories. The final list of selected
applications is available in our website 4.

2) Definition of Typical Usage Scenarios: For each appli-
cation in a category, we propose a typical usage scenario and
we play it automatically, taking care of measuring the power
consumption and the network usage associated. To collect real
scenarios, we interact with each application under study using
the Android application HiroMacro5. This software allows us
to generate scripts containing the touch and move events while
a real user interacts with each application directly on the
phone. The resulting script can be played automatically using
the same application but, because we need to interact with the
application automatically from our own code, we convert the
HiroMacro script to a Monkeyrunner script format. Thus, the
interaction to collect the scenario is done using the phone and
the actions can be played automatically from our code using
the Monkeyrunner6 Android tool. For all of the applications,
we simulate a usual scenario for users (for example, navigating
using the browser, taking some pictures, or playing a song).
The scenarios defined for each category and collected for each
application are described in Table I.

3) Data Collection and Processing: For the experiments,
each application is run and the collected scenario for it is
played in an automatic way. Each application is run 20 times
to get averaged results and, for each run, the application
is uninstalled after its usage. A complete description of the
followed steps is given in Algorithm 1, which has been
implemented as a python script. As it is described, all the
applications for a category are executed before a new run is
started. Thus, we aim to avoid that cache memory on the phone
stores information related to the application run. In addition,
before the experiments, the screen brightness is set to the
minimum value and the phone is set to keep the screen on.

forall the categories do
forall the runs do

forall the applications do
Install application (using adb).
Run application (using adb).
Wait 10 seconds (to load the app fully).
if application requires initialization then

Play set-up (using Monkeyrunner).
end
Start tcpdump (using adb).
Start oscilloscope to measure energy.
Play scenario (using Monkeyrunner).
Stop oscilloscope.
Stop tcpdump (using adb).
Download the tcpdump file (using adb).
Stop application (using adb).
Clean application files (using adb).
Uninstall application (using adb).

end
end

end
Algorithm 1: Steps in our script to do the experiments.

Because some applications need to be set up before they
can be used, in Algorithm 1 there is a step to initialize the

4http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/adago.tar.gz
5https://play.google.com/store/apps/details?id=com.prohiro.macro
6http://developer.android.com/tools/help/monkeyrunner_concepts.html

TABLE I
TYPICAL USAGE SCENARIOS DEFINED FOR EACH APPLICATION CATEGORY.

Category Scenario description

Browsers

- Go to wikipedia website.
- Search the word “software” and select first article.
- Wait 10 seconds to simulate user reading.
- Scroll down.
- Wait 10 seconds to simulate user reading.
- Scroll down.
- Wait 10 seconds to simulate user reading.
- Go back and close the application.

Cameras

- Enable flash.
- Focus and take a picture.
- Wait five seconds.
- Focus and take a second picture.
- Wait five seconds.
- Focus and take a new picture.
- Wait five seconds.
- Close the application.

Emails

- Go to inbox.
- Select first message.
- Download attached PDF file (12.2 MB).
- Wait 40 seconds to download the file.
- Go back and close the application.

Flash Lights

- Turn on the torch.
- Wait five seconds.
- Turn off the torch.
- Turn on the torch.
- Wait five seconds.
- Turn off the torch.
- Close the application.

Music Players

- Go to media library.
- Select and play first song.
- Wait 20 seconds.
- Pause and go back.
- Select and play second song.
- Wait 20 seconds.
- Pause, go back and close the application.

News

- Select first news.
- Wait seven seconds to simulate user reading.
- Scroll down.
- Wait seven seconds to simulate user reading.
- Scroll down.
- Wait seven seconds to simulate user reading.
- Go back.
- Select second news.
- Wait seven seconds to simulate user reading.
- Scroll down.
- Wait seven seconds to simulate user reading.
- Scroll down.
- Wait seven seconds to simulate user reading.
- Go back and close application.

Video Players
- Go to media library.
- Select and play movie for 30 seconds.
- Pause, go back and close application.

Weather

- Add city Montréal (Canada).
- Wait four seconds.
- Add city Madrid (Spain).
- Wait four seconds.
- Select city Montréal (Canada).
- Wait four seconds.
- Select city Madrid (Spain).
- Wait four seconds.
- Close application.

application when it is required. In these cases, the initialization
process uses Monkeyrunner to run a sequence of events
(collected previously for each application using HiroMacro as
was explained before in this section) to set up the application.

Finally, when the data is collected, it is processed to
calculate and save in a Comma Separated Values (CSV) file,
the associated rating existing in Google Play, the average
power consumption in Watts (W), and the network usage in
megabytes (MB), for each application over all the runs.

Power Consumption Measurement: The power consump-
tion is measured using a precise digital oscilloscope TiePie
Handyscope HS5. We use this device because it allows to
measure using high frequencies and because it offers the
LibTiePie SDK, which is a cross platform library for using
TiePie engineering USB oscilloscopes through third party soft-
ware. Between the power supply and the phone we connect, in
series, a uCurrent7 device, which is a precision current adapter
for multimeters converting the input current in a proportional
output voltage (Vout). The input current (I) is calculated by the
uCurrent device and, therefore, I = Vout. Knowing I and the
voltage supplied by the power supply (Vsup), we use the Ohm’s
Law to calculate the power consumption (P) as P = Vsup ∗ I .

The resolution is set up to 16 bits and the frequency to
125 kHz, therefore a measure is taken each eight microsec-
onds. The LG Nexus 4 phone is connected to an external power
supplier which is connected to the phone’s motherboard, thus
we avoid any kind of interferences with the phone battery in
our measurements. The diagram of the connection is shown
in Figure 2.

power

supply

+
-

uCurrent

input

output

+-

+ -

+
-

battery

+
-

phone

1
4

Fig. 2. Connection used to measure the power consumption on Nexus 4.

Because the phone is connected via USB to the PC to send
and receive data, the USB charging was disabled on the device
to avoid any kind of interferences in our measurements. A
simple Android application was developed which allows to
enable or disable the USB charging in Nexus 4 phones. This
application is free and it is available for download in the Play
Store8.

Network Usage Measurement: The number of transmitted
bytes is collected using the tool Android tcpdump9 on the
phone, which has been used in recent works as [5]. It is
a command line packet capture utility, useful for capturing
packets from the Wifi and cellular connections and it has the
same switches and options as its linux’s counterpart. We use
this tool via adb to capture the number of bytes transmitted
over the network connection while an application is running.

4) Generation of Optimal Set of Android applications: In
order to generate different optimal sets of applications taking
into account power consumption, network usage, and global
rating, the multi-objective optimization problem (1) can be
solved using metaheuristics. This kind of techniques are useful
when the search space is large and it is not possible to explore
it exhaustively. Given that we select eight categories and 20
applications for each of them, except for Emails where we

7http://www.eevblog.com/projects/ucurrent/
8https://play.google.com/store/apps/details?id=ruben.nexus4usbcharging
9http://www.androidtcpdump.com/

have four applications, there are 207·4 = 5120000000 possible
combinations of applications. Because in each category there
exist applications that have a lower power, lower network
usage, and a higher rating than others applications in the
same category, the search space can be reduced removing the
dominated applications in each category regarding the Pareto
dominance relation. Considering this fact, the total number of
Pareto optimal applications per category after the reduction is
shown in Table II.

TABLE II
APPLICATIONS PER CATEGORY AFTER SEARCH SPACE REDUCTION

Category Applications
Browsers 4
Cameras 10
Emails 2
FlashLights 9
MusicPlayers 4
News 2
VideoPlayers 4
Weather 6

Taking into account this reduction, there are 138240 pos-
sible combinations of applications, which can be generated
exhaustively. After that, the Pareto dominance relation is
applied over all the possible combinations and the final sets of
applications are obtained. The resulting Pareto optimal front
is shown in Figure 3, which contains 896 optimal sets of
applications.

POWER (in W)

NETWORK (in MB)

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

RATING

2.22.3
2.4

2.5
2.62.7

2.8

1.5
1.55
1.6
1.65
1.7
1.75
1.8
1.85
1.9
1.95
2

RATING

Fig. 3. Pareto optimal front generated after the search space reduction.

If the number of categories or the number of applications
per category is greater, the search space could be too large to
be explored exhaustively and metaheuristics would be needed.
In these cases, the multi-objective optimization problem (1)
can be solved using EMO algorithms, as NSGA-II. To check
this fact, problem (1) is defined and included in jMetal [4], an
object-oriented Java-based framework for multi-objective opti-
mization with metaheuristics, and it is solved using NSGA-II.
In our online technical report [1] we describe the algorithm
configuration and the Pareto optimal front obtained, which is
very similar to the one exposed here.

B. Analysis Method

To address RQ1, we perform two analyses. First, we man-
ually inspected the values of power consumption and data

overhead in the three groups. We plotted the naive solution
versus the optimal using bar charts. Then, we considered
the power and data measures for each category as extracted
by different populations. A population selected by the user
and two populations selected by ADAGO. We compared the
different solution using Wilcoxon signed-rank test with p-value
Holmes correction; we also computed the Cliff-Delta effect
size.

To address RQ2, we proceed in a way similar to RQ1.
We verified if marginally sacrificing the rating of ADAGO
solutions could lead to a trade-off in power consumption, data
and rating. To measure this trade-off we selected the two
best solutions found by ADAGO which minimize the power
consumption and the network usage, and they were compared
to the user solution, which maximizes the rating.

To address RQ3, we perform two different kind of anal-
yses. First we fixed one category, then we computed per
category the optimal, median and worst power consumption
and data overhead. Finally, we inspected the histogram of
power consumption and network usage (separately) to show
how the new application is positioned with respect to the
optimal applications in the same category. This mimics a
developer who needs to understand if her/his new application
is competitive and how far it is from the bests in the category.

VI. RESULTS

A global portrait of the average power consumption usage
for selected applications in each category is shown in Figure 4.
Cameras and Video Players are the most expensive categories
and, on the other hand, Emails and Flash Lights applications
consume lower power than applications in other categories.
The same data related to network usage is available in our
online technical [1]. Surprisingly, there are cameras and flash-
lights applications transmitting data over the network; some of
these data are likely due to ads but it is hard to know exactly
what kind of information is sent/received. Similar charts for
applications in each category are available in [1], showing
the average power consumption and data usage for selected
applications.

Before answering the different research questions, we define
the user solution as the combination of applications per
category which maximizes the rating in each category. If there
are more than one application in a category with the maximum
rating, one of them is selected randomly. Let us define xuser as
the user solution. Considering our data, power(xuser) = 2.87,
network(xuser) = 2.58, and rating(xuser) = 4.56, calcu-
lated using equations (2), (3), and (4).

RQ1 (To what extent is rating a good indication of energy
and data overhead frugality?)

To answer this research question, firstly, the applications per
category selected by the user, which maximizes the rating,
are compared to the Pareto optimal applications found by
ADAGO in each category. We expose this comparison for
applications in the News category, where ADAGO found two
optimal applications. In Figure 5, the comparison between

●

●

●●●

●

●

B
ro

w
se

rs

C
am

er
as

E
m

ai
ls

F
la

sh
Li

gh
ts

M
us

ic
P

la
ye

rs

N
ew

s

V
id

eo
P

la
ye

rs

W
ea

th
er

1

2

3

4

Average power consumption (in W) by category

Fig. 4. Average power consumption for applications in each category.

the first application (com.mobilesrepublic.appy) and the ap-
plication chosen by the user (com.guardian) is shown. The
application found by ADAGO has the same rating (4.5) as the
user application, but it improves the power consumption and
network usage by 5.40% and 95.04%, respectively.

0

2

4

6

Network (in MB) Power (in W) Rating
Objective

M
ea

n

Selection

ADAGO

User

com.mobilesrepublic.appy VS com.guardian

Fig. 5. Comparison of the first optimal application found by ADAGO and
the application chosen by the user (in News category).

The comparison respect the second optimal application
found by ADAGO (net.aljazeera.english) is shown in Figure
6. In this case, the improvement in power consumption and
network usage is 8.55% and 98.30%, but lower rating (4.1).

We conclude that, because in the same category several
applications can have the same rating, the application chosen
by the user cannot be optimal given that other applications
with the same rating could have better power consumption
and network usage. Figures for all the categories used in this
work are available in our online technical report [1].

Table III reports, for two categories, the results of Wilcoxon
signed-rank and the Cliff-Delta effect size (this information
for all categories is available in [1]). Bold values for p-value
indicate that the comparison is statistically significant (at 95%)
after Holmes correction. For each category (first table column),

0

2

4

6

Network (in MB) Power (in W) Rating
Objective

M
ea

n

Selection

ADAGO

User

net.aljazeera.english VS com.guardian

Fig. 6. Comparison of the second optimal application found by ADAGO and
the application chosen by the user (in News category).

the maximum rating is reported which is the rating associated
to the application chosen by the user. One can notice (third
column) that the Pareto front contains applications with the
user selected application. Actually (see the Music Players cat-
egory) the user selection is sometime an optimal application.
This happened for three categories. In such cases the p-value is
not significant and the effect size is zero. What we observe in
Table III is that not always the ADAGO solution has the lower
energy (data overhead) consumption. Anyway, as we expected,
either the user selection is optimal or ADAGO applications
have either lower energy footprint or lower data footprint with
very significant p-values. Furthermore, the effect size is almost
always very high. Cliff delta is considered to be negligible for
values below 0.147, small below 0.33, medium below 0.475
and large otherwise. We thus conclude that when (if remove
the special case when the user selection is optimal) energy
(data overhead) of ADAGO’s application is lower than the
user selected, this is statistically significant and with a large
effect size. Similar findings are reported for all categories in
the online technical report [1].

In addition to the previous comparison, the user solution
is compared to the combination of applications generated by
ADAGO for all the categories simultaneously (the resulting
Pareto optimal front). In this case, the user solution is not op-
timal because the Pareto optimal front generated by ADAGO
contains 11 solutions with similar rating but better power and
data. From these 11 solutions we select two, the best one con-
sidering the power consumption (xminp

) and the best one that
minimizes the network usage (xminn

), and both are compared
to the user solution in Figure 7. In this chart, a bar is drawn for
each objective and its height is defined by the minimum and
maximum values of the corresponding objective in the Pareto
optimal front obtained by ADAGO. A line is used to represent
each solution specifying the value of each objective function.
As it is shown in Figure 7, ADAGO is able to generate
better solutions. The improvement in power consumption and
network usage is 5.42% and 25.67%, respectively, considering
xminp versus xuser. Regarding xminn , the improvement with

TABLE III
STATISTICAL TEST COMPARING ADAGO AND THE APPLICATION SELECTED BY THE USER IN TWO CATEGORIES.

Category (max. Rating) Application Rating Power Network
p-val cliffd p-val cliffd

Browsers (4.60)

com.apusapps.browser 4.60 0.8299 0.2050 0.0000 0.9500
com.ksmobile.cb 4.60 0.9042 0.0250 0.0000 0.9500
com.opera.mini.native 4.40 0.0448 0.4650 0.0000 0.9500
com.UCMobile.intl 4.50 0.8299 0.1750 0.0000 0.9500

Music Players (4.60)

cn.voilet.musicplaypro 4.40 0.0000 0.9500 0.0000 -1.0000
com.aimp.player 4.50 0.0000 0.8550 0.0000 0.9500
com.n7mobile.nplayer 4.50 0.0064 0.5350 0.0000 0.9500
com.tbig.playerprotrial (user selection) 4.60 1.0000 0.0000 1.0000 0.0000

respects to xuser is 1.37% and 29.15%, respectively. In all
the compared solutions the global rating is similar (4.52). In
addition, as it is shown in the chart, the network usage of
the user solution is worse than the data usage of any Pareto
optimal solution found by ADAGO.

Power (in W) Network (in MB) Rating

1
2

3
4

5

ADAGO solution with minimum power
ADAGO solution with minimum network
User solution

Fig. 7. Comparison of the optimal solutions found by ADAGO and the
solution chosen by the user (all of them with a similar rating value).�

�

	
We conclude that it is not a good idea to choose
applications in the Play Store only on the basis of
ratings, because a good rating does not warrant an
efficient use of power consumption or network.

RQ2 (Given ADAGO optimal solutions, is there a trade-off
between power consumption, network usage and application
rating?)

As we commented in RQ1, the user solution is not optimal
because ADAGO was able to generate several Pareto optimal
solutions where 11 of these solutions had a similar rating
but they improved the power consumption and data usage.
If we consider that power consumption or network usage are
more important for the final user than the rating, the two best
Pareto optimal solutions considering the power consumption
and data usage could be selected. Both solutions are compared
versus the user solution in Figure 8. Let us set x’minp

as
the best solution generated by ADAGO considering the power
consumption. Regarding our data, when x’minp

is compared to
xuser, the rating is sacrificed by 6.30%, but the improvement in
power consumption and network usage is 16.61% and 29.32%,

respectively. On the other hand, if the network usage is
considered more important than the rating, the Pareto optimal
solution with the minimum data usage could be selected. Let
us set x’minn

as the solution generated by ADAGO with the
minimum network usage. Taking into account our data, when
x’minn is compared to xuser, the rating is sacrificed by 6.50%,
but the improvement in power consumption and network usage
is 3.84% and 40.17%, respectively.

Power (in W) Network (in MB) Rating

1
2

3
4

5

ADAGO solution with minimum power
ADAGO solution with minimum network
User solution

Fig. 8. Comparison of the optimal solutions found by ADAGO and the
solution chosen by the user.�

�

	
We conclude that, sacrificing the rating, power con-
sumption or network usage could be reduced by
16.61% and 40.17%, respectively, in comparison to
the user solution based on rating only.

RQ3 (For a given category, how much better is a new
application with respect to the others?)

We consider that, given a new application (or a new version
of an existing one), it is useful for developers to know how
close or far is the new application to the others in the same
category, considering the power consumption and network
usage. For the new application, we define a similar typical
usage scenario (which was used in applications belonging to
the same category) and we collect the power consumption and
network usage while the application is running. After that, it
is compared to the optimal applications in the same category
using the reference values shown in Table IV. Here, for each
category, the optimal, median, and worst values for power

consumption, data usage, and rating are shown. In addition,
using histograms, developers can visualize, in a graphical way,
the distribution of power consumption and network usage
of applications belonging to the same category. It allows a
developer to know how her/his new application is positioned
with respect to the others.

Let us suppose that a new Android weather application
has been developed. We play the scenario associated to the
Weather category and we collect and calculate the average
power consumption and network usage while the application
is running. Let us consider that the associated power con-
sumption and data usage are 2.50W and 0.05MB, respectively,
for this new application. Using the reference values given in
Table IV we can know that the power consumption associated
to the application is better than the best existing value in this
category. In addition, the network usage of the new application
does not improve the best existing value, but it is better than
the median. Figures 9 and 10 show the histograms for power
consumption and network usage of applications in the Weather
category, respectively (where the red bar represents the new
application). Analyzing the histograms, we confirm that the
new application has a better power consumption because it
is the only one with an average power lower than 2.6W.
Considering the network usage, we conclude that the new
application is close to the median but it is the second best
application in the category with respect to data usage.

0.0

0.5

1.0

1.5

2.0

2.6 2.8 3.0
Power

C
ou

nt

Applications

Old

New

Histogram for Power in Weather category

Fig. 9. Distribution of power consumption for optimal Weather applications.�

�

	
We conclude that, for a given category, it is possible
to measure how far is a new application with respect
to the optimal applications found by ADAGO in that
category.

VII. THREATS TO VALIDITY

To reduce the threats to validity and allow replicate this
study, all the content used is available in our replication
package10. It is important to notice that the same model of
phone and version of Android operating system should be used

10http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/adago.tar.gz

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
Network

C
ou

nt

Applications

Old

New

Histogram for Network in Weather category

Fig. 10. Distribution of network usage for optimal Weather applications.

to replicate the study. In addition, considering the scenarios
collected for each application, they are only valid for the apk
versions used in this study, which are also available in our
replication package. The reason is that the scenarios were
collected considering approaches based on absolute coordi-
nates and not on the identifier of components in the graphical
user interface (GUI). Therefore, if another model of phone is
used or the application was updated and the GUI changed, the
scenarios will not be valid. In addition, we tried to wait the
same quantity of time between different user actions when the
scenarios were defined. Because they were collected manually,
these intervals of time are not exactly the same for all the
applications in the same category. Anyway, this fact only
affects the application execution time and the influence over
the average power consumption is negligible.

Threats to construct validity concern relationship between
theory and observation, and to which extent what is measured
is actually what it is claim to be measured. We used the
same phone model used in other papers. Plus our measurement
apparatus has a higher or the same number of sampling bits
as previous studies and our sampling frequency is one order
of magnitude higher then past studies. Overall, we believe
our measurement are more precise or al least as precise as
similar previous study. As in most previous studies the cannot
exclude the impact of the operating system. What is measured
is a mix of Android and application actions. We mitigate
this by running the application multiple times; resetting the
environment before each run; and using the same setting
and scenario for different applications in the same category.
Monkey was running on the controller desktop sending events
to the phone through the USB connection, and it introduces an
extra energy consumption. This fact was checked in [12] and
the authors reported that it was not noticeable in comparison
to the total energy consumption of the application. We extend
this to tcpdump, the tool which is used to collect information
related to the network usage. In a similar way, data of network
usages associated to each application may also be affected by
the operating system, because tcpdump captures all the packets
transmitted over the network interface. Given that this tool is

TABLE IV
REFERENCE VALUES FOR DEVELOPERS

Category Power (in W) Network (in MB) Rating
Optimal Median Worst Optimal Median Worst Optimal Median Worst

Browsers 2.86 2.97 3.03 0.24 0.59 0.61 4.60 4.55 4.40
Cameras 3.16 3.56 4.66 0.00 0.00 1.63 4.50 4.30 4.10
Emails 0.98 1.19 1.41 12.00 12.22 12.45 4.30 4.30 4.30
Flash Lights 0.68 0.79 1.36 0.00 0.00 0.04 4.70 4.40 3.80
Music Players 1.67 2.82 3.06 0.00 0.01 0.40 4.56 4.50 4.38
News 2.78 2.83 2.88 0.08 0.16 0.24 4.50 4.30 4.10
Video Players 2.97 3.19 3.29 0.00 0.00 0.05 4.50 4.45 4.20
Weather 2.61 2.84 3.02 0.02 0.27 0.91 4.50 4.30 4.10

only used while the application is running, we suppose that all
the network usages correspond to the application but Android
could have used the network connection e.g., to check for
updates. To minimize this risk, before the experiments, all the
processes that were not needed were killed and we performed
several runs for each application.

Threats to internal validity concern factors, internal to our
study, that could have influenced the results. We computed
the energy using well know theory; scenarios were replicated
several time to ensure statistical validity. As explained in the
construct validity our measurement apparatus is at least as
precise as previous measurement setup. Furthermore, we are
not interested in the absolute values of energy or data overhead
rather in the comparison of values obtained by runs of different
applications.

Threats to conclusion validity concern the relationship
between experimentation and outcome. While part of the
analyses are supported by appropriate statistical procedures,
other findings mainly have a qualitative nature (e.g., RQ3),
hence no statistical procedure is used. Clearly, as part of future
works there is the need to perform a more extensive validation
to really assess ADAGO usefulness. One major concern is
whether or not the scenarios, and thus the measurement data,
are representative of the overall application behavior. We
are aware that different features have different energy and
(possibly) data transfer characteristic. In a nutshell, we cannot
claim the most frugal applications identified with our scenarios
are the absolute best. However, our goal is to show ADAGO
feasibility and support the evidence of its usefulness. Future
work will be needed to extend the set of measured features
and consider other environment setup. For example, the effect
of Wifi connection versus cellular phone networks.

Threats to external validity concern the generalization of our
findings. Admittedly, the study is limited to eight categories
and 144 applications. Although we are aware that further stud-
ies are needed to support our findings, our investigation was,
intendedly, relatively limited in size to allow us to complement
the quantitative analysis with a qualitative analysis of collected
data and findings.

VIII. CONCLUSION

Different applications implementing similar or identical
functionalities may have different power consumptions and
network usages, but this kind of information is almost always
unknown to users and developers. We proposed ADAGO, a

recommendation system aimed at helping both users and de-
velopers. We help users to choose optimal sets of applications
belonging to different categories and we also help developers
to understand the relative placement of their application’s
efficiency with respect to others.

ADAGO models the application selection problem as a
multi-objective optimization problem, and it aims at minimiz-
ing power consumption and data usage while maximizing the
application rating.

We investigated ADAGO applicability and usefulness and
reported findings in the paper. Out of eight application cat-
egories and a set of 144 applications ADAGO was able to
outperform in, most of the cases, the manual application
selection solely based on application rating (RQ1). In other
words, selecting an application on the ground of application
rating does not guarantee to install the most frugal application.
Nevertheless, in three cases out of eight selecting an applica-
tion solely based on its rating gave an optimal application.
However, that solution was one among many; other solutions
could have preferred by the user due to either lower energy
or lower data overhead consumption.

Indeed, in RQ2 we show that different compromises are
feasible. Furthermore, if the user is willing to accept a lower
rating, as lower as about 6%-7%, much bigger energy and data
overhead savings are possible.

We conclude that, from the user perspective, choosing
optimal sets of applications, power consumption and network
usage can be reduced by 16.61% and 40.17%, respectively, in
comparison to choosing the set of applications that maximizes
only the rating. In addition, in RQ3, we show that it is possible
to help developers understanding how far is a new Android
application with respect to optimal applications in the same
category, taking into account power consumption and network
usage. This latter is a valuable information as developer can
leverage it to decide if it worth optimizing energy or using a
less aggressive advertisement behavior.

ACKNOWLEDGMENT

The authors would like to thank Francis Rivest for him valu-
able help. We also thank the Electrical Engineering department
of Polytechnique Montreal for sharing their resources.

REFERENCES

[1] “Online appendix for paper ’optimizing user experience in choosing
android application’.” [Online]. Available: http://ser.soccerlab.polymtl.
ca/ser-repos/public/tr-data/adago-report.pdf

[2] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture,
ser. MICRO 29. Washington, DC, USA: IEEE Computer Society,
1996, pp. 46–57. [Online]. Available: http://dl.acm.org/citation.cfm?id=
243846.243857

[3] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Computer Ar-
chitecture, 2000. Proceedings of the 27th International Symposium on,
June 2000, pp. 83–94.

[4] J. Durillo and A. Nebro, “jMetal: A Java framework for multi-objective
optimization,” Advances in Engineering Software, vol. 42, pp. 760–771,
2011.

[5] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond, “Truth in
Advertising: The Hidden Cost of Mobile Ads for Software Develop-
ers,” in Proceedings of the 37th International Conference on Software
Engineering (ICSE), May 2015.

[6] I. L. M. Gutiérrez, L. L. Pollock, and J. Clause, “Seeds: a software
engineer’s energy-optimization decision support framework,” in ICSE,
2014, pp. 503–514.

[7] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in Proceedings
of the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 92–101.

[8] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 12–21.

[9] D. K, Multi-Objective Optimization using Evolutionary Algorithms.
New York, NY 10158-0012: John Wiley & Sons, 2001.

[10] D. Li and W. G. J. Halfond, “An investigation into energy-saving
programming practices for android smartphone app development,” in
Proceedings of the 3rd International Workshop on Green and Sustain-
able Software, ser. GREENS 2014. New York, NY, USA: ACM, 2014,
pp. 46–53.

[11] ——, “An investigation into energy-saving programming practices
for android smartphone app development,” in Proceedings of the
3rd International Workshop on Green and Sustainable Software, ser.
GREENS 2014. New York, NY, USA: ACM, 2014, pp. 46–53.
[Online]. Available: http://doi.acm.org/10.1145/2593743.2593750

[12] D. Li, S. Hao, J. Gui, and W. Halfond, “An empirical study of the
energy consumption of android applications,” in Software Maintenance
and Evolution (ICSME), 2014 IEEE International Conference on, Sept
2014, pp. 121–130.

[13] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
ser. ISSTA 2013. New York, NY, USA: ACM, 2013, pp. 78–89.
[Online]. Available: http://doi.acm.org/10.1145/2483760.2483780

[14] D. Li, A. H. Tran, and W. G. J. Halfond, “Making web applications
more energy efficient for oled smartphones,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 527–538. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568321

[15] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing energy consumption of
guis in android apps: A multi-objective approach,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 143–154.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786847

[16] K. Miettinen, Nonlinear Multiobjective Optimization. Boston: Kluwer
Academic Publishers, 1999.

[17] A. Noureddine and A. Rajan, “Optimising energy consumption
of design patterns,” in 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence, Italy, May 16-
24, 2015, Volume 2, 2015, pp. 623–626. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.208

[18] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with eprof,”
in Proceedings of the 7th ACM European Conference on Computer
Systems, ser. EuroSys ’12. New York, NY, USA: ACM, 2012, pp. 29–
42. [Online]. Available: http://doi.acm.org/10.1145/2168836.2168841

[19] E.-G. Talbi, Metaheuristics: From Design to Implementation. Wiley
Publishing, 2009.

[20] M. L. Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. D.
Penta, and D. Poshyvanyk, “Mining energy-greedy api usage patterns
in android apps: an empirical study,” in MSR, 2014, pp. 2–11.

[21] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope:
Application energy metering framework for android smartphones using
kernel activity monitoring,” in Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, ser. USENIX ATC’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 36–36. [Online].
Available: http://dl.acm.org/citation.cfm?id=2342821.2342857

http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/adago-report.pdf
http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/adago-report.pdf
http://dl.acm.org/citation.cfm?id=243846.243857
http://dl.acm.org/citation.cfm?id=243846.243857
http://doi.acm.org/10.1145/2593743.2593750
http://doi.acm.org/10.1145/2483760.2483780
http://doi.acm.org/10.1145/2568225.2568321
http://doi.acm.org/10.1145/2786805.2786847
http://dx.doi.org/10.1109/ICSE.2015.208
http://doi.acm.org/10.1145/2168836.2168841
http://dl.acm.org/citation.cfm?id=2342821.2342857

	Introduction
	Related Work
	Background in Multi-objective Optimization
	The ADAGO approach
	Case Study Design
	Data Extraction and Optimization
	Selecting Most Popular Android Applications
	Definition of Typical Usage Scenarios
	Data Collection and Processing
	Generation of Optimal Set of Android applications

	Analysis Method

	Results
	Threats to Validity
	Conclusion
	References

