
Predicting Bugs Using Antipatterns
Seyyed Ehsan Salamati Taba1, Foutse Khomh2, Ying Zou3, Ahmed E. Hassan1, and Meiyappan Nagappan1

1 School of Computing, Queen’s University, Canada
2 SWAT, École Polytechnique de Montréal, Québec, Canada

3 Department of Electrical and Computer Engineering, Queen’s University, Canada
taba@cs.queensu.ca, foutse.khomh@polymtl.ca, ying.zou@queensu.ca, ahmed@cs.queensu.ca, mei@cs.queensu.ca

Abstract—Bug prediction models are often used to help allocate
software quality assurance efforts. Software metrics (e.g., process
metrics and product metrics) are at the heart of bug prediction
models. However, some of these metrics like churn are not
actionable; on the contrary, antipatterns which refer to specific
design and implementation styles can tell the developers whether
a design choice is “poor” or not. Poor designs can be fixed
by refactoring. Therefore in this paper, we explore the use
of antipatterns for bug prediction, and strive to improve the
accuracy of bug prediction models by proposing various metrics
based on antipatterns. An additional feature to our proposed
metrics is that they take into account the history of antipatterns
in files from their inception into the system. Through a case
study on multiple versions of Eclipse and ArgoUML, we observe
that (i) files participating in antipatterns have higher bug density
than other files; (ii) our proposed antipattern based metrics can
provide additional explanatory power over traditional metrics,
and (iii) improve the F-measure of cross-system bug prediction
models by 12.5% in average. Managers and quality assurance
personnel can use our proposed metrics to better improve their
bug prediction models and better focus testing activities and the
allocation of support resources.

Keywords-bug prediction, antipattern, software quality

I. INTRODUCTION

Software systems are pervasive in our society and play a
vital role in our daily lives. We depend on software systems
for our transportation, communication, finance, and even for
our health. Therefore, correct functioning of software systems
is essential. However, identifying and fixing errors in software
systems is very costly. It is estimated that 80% of the total
cost of a software system is spent on fixing bugs [1]. To
reduce this cost, many bug prediction models [2], [3], [4]
have been proposed by the research community to identify
areas in software systems where bugs are likely to occur.
The vast majority of these bug prediction models are built
using product (e.g., code complexity [5]) and process (e.g.,
code churn [3]) metrics, most of which are not actionable.
For example, Nagappan and Ball [3] have used code churns
to predict bugs in software systems. Yet, it is unclear how
developers should act on the churn values of a class to reduce
the risk of future bugs occurring.

Different from metrics, antipatterns [6] which identify
“poor” solutions to recurring design problems can tell devel-
opers whether the design of a class is “poor” or not, and
how to improve it using refactorings [7]. Antipatterns are
usually introduced in software systems by developers lack
of knowledge or experience to solve a particular problem.

Although antipatterns do not usually prevent a program from
functioning, they indicate weaknesses in the design that may
increase the risk for bugs in the future. In other words,
antipatterns indicate a deeper problem in a software system.
Previous work by Khomh et al. [8] have found that classes
with antipatterns are more prone to bugs than other classes.
Antipatterns can be removed from systems using refactoring.
If we can predict bugs using antipatterns information, develop-
ment teams will be able to use refactorings to reduce the risk
for bugs in systems. In this paper, we explore the possibility
of predicting bugs using antipatterns and strive to improve the
accuracy of state-of-the-art bug prediction models by propos-
ing various metrics based on antipatterns. We use statistical
modeling to establish and inspect dependencies between our
proposed metrics and bugs counts. Using antipatterns and
bug information from multiple versions of two open source
software systems of Eclipse1 and ArgoUML2, we address the
following three research questions:

RQ1) Do antipatterns affect the density of bugs in files?
We find that files with antipatterns tend to have higher
bug density than the others.

RQ2) Do the proposed antipattern based metrics provide
additional explanatory power over traditional met-
rics?
We find that our proposed antipattern based metrics
(ANA, ACM, and ARL) can provide additional ex-
planatory power over the traditional metrics LOC,
PRE and Churn. Among these metrics, ARL shows
significant improvement in terms of AIC and D2.

RQ3) Can we improve traditional bug prediction models
with antipatterns information?
We find that ARL can also improve bug prediction
models across systems. It has a low collinearity with
most process and product metrics from the literature
and can improve cross-systems bug prediction models
by an average of 12.5% in terms of F-measure.

The remainder of this paper is organized as follows. First,
we summarize the related literature on antipatterns and bug
prediction models in Section II. Next, we describe the ex-
perimental setup of our study in Section III and report our
findings in Section IV. In Section V, we discuss threats to

1http://www.eclipse.org/
2http://argouml.tigris.org/

the validity of our work. Section VI concludes our work and
outlines avenues for future works.

II. RELATED WORK

In this section, we discuss the related literature on antipat-
terns and bug prediction models.

A. Antipatterns and Code Smells

The first book on antipatterns in object-oriented develop-
ment was written in 1995 by Webster [9]. Fowler et al. [7]
defined 22 code smells that are bad structures in source code.
They mentioned that these smells indicate implementation
issues that can be solved using refactoring. Moreover, They
claim that code smells have detrimental effects on software.
However, little empirical evidence was provided to support this
claim.

The literature related to antipatterns and code smells gener-
ally fall into two categories. The first one focuses on detecting
antipatterns and code smells (e.g., [10]). The second category
concentrates on investigating the relation between antipatterns
and software quality (e.g., [11]). Our work in this paper has
the same aim as these studies (i.e., the improvement of soft-
ware quality). Li and Shatnawi [11] investigate relationships
between 6 code smells and class error probability in three
different versions of Eclipse. They report that classes with
antipatterns, such as: God Class, God Method and Shotgun
Surgery are positively associated with higher error probability.
Moreover, Khomh et al. [8] show that there is a relation
between antipatterns and the bug-proneness of a file. These
studies provide empirical evidences on the relation between
antipatterns and bugs. In this paper, we build up on these
previous works to investigate the possibility of predicting bugs
in software systems using antipattern information.

Olbrich et al. [12] study the evolution of two different
code smells (i.e., Shotgun surgery and God class) over time
in the development process of two software systems. They
conclude that the relative number of components having code
smells does not decrease over time meaning that not a lot
of refactoring activities are performed on the systems. We
also observe this behavior (as shown in Figure 2) on our
studied systems; the density of antipatterns does not increase
significantly overtime. Peters et al. [13] studied the lifespan
of 5 different code smells over different releases, and the
refactoring behaviour of developers in seven open source sys-
tems. They conclude that given the low number of refactorings
performed by developers, the number of long-living code smell
instances increases over time. These studies show that code
smells and antipatterns mostly remain in systems. In this study,
we investigate the link between the persistent antipatterns and
post release bugs in software systems.

B. Bug Prediction Models

Researchers have tried to uncover the possible reasons for
software bugs using different classes of software metrics,
such as process and product metrics [14], [15] or entropy of
changes [16]. However, their primary goal has been established

on improving the accuracy of bug prediction (localization)
models. Zimmermann et al. [14] conducted an empirical
study on three different versions of Eclipse to show that a
combination of complexity metrics can predict bugs. They
conclude that large files (i.e., high LOC values) are more prone
to bugs than others. Another case study performed using 85
versions of 12 releases of Apache projects [17] show how and
why process metrics are better indicators of bugs with respect
to performance, portability and the stability of the model.
Moreover, Kamei et al. [18] and Chen et al. [19] introduce
metrics based on the effort and topics in software systems to
improve bug prediction models.

Following the same line of work, in this paper, we propose
antipatterns as another factor to enhance the accuracy of bug
prediction models. More specifically, we propose four new
metrics based on the history of antipatterns in files, and
perform a case study to verify whether the proposed metrics
provide additional explanatory power to bug prediction models
built using traditional product and process metrics.

III. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

1) Do antipatterns affect the density of bugs in files?
2) Do the proposed antipattern based metrics provide ad-

ditional explanatory power over traditional metrics?
3) Can we improve traditional bug prediction models with

antipatterns information?

A. Data Collection

Our work studies bug prediction using 12 versions of
Eclipse and 9 versions of ArgoUML. Eclipse is a popular IDE
used both in open-source communities and in industry. It has
an extensive plugin architecture. ArgoUML is an open source
UML-based system design tool. These systems encompass
different domains and have different sizes. Eclipse is close
to the size of real industrial systems (e.g., release 3.3.1 is
larger than 3.5 MLOCs), while ArgoUML is a smaller project.
Table I shows descriptive statistics of the systems.

B. Data Processing

Figure 1 shows an overview of our data processing steps.
First, we mine the source code repositories of Eclipse and
ArgoUML to compute product and process metrics. Next, we
detect antipatterns in the two software systems. Then, we mine
the bug repositories of the systems to extract information about
bugs. Finally, we use statistical models to analyze the collected
data and answer our three research questions. The remainder
of this section elaborates on each of these steps.

1) Mining Source Code Repositories: We download 12
versions of Eclipse and 9 versions of ArgoUML from their
respective CVS repositories. We use the Ptidej tool [20] to
compute metrics on the source code of each downloaded
version. We also use a perl script developed for the purpose
of this study to calculate code churn metric values.

CVS

Repositories

Detecting

Antipatterns

Mining Bug

Repositories

Mining Source

Code Repositories

Bugzilla

Calculating

Metrics
RQ2

RQ3

RQ1

Analyzing

Figure 1. Overview of our data collection process.

Table I
SUMMARY OF THE CHARACTERISTICS OF THE ANALYSED SYSTEMS

Systems Releases(#) Total Number of Antipatterns Churn Total Number of Post Bugs Total Number of Pre Bugs LOCs
Eclipse 2.0 − 3.3.1(12) 273,766 148,454 27,406 23,554 26,209,669
ArgoUML 0.12 − 0.26.2(9) 15,100 21,427 2,549 2,569 2,025,730

2) Detecting Antipatterns: We use the DECOR method
proposed by Moha et al. [10] to specify and detect antipatterns
in our subject systems. DECOR is based on a thorough domain
analysis of code smells and antipatterns in the literature, and
provides a domain-specific language to specify code smells
and antipatterns and methods to detect their occurrences auto-
matically. Moha et al. [10] reported that DECOR’s antipatterns
detection algorithms achieve 100% recall and an average
precision greater than 60%. In this study, we focus on the
13 antipatterns described in Table II. We choose only these
antipatterns due to the following reasons: (i) they are well-
described by Brown et al. [6] and Fowler [7]; and (ii) we
could find enough of their occurrences in several releases of
our subject systems.

Figure 2 shows the density of antipatterns over the different
releases of our subject systems. We define density of antipat-
terns for a version as the total number of antipatterns over the
total number of files in that version. As shown in Figure 2, the
density of the antipatterns is quite stable during the evolution
of the systems. Our premise in this work is that acting on these
antipatterns can help reduce the risk for bugs in the systems.

2 4 6 8 10 121 2 3 4 5 6 7 8 9 10 11 12

1.
0

1.
5

2.
0

2.
5

3.
0

Releases

D
en

si
ty

 o
f A

nt
ip

at
te

rn
s Eclipse

ArgoUML

Figure 2. Density of Antipatterns over ArgoUML and Eclipse projects.

3) Mining Bug Repositories: For each version of our
studied systems, we extract the change logs of all commits
performed after the version is released and download bug
reports from the bug tracking system (i.e., Bugzilla). We parse
the change logs and apply the heuristics proposed by Fisher et

Table II
ANTIPATTERN DEFINITION

Antipatterns Description
A class that provides mutable class variables,

AntiSingleton which consequently could be used as global vari-
ables.
A class that is too large and not cohesive enough.

Blob It monopolises most of the processing, and
takes most of the decisions.

ClassDataShould- A class that exposes its fields, thus violating the
BePrivate (CDSBP) principle of encapsulation.

A class that has (at least) one large and complex
ComplexClass method, in terms of cyclomatic complexity and

LOCs.
LargeClass A class that has grown too large in term of LOCs.
LazyClass A class that has few fields and methods.

A class that has (at least) one method with a
LongParameter- too long list of parameters in comparison to the
List (LPL) average number of parameters per methods

in the system.
LongMethod A class that has (at least) a method that is very

long, in term of LOCs.
MessageChain A class that uses a long chain of method invoca-

tions to realise (at least) one of its functionality.
RefusedParent- A class that redefines inherited method using
Bequest (RPB) empty bodies, thus breaking polymorphism.
SpaghettiCode A class declaring long methods with no parame-

ters and using global variables.
SwissArmyKnife A class that has excessive number of method def-

initions, thus providing many different unrelated
functionality.

Speculative- A class that is defined as abstract but that has
Generality very few children, which do not make use of its

methods.

al. [21] to identify bug fixes locations. We retain only bugs for
which a “bug ID” is found in CVS commits and the Resolution
field is set to “FIXED” or the Status field set to “CLOSED”.
We refer to the CVS commits as bug fixing commits and
extract the list of files that are changed to fix the bug.

4) Analysis Methods: We investigate the possibility of
using antipatterns to predict bugs in software systems.

a) Analyzing the relation between the occurrences of
antipatterns and the density of future bugs: We use the
Wilcoxon rank sum test [22] to compare the density of

future bugs of classes with and without antipatterns. We
define density of future bugs in a file as the total number
of bugs over the total LOCs in the file. The Wilcoxon rank
sum test is a non-parametric statistical test to assess whether
two independent distributions have equally large values. Non-
parametric statistical methods do not make assumptions about
the distributions of assessed variables.

b) Exploring bug prediction using antipatterns informa-
tion: As mentioned before, state of the art metrics can be
classified into product metrics (e.g., Lines of Code (LOC)[23])
which are static, and process metrics (e.g., Code Churn [3])
which require historical information on a system. To inves-
tigate the use of antipatterns in bug prediction models, we
propose new metrics that capture antipatterns information in a
system. Then, we build logistic regression models to compare
each new antipattern based metric to respectively LOC, PRE,
Code Churn and the combination of them. We select LOC,
PRE and Code Churn as our baseline metrics since previous
studies have found them to be good predictors of bugs in
software systems [3], [15], [24], [25]. A similar decision is
made in studies by Bird et al. [26] and Chen et al. [19].

We create the models following a hierarchical modelling
approach: we start with our baseline metrics and then build
subsequent models by adding step by step, our proposed
antipatterns metrics (i.e., APMetric). We chose to follow a
hierarchical modelling approach because contrary to a step-
wise modelling approach, the hierarchical approach has the
advantage of minimizing the artificial inflation of errors and
therefore the overfitting [27]. For each model, we compute
the variance inflation factors (VIF) [28] of each metric to
examine multi-collinearity between the variables of the model.
We remove all variables with VIF > 2.5.

We report for each statistical model the percentage of de-
viance explained D2 [29] and the Akaike information criterion
(AIC)[30] of the model. The deviance of a model M is defined
as D(M) = −2∗LL(M), where LL(M) is the log-likelihood
of the model M . The deviance explained (i.e., D2) is the ratio
between D(Bugs ∼ Intercept) and D(M). A higher D2

value generally indicates a better model fit. AIC is used to
compare the fitness of different models. A lower AIC score is
better. For each subsequent model MBase+APMetric derived
from a model MBase, we also test the statistical significance
of the difference between MBase+APMetric and MBase. We
report the corresponding p-values.

IV. STUDY RESULTS

This section presents and discusses the results of our three
research questions.

RQ1: Do antipatterns affect the density of bugs in files?
Motivation. Previous work by Khomh et al. [8] have shown
that files participating in antipatterns are more likely to have
bugs than other files. Moreover, in this research question, we
examine the density of bugs in files with antipatterns. We want
to know when bugs occur in files with antipatterns, they occur
in larger number compared to other files or not.

Approach. We apply DECOR [10] to specify and detect
antipatterns in all the versions of our subject systems as
described in Section III-B2. For each version, we classify
the files in two groups: a group of files with at least one
antipattern, and a group of files without antipatterns. For each
file from the two groups, we compute the number of post
release bugs in the file as described in Section III-B3. Since
previous studies (e.g., [14], [15], [24]) have found that the size
of code is related to the number of bugs in a file. To control
for the confounding effect of size, we divide the number of
future bugs of each file by the size of the file. We obtain the
density of future bugs for each file. We test the following null
hypothesis:
H1

01: there is no difference between the density of future
bugs of the files with antipatterns and the other files without
antipatterns.

Hypothesis H1
01 is two-tailed since it investigates whether

antipatterns are related to a higher or a lower density of
bugs. We perform a Wilcoxon rank sum test [22] to accept
or refute H1

01, using the 5% level (i.e., p-value < 0.05). We
also compute and report the difference between the average
bug densities in the two groups of files with and without
antipatterns (i.e., DA −DNA).

Table III
WILCOXON RANK SUM TEST RESULTS FOR THE BUG DENSITY IN FILES

WITH AND WITHOUT ANTIPATTERNS

Eclipse ArgoUML
Version DA−DNA% p-value Version DA−DNA% p-value
2.0 -5.78 <0.05 0.12 -10.75 0.58
2.1.1 -4.36 <0.05 0.14 63.26 <0.05
2.1.2 3.43 <0.05 0.16 8.09 <0.05
2.1.3 19.74 <0.05 0.18.1 19.58 <0.05
3.0 11.60 <0.05 0.20 36.78 <0.05
3.0.1 3.01 <0.05 0.22 72.93 <0.05
3.0.2 13.60 <0.05 0.24 -22.33 0.07
3.2 3.98 <0.05 0.26 -18.71 0.71
3.2.1 -1.82 <0.05 0.26.2 50.75 <0.05
3.2.2 4.23 <0.05
3.3 19.81 <0.05
3.3.1 -13.22 0.10

Findings. In general, the density of bugs in a file with
antipatterns is higher than the density of bugs in a
file without antipatterns. The Wilcoxon rank sum test was
statistically significant for 11 out of 12 versions of Eclipse
and 6 out of 9 versions of ArgoUML (see Table III). In 8
versions of Eclipse and 6 versions of ArgoUML (highlighted
in Table III), the density of bugs in files with antipatterns is
significantly higher than the density of bugs in other files.�

�

	
Overall, we reject H1

01 and conclude that the occur-
rence of an antipattern in a file is not only related to a
higher risk for bugs in the file (as reported by Khomh
et al. [8]), but also to a higher density of bugs.

RQ2: Do the proposed antipattern based metrics provide
additional explanatory power over traditional metrics?
Motivation. Antipatterns presented in Table II are detected in
software systems using thresholds defined over source code
metrics and other lexical information [8]. Since antipatterns
refer to specific design and implementation problems in
software systems, they are likely to be better indicators
than metrics for developers. Indeed, an antipattern can tell
developers whether a design implementation is “poor” or not,
by means of thresholds defined over metrics and other lexical
information; while without antipatterns knowledge, developers
would have to judge by themselves which metric values
are problematic. Results of RQ1 show that antipatterns are
related to higher numbers of bugs. By acting on antipatterns
(e.g., using refactorings), it may be possible to reduce post
release bugs in a system. In this question, we investigate
this hypothesis in details. We want to understand which
proportion of the deviance (i.e., model fitness) in post release
bugs can be explained by antipatterns information.

Approach. We introduce the following four metrics to capture
antipatterns information in a software system.

Let’s Si, i ∈ {1 . . . n} be the list of consecutive versions
of a system S, i.e., S1 being the first released version and
S = Sn. For each file f ∈ S, we denote by f i the version of
f in Si, i.e., f i ∈ Si, i ∈ {1 . . . n} and f = fn.

Let’s χi be the indicator function defined on Si by:

χi(f i) =

{
1, if f i contains one or more bugs.

0 otherwise.
(1)

Let’s nAP (f
i) be the total number of antipatterns in f i,

i ∈ {1 . . . n}. To capture the distribution of antipatterns in
past buggy versions of a system, we introduce the function
NAP defined on (

⋃
Si)i∈{1...n} as follows:

NAP (f
i) =

{
χi(f i) ∗ nAP (f

i), if 1 ≤ i < n

nAP (f
i) if i = n .

(2)

Using NAP , we define the Average Number of Antipatterns
(ANA) metric to capture the distribution of antipatterns in
previous buggy versions of a file following Equation (3). For
each file f ∈ S,

ANA(f) =
1

n
∗

n∑
i=1

NAP (f
i), (3)

Where n is the total number of versions in the history of f
and f = fn.

To capture the distribution of antipatterns across the files
of a specific version i ∈ {1 . . . n}, we compute the Shannon
entropy [31] of antipatterns in Si following Equation (4).

Hi = −
m∑

k=1

p(f ik) ∗ log2 p(f ik), (4)

Where p(f ik) ≥ 0,∀k∈ 1,. . . m; m is the total number of files
in Si and p(f ik) is the probability of having antipatterns in
file f ik; p(f ik) is computed following Equation (5).

p(f ik) =
nAP (f

i
k)∑m

l=1
nAP (f il)

, (5)

Using the entropy of antipatterns in Si, we introduce the
Antipattern Complexity Metric (ACM) following Equation (6).
This metric is similar to the HCM metric proposed by Hassan
et al. [16] to capture the complexity of source code changes.

ACM(f) =

n∑
i=1

p(f i) ∗Hi, (6)

Where n is the total number of versions in the history of f
and f = fn.

To capture the consecutive occurrence of antipatterns in a
file, we introduce the Antipattern Recurrence Length (ARL)
metric following Equation (7).

ARL(f) = rle(f) ∗ e 1
n∗(c(f)+b(f)), (7)

Where n is total number of versions in the history of f , c(f)
is the number of buggy versions in the history of f in which
f has at least one antipattern, b(f)<n is the ending index
of the longest consecutive stream of antipatterns in buggy
versions of f , and rle(f) is the maximum length of the longest
consecutive stream of antipatterns in the history of f (see [32]
for a detailed definition of rle).

To illustrate this metric let’s consider a file f that has 5 pre-
vious versions in its history. Let’s assume that the distribution
of NAP (f

i) among these 6 versions (i.e., 5 previous versions
and the current version) is as follows: {3,4,0,2,1,3}. The value
of ARL(f) is 18.76. Where the value of rle(f) is 3, n is 6,
the number of buggy versions having antipatterns (i.e., c(f))
is 5, and the ending index of the longest consecutive stream
of antipatterns (i.e., b(f)) is 6.

Our last metric is the Antipattern Cumulative Pairwise
Differences (ACPD) metric, which aim is to capture the growth
tendency of the antipatterns in a file over time. ACPD is
computed following Equation (8).

ACPD(f) =

n∑
i=1

[NAP (f
i−1)−NAP (f

i)], (8)

Where n is the total number of versions in the history of f
and f = fn. Positive values of ACPD reflect a decreasing
tendency of the number of antipatterns over the history of a
file.

Using these four metrics (i.e., ANA, ACM, ARL, and
ACPD) we build four sets of logistic regression models for
every version of our subject systems, following the method
described in Section III-B4.
Findings. Among ANA, ACM, ARL, and ACPD metrics,
ARL has the most significant improvement over tradi-
tional metrics LOC, PRE, Code Churn. Figure 3 and
Figure 4 show the percentage of deviance explained (D2)

Figure 3. D2 and AIC scores over 9 versions of ArgoUML by adding proposed metrics to historical software metrics. Each boxplot shows the distribution
of D2 and AIC scores over the different versions of ArgoUML.

Figure 4. D2 and AIC scores over 12 versions of Eclipse by adding proposed metrics to historical software metrics. Each boxplot shows the distribution of
D2 and AIC scores over the different versions of Eclipse.

and the Akaike information criterion (AIC) of the model
built for each version of ArgoUML and Eclipse from our
data set. For each model, a high D2 score and a low AIC
score is desirable. A high D2 score (respectively a low AIC
score) indicates a better model fit. For both ArgoUML and
Eclipse versions, we observe that including ANA, ACM, and
ARL provides additional explanatory power about the bug-
proneness of files over existing traditional product and process
metrics (LOC, PRE, Code Churn). The biggest improvement
is obtained with the ARL metric, both in terms of AIC and

D2 (i.e., 20% decrease of AIC and 300% increase of D2).
Therefore we answer our research question positively. Since
ARL captures the proportion of antipatterns with past bugs in
streams of consecutive persistent occurrences of antipatterns,
we recommend that development teams take the necessary
steps to refactor persistent antipatterns that exhibited bugs in
the past. Files with long streams of consecutive occurrences
of antipatterns should also be refactored. ACM shows the
second biggest improvement of explanatory power after ARL.
We also recommend that development teams refactor complex

distributions of antipatterns across files since they are likely
to be related to a higher risk for bug. Since we observed no
improvement with the metric ACPD, it seems that a temporary
increase of the number of antipatterns in a system does not
necessarily translates into a high risk for bugs. The persistence
of antipatterns and the complexity of their distribution across
classes in a software system seem to be the main factors behind
the increased risk for future bugs observed in systems with
antipatterns.�

�

�

In conclusion, we found that including the antipattern
based metrics ANA, ACM, and ARL provides addi-
tional explanatory power about the bug-proneness of
files over the following existing traditional product
and process metrics LOC, PRE, Code Churn.

Table IV
MEASURED PROCESS AND PRODUCT METRICS

Metric names Description
Product LOC Source lines of codes
metrics MLOC Executable lines of codes

PAR Number of parameters
NOF Number of attributes
NOM Number of methods
NOC Number of children
VG Cyclomatic complexity
DIT Depth of inheritance tree
LCOM Lack of cohesion of methods
NOT Number of classes
WMC Number of weighted methods per class

Process PRE Number of pre-released bugs
metrics Churn Number of lines of code added

modified or deleted

RQ3: Can we improve traditional bug prediction models with
antipatterns information?

Motivation. In RQ2 we observe that including antipattern
information provides additional explanatory power to bug pre-
diction models built using the traditional product and process
metrics, LOC, PRE, and Code Churn. The proposed antipattern
based metrics ANA, ACM, and ARL are able to increase the
deviance explained of models by up to 300%. However, in
practice, bug prediction models are not built using only LOC,
PRE, and Code Churn. They take into account a variety of
other metrics, including those presented in Table IV. Hence,
it is interesting to further investigate how our proposed metrics
perform in comparison to a more larger collection of metrics.

Another important aspect of bug prediction models is the
possibility to apply them across systems. This aspect is partic-
ularly important because training data is often not available for
software systems from small companies or software systems in
their first release (i.e., for which no past data exists). In such
situations, development teams attempt to predict bugs using
models built and trained on systems from other companies. In
this research question, we investigate to what extent one can
use cross-system antipattern information to predict bugs. More
specifically, we examine whether our proposed antipattern

based metrics can improve traditional bug prediction models
within and across systems.
Approach. To answer this research question we build two
different sets of models: intra-system models and cross-system
models.

A. Intra-system Models

Intra-system models are built using different versions of the
same system. Logistic regression models are generally used
for this purpose. In our case, the independent variables are
our proposed metrics and a collection of code and process
metrics that have been used in previous studies from the
literature [33], [15], [14]. Table IV describes the metrics. The
dependent variable of our models is a two-value variable that
represents whether or not a file has one or more bugs. We
broke the process of our analysis into two parts following the
approach from Shihab et al. [33]. In the first part, we perform
a step-wise analysis to remove statistically insignificant inde-
pendent variables for each version. This process is repeated
until we reach to a model that contains only statistically
significant independent variables. Second, we remove highly
collinear independent variables from the logistic regression
model by controlling the levels of variance inflation. At the
end, the remaining independent variables in the model will be
statistically significant and minimally collinear. The following
sections elaborate more on these steps.

1) Removing Independent Variables: In this part we build a
multivariate logistic regression model based on our dependent
and independent variables, and then in a iterative process
we remove the independent variables that are statistically
insignificant. We do this process until all the variables are
statistically significant. To this end, we use the threshold p-
value < 0.1 to determine whether an independent variable is
statistically significant or not.

2) Collinearity Analysis: Multicollinearity exists whenever
two or more independent variables in a regression model
are moderately or highly correlated. Multicollinearity does
not reduce the predictive power or reliability of the model
as a whole, at least within the sample data themselves, but
the problem with multicollinearity is that as the independent
variables become highly correlated, it becomes more difficult
to determine which independent variable is actually producing
the effect on the dependent variable. Tolerance and Variance
Inflation Factor (VIF) is often used to measure the level of
multicollinearity of models. A variance inflation factor (VIF)
quantifies how much the variance is inflated. A tolerance
value close to 1 means that there is no correlation among the
independent variables of the model, and hence the variance
of our model is not inflated at all. In this paper, we set the
maximum VIF value to be 2.5, as suggested in [27]. A VIF
value that exceeds 2.5 requires further investigation, while
VIFs exceeding 10 are signs of serious multicollinearity that
require correction [34]. In this work we use the VIF command
in the car package of R toolkit [35] to examine the VIF values
of all independent variables used to build the multivariate
logistic regression model.

Table V
P-VALUES OF STATISTICALLY SIGNIFICANT AND MINIMALLY COLLINEAR INDEPENDENT VARIABLES FOR ARGOUML MODELS.

0.12.0 0.14.0 0.16.0 0.18.1 0.20.0 0.22.0 0.24.0 0.26.0 0.26.2
Churn 2.49e-13*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16***
PRE 0.00352** 0.01439* 0.01418* 0.012635*
LOC 9.17e-07*** 0.00553**
MLOC 0.0596. 7.58e-08*** 0.014052* 0.02727*
NOT 0.068654. 0.0087**
NOF 0.0230* 0.048091*
NOM 0.00840** 0.0234*
ACM 7.26e-12*** 6.77e-06***
ACPD 0.000768*** 0.00122**
ARL 4.68e-05*** <2e-16*** 6.6e-05*** 3.03e-07*** 5.74e-15*** 0.000577*** 1.63e-10***
AIC 528.73 567.95 911.04 577.12 721.53 546.99 669.29 251.64 288.73
D2 0.16 0.42 0.42 0.39 0.37 0.47 0.22 0.50 0.68

Table VI
P-VALUES OF STATISTICALLY SIGNIFICANT AND MINIMALLY COLLINEAR INDEPENDENT VARIABLES FOR ECLIPSE MODELS.

2.0 2.1.1 2.1.2 2.1.3 3.0 3.0.1 3.0.2 3.2 3.2.1 3.2.2 3.3 3.3.1
Churn <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16***
PRE <2e-16*** 1.58e-05*** 0.000108*** 1.17e-09*** 2.26e-06*** 1.12e-12*** 0.00036*** 6.65e-07***
LOC 0.00081***
MLOC 6.46e-11*** 2.63e-05***
NOT 7.25e-05*** 0.094773. 0.003649** 1.08e-05*** 0.01944*
NOF 0.00054*** 0.00980** 0.029776* 0.009207** 0.0417* 0.003904**
NOM 0.032206* 0.030065* 0.001938** 0.00320** 0.0422* 0.0275* 0.014777* 0.04749*
ACM 8.99e-06*** 6.05e-08***
ACPD 0.00139** 1.42e-06*** 6.18e-15*** <2e-16*** 0.011604*
ARL <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16*** <2e-16***
AIC 3235.8 2111.7 1788.7 2332 2752 4321 6169 2797 4110 3445 2561 5020
D2 0.35 0.40 0.45 0.46 0.38 0.36 0.47 0.56 0.54 0.57 0.68 0.58

We narrow down our list of independent variables to con-
sider only those that are statistically significant and minimally
collinear with each other (i.e., VIF = 2.5). We use these
variables to build the final logistic regression model.

Findings. Among our proposed metrics, ARL remained
statistically significant and had a low collinearity with
other metrics in almost all the versions of two studied
systems. Table V and Table VI present the results for different
versions of ArgoUML and Eclipse. Each column, represents
a version of the studied systems. For each version, we report
the p-value of the metrics that remained significant after the
first aforementioned iterative process and that have a low
collinearity with other independent variables (i.e., VIF < 2.5).
As one can see, ARL is statistically significant and have a
low collinearity with other independent variables for 7 out
of 9 versions of ArgoUML, and for 8 out of 12 versions
of Eclipse. However, the frequency of occurrence of the
other three antipattern based metrics ANA, ACM and ACPD
is not considerable. This result shows that ARL captures
a different aspect of bug-proneness than the metrics from
Table IV. Therefore, it is helpful to include ARL in a model for
predicting bugs. Among the metrics from Table IV, Churn and
PRE also have a high impact in predicting bugs. The product
metrics NOF and NOM also contribute significantly but their
occurrence in the different models is not persistent over
different versions and systems. In conclusion, we recommend
that software development teams make use of ARL to improve
their bug-prediction models.

B. Cross-system Models

Cross-system bug prediction is defined as the process of
building a model from one system and applying that model
to another system in order to successfully predict bugs [4].
To investigate the extent to which cross-system antipattern
information can be used to predict bugs, we analyze cross-
system bug prediction models built on 12 different versions
of Eclipse and 9 versions of ArgoUML, using our antipattern
based metrics and metrics from Table IV. We built models for
all possible combinations across the systems. Each model was
trained on one version of a system and tested on one version
of the other system and vice versa. In total we obtained 216
different models. For each pair, we built a logistic regression
model using the process and product metrics from Table IV
as independent variables, and a two value variable which
indicates whether a file has at least one bug or not, as our
dependent variable. We calculate the F-measure of the model
by training the model on its corresponding training data (e.g.,
Eclispe 2.0) and testing it on its corresponding testing data
(e.g., ArgoUML 0.12). Next, we add the ARL metric to the
previous independent variables and compute the F-measure
of the new model using the same training and testing data.
This enables us to measure the potential benefit of ARL
for cross-system prediction. The F-measure is the harmonic
mean of precision and recall. The precision of a model is the
proportion of bugs that are predicted correctly by the model,
while the recall is the proportion of real bugs that are predicted
successfully by the model.

Findings. ARL can improve cross-system bug prediction on
the two studied systems by an average of 12.5% in terms
of F-measure. Figure 5 shows distributions of F-measure for
the 108 x 2 = 216 models that were built. On this figure,
AE (respectively EA) means that the models were trained
on ArgoUML (respectively Eclipse) and tested on Eclipse
(respectively ArgoUML). AE base (respectively AE base +
ARL) refers to models built using the metrics from Table IV
(respectively the metrics from Table IV and ARL).

The average improvement observed on the F-measure of
models trained on ArgoUML (respectively Eclipse) and tested
on Eclipse (respectively ArgoUML), when ARL was added
to the models is 10.71% (respectively 12.5%). This result
reinforce our previous finding that ARL captures a different
aspect of bug-proneness than the metrics from Table IV.
Additionally, this result show that the information captured
by ARL is transferable across systems.

0.0

0.2

0.4

0.6

0.8

F
−

m
ea

su
re

AE_base

AE_base+ARL

EA_base

EA_base+ARL

Figure 5. Performance comparison of the models for cross-project prediction
when adding ARL to the traditional metrics (Table IV).�

�

�

�

In summary, we observed that our proposed antipat-
tern based metric (ARL) can improve bug prediction
models both within and across systems. ARL has a low
collinearity with most process and product metrics
from the literature and can improve cross-systems bug
prediction models by an average of 12.5% in terms
of F-measure.

V. THREATS TO VALIDITY

We now discuss the threats to validity of our study following
common guidelines for empirical studies [36].

Construct validity threats concern the relation between
theory and observation. In this study, they are mainly due to
measurement errors. For ArgoUML, issues dealing with fixing
bugs are marked as “DEFECT” in the issue tracking system.
For Eclipse, we mitigated the use of possibly erroneous bugs
by discarding issues explicitly labeled as “Enhancements”
and focusing on issues marked as “FIXED” or “CLOSED”
because they required some changes. It is unlikely, in Eclipse,
that hard-to-fix issues would stay longer “OPENED” than
others, because Eclipse is being backed up by IBM, which

strives to offer a stable product. To identify bug fix locations,
we mine CVS logs and apply the heuristics by Fisher et
al. [21]. Although this technique may not be a hundred percent
accurate, it has been used satisfactorily in many previous
studies, e.g., [8], [21]. For the sake of simplicity, we assumed
to have one class per file. This assumption could introduce an
error in case of non-public top-level classes and inner classes.
We did not find any inner class participating in any antipattern
in the analysed versions of the systems. Non-public top-level
classes are rare and did not participate in any antipattern.

Threats to internal validity concern our selection of subject
systems, tools, and analysis method. The accuracy of DECOR
impacts our results since the number of antipatterns computed
with DECOR is used to compute our proposed metrics. Other
antipattern detection techniques and tools should be used to
confirm our findings.

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the constructed statistical models; in
particular we used non-parametric tests that do not require
any assumption on the underlying data distribution.

Reliability validity threats concern the possibility of repli-
cating this study. Every result obtained through empirical
studies is threatened by potential bias from data sets [37].
To mitigate these threats we tested our hypotheses over 12
versions of Eclipse and 9 versions of ArgoUML. Two systems
from different size and from different domains. Also, we
attempt to provide all the necessary details to replicate our
study. The source code repositories and issue-tracking systems
of Eclipse and ArgoUML are publicly available to obtain the
same data.

Threats to external validity concern the possibility to gen-
eralize our results. We have studied multiple versions of
two systems having different sizes and belonging to differ-
ent domains. Nevertheless, further validation on a larger set
of software systems is desirable, considering systems from
different domains, as well as several systems from the same
domain. In this study, we used a particular yet representative
subset of antipatterns. Future work using different antipatterns
are desirable.

VI. CONCLUSION

In this paper, we provided empirical evidence that antipat-
terns can help predict bugs. To begin with, we show that a
file that has antipatterns tends to have a higher density of
bugs than other files. Then, we proposed four metrics based
on the history of antipatterns in a file to capture antipatterns
information in software systems.

We performed a detailed case study using two large real-
world software systems (i.e., Eclipse and ArgoUML), to inves-
tigate the possibility to predict bugs using the four proposed
metrics. The highlights of our analysis include:
• Files that have antipatterns tend to have higher density of

bugs than the others (RQ1).
• Our proposed metrics can provide additional explanatory

power over traditional metrics such as LOC, PRE, Churn.

Among the four proposed metrics, ARL shows the biggest
improvement both in terms of AIC and D2, i.e., 20%
decrease of AIC and 300% increase of D2 (RQ2).

• ARL can also improve bug prediction models both within
and across systems. It has a low collinearity with most
process and product metrics from the literature and can
improve cross-systems bug prediction models by an av-
erage of 12.5% in terms of F-measure (RQ3).

In future work, we plan to replicate this study on other systems
than Eclipse and ArgoUML to assess the generality of our
results. We also plan to investigate more metrics based on
antipatterns and clone genealogies.

REFERENCES

[1] N. I. of Standards & Technology, “The economic impacts of inadequate
infrastructure for software testing,” May 2002, uS Dept of Commerce.

[2] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software defect
association mining and defect correction effort prediction,” IEEE Trans.
Softw. Eng., vol. 32, no. 2, pp. 69–82, Feb. 2006.

[3] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New York, NY,
USA: ACM, 2005, pp. 284–292.

[4] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ser. ESEC/FSE
’09, 2009, pp. 91–100.

[5] T. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, vol. SE-2, no. 4, pp. 308–320, Dec.

[6] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III,
and T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures,
and Projects in Crisis, 1st ed. John Wiley and Sons, March
1998. [Online]. Available: www.amazon.com/exec/obidos/tg/detail/-
/0471197130/ref=ase\ theanti patterngr/103-4749445-6141457

[7] Refactoring: improving the design of existing code. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[8] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Softw. Engg., vol. 17, no. 3, pp. 243–275,
Jun. 2012.

[9] B. F. Webster, “Pitfalls of object-oriented development.” 1995, pp. I–X,
1–256.

[10] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20–36, Jan. 2010.

[11] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
J. Syst. Softw., vol. 80, no. 7, pp. 1120–1128, Jul. 2007.

[12] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,”
in Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’09, 2009, pp. 390–
400.

[13] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Proceedings of the 2012 16th European
Conference on Software Maintenance and Reengineering, ser. CSMR
’12, 2012, pp. 411–416.

[14] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering, ser. PROMISE ’07, 2007, pp.
9–.

[15] M. DAmbros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in Proceeding of the 7th Conference on
Mining Software Repositories, 2010, pp. 31–41.

[16] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering, ser. ICSE ’09, 2009, pp. 78–88.

[17] F. Rahman and P. Devanbu., “How, and why, process metrics are better.”
[18] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams,

and A. E. Hassan, “Revisiting common bug prediction findings using
effort-aware models,” in Proceedings of the 2010 IEEE International
Conference on Software Maintenance, ser. ICSM ’10, 2010, pp. 1–10.

[19] T.-H. Chen, S. Thomas, M. Nagappan, and A. Hassan, “Explaining
software defects using topic models,” in Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on, june 2012, pp. 189 –198.

[20] Y.-G. Gueheneuc and G. Antoniol, “Demima: A multilayered approach
for design pattern identification,” Software Engineering, IEEE Transac-
tions on, vol. 34, no. 5, pp. 667–684, Sept.-Oct.

[21] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on, Sept., pp. 23–32.

[22] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Fourth Edition. Chapman & Hall/CRC, Jan. 2007.

[23] S. G. Crawford, A. A. McIntosh, and D. Pregibon, “An analysis of
static metrics and faults in c software,” J. Syst. Softw., vol. 5, no. 1, pp.
37–48, Feb. 1985. [Online]. Available: http://dx.doi.org/10.1016/0164-
1212(85)90005-6

[24] J. Rosenberg, “Some misconceptions about lines of code,” in Software
Metrics Symposium, 1997. Proceedings., Fourth International, Nov, pp.
137–142.

[25] S. Biyani and P. Santhanam, “Exploring defect data from development
and customer usage on software modules over multiple releases,” in
Software Reliability Engineering, 1998. Proceedings. The Ninth Inter-
national Symposium on, Nov, pp. 316–320.

[26] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
touch my code!: examining the effects of ownership on software
quality,” in Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering,
ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 4–14.
[Online]. Available: http://doi.acm.org/10.1145/2025113.2025119

[27] M. Cataldo, A. Mockus, J. Roberts, and J. Herbsleb, “Software de-
pendencies, work dependencies, and their impact on failures,” Software
Engineering, IEEE Transactions on, vol. 35, no. 6, pp. 864–878, Nov.-
Dec.

[28] M. Kutner, C. Nachtsheim, and J. Neter, Applied Linear Regression
Models. 4th International Edition, McGraw-Hill/Irwin., September
2004.

[29] J. Nelder and R. Wedderburn, “Generalized linear models,” Journal of
the Royal Statistical Society. Series A (General), vol. 135, no. 3, p.
370384, 1972.

[30] H. Akaike, “A new look at the statistical model identification,” Automatic
Control, IEEE Transactions on, vol. 19, no. 6, pp. 716–723, 1974.

[31] C. E. Shannon, “A mathematical theory of communication,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55, Jan.
2001. [Online]. Available: http://doi.acm.org/10.1145/584091.584093

[32] G. Held and T. R. Marshall, Data compression: techniques and appli-
cations, hardware and software considerations (2nd ed.). New York,
NY, USA: John Wiley & Sons, Inc., 1987.

[33] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan,
“Understanding the impact of code and process metrics on post-release
defects: a case study on the eclipse project,” in Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ser. ESEM ’10, 2010, pp. 4:1–4:10.

[34] N. Bettenburg and A. E. Hassan, “Studying the impact of social
structures on software quality,” in Proceedings of the 2010 IEEE 18th
International Conference on Program Comprehension, ser. ICPC ’10,
2010, pp. 124–133.

[35] “R toolkit,” 19-Dec-2012. [Online]. Available: http://www.r-project.org
[36] R. K. Yin, Case Study Research: Design and Methods - Third Edition,

3rd ed. SAGE Publications, 2002.
[37] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, pp. 2–13, 2007.

