
SQUAD: Software Quality Understanding
through the Analysis of Design

Foutse Khomh
Ptidej Team - GEODES Group, DIRO
University of Montreal, QC, Canada

Email: foutsekh@iro.umontreal.ca

Abstract—Object-oriented software quality models usually
use metrics of classes and of relationships among classes to
assess the quality of systems. However, software quality does
not depend on classes solely: it also depends on the organisation
of classes, i.e., their design. Our thesis is that it is possible
to understand how the design of systems affects their quality
and to build quality models that take into account various
design styles, in particular design patterns, antipatterns, and
code smells. To demonstrate our thesis, we first analyse how
playing roles in design patterns, antipatterns, and code smells
impacts quality; specifically change-proneness, fault-proneness,
and maintenance costs. Second, we build quality models and
apply and validate them on open-source and industrial object-
oriented systems to show that they allow a more precise
evaluation of the quality than traditional models, like Bansiya
et al.’s QMOOD.

Keywords-Design styles, change-proneness, fault-proneness,
quality models.

I. RESEARCH CONTEXT: SOFTWARE QUALITY

Maintenance costs during the past decades have reached
more than 70% of the overall costs of object-oriented
systems [1], because of many factors, such as changing
software environments, changing users requirements, and the
overall quality of systems [2]. One factor on which we have
a control is the quality of systems; thus, being able to assess
their quality could significantly help in the prediction of
maintenance efforts and the reduction of maintenance costs.

Quality models link software artifacts with quality char-
acteristics to predict quality. Many quality models exist
in the literature. They focus on the internal attributes of
classes (such as size, filiation, and cohesion) or, at best, of
pairs thereof, and disregard their organisation. Briand and
Wust, who recently surveyed quality models [3], remarked
that the only quality models that attempt to link internal
attributes and external characteristics are limited to fault-
proneness and do not considered the systems designs. Thus,
they can hardly distinguish between a well-structured system
and a system with poor design, even though their respective
designs are the first things that maintainers see.

II. QUESTION

The global research question of our thesis can be stated
as follows: How to build quality models that take into

account the design of systems, in particular design patterns,
antipatterns, and code smells?

We analyse the impact of various design styles and build
quality models to measure the quality of object-oriented
systems by taking into account both their internal attributes
and their design, especially design patterns, antipatterns and
the code smells.

III. ANSWER

There are many principles and techniques to design sys-
tems with good quality characteristics; among these, design
patterns and their opposite, antipatterns and code smells,
form an interesting bridge between the internal attributes
of systems, external quality characteristics, and software
designs, because they link internal attributes (concrete imple-
mentation of systems) and subjective quality characteristics
(subjective perception on systems), such as reusability [4]
and tangible quality characteristics, such as fault [5] and
change proneness.

Since their popularisation in the software engineering
community in 1994, design patterns have gained importance
for system design and have been the subject of many studies
on quality. Some authors like Venners claim that design
patterns improve the quality of systems while others like
Wendorff [6] suggested that their use do not always result
in “good” designs. MacNatt et al. [7] showed that a tangled
implementation of patterns impacts negatively quality. In
the following, we will study in more details the impact
of tangled implementation of design patterns on different
quality characteristics of systems.

Antipatterns [8] are poor design choices that are con-
jectured in the literature to hinder object-oriented software
evolution. They are opposite to design patterns [4]: they are
“poor” solutions to recurring design problems. Antipatterns
are composed of code smells, which are poor implementa-
tion choices.

Code smells are to antipatterns what roles are to design
patterns: classes participating in an antipattern may possess
one ore more of the smells defining it. Fowler’s 22 code
smells [9] are symptoms of antipatterns, such as Brown’s 40
antipatterns [8]. Consequently and in practice, antipatterns
are in-between design and implementation: they concern the



design of one or more classes, but they concretely manifest
themselves in the source code as classes with specific code
smells.

We analyze the impact of design patterns, antipatterns, and
code smells on different quality characteristics of systems
to build quality models that take them into account when
measuring the systems.

IV. METHOD

To answer our global research question, we propose and
follow a method, DEQUALITE (Design Enhanced QUAL-
ITy Evaluation), to build quality models to measure the
quality of object-oriented systems by taking into account
both their internal attributes and their designs.

Our method is built on previous work and our own
experience. It consists of four main steps, from the detection
of design patterns, design defects, and code smells, through
the analysis of the impact of these design styles on quality,
to the building of quality models and the validation of these
models:

1. Detection: To improve previous detection tech-
niques to handle the uncertainty on detection re-
sults, we have proposed a Bayesian approach for
the detection of antipatterns and code smells [10],
we choose Bayesian models because they can work
with missing data and allow quality analysts to
specify explicitly the decision process. When data
is unavailable or must be adapted to a different
context, an analyst can encode her judgement into
the model. We have also proposed an approach to
provide a ranking of the results of a design patterns
detection [11].

2. Empirical studies: To take into account the impact
of design styles in the assessment of the quality of
systems, we have performed a series of empirical
studies to understand the impact of design patterns,
antipatterns, and code smells on the change- and
issue-proneness of systems. Table I summarises the
questions and their results. Details on these studies
can be found in [11], [12]. A complementary study
is actually underway to understand the impact of
antipatterns and code smells on the maintenance
costs.

3. Building quality model: In this step, we propose
the use of naive Bayes to build a probabilistic
model that takes into account all the results of
the analyses performed in the second step of our
method. We have already built a model, PQMOD,
that takes into account design patterns. We are cur-
rently working on taking into account our results
on antipatterns and code smells.

4. Validation: We are setting up experimental studies
on various systems to validate our quality models
by comparing them to traditional models, like

QMOOD [14]. A validation of PQMOD and a
comparison with QMOOD have been done in [15].

V. ON-GOING WORK AND FORECAST COMPLETION

At this time of our thesis, we realised the first two steps
of our method, the third step being in progress. Our on-
going work consists on building a Bayesian network that
includes the information on classes participating in design
patterns, antipatterns, and code smell to assess the quality of
systems. We are also studying the impact of antipatterns and
code smells on maintenance costs on an industrial system.
We plan to enrich our quality model with this information
as well. The fourth step of our method, which consists
of experimental studies for the validation of the resulting
quality models, will be performed on many versions of one
industrial system and also on some open-source systems,
such as Rhino, ArgoUML.

VI. RELATED WORK

We present some major work on quality models and show
that none of the existing work attempts to build a quality
model while considering design.

Briand and Wüst [3] present a detailed and extensive
survey of quality models. They classify quality models in
two categories: correlational studies and experiments. Cor-
relational studies use univariate and multivariate analyses,
while experiments use, for examples, analysis of variance
between groups (ANOVA). To the best of our knowledge,
none of the presented quality models attempts to assess the
architectural quality of programs directly. They all use class-
based metrics or metrics on pairs of classes.

Wydaeghe et al. [16] assess the quality characteristics of
the architecture of an OMT editor through the study of 7
design patterns. They conclude on flexibility, modularity,
reusability, and understandability of the architecture and the
patterns. However, they do not link their assessment with
any quality model.

Although some studies have assess some architectural
characteristics of program none have attempted to build a
predictive quality model.

Vokac [5] analysed the corrective maintenance of a large
commercial system over three years and compared the fault
rates of classes that participated in design patterns against
those of classes that did not. He noticed that participating
classes were less fault prone than others. He also concluded
that the Observer and Singleton patterns are correlated with
larger classes that could require special attention and that
classes designed with the Factory Method pattern are more
compact and less coupled than others and, consequently,
have lower fault rates. Vokac could not find a clear tendency
for the Template Method pattern. Vokac’s work inspired this
study, in particular the use of logistic regression to analyse
the correlations between antipatterns and change-, issue-
, and unhandled exception-proneness. Other studies deal



Table I
ANALYSIS OF THE IMPACT OF DESIGN STYLES.

Research Questions Answers

What is the proportion of classes playing zero, one, or two roles in some motif(s)? Their proportion varies from 4.02% to 30.72% [11].

What is the proportion of classes participating in an antipattern, a code smell? The proportion for the Blob varies from 2% to 15%.

Do Design Patterns Impact Software Quality Positively? Some patterns do not necessarily promote reusability, expandability, and under-
standability [13].

What are the internal characteristics of a class that are the most impacted by playing
one or two roles w.r.t. zero role?

playing two roles has a major impact on classes when compared to playing zero
or one role [11].

What are the external characteristics of a class that are the most impacted by playing
one or two roles w.r.t. zero role?

Playing roles has a major impact on change- and issue-proneness [11].

What is the relation between antipatterns and change proneness? There is a greater proportion of classes participating in antipatterns that change
w.r.t. other classes [12].

What is the relation between particular kinds of antipatterns and change proneness? For all antipatterns except LargeClass and SpaghettiCode, infected classes are
significantly more change-prone than other classes [12].

What is the relation between the code smells composing antipatterns and change
proneness?

Classes with code smells are in general significantly more change-prone than
other classes [12].

What is the relation between antipatterns and issue proneness? The proportion of classes participating to antipatterns and reported in issues is
twice as large as the proportion of other classes [12].

What is the relation between particular kinds of antipatterns and issue proneness? For all antipatterns except LargeClass and SpaghettiCode, infected classes are
significantly more issue-prone than other classes [12].

What is the relation between the code smells composing antipatterns and issue
proneness?

Four code smells are symptomatic of issues: AntiSingleton-NotClass-
GlobalVariable, ComplexClass-LargeClassOnly, LazyClass- FewMethods, and
LongMethod-LongMethodClass [12].

with the changeability and resilience to change of design
patterns [17] and of classes playing a specific role in design
patterns [18], or their impact on the maintainability of a
large commercial system [6].

While some of these studies investigate the positive (and
negative) impact of good design principles, i.e., design pat-
terns, on software systems, none have studied the impact of
poor design choices, i.e., antipatterns, on software evolution
and more generally on the quality of systems.

VII. CONCLUSION

We proposed DEQUALITE, a method to build quality
models that allows the measurement of the quality of object-
oriented systems by taking into account their internal at-
tributes and their designs. This method is being implemented
as a tool for practitioners–developers, quality assurance
personnel, and managers to assess the quality of their
systems. This tool will return a list of classes more likely to
change often and–or to be fault-prone than other classes and,
therefore, more likely to be costly. Consequently, a tester
could decide to focus on the provided list of classes because
she knows that such classes have more risks. Similarly, a
manager could use this quality model to assess the volume
of classes with bad quality in a to-be-acquired system and,
thus, narrow down her price offer and forecast the system
cost-of-ownership.

ACKNOWLEDGMENTS

I am deeply grateful to my supervisor Yann-Gaël
Guéhéneuc for his guidance and support.

REFERENCES

[1] R. S. Pressman, Software Engineering – A Practitioner’s
Approach, 5th ed. McGraw-Hill Higher Education,
November 2001. [Online]. Available: www.accu.org/
bookreviews/public/reviews/s/s000005.htm

[2] K. H. Bennett and V. Rajlich, “Software maintenance and
evolution: a roadmap,” in The Future of Software Engineering,
A. Finkelstein, Ed. ACM Press, 2000.

[3] L. C. Briand and J. Wüst, “Empirical studies of quality
models in object-oriented systems,” Advances in Computers,
2002.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns – Elements of Reusable Object-Oriented Software,
1st ed. Addison-Wesley, 1994.

[5] M. Vokac, “Defect frequency and design patterns: An em-
pirical study of industrial code,” pp. 904 – 917, December
2004.

[6] P. Wendorff, “Assessment of design patterns during software
reengineering: Lessons learned from a large commercial
project,” in Proceedings of 5th Conference on Software
Maintenance and Reengineering, P. Sousa and J. Ebert, Eds.
IEEE Computer Society Press, March 2001, pp. 77–84.
[Online]. Available: http://www.computer.org/proceedings/
csmr/1028/10280077abs.htm

[7] W. B. McNatt and J. M. Bieman, “Coupling of
design patterns: Common practices and their benefits,”
in Proceedings of the 25th Computer Software and
Applications Conference, T. Tse, Ed. IEEE Computer Society



Press, October 2001, pp. 574–579. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=960670

[8] W. J. Brown, R. C. Malveau, W. H. Brown, H. W.
McCormick III, and T. J. Mowbray, Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis,
1st ed. John Wiley and Sons, March 1998. [Online]. Avail-
able: www.amazon.com/exec/obidos/tg/detail/-/0471197130/
ref=ase\ theantipatterngr/103-4749445-6141457

[9] M. Fowler, Refactoring – Improving the Design of Existing
Code, 1st ed. Addison-Wesley, June 1999.

[10] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“A Bayesian Approach for the Detection of Code and Design
Smells,” in Proceedings of the 9th International Conference
on Quality Software, D.-H. Bae and B. Choi, Eds. IEEE
Computer Society Press, August 2009.

[11] F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “Playing roles
in design patterns: An empirical descriptive and analytic
study,” in Proceedings of the 25th International Conference
on Software Maintenance (ICSM), K. Kontogiannis and
T. Xie, Eds. IEEE Computer Society Press, September
2009. [Online]. Available: http://www-etud.iro.umontreal.ca/
∼ptidej/Publications/Documents/ICSM09.doc.pdf

[12] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and
G. Antoniol, “An exploratory study of the impact
of antipatterns on software changeability,” École
Polytechnique de Montréal, Tech. Rep. EPM-RT-2009-02,
2009, 15 pages. [Online]. Available: http://www-etud.
iro.umontreal.ca/∼ptidej/Publications/Documents/Research+
report+Antipatterns+Changeability+April09.doc.pdf

[13] Foutse Khomh and Y.-G. Guéhéneuc, “Do design patterns
impact software quality positively?” in Proceedings of
the 12th Conference on Software Maintenance and
Reengineering (CSMR), C. Tjortjis and A. Winter, Eds.
IEEE Computer Society Press, April 2008, short Paper. 5
pages. [Online]. Available: http://www-etud.iro.umontreal.ca/
∼ptidej/Publications/Documents/CSMR08.doc.pdf

[14] J. Bansiya and C. G. Davis, “A hierarchical model for object-
oriented design quality assessment,” IEEE Transactions on
Software Engineering, vol. 28, pp. 4–17, January 2002.
[Online]. Available: http://ieeexplore.ieee.org/xpl/freeabs all.
jsp?arnumber=979986

[15] F. Khomh, N. Moha, and Y.-G. Guéhéneuc, “DEQUALITE
: méthode de construction de modèles de qualité
prenant en compte la conception des systèmes,”
École Polytechnique de Montréal, Tech. Rep. EPM-
RT-2009-04, avril 2009, 31 pages. [Online]. Avail-
able: http://www-etud.iro.umontreal.ca/∼ptidej/Publications/
Documents/Research+report+DEQUALITE+April09.doc.pdf

[16] B. Wydaeghe, K. Verschaeve, B. Michiels, B. V. Damme,
E. Arckens, and V. Jonckers., “Building an OMT-editor
using design patterns: An experience report,” 1998. [Online].
Available: citeseer.ist.psu.edu/wydaeghe98building.html

[17] L. Aversano, G. Canfora, L. Cerulo, C. D. Grosso, and
M. D. Penta, “An empirical study on the evolution of design
patterns,” in ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering. New York NY USA: ACM Press,
2007, pp. 385–394.

[18] M. Di Penta, Luigi Cerulo, Y.-G. Guéhéneuc, and
G. Antoniol, “An empirical study of the relationships
between design pattern roles and class change proneness,”
in Proceedings of the 24th International Conference on
Software Maintenance (ICSM), H. Mei and K. Wong,
Eds. IEEE Computer Society Press, September–October
2008. [Online]. Available: http://www-etud.iro.umontreal.ca/
∼ptidej/Publications/Documents/ICSM08b.doc.pdf


