
Numerical Signatures of Antipatterns:
An Approach based on B-Splines

Rocco Oliveto
Software Engineering Lab (SE@SA Lab)

DMI – University of Salerno, Italy
roliveto@unisa.it

Foutse Khomh, Giuliano Antoniol, and Yann-Gaël Guéhéneuc
SOCCER Lab and Ptidej Team
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Abstract—Antipatterns are poor object-oriented solutions to
recurring design problems. The identification of occurrences of
antipatterns in systems has received recently some attention but
current approaches have two main limitations: either (1) they
classify classes strictly as being or not antipatterns, and thus
cannot report accurate information for borderline classes, or
(2) they return the probabilities of classes to be antipatterns but
they require an expensive tuning by experts to have acceptable
accuracy. To mitigate such limitations, we introduce a new
identification approach, ABS (Antipattern identification using
B-Splines), based on a similarity computed via a numerical
analysis technique using B-splines. We illustrate our approach
on the Blob and compare it with DECOR, which uses strict
thresholds, and with another approach based on Bayesian
Beliefs Networks. We show that our approach generally out-
performs previous approaches in terms of accuracy.

I. INTRODUCTION

Antipatterns [1] are poor solutions to recurring design
problems. They occur in object-oriented systems when de-
velopers unwillingly introduce them while designing and
implementing the classes of their systems. Antipatterns have
a negative impact on the quality of a system [1], [2].

Consequently, their identification has received recently
more attention from both researchers and practitioners who
have proposed various approaches to detect them. In partic-
ular, two approaches were proposed: DECOR, [3] the first
systematic method to specify and generate automatically
detection algorithms for code smells and antipatterns and
Bayesian Beliefs Networks (BBNs), an approach based on
BBNs for ranking classes according to their probabilities of
participating in antipatterns [4].

However, previous approaches have two main limitations:
either (1) they classify classes strictly as being or not
antipatterns and thus cannot report accurate information
for borderline classes (e.g., DECOR), or (2) they return
the probabilities of classes to be antipatterns but require
expensive (in time and knowledge) tuning by experts to have
acceptable accuracy (e.g., BBNs).

The first limitation lead to the “submarine” effect: several
classes may be very close to be identified as antipatterns
but remain under the threshold during their evolution. Minor

changes can then bring them all above the threshold, falsely
leading developers to suspect the latest changes as culprit.

The second limitation cause the detection results to rely
too much on the experts’ judgement. An incomplete experts’
knowledge can cause a high number of false positives,
resulting in a waste of time and resources for developers
and managers that must skim through the results. Moreover,
a model built in a specific context is not easily generalisable
to other contexts and should be recalibrated to be effective.
The recalibration is a difficult task as historical data and
context knowledge are not always available.

In this paper, we propose a new identification approach,
called ABS (Antipattern identification using B-Splines), to
help overcome these limitations. ABS is based on a learning
technique using an interpolation method from the numerical
analysis field. The basis of ABS is the building of signatures
of classes based on quality metrics, as in [5], using B-splines
[6], [7] to abstract the metric values. ABS models a class
using specific interpolation curves (i.e., B-splines) of plots
mapping metrics and their values for the class. The similarity
of a given class to an antipattern is computed by calculating
the distance between the curve of the class and the curves
of classes previously classified as antipatterns (or good
classes). Like BBNs, ABS needs a corpus of antipatterns.
However, in contrary to BBNs, ABS does not need experts’
knowledge to define a learning structure; thus, it reduces the
bias introduced in BBNs by the experts’ subjectivity when
structuring the BBNs of the antipatterns.

We apply ABS to detect the Blob antipattern. The identi-
fication accuracy of ABS was compared with DECOR and
BBNs. The case study shows that, in general, ABS provides
better results than BBNs and DECOR. In few explainable
cases, ABS has lower accuracy than previous approaches,
i.e., when the training set to build the signature is too small.
We also implement ABS in “Sign-o-meter”, a tool to assist
developers in assessing quickly the probability of classes to
become Blobs and the evolution of this probability.

In summary, the main advantages of ABS with respect to
previous approaches are:
∙ When identifying Blobs, it generally outperforms pre-

vious approaches in accuracy;



∙ It is more attractive in practice thanks to the speed and
ease to generate and interpret the signatures;

∙ It is directly portable across systems;
∙ Its class representation can be also used to monitor the

evolution of the quality of a class.
The paper is organised as follows. Section II summarises

and discusses previous work. Section III describes and
justify our approach for identifying antipatterns, while Sec-
tion IV provides details on the design of the case study
carried out to evaluate the proposed approach. Sections V
and VI report on the results achieved and summarises the
lessons learned from the case study, respectively. Section
VII concludes and suggest future work.

II. RELATED WORK

Webster [8] wrote the first book on “antipatterns” in
object-oriented development; his contribution covers con-
ceptual, political, coding, and quality-assurance problems.
Riel [9] defined 61 heuristics characterising good object-
oriented programming to assess software quality manually
and improve design and implementation. Beck [2] defined
22 code smells, suggesting where developers should apply
refactorings. Mäntylä [10] and Wake [11] proposed classifi-
cations of code smells. Brown et al. [1] described 40 antipat-
terns, including the well-known Blob. These books provide
in-depth views on heuristics, code smells, and antipatterns
aimed at a wide academic and industrial audience. We
build upon this work to propose an approach to characterise
antipatterns and identify classes with similar characteristics.

Several approaches to specify and identify code smells
and antipatterns have been proposed in the literature. They
range from manual approaches, based on inspection tech-
niques [12], to metric-based heuristics [13], [3], [14], where
antipatterns are identified according to sets of rules and
thresholds defined on various metrics. Manual approaches
were defined, for example, by Travassos et al. [12], who
introduced manual inspections and reading techniques to
identify code smells.

Marinescu [13] presented a metric-based approach to
identify smells with detection strategies, which capture devi-
ations from good design principles and consist of combining
metrics with set operators and comparing their values against
absolute and relative thresholds. Similarly to Marinescu,
Munro [14] proposed metric-based heuristics to identify
code smells; the heuristics are derived from template similar
to the one used for design patterns. He also performed
an empirical study to justify the choice of metrics and
thresholds for detecting code smells.

Moha et al. [3] proposed the DECOR method to spec-
ify and automatically generate identification algorithms.
DECOR includes a domain-specific language based on a
literature review of existing work. It also includes algorithms
and a platform to automatically convert specifications into
identification algorithms and apply these algorithms on any

system. DECOR lead to identification algorithm with good
precision and perfect recall while allowing quality analysts
to easily adapt the specifications to their context. We choose
DECOR because it is the current state-of-the-art threshold-
based identification approaches.

Khomh et al. [4] argued that threshold-based approaches
do not handle the uncertainty of the detection results
and, therefore, miss borderline classes, i.e., classes with
characteristics of antipatterns “surfacing” slightly above or
“sinking” slightly below the thresholds because of minor
variations in the characteristics of these classes. Conse-
quently, they proposed a BBN for the identification of
antipatterns in systems, which output is the probability that a
class exhibiting the characteristics of an antipattern is truly
an antipattern. Thus, their approach handles the degree of
uncertainty that a class is or is not an antipattern. They
also showed that BBNs can be calibrated using historical
data both from a similar and from a different context. We
choose also this approach for comparison because it is the
only approach able to qualify continuously the probability
of classes to be antipatterns.

Some visualisation techniques, for example [15], were
used to find a compromise between fully-automatic iden-
tification techniques, which are efficient but lose track of
the context, and manual inspections, which are slow and
subjective. Other approaches perform fully-automatic iden-
tification and use visualisation to present the identification
results [16], [17].

Other related approaches include architectural consistency
checkers, which have been integrated in style-oriented ar-
chitectural development environments [18], [19], [20]. For
example, active agents acting as critics [20] can check
properties of architectural descriptions and identify potential
syntactic and semantic errors.

III. ANTIPATTERN IDENTIFICATION USING B-SPLINES

This section presents our approach for the identification
of antipatterns using their signatures, described as B-splines
[6], [7] and built from numerical analysis. Recently, B-
splines was used to characterise software artefacts (docu-
mentation and source code) to compute the textual similarity
between them for traceability recovery [21].

ABS first models each class by its particular interpolation
curves, i.e., its B-splines, built using a set of metrics and
their values for the class. In ABS, we also model antipatterns
using B-splines, inferred from a set of classes known as
participating in the antipatterns.

Then, we estimate the risk of a class to be an antipattern
by computing the similarity of its signature from the sig-
nature of known antipattern. To improve its accuracy when
computing the risk, we also consider the distance from both
antipatterns and a set of good quality classes. We define
good classes as any classes that does not participate in an an-
tipattern. The similarity is then computed by calculating the



Figure 1. Class/antippaterns representation using B-splines

similarity between the corresponding interpolation curves.
We now present how (i) to define a curve representing a

class and (ii) to identify candidate antipattern in a system.
We illustrate our approach using the Blob. The Blob is also
called God class [9]. It is defined as a class that centralises
functionality and has too many responsibilities. Brown et al.
[1] characterise its structure as a large controller class that
depends on data stored in several surrounding data classes.

A. Identifying the Signature of Classes

A class can be described by a set of metric values; metrics
measuring for example the class cohesion, coupling, and
complexity. We can thus represent each class as a set of
points in a Cartesian plane with the metrics in X and their
values for that class in Y.

Let M = m1,m2, . . . ,mn be a set of metrics computed
for each class of a system, then a class cj is represented by
the set of points {p1, p2, . . . , pn} where the coordinates of
the generic point pi are calculated as follows:

coordx(pi) = i

coordy(pi) = mi,j

where mi,j represents the value of the metric mi for the
class cj .

This representation of a class allows us to use a nu-
merical analysis technique to define the signature of the
class by interpolating the points associated to the class. We
consider the points representing a class as control points
(also called De Boor’s points) of a uniform B-spline curve
[6], [7], which is a generalisation of a Bézier curve, i.e.,
a piecewise Bézier curves [6], [7]. Thus, given the set
of points (Pji)i∈{1,...,n} where Pji = (i,mi,j) represent
the class cj , the parametric B-spline curve on the domain
[0, 1], with degree k and equidistant knots (uniform B-spline)
{tl : l = 0, . . . , n+ k − 1}, is defined as follows [6], [7]:

Bsplinecj (t) =

n−1∑
i=0

(Pji+1
) ⋅Bi,k(t).

Figure 2. Signature comparison using B-splines

where t0 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ tn+k−1, tl ∈ [0, 1] , and the
polynomials Bi,k(t) are calculated using the numerically
stable De Boor’s recursive formula [6], [7]:

Bl,0(t) =

⎧⎨⎩ 1 if tl < t < tl+1

0 otherwise,

Bl,k(t) =
(t− tl) ⋅Bl,k−1(t)

tk+l−1 − tl
+

(tk+l − t) ⋅Bl+1,k−1(t)

tk+l − tl+1

The domain and co-domain of our B-spline function
are thus respectively [0, 1] and R. Figure 1 shows the
graphical representation of a class. The dashed and the bold
lines denote the control polynomial and the B-spline curve
representing the class, respectively. The B-spline is a curve
approximation technique where the control points influence
the shape of the curve but the curve does not interpolate the
control points, except for the first and last points [6], [7].
However, it is possible to force the B-spline to interpolate
a set of given points [6], [7] and we force the B-spline to
interpolate the points that represent metrics with values equal
to 0, as shown in Figure 1: we do not give to these points
the average value of the preceding and following points.

We choose a B-spline to derive a curve representing a
class because (1) it is fast and easy to compute, (2) it
provides local control on the curve, and (3) the degree of the
B-spline is independent of the number of control points. In
particular, we observed in our experiments that computing
the B-spline never took more than 1 second and that k = 30
is a good compromise between computational complexity
and identification accuracy. The latter observation is consis-
tent with that in previous work [21].

B. Comparing the Signature of Classes

Once obtained the signatures of each class of a system, it
is possible to compare these with those of classes previously
classified as antipatterns. The conjecture is that if a class



has a signature similar to that of a previously classified
antipattern, then the class is also probably this antipattern.

Let B = {b1, b2, . . . , bp} be the set of classes previously
classified as being an antipattern, for example Blobs1. The
class signatures of class ci and of Blob bj can be com-
pared using the distance between the corresponding B-spline
curves, i.e., Bsplineci(t) and Bsplinebj (t). We define the
distance between two B-spline curves using the normalised
1-norm, as shown in Figure 2:

D(ci, bj) =

∫ 1

0

∣∣Bsplineci(t)−Bsplinebj (t)
∣∣ dt

The order of the metrics on the X-axis influences the
representation of a class and the distance between two
classes (or a class and an antipattern). We studied different
ways of ordering the metrics and did not find any substantial
difference in the identification results.

We define two approaches to compute the similarity of
a class to an antipattern. In the first approach, called one-
tailed, we compute the similarity between the class signature
and that of the ideal signature of the antipattern, defined as
the average signature of some previously classified antipat-
terns. Thus, if B is the set of classes with the antipattern,
the similarity between a class ci and that antipattern, e.g.,
Blob (also known as God Class), is:

godliness(ci, B) = 1− D(ci, bideal)

maxj,k D(cj , bideal)

where the higher is the “godliness” [22] value, the higher is
the similarity of the class to an ideal Blob.

In the second approach, called two-tailed, we compute
the similarity of a class to an antipattern including also its
similarity to classes previously classified as good quality
classes. Thus, other than building the set B, we also build
G = {g1, g2, . . . , gq}, containing the signatures of classes
previously classified as good classes. We then compute the
similarities of ci with every elements in B and G and rank
each pair according to these similarities. Finally, for the
Blob, we compute the godliness of the class as:

godliness(ci, B) =∣∣∣∣∣∣
p∑

j=1

wBi,j
⋅ D(ci, bj)

maxl,s D(cl, bs)
−

q∑
k=1

wGi,k
⋅ D(ci, gk)

maxl,s D(cl, gs)

∣∣∣∣∣∣
where wBi,j = 1

pos(ci,bj)
and wGi,k

= 1
pos(ci,gk)

represent
weights based on the positions of the pairs (ci, bj) and
(ci, gk), respectively, in the ranked list.

1These classes can be class of a same system or classes taken from
different systems.

C. Visualising and Following the Evolution of Signatures

The graphical representation of the B-splines character-
ising classes and antipatterns is also useful to monitor the
evolution of classes in time. We implemented a tool, called
Sign-o-Meter, that displays to related and complementary
views of the signatures of a class:

1) One dial showing the similarity between the class
under development and an antipattern, e.g., Blob using
the godliness metric, computed using the two-tailed
approach.

2) A plot of three B-spline curves representing, respec-
tively, the current signature of the class, the signature
of the previous version of the class, and the signa-
ture of an antipattern. This plot uses the one-tailed
approach only.

Figure 3 illustrates Sign-o-Meter on the Blob for
class org.apache.xerces.xs.XSElementDecl in
Xerces v2.7.0. On the left hand side, it shows the dial
displaying the godliness measure of the class. Higher is the
value, higher is the probability that the class is a Blob.

On the right hand side, it shows a dash B-Spline curve
for the previous version of the class, a thin continuous line
for the B-spline curve of the current version of the class,
and a thick line for the curve characterising the ideal Blob
(from the previous classified Blob).

Such a plot provides information on the evolution of the
class by allowing developers to compare the signatures of
the current version of a class to the one of its previous
version and to the ideal antipattern. Consequently, it allows
developers to realise that their class is moving towards
or away from the ideal antipattern and, thus, to take the
appropriate actions.

IV. DESIGN OF THE CASE STUDY

We study our novel approach to identify classes partic-
ipating in antipatterns and demonstrate the applicability of
the numerical analysis technique. The description follows
the Goal–Question–Metric template [23].

A. Definition and Context

The goal of our case study is to analyse whether ABS has
a better identification accuracy for the Blob than DECOR [3]
and than an approach based on BBNs [4]. The purpose of our
case study is to show that ABS helps in improving the qual-
ity of systems by supporting the detection of antipatterns.
The quality focus is to improve the accuracy of the identifi-
cation of antipattern, and in particular that of the Blob. The
perspective is both of researchers, who want to evaluate (1)
the use of numerical analysis for representing classes and
(2) the improvement of the identification accuracy of Blob;
and of quality analysts, who perform evaluation activities
and are interested in locating parts of a system that need
improvements with the least possible efforts.



Figure 3. Screen-shot of Sign-o-Meter on class org.apache.xerces.xs.XSElementDecl

Table I
PROGRAM CHARACTERISTICS

Systems # of Classes KLOCs # of Blobs
Gantt Project v1.10.2 188 31 4
Xerces v2.7.0 589 240 15
Total 777 271 19

We conducted our case study using two open-source Java
systems: GanttProject v1.10.2 and Xerces v2.7.0, which
characteristics are summarised in Table I. GanttProject2 is
a system for creating project schedules by means of Gantt
charts and resource-load charts. It enables breaking down
projects into tasks and establishing dependencies between
these tasks. Xerces3 is a family of packages for parsing
and manipulating XML files. It implements a number of
standard API for XML parsing, including DOM, SAX, and
SAX2. We chose these systems because they are medium-
size open-source systems, yet small enough to manually
identify occurrences of the Blobs.

To evaluate the accuracy of ABS, we asked two un-
dergraduate students and two graduate students to identify
occurrences of the Blob in the two systems manually. The
pair of undergraduate students performed the task together
to follow previous results [24] hinting that, on maintenance
activities, the performance of a pair of undergraduate stu-
dents is about the same as that of one graduate student.

Prior to their manual identification of Blobs, the students
were presented with several anti-patterns and the Blob in
particular. Then, each student/pair analysed every class of
the two systems systematically and classified it as a Blob or
a good class. We subsequently independently combined their
analyses and whenever at least two of the three students/pair
considered a class as a Blob, we tagged the class as a true

2http://ganttproject.biz/index.php
3http://xerces.apache.org/

occurrence. The number of Blobs is reported in Table I.
All metrics and properties required to identify antipatterns

are extracted using the POM framework [5]. The metrics and
the list of identified Blobs are available for replication 4.

B. Planning and Research Questions

We study the accuracy of our approach in the two follow-
ing scenarios:
∙ intra-system identification: we assume that historical

data (i.e., correctly identified Blobs) are available for a
given system (i.e., Xerces). We use this data to identify
other Blobs in the same system. We divide the classes
of Xerces in three subsets with 5 instances of Blobs in
each subset. Then, we use two of the subsets as training
set and the third as test set in a 3-fold cross-validation.
(We did not use GanttProject because it contains too
few instance of Blob, i.e., 4).

∙ extra-system identification: we study the accuracy of
ABS using heterogeneous data. We assume that a
quality analyst has access to the historical data from
one system i.e., GanttProject. This data is then used to
identify Blobs in the other system, i.e., Xerces. We also
perform the same study in the other direction, i.e., using
Blobs in Xerces to identify occurrences in GanttProject.

We formulated the following research questions:
∙ RQ1: To what extent a model built with a B-spline is

able to detect Blobs in a system?
∙ RQ2: Is a model built with a B-spline better than state

of-the-art approaches, such as DECOR and BBNs, both
intra system and extra system?

C. Data Collection and Analysis

To answer the two previous research questions for each
identification scenario, we collect the number of correct

4http://www.ptidej.net/downloads/experiments/csmr10a/



Blobs and false positives identified by each identifica-
tion approach. We compared the identified Blobs with the
manually-built Oracle via the Information Retrieval (IR)
metrics [25]:

recall =
∣correct ∩ suggested∣

∣correct∣

precision =
∣correct ∩ suggested∣

∣suggested∣
where correct and suggested represent the sets of known
Blobs and of candidate Blobs suggested by an approach,
respectively.

V. ANALYSIS AND INTERPRETATION OF THE RESULTS

We now discuss the results of our case study.

A. Intra-system Identification

First, to answer RQ1, we apply ABS to identify the
Blobs in Xerces using previously-identified Blobs in the
same system. We use both the one tailed and the two tailed
approaches. We use different sizes of set G, i.e., the set of
classes classified as good quality classes. We achieve the
best accuracy when the size of G is twice as much as that
of B (i.e., 20 good quality classes for 10 Blobs).

Figure 4 shows the precision and recall curves achieved
when performing the 3-fold cross-validation. (In this figure
and the following, the fine vertical lines represent the limits
where 100% recall is reached for each approach.) The
training and test sets influence the results. However, in all
the three cases, all the Blobs were identified by analysing
almost the same number of classes (i.e., 18, 21, and 20 when
applying the one-tailed approach and 16, 22, and 19 when
applying the two-tailed approach).

Both the one tailed and two tailed approaches are quite
stable and the same cutting-threshold was used in all the
three cases for identifying all the Blobs, i.e., 0.9 for the one-
tailed approach and 0 for the two-tailed approach. (In the
two-tailed approach, the godliness of a class is computed as
the difference between the similarities of the class to Blobs
and the similarities to good classes. Thus, the threshold is
naturally 0: the balance between Blobs and good classes.)

Even if the two approaches achieved comparable level of
precision when recall is equal to 1, in general the two-tailed
approach sensibly outperforms the one-tailed approach. In
particular, the former provides generally better accuracy in
two cases (as shown in Figures 4a and 4c). In the third
case, the accuracies of the two approaches are comparable
(see Figure 4b).

With respect to RQ2, Table II shows the number of
candidate classes that have to be inspected before detecting
the five known Blobs. The order of inspection depends on
the godliness level of a class.

The accuracy of DECOR is similar to that of ABS,
because a quality analyst must potentially inspect 13, 13,

(a)

(b)

(c)

Figure 4. Intra project identification on Xerces: Precision and recall curves
achieved performing a 3-fold cross-validation.

and 17 occurrences to identify the five known Blobs. Such
a result is due to the small size of B, i.e., too few occurrences
of the Blobs because Xerces contains only 15 Blobs and 10
of these are used to train ABS for identifying the remaining
5 Blobs. Thus, better results would be achieved by enriching
the set of previously classified Blobs. (The sum of the
occurrences returned by DECOR does not equal the total



(a) Results achieved on Xerces (b) Results achieved on GanttProject

Figure 5. Extra-system identification: Results achieved with ABS

Table II
INTRA-SYSTEM IDENTIFICATION ON XERCES: COMPARISON OF

DECOR, BBNS, AND ABS.

Folds
# of Classes to Inspect

# of BlobsDECOR BBN ABS
One Tailed Two Tailed

1 13 6 12 16 5
2 13 7 14 15 5
3 17 9 16 18 5

number of Blobs, 45, when analysing Xerces as a whole
because two occurrences must include classes in another
fold to be considered Blobs.) accuracy of the BBN approach
is better than that of ABS, for the same reasons as before.
However, for ABS, the precision of 0.3 for a recall of 1 is
still acceptable to help improving the quality of a system.

B. Extra-system Identification

To answer RQ1, we apply ABS to identify Blobs in
GanttProject and Xerces while assuming data on the Blobs
in the other system. We also compare the two approaches
one tailed and two tailed. Again, best accuracy was achieved
for the two-tailed approach when the number of classes
previously classified as good classes is twice the number
of the classes previously classified as Blobs.

Figure 5 shows the precision and recall curves in the
two cases. The lozenges for DECOR show that a quality
analyst must study all the detected occurrences to identified
the Blobs. The results achieved on Xerces show that the
both two one-tailed and two-tailed approaches are able to
identify all the correct occurrences of the Blob with the
same level of precision (more than 20%). Yet, the two-tailed
approach provides generally better identification accuracy
when analysing the trend of precision and recall. Similar
results are achieved on GanttProject, but the one tailed
approach has a better trend of recall and precision.

The results achieved in the extra-system scenario confirm
those in the intra-system scenario. They also confirm the

Table III
EXTRA-SYSTEM IDENTIFICATION: COMPARISON OF DECOR AND ABS

(TWO TAILED).

Systems # of Classes to Inspect # of BlobsDECOR ABS
GanttProject 16 7 4
Xerces 45 55 15

stability of ABS. In particular, the godliness thresholds used
for identifying all the Blobs were the same as the ones used
in the intra-system scenario, i.e., 0.9 and 0.

With respect to RQ2, we compare the accuracy of ABS
with DECOR and BBNs. The best results in the previous
experiments were achieved for ABS using the the two-tailed
approach, therefore, we use this approach for comparing
ABS with DECOR and BBNs.

Table III shows the number of candidate classes that must
be inspected before identifying the four known Blobs in
GanttProject using DECOR and ABS (two-tailed approach).
The order of inspection depends on the godliness level of the
class, yet the accuracy of ABS is better than that of DECOR
on GanttProject, while almost comparable on Xerces (due
to the little number of Blob in GanttProject). These results
confirm those obtained previously and strongly suggests that
providing ABS with a large number of Blobs increases the
identification accuracy of our approach.

The results achieved when comparing ABS with DECOR
are confirmed when comparing ABS with BBNs. Figure
6 shows the precision and recall curves achieved by the
two approaches on the two systems. ABS again outperforms
BBNs on GanttProject, while BBNs provide better results on
Xerces. ABS requires the inspection of 7 and 57 classes to
identify the Blobs in GanttProject and Xerces, respectively.
While BBNs required the analysis of 10 and 36 classes to
identify Blobs in GanttProject and Xerces, respectively.

The results achieved are promising because they suggest
that in the absence of historical data or in the presence of



(a) Results achieved on Xerces (b) Results achieved on GanttProject

Figure 6. Extra project identification: Comparison of DECOR, BBNs, and ABS (two tailed)

little historical date on a specific system, quality analysts
could use ABS to exploit the knowledge from different
systems and obtain acceptable precision and recall in the
identification of antipatterns. These results also show that
quality analysts could use our novel approach to exploit data
external to her company and then adapt and apply ABS to
her context successfully.

C. Threats to Validity
The main threat to the external validity that could affect

the generalisation of the results presented previously relates
to the analysed systems. To mitigate this threat, we used
two medium-size systems, which support different activities
and are open source and thus are available for replication
purposes. Nevertheless, we plan to replicate our study in
the future on larger systems to further confirm the general-
isability of our results.

A threat to the internal validity is represented by the
oracle used to analyse the accuracy of the identification
approaches. Our oracle was manually defined by analysing
the two systems used in the case study, which include an
amount of subjectivity. To mitigate this threat and reduce
the risk of classification errors, we asked four students
(two undergraduate students and two graduate students) to
independently identify occurrences of the Blob in the two
systems. Prior to their manual detection of Blobs, students
were presented with several anti-patterns and the Blob in
particular, yet we did not interfere with their chosen process
of identification to avoid biaising their process towards
occurrences that could be more easily identified by ABS.
Moreover, to mitigate the differences of background between
students, undergraduate students performed the task together
because, on maintenance activities, the performance of a
pair of undergraduate students is about the same as that
of one graduate student. Finally, an candidate occurrence
was classified as real Blob only when two or more students
classified it as such. Such a process makes us quite confident
about the accuracy of the Oracle.

Regarding the construct validity, i.e., the relation between
theory and observation, recall and precision are widely used
metrics for assessing the accuracy of a classification method.
Such metrics are useful to analyse the accuracy of an
approach, as well as to compare it with different approaches.

VI. LESSONS LEARNED

The results of the case study taught us a number of lessons
and highlighted some open issues:
∙ B-splines are a valuable approach for representing

and characterising classes. The results of the case
study show that the accuracy of ABS is comparable
or superior to that of previous approaches. In addition,
ABS provides a graphical, simple, and fast means to
compare classes, as shown in Figure 1.

∙ The signatures can be used to monitor the evolu-
tion of classes. The graphical representation and the
godliness are also useful to developers to monitor the
evolution of classes on a day-to-day basis and provide
feedback to the developers on the “quality” of their
classes as they evolve, as illustrated by the Sign-o-
Meter in Section III-C.

∙ ABS is simple. No background knowledge is required
to built either the rule cards or the structure of the
BBNs. Thus, ABS does not embed the experts’ subjec-
tive understanding of the definitions of the antipatterns.
Yet, it requires an Oracle that provides occurrences of
some antipatterns. However, this Oracle can be built and
improved collectively and–or borrowed from others.

∙ ABS is directly portable across systems. ABS keep
a consistent accuracy when applied to different sys-
tems while, to maintain their accuracies, both BBNs
and DECOR require recalibration of the conditional
probabilities [4] or changes to the thresholds [3]. In
addition, with ABS, the same thresholds, e.g., godliness
threshold, can be used across various systems.

∙ The number of occurrences of an antipattern in



the training sets influences the accuracy of ABS. In
comparison to BBNs, ABS requires a higher number
of already-classified occurrences to provide the same
accuracy. BBNs compensate the lack of occurrences
with experts’ knowledge when available. However, the
portability of ABS allows to improve its accuracy by
“borrowing” occurrences from different systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to identify
occurrences of antipatterns using the signature of the classes
and of the antipatterns. Signature are built using numerical
analysis of metric values. We use a B-splines to approx-
imate the signature of a class or an antipattern and the
distance between signatures to identify classes participating
to antipatterns. The signature of an antipattern is computed
as the average of the signatures of a set of known classes
participating to the antipattern.

We introduce two approaches to use B-splines to compare
the signature of a class with that of an antipattern: a one-
tailed approach, where the similarity between the class
signature and that of the antipattern is computed, and a two-
tailed approach, where this similarity is computed using both
the signature of the antipattern and the average signature of
a set of good quality classes.

We illustrated our approach on the Blob antipattern and
compared it with DECOR [3], which uses strict thresholds,
and an approach based on BBNs. We showed that our
approach outperforms in general previous approaches in
precision and recall while being more attractive in practice
thanks to the speed and ease to generate and interpret
the signatures. In few explainable cases, our approach has
lower precision or recall than previous approaches, when the
training set to build the signature is too small.

Future work include replicating our cast study on larger
systems to assess the generalisability of our novel approach.
It also include computing the signatures of other antipatterns
than the Blob and again replicate our study to assess the im-
pact of the antipattern on accuracy. Finally, we are currently
working on an empirical study to assess the usefulness to
developers of the Blob-o-Meter when assessing and evolving
the quality of a system.
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