
A Taxonomy for Program Metamodels in Program
Reverse Engineering

Hironori Washizaki
Dept. of Computer Science and Engineering

Waseda University, Tokyo, Japan
National Institute of Informatics, Tokyo, Japan

washizaki@waseda.jp

Yann-Gaël Guéhéneuc, Foutse Khomh
Ptidej Team, DGIGL Ecole Polytechnique de Montreal,

Quebec, Canada
{yann-gael.gueheneuc, foutse.khomh}@polymtl.ca

Abstract—Metamodels are frequently used during program
reverse engineering activities to describe and analyze constituents
and relations between the constituents of a program for sup-
porting program comprehension, maintenance, and extension.
Reverse engineering tools often define their own metamodels
according to their own purposes and intended features. These
metamodels have all advantages, and limitations that might have
been solved by others. Although there are some existing works
on the evaluation and comparison of these metamodels and
tools, none of them consider all the possible characteristics and
limitations to provide a comprehensive guidance for classification,
comparison, reuse and extension of program metamodels. To
guide practitioners and researchers to classify, compare, reuse,
and extend program metamodels and their corresponding reverse
engineering tools according to their goals, we first establish a
conceptual framework with definitions of program metamodels
and related concepts. Based on this framework, we provide a
comprehensive taxonomy named Program Metamodel TAxonomy
(ProMeTA), which incorporates characteristics that are newly
identified into those that have already been stated in previous
works identified by a systematic literature survey on program
metamodels, while keeping the orthogonality of the entire taxon-
omy. We validate the taxonomy in terms of its orthogonality and
usefulness through the classification of popular metamodels.

Index Terms—reverse engineering, program metamodels, pro-
gram comprehension and analysis, taxonomy

I. INTRODUCTION

Many metamodels are used to describe and process software
programs in program reverse engineering for program com-
prehension, maintenance, and extension. These metamodels
are essential for the development of reverse engineering tools
because they define constituents and relations to be identified
in programs, enabling and circumscribing the features of the
tools.

Reverse engineering tools often define their own metamod-
els according to their own purposes and intended features
[1]. Depending on the actual reverse engineering problem and
the aspired program analysis technique, different code rep-
resentations (i.e., metamodels) must be chosen. Each reverse
engineering tool must choose the appropriate abstraction level
of the metamodel. For many reverse engineering activities,
only a broad overview of the system is necessary and that the
amount of extracted data by language analyzers (like compilers
based on low-level metamodels) can become far too large to
be comprehended or analyzed in a reasonable amount of time

[2]. In contrast, for some analysis, details are essential for
ensuring high precision and recall in the analysis results.

These metamodels have all advantages and limitations that
might have been solved by others. By conducting a rigor-
ous survey on program metamodels, we identified that these
metamodels can be characterized by the following exhaustive
orthogonal features: target language, abstraction level, meta-
metamodel, exchange format, processing environment, defini-
tion, program meta and history data, and quality.

For example, regarding the abstraction level, there are low-
level metamodels representing the complete code syntax, high-
level ones representing abstract architectural elements, and
mid-level ones representing neither the complete code syntax
nor the architectural elements [3].

Because of differences between metamodels used, it is dif-
ficult to compare reverse engineering tools. These differences
also lead to problems in exchanging information among the
tools [4]. For example, it is known that fact extractors com-
monly do not agree and emit different facts on the same source
program; this tends to undermine the users’ understanding of
the program and decrease their confidence in the extractor [4].

To guide practitioners and researchers to classify, compare,
reuse and extend program metamodels and corresponding
reverse engineering tools according to their goals, there exist
some works on the evaluation and comparison of metamodels
and tools such as [5], [6]. However, the comparisons and
evaluations were conducted independently and do not give a
comprehensive guidance of all the possible characteristics and
limitations.

The goal of this paper is to provide a comprehensive
taxonomy and to classify some popular metamodels according
to this taxonomy. Our taxonomy, named Program Metamodel
TAxonomy (ProMeTA), and classification results will support
the classification, comparison, reuse and extension of program
metamodels and reverse engineering tools in various usage
scenarios. To make the taxonomy and classification results
consistent, we establish a conceptual framework with defini-
tions of program metamodels and related concepts. The frame-
work allows our taxonomy to incorporate newly identified
characteristics into previously identified ones while keeping
the orthogonality of the entire taxonomy.

We address the following research questions.

RQ1 Does ProMeTA cover all the possible characteristics
and limitations in existing works on evaluation and
comparison of program metamodels?

RQ2 Does ProMeTA have orthogonality of its classifica-
tion features?

RQ3 Is ProMeTA useful for guiding practitioners and
researchers? Possible usecases include making or
choosing reverse engineering tools, and, communi-
cating or researching on program metamodels and
reverse engineering tools.

Our contributions are as follows:
• A conceptual framework for program reverse engineering

from the viewpoint of metamodels.
• A comprehensive taxonomy (named ProMeTA) of fea-

tures characterizing program metamodels in reverse en-
gineering based on our framework.

• A classification of existing popular program metamodels
based on our taxonomy.

The remainder of this paper is organized as follows. We
provide some background in Section II. In Section III, we
propose our conceptual framework. In Section IV, we show
our taxonomy, which we validate and discuss in Section V.
Finally, we conclude our work and discuss future work in
Section VI.

II. BACKGROUND

A. Program reverse engineering

Reverse engineering is the process of analyzing a subject
system to identify the system’s constituents and creating rep-
resentations in another forms or at higher levels of abstraction
[7]. Although reverse engineering can be started from any
level of abstraction, this paper focuses on program reverse
engineering, i.e., the process of analyzing the program source
code to identify the program’s constituents and create a repre-
sentation of the program. It is motivated by the fact that, when
maintaining a software system, the only reliable information
is often embedded in the source code of the program [8].

Moreover, this paper limits the target program codes to those
written in general purpose programming languages (GPLs)
[9] such as C and Java. GPLs are used to solve a broad
spectrum of problems [10] in comparison to domain specific
languages (DSLs), which are used for particular problems.
DSLs usually offer higher-level constructs (e.g., rules) in
comparison to GPLs [11]. Thus, it is challenging to have
appropriate metamodels for describing GPL programs in ap-
propriate abstraction levels according to specific purposes such
as program analysis, visualization, etc.

B. Program Metamodel

Fact extraction from source codes is aimed at finding pieces
of information about the system (e.g., the name of a class
or what function calls what function) [12]. Fact extraction is
often the first step when analyzing a software system during
reverse engineering. Before performing any high-level reverse
engineering activity, the available information (i.e., facts) must

be extracted and aggregated in a fact base or repository [12].
Essential to a fact extractor is the underlying metamodel (i.e.,
schema), which specifies the constituents and relations to be
extracted [12].

In addition, schemas are essential for the development of
reverse engineering tools since they also specify the underlying
semantic model of various analysis services [13]. Here, from
the viewpoint of modeling technology, schemas for fact extrac-
tion from program are regarded as program metamodels while
the extracted facts are regarded as models of the programs that
conform to the corresponding schemas used for extraction.

III. TERMINOLOGY AND CONCEPTUAL FRAMEWORK

Program metamodels are used under various contexts (such
as forward engineering and reverse engineering) and at various
abstraction levels (from architecture to code). Yet, the concept
of metamodels is often not clearly recognized. Indeed, there
are many synonyms for “metamodel” including “schema”,
“representation”, “format”, and “form”. Moreover, metamod-
els are often discussed together with standard exchange for-
mats (SEFs) without a clear distinction between these two
concepts. For example, Sim and Koschke [2] report that the
workshop focused on SEFs had a presentation addressing “a
family of related SEFs including MOF, XMI, UML, XML and
CDIF.” However, Meta Object Facility (MOF) [14] is a meta-
metamodel while the others are basically SEFs, although UML
can also serve as a program metamodel.

To establish a common vocabulary, we first define the core
concepts below.

• A model is a simplification of a system with an intended
goal in mind [15]. For example, a diagram showing only
the program modules and their dependencies is a model
of a program that has been created with the goal of
understanding the basic structure of the program at a
higher level of abstraction.

• A metamodel is a model of a language that captures
the essential properties and features [16] of some tar-
get models. Although metamodels have primarily been
developed and advertised by the Object Management
Group (OMG) with its MOF standard [17] in the context
of modelware, metamodels are not limited to MOF-
based models. Program metamodels in modelware [18],
schemas (or exchange format) in dataware, and gram-
mars in grammarware [19] are all metamodels [15] in
different technological spaces [18], [20]; these are models
of program modeling languages, data languages, and
programming languages, respectively.

According to the above-mentioned concepts, program meta-
models and related concepts are defined as follows, and
Figure 1 shows the relationships among them following the
OMG four-layer metamodel hierarchy [18], [14] with some
modifications to make it comparable with other model-driven
engineering frameworks and views.

• A program metamodel is a model of a programming lan-
guage grammar, which represents target programs accord-
ing to a specific purpose; a program model must conform

to its program metamodel. Examples include Knowledge
Discovery Meta-Model (KDM)[21], FAMOOS Informa-
tion Exchange Model (FAMIX) [22] and UML.

• A program meta-language is a language to describe
program metamodels. Meta-languages can be classified
into two types: metasyntaxes of grammar (such as Ex-
tended BNF (EBNF) [23]), which are textual, and meta-
metamodels of metamodels at certain abstraction levels
(such as MOF and Eclipse Modeling Framework (EMF)
meta model Ecore [24]), which are graphic.

• A context-free grammar (or simply grammar) is a formal
device for specifying which strings are part of the lan-
guage, where a language is a set of strings over a finite
set of symbols [25].

• A concrete syntax tree (CST) is a parse tree that picto-
rially shows how a string in a language is derived from
the start symbol of the grammar [26].

• An abstract syntax tree (AST) is a simplified syntactic
representation of a source code which excludes superficial
distinctions of form and constituents that are unimportant
for translation from the tree [26]. An AST follows an ab-
stract grammar, which is a representation of the original
concrete grammar at a higher level of abstraction.

• An abstract syntax model is a graphic representation of an
abstract syntax (tree). Abstract syntax models can be seen
as low-level program metamodels. Examples of abstract
syntax models are programming-language-independent
AST models such as ASTM [27] and programming-
language-specific AST models such as Java Metamodel
[28].

• A standard exchange format (SEF) (or simply exchange
format) is a metamodel (i.e., schema) of model data
used to store the data that are exchangeable among
different tools. Examples include XML, XML Metadata
Interchange format (XMI), Resource Descriptor Format
(RDF), Rigi Standard Form (RSF), Tuple-Attribute Lan-
guage (TA), GraX [2], and CASE Data Interchange
Format (CDIF) [29]. Some of these (such as XMI and
RDF) are general-purpose exchange formats that can be
adapted to software, while others are specifically for
software [2].

IV. TAXONOMY CONSTRUCTION

Based on the background described in Section II and the
vocabulary presented in Section III, we identified various
characteristics to distinguish existing program metamodels. We
propose a comprehensive taxonomy, named Program Meta-
model TAxonomy (ProMeTA) for the classification of program
metamodels in the form of feature diagrams based on our con-
ceptual framework. ProMeTA integrates characteristics stated
in existing works with those that we have newly identified
while keeping the orthogonality of the entire taxonomy.

We describe ProMeTA and its construction process in detail
below.

A. Taxonomy Construction Process

The development of a taxonomy can be approached in two
different ways: top-down or bottom-up [30], [31]. In the top-
down approach, a taxonomy is built upon existing knowledge
structures, allowing the reuse of established definitions and
categorizations and hence increasing the probability of achiev-
ing an objective classification procedure [30].

As we mentioned, there are some existing works on the
evaluation and comparison of program metamodels and tools
but none of them gives us a comprehensive guidance that takes
into account all the possible characteristics and limitations.
Therefore, we basically adopt the top-down approach to design
ProMeTA based on our conceptual framework as follows.

1) A specific taxonomy is designed to accommodate a
single, well-defined purpose while it is applicable in var-
ious circumstances [30]. Therefore, we start by clearly
defining the specific purpose of ProMeTA – to support
stakeholders to classify, compare, reuse and extend pro-
gram metamodels in program reverse engineering. Ad-
ditionally, the taxonomy is expected to support commu-
nication among all stakeholders, thereby increasing the
accessibility of research results in program metamodels
and reverse engineering.

2) For the top-down approach, we identified existing works
on classification and quality properties of program meta-
models and tools by a systematic literature review
(SLR). During the SLR, we also identified several pop-
ular metamodels. The aim of an SLR is to aggregate
all existing evidence on a research question and sup-
port the development of evidence-based guidelines for
researchers and practitioners [32].
Then, we analyzed existing classifications and compar-
isons on program metamodels and related concepts [33],
[34], [35], [36], [37], [38], [3], [39], [40], [5], [6] that
are identified by the SLR, and merged them together
into one structure in the form of feature diagrams [41]
by referring to the basic term classification defined
in our conceptual framework. We also merged quality
properties of program metamodels and related concepts
discussed in 12 papers [42], [36], [43], [44], [38], [45],
[18], [46], [13], [47], [48], [16] that are identified by the
SLR. A feature diagram essentially defines a taxonomy
[46].

3) In addition to the above-mentioned existing knowledge
structures, we added all the characteristics identified in
existing metamodels to the taxonomy while keeping its
orthogonality by referring to the basic term classification
defined in the framework.

4) Finally, we validated the taxonomy in terms of its
orthogonality, coverage and usefulness by using it to
classify the five popular metamodels identified in the
SLR.

GrammarwareM0

conforms

Execution rule

Execution of program

M3

maps to

Meta-language

Meta-metamodelMetasyntax of grammar

M2

maps tomaps to

describes

conforms

Architecture / design metamodel

Program metamodel

Grammar metamodel

is mapped by

Abstract grammar

conforms

Grammar

Metasyntax of schema

Exchange format

conforms

conforms

M1
maps tomaps to conforms

Architecture / design model

describes

conforms

Program model
conforms

Abstract syntax (tree/graph) model

conforms

Abstract syntax (tree)

conforms

describes
Program (text / CST) Model data

conforms

describes

conforms

might be mapped by

Modelware Dataware

Fig. 1. Conceptual framework of program metamodels

B. Systematic literature review

We search for papers that are about program metamodels in
reverse engineering by using Engineering Village1. Engineer-
ing Village is a search platform providing access to 12 trusted
engineering document databases such as Ei Compendex and
Inspec.

We used our search query as shown in Figure 2; it is simple
but expected to be enough to find relevant papers since any
reverse engineering objective and application have to employ
some sort of transformations; extraction and generation can be
regarded as a kind of vertical transformations [49].

We initially obtained 1234 papers by executing our query
in Engineering Village as of October 13th 2015. After that,
we adopt the following inclusion and exclusion criteria. We
go through the title and abstract (and the body if necessary)
to check the relevance of selection.

Inclusion criteria:
a). Studies published in journals or conference proceed-

ings in the form of papers employing metamodels for
program reverse engineering targeting program source
code written in GPLs. For example, we include studies
on program reengineeing such as modernization and
refactoring only if they employ program metamodels
for explicit reverse engineering phase as a part of entire
reengineering process.

b). Studies that present details and/or complete results if
there are more than one studies on the same topic
reported by the same author group.

1http://www.engineeringvillage.com/

� �
("meta model" OR "meta models" OR metamodel*)
AND
("source code" OR "source codes" OR program*)
AND
(extract* OR transform* OR generat*)� �

Fig. 2. The search query

Exclusion criteria:
a). Studies that do not employ any program metamodel.
b). Studies that are not directly related to program reverse

engineering targeting program source code written in
GPLs.

c). Elements of ”grey” literature that are not published by
trusted, well-known publishers, and did not use a well-
defined referee process[50].

d). Articles that are not published in English.
Moreover, by performing the snowballing process, we fi-

nally obtained a set of 62 papers. Among them, 11 papers are
about classification and comparison on program metamodels
and related concepts [33], [34], [35], [36], [37], [38], [3], [39],
[40], [5], [6], while 12 papers are about quality properties [42],
[36], [43], [44], [38], [45], [18], [46], [13], [47], [48], [16].

C. Overview of Taxonomy

ProMeTA consists of nine features that represent major
points of variation as shown in Figure 3. We detail each feature
below.

Fig. 3. Feature diagram for program metamodels

D. Feature: Target Language
Language independence varies from metamodel to meta-

model; some metamodels only handle certain languages while
others handle multiple languages in a certain or any category.
Moreover, even if a metamodel is stated to be ”language
independent”, we often found that it actually only supports a
very limited number of languages at the time of our analysis.
To define these characteristics precisely, the target language
feature consists of two parts as shown in Figure 4: language
independence and current supported languages.

Fig. 4. Feature diagram for target languages

E. Feature: Abstraction Level
A representation (i.e., model) conforming to a metamodel

must be as abstract as possible [51] within the limits of its
reverse engineering objectives. Metamodels can be classified
into three abstraction levels as shown in Figure 5: 1) low,
where the metamodel represents the complete syntax of a code,
2) high, where the metamodel represents abstract architectural
elements, and 3) middle, where the metamodel represents
neither of the above [3].

According to the requirements for SEFs [35], SEFs should
be able to deal with classes (i.e., modules), associations (i.e.,
relationships) and attributes. The same requirements can be
commonly applied to high- or mid-level program metamodels
as well; the domain ontology for integrating several reverse
engineering tools (based on high- or mid-level metamodels)
[5] specifies these characteristics. The ontology also contains
other concepts such as System, Module (i.e., self-contained
entity), SubProgram (i.e., non-self-contained entity), Variable,
Containment relationship and Use relationship [5], that are
applicable to the mid-level metamodels.

Regarding the low-level metamodels, we follow the three
representation aspects [37]: Lexical Structure, Syntax and
Semantics. Moreover, we added Dialects such as non-standard
language specifiers as well as Preprocessor Artifacts [38] and
Static/Dynamic semantics [40], taken from existing schema
comparisons [38], [40].

Fig. 5. Feature diagram for abstraction levels

F. Feature: Meta-Language

The data structures of SEFs used to represent software are
classified into three types [44]: Tree, Graph and Structured
Data (i.e., data that is not a tree or a graph). We adopt the same
classification for classifying meta-languages aligned with our
conceptual framework.

Based on the classification shown in Figure 6, we list several
well-accepted standard meta-metamodels together with the
metasyntax of grammar, including MOF, EMF/Ecore, Kernel
MetaMetaModel (KM3) [52], UML and EBNF. KM3 is a
meta-metamodel that has concepts similar to those found
in MOF but is simpler than MOF [11]. Although UML is
originally a modeling language classified in the M2 layer of
the OMG four-layer metamodel hierarchy, it is often used for
modeling program metamodels.

Fig. 6. Feature diagram for meta-languages

G. Feature: Exchange Format

Program metamodels could depend on or have a high affin-
ity with specific SEFs, although it is preferable for them to be
independent from any SEF in order to exchange models among
tools. For example, a reverse engineering tool environment
called MOOSE [53] defines its own program metamodel called
FAMIX, but it adopts CDIF (and later XMI) to exchange
FAMIX-based information between different tools [54], [44].

Figure 7 shows the characteristic properties and consider-
ations of SEFs [44], [45]. Among them, most of the qual-
ity characteristics, including scalability, simplicity, neutrality,
formality, flexibility, evolvability, identity, solution reuse and
legibility, are basically examined according to the exchange
patterns [45], i.e., combinations of the clarity and locality of
the exchange format on which the metamodel depends.

The exchange format satisfies the integrity only if some
special mechanism for ensuring errorless exchange has been
provided with the exchange format on which the metamodel
depends [45]. The exchange format satisfies the popularity
if many different tools support the format. The exchange
format satisfies the completeness only if all the information
in the metamodel can be included in the exchange format.
The exchange format satisfies the transparency only if no loss,
alteration or gain in the information transferred occurs due to
the use of encoders and decoders of the exchange format [45].

As for the property of the Abstract Syntax property, we
list well-accepted SEFs, including Annotated Terms (ATerms)
[55], [56], InterMediate Language (IML) and Resource Graph
(RG) [57], Multi-Layer and Multi-Edge-Set (MLMES) graph
[58], CASE Data Interchange Format (CDIF) [29], Tuple-
Attribute Language (TA) [59], TA++ [35] and Datrix-TA [60],
PROgramming with Graph Rewriting Systems (PROGRES)
graph specification [61], GraX/TGraph [62], Graph Exchange
Language (GXL) [63], and Rigi Standard Form (RSF) [64],
along with general-purpose exchange formats, including XML
[65] and XMI [66].

Fig. 7. Feature diagram for exchange formats

H. Feature: Processing Environment

By providing mechanisms to query (i.e., navigate) and
transform program models, language toolkits including re-
verse engineering tools can fulfil analysis and comprehension
tasks, as well as carry out maintenance and source code
transformation tasks [67]. Specific processing environments
to provide such mechanisms for navigation, transformation,
analysis and extraction are often provided together with the
program metamodels. Figure 8 represents the major points of
variation for processing environment.

I. Feature: Definition

Program metamodels are mostly defined manually. Some
approaches exist for generating program metamodels automat-
ically from grammars [51], [68], although these are originally
intended to work for DSLs. Regarding the clarity and locality
of the definition, program metamodels can be classified into

Fig. 8. Feature diagram for processing environments

four exchange patterns, similar to SEFs [44], [45]: implicitly-
internally defined, implicitly-externally defined, explicitly-
internally defined, and explicitly-externally defined. Figure 9
shows these characteristic properties.

Fig. 9. Feature diagram for definition

J. Feature: Program Meta and History Data

According to the requirements for SEFs [35], SEFs should
be able to store basic data (i.e., meta data) about the soft-
ware systems they represent, including programming language
versions, software system versions, dates of files creation and
versions of files. We believe that program metamodels are also
expected to handle such meta data together with the name of
the programming languages.

Moreover, several program metamodels, such as Ring [69],
directly support the history data, which allow reverse engineer-
ing tools to work easily with source code versioning systems
to conduct history analysis at some abstraction levels. Figure
10 shows these characteristic properties.

Fig. 10. Feature diagram for program meta and history data

K. Feature: Quality

We use the standard quality model ISO/IEC 25010:2011
[70] as the basis for specifying quality properties of program
metamodels in a comprehensive and consistent manner. During
the SLR, we found 12 papers discussing quality properties
that are applicable to program metamodels, which are: require-
ments for SEFs [43], [44], [45], requirements for C++ schemas
[38], requirements for reverse engineering tools enabled by
schemas[42], [13], comparative considerations for program

comprehension tools [36], evaluation properties for static
analysis frameworks [47], comparative issues for technological
spaces [18], tracing features for model transformations [46],
formality levels of metamodeling [16], and correctness of
metamodels [48].

We categorize these properties together with those that we
have newly identified, such as available form and verification,
into seven quality characteristics and their sub-characteristics
defined in the ISO/IEC 25010:2011 quality model. Figure 11
shows the feature diagram for functional suitability, while
Figure 12 shows the feature diagram for the other quality
characteristics. We summarize them as follows:

• Functional suitability consists of three sub-characteristics:
1) functional appropriateness, which is mostly concerned
with traceability [18], [46] from model elements to the
corresponding portion of the source code, 2) functional
correctness regarding how the program metamodel has
been verified [48], and 3) functional completeness regard-
ing the applicability of the metamodel (i.e., general pur-
pose metamodels or task-specific ones) [42]. In general,
low-level metamodels are good for executability since any
GPL should provide executable semantics, while most
mid- or high-level metamodels lack executable semantics.

• Performance efficiency addresses the quantity of ex-
tracted data [36], which primarily depends on the gran-
ularity of the metamodel. A metamodel sacrifices such
resource utilization if the ratio of extracted information
to code is very high.

• Compatibility addresses the interoperability among differ-
ent tools and environments, which is broken down into
several concrete properties. The identity (i.e., the iden-
tity preservation during transformation), solution reuse
and neutrality are primarily determined by the exchange
patterns [45]. A metamodel satisfies the integrity only if
some special mechanism for ensuring errorless exchange
has been provided with the metamodel [45]. A metamodel
satisfies the instance representation [38] if the metamodel
instance (i.e., a model) can be easily represented in any
SEF; this property is almost identical to the content-
presentation separation [18].

• Usability addresses the learnability that is supported
by the existence of documentations, samples and user
communities [47].

• Reliability addresses the availability of the program
metamodel in terms of licensing [47]. Metamodels are
expected to be fully available through websites or other
means; sometimes, however, only parts of a metamodel
are provided.

• Maintainability encompasses five sub-characteristics.
Among them, simplicity and evolvability are primarily
determined by the exchange patterns [45]. Some meta-
models have specific modularity mechanisms (such as
packages) and/or reuse mechanisms (such as the inher-
itance and logical composition of metamodel elements)
[46] to improve maintainability. The formality is specified

as partially formalized or completely formalized [16]
according to the available metamodel definition.

• Portability addresses the adaptability and is composed of
three concrete properties. Among them, flexibility and
scalability are primarily determined by the exchange pat-
terns [45]. A metamodel satisfies the popularity if many
different organizations other than the original developers
have used it.

Fig. 11. Feature diagram for functional suitability

Fig. 12. Feature diagram for performance efficiency, compatibility, usability,
reliability, maintainability and portability

V. VALIDATION OF PROMETA

A taxonomy can be validated by demonstrating the orthog-
onality of its classification features, by benchmarking against
existing classification schemes, and by demonstrating its utility
to classify existing knowledge [71]. We validated ProMeTA by
classifying popular metamodels identified in the SLR.

A. Target popular metamodels

In the set of 62 papers obatained by the SLR, the following
five program metamodels are adopted to concrete reverse
engineering techniques or tools in multiple papers:

• M1. Abstract Syntax Tree Metamodel (ASTM): two
papers [6], [72]

• M2. Knowledge Discovery Meta-Model (KDM): four
papers [73], [74], [75], [76]

• M3. FAMOOS Information Exchange Model (FAMIX):
five papers [77], [78], [79], [80], [81]

• M4. SPOOL Metamodel: two papers [82], [83]
• M5. UNIQ-ART Metamodel: two papers [84], [85]

B. Classification result

We classified the above-mentioned five metamodels M1–M5
by using ProMeTA. Figure 1 shows the classification result.
We summarize the findings and corresponding suggestions for
practitioners and researchers as the followings.

• Target language: Three of the five metamodels are lan-
guage independent while two are specific to handle
object-oriented program code. And regardless of the
language independence, all of them support Java language
since it is thought to be the most common language
especially in the context of reverse engineering research
and practice. And the second common language is C++.
If the target language is major like Java and C++,
practitioners and researchers could reuse many of existing
program metamodels and their corresponding reverse
engineering tools while they have to choose specific
metamodel or create new one if the target language is
minor.

• Abstraction level: All of the five metamodels can be used
as the mid-level metmodels while only single metamodel
(M2) can be used as the high-level one. According to
the coverage of the low-level metamodel features, M1
and M2 are more useful as the low-level metamodels
although they still miss some lexical structure features
such as Token, Separator and Layout. There is no meta-
model among five that directly supports and implements
language dialects.
Practitioners and researchers could choose an appropriate
metamodel and its corresponding reverse engineering tool
according to their requirements on the abstraction level.
However, there could no existing metamodel supporting
all of required features at certain abstraction levels, es-
pecially at the low-level according to our classification
results; in that case, it could be necessary to extend
existing metamodels or create new one to cover those
missing features.

• Meta-language: Four of the five metamodels adopt the
standard meta-metamodel MOF or the language UML
that are explicitly and externally defined, while only M5
adopts a specific implicit and internal one.
If practitioners and researchers consider to adopt various
tools for long-term usage, it could be better to choose
or create program metamodels (like M1–M4) defined by
the widely-accepted, explicit and external meta-languages
such as MOF and UML.

• Exchange format: As corresponding to the meta-language
used, four of the five metamodels adopt the standard SEFs
such as XMI that are explicitly and externally defined,
while only M5 supports a specific binary-based implicit
and internal data exchange.

If practitioners and researchers consider to utilize various
tools for long-term usage, it could be better to choose or
create program metamodels with good exchange format
quality (like M1–M4), that support the widely-accepted,
explicit and external SEFs such as XMI.

• Processing environment: There are dedicated extractors
and navigation supports for all of the five metamodels
since these are popular ones; extractors and navigation
supports should be prepared to improve the ease of use of
metamodels. There are dedicated transformation supports
including refactoring facilities for three of five. Most of
the metamodels except for M5 are suitable for program
analysis.
Practitioners and researchers should check whether pro-
cessing environment and facilities are available to meet
their reverse engineering objectives.

• Definition: All of the five metamodels are manually de-
fined. Most of them except for M5 are explicitly defined;
it leads to high quality of the metamodels, especially
high compatibility, maintainability and portability. Three
of five are externally and fully formalized while two (M4
and M5) are internally defined.
If practitioners and researchers consider to utilize various
tools for long-term usage, it could be better to choose
or create program metamodels that are explicitly and
externally defined (like M1–M3).

• Program meta and history data: There are very little sup-
port for describing meta and history data in metamodels;
only the programming language name and the file version
are supported by M1 and M2 respectively.
During the SLR, we found several history-aware meta-
models that explicitly address version history: Ring [69],
Hismo [86], [87], FAMIX-based RHDB code model
[88] and FAMIX-based ArchEvoDB schema [89]. If
practitioners and researchers have to conduct reverse
engineering such that history analysis is taken into ac-
count, it could be better to choose these history-aware
metamodels; especially RHDB code model [88] and
ArchEvoDB schema [89] could be recommended since
these are extension of FAMIX, which is the widely-
accepted popular metamodel.

• Functionality: Two (M1 and M2) of the five metamodels
support most of functional suitability features including
executability, traceability and transformability since these
are low-level metamodels supporting static and dynamic
semantics shown in the abstraction level features. None
of five explicitly state how these have been verified. Most
of five can be used for various purposes while only M5
is specific to the dependency analysis purpose.
Practitioners and researchers should check whether pro-
gram metamodels under consideration satisfy their re-
verse engineering functionality requirements. And if they
have to use metamodels for various reverse engineering
purposes, it is better to choose general purpose metamod-
els (like M1–M4).

• Non-functionality: Only M1 sacrifices the performance

efficiency since it contains all of statement-level code
descriptions. Three (M1–M3) of the five metamodels have
good usability since documents, samples with communi-
ties are well prepared. These three metamodels also have
good compatibility, maintainability and portability since
these are explicitly-externally defined, fully formalized
and fully available; unfortunately definitions of M4 and
M5 seem to be unavailable elsewhere on web nor liter-
atures. Most of the metamodels except for M5 support
the inheritance and logical composition as the reuse
mechanism. Only M2 supports the dedicated modularity
mechanism.
Practitioners and researchers should check whether pro-
gram metamodels under consideration satisfy their non-
functionality requirements. And it is obvious that they
have to choose fully available and formalized metamodels
if they want to reuse existing ones.

C. Discussion

RQ1: Does ProMeTA cover all the possible characteris-
tics and limitations in existing works on evaluation and
comparison of program metamodels?

During the construction process of ProMeTA, all of
the important characteristics from existing classification
schemes/frameworks and comparison [33], [34], [35], [36],
[37], [38], [3], [39], [40], [5], [6] and discussions on quality
properties [42], [36], [43], [44], [38], [45], [18], [46], [13],
[47], [48], [16] for program metamodels and related concepts,
which are identified by the SLR, were included or mapped
to the items in ProMeTA, implying its adequate coverage
by construction. Thus, it is implicitly benchmarked against
existing classification schemes.
RQ2: Does ProMeTA have orthogonality of its classifica-
tion features?

We successfully classified popular program metamodels
from the SLR according to the characteristics defined in
ProMeTA, showing how it can help classify program meta-
models. Moreover, the classification did not result in any
of the characteristics fitting into more than one category,
demonstrating the orthogonality of the classification features.
RQ3: Is ProMeTA useful for guiding practitioners and
researchers?

We now discuss how ProMeTA could guide practitioners
and researchers in the following possible usecases UC1–UC3
below.

• UC1. Making new reverse engineering tools: When en-
gineers want to build their own new reverse engineering
tools, they first have to define their own requirements
on program metamodels that enable and circumscribe the
features of the tools. ProMeTA supports the requirements
definition and guides further reuse, extension or creation
of metamodels since engineers can recognize features
included in ProMeTA as possible requirement items.
Moreover, if a ProMeTA-based classification result of a
metamodel under consideration of reuse or extension is
available like M1–M5 in the above validation, engineers

can easily decide whether the metamodel satisfies their
own requirements based on ProMeTA.

• UC2. Choosing existing reverse engineering tools: When
engineers want to reuse and eventually extend existing
reverse engineering tools, they have to compare and
choose appropriate one according to how the underlying
program metamodels meet their objectives. ProMeTA
could guide such comparison by providing them impor-
tant comparison criteria and existing classification results
of metamodels if available.

• UC3. Communicating or researching on program meta-
models and reverse engineering tools: ProMeTA can serve
as a reference for the reverse engineering community
including practitioners and researchers, and can be easily
extended by peers, which in result will provide the
community with an important body of knowledge to
guide future communications and researches on program
metamodels and corresponding reverse engineering tools
since it incorporates characteristics of metamodels into
the single orthogonal structure based on the concep-
tual framework that defines the common terminology.
For example, ProMeTA could be a basis for building
an open repository of information of existing program
metamodels (and corresponding tools) by accumulating
classification results; the above-mentioned classification
results of M1–M5 could be a starting point of building
that.

D. Limitation

The classification of the five popular metamodels based on
ProMeTA was conducted by the first author of this paper and
quickly reviewed by the second and third authors. Therefore,
there is a possibility that our classification results may not be
completely correct; to mitigate this threat to validity, we have
a plan to open the classification results together with ProMeTA
to the public and call for comments on them. Especially, we
need to contact with original developers of the metamodels
addressed in the paper and request review.

Although we identified characteristics of program metamod-
els during the rigorous systematic literature survey, we might
miss some other characteristics to be used for classification of
metamodels. ProMeTA is expected to efficiently incorporate
such missing or future characteristics newly identified to the
single structure since we believe that the form of feature
diagrams could make such extension of the taxonomy easy.

Any taxonomy can only unleash its full potential through
widespread awareness and a large number of contributions
[90]. Therefore, our future work is to follow a popularization
strategy [90].

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a conceptual framework with
definitions of program metamodels and related concepts, and
built a comprehensive taxonomy named ProMeTA based on
this framework. ProMeTA incorporates the characteristics that
we have newly identified into those that have been stated in

�
�������	�
����� �
�� �
���� 	��
������������� ��
��� ����
�
�� �
������

�� �� �� �� �� �� �� �� �� � �! ��" ��� ��� ��� ��� ��� ��� ��� �� ��! ��"

�� #
��$�
��
� %�&�'����$�
 (((((((((((((

�� #
��$�
��
� %�&�'�)	*�+	 ((((((((((((((

�� ,-.���/,�
�
��� %�&�'�011'����'���������2 ((((((

�� ,-.���/,�
�
��� %�&�'�011 ((((((

�� #
��$�
��
� %�&�'�011'�0 ((((((((

�
����/	�
����� 3����
���45����

	� 	� 	� 	� 3� 3� 3� 3� 3� 3� 3� 3 3! 3�" 3�� 3�� 3�� 3�� 3�� 3�� 3�� 3� 3�! 3�" 4�� 4��

�� �,4 ���� 4
������
�6�� (�#'�(�� 3�$ 3�� 1 1 11 11 11 11 1 1 11 1 1 3�$ 3��

�� �,4 ���� 4
������
�6�� (�# 3�$ 3�� 1 1 11 11 11 11 1 1 11 1 1 3�$ 3��

�� 7�	 ���� ����������� (�#'�0�#4 3�$ 3�� 1 1 11 11 11 11 1 1 11 1 1 3�$ 3��

�� 7�	 ���� 4
������
�6�� (�# 3�$ 3�� 1 1 11 11 11 11 11 1 1 3�$ 3��

�� (8

��� �
���� 9�8 #�$ #
� / / / / / / / / / #�$ #
�

�
)�5����

��3
&
�5
��
�

)�)�)�)�)�)�)�))!

�� ,0	'�:����
����
��)��2���
�5�
��5�;���
������ $������<'�

=����5	

:������������$$

��>�

���
�65����
5
�)��2���
(

�� ,0	'��5�
��5 %�&���5����+����
�5�
��5 ;:����5�����

�
��5&���'�%�&�� �
��5&����<
�����55�� ((

�� �,,�3�?�&
���
5
��
��+����

��3
�

� �,,�3 �,,�3�9�6���5�

��3
�

� ((

�� (����
� ((

�� �+	 �),,	�;���
�������������5��< (

�
��6

�
5
)�5�����������
���
��5������� 4�
��
5
��
��

�� �� �� �� �� �� �� �� �� �� +� +� +� +� +� +� +�

�� ��
����� 3�$ 3�� (1 3�-����� ��
��� 1 1

�� ��
����� 3�$ 3�� (1 3�-����� ��
��� 1 1

�� ��
����� 3�$ 3�� 1

�� ��
����� 3�$ #
� 1 1

�� ��
����� #�$ #
� ��$�
��
����
����
�

�
?5
/4�
��
5
��
��

+ +! +�" +�� +�� +�� +�� +�� +�� +� +�! +�" +�� +�� +�� +�� +��

�� / �5�'����$��'�05���

�� 11 11 1 1 4��� 4���� #
���
��
��'�05�$5�
�
5
 1 11 4���� 11 1 1

�� �5�'����$��'�05���

�� 11 11 1 1 4��� 4����)��2��� #
���
��
��'�05�$5�
�
5
 1 11 4���� 11 11 1

�� �5�'����$��'�05���

�� 11 11 1 4��� 4���� #
���
��
��'�05�$5�
�
5
 1 11 4���� 11 11 1

�� 11 / / 4��� 7
�&�
��-�� #
���
��
��'�05�$5�
�
5
 1 /)���
���� 1 1

�� / / / 4��� 7
�&�
��-�� / /)���
���� / /

Fig. 13. Classification result by using ProMeTA (X: supports the characteristic indicated, ++: particularly satisfies the characteristic/requirement indicated, +:
satisfies the characteristic/requirement indicated, -: sacrifices or does not satisfies the characteristic/requirement indicated, Exp: Explicit, Imp: Implicit, Ext:
External, Int: Internal)

existing works identified by the systematic literature survey
on program metamodels, while keeping the orthogonality of
the entire taxonomy, which is accomplished by referring to
the basic term classification defined in the framework. We
validated the taxonomy in terms of its orthogonality and
usefulness through the classification of popular metamodels
from the survey.

As our future work, we will make ProMeTA available to
the reverse engineering community, including practitioners and
researchers, through scientific publications and our Website2.
We can then achieve a widely agreed-upon view of the termi-
nology and classification characteristics used in the taxonomy,
and receive further input to extend the taxonomy with new
categories and data sets to reflect its usage.

REFERENCES

[1] J. Ebert, B. Kullbach, V. Riediger, and A. Winter, “Gupro - generic un-
derstanding of programs, an overview,” Electronic Notes in Theoretical

2http://www.washi.cs.waseda.ac.jp/prometa/

Computer Science, vol. 72, no. 2, pp. 47–56, 2002.
[2] S. E. Sim and R. Koschke, “Wosef: Workshop on standard exchange

format,” ACM SIGSOFT Software Engineering Notes, vol. 26, no. 1,
pp. 44–49, 2001.

[3] T. C. Lethbridge, S. Tichelaar, and E. Ploedereder, “The dagstuhl middle
metamodel: A schema for reverse engineering,” Electronic Notes in
Theoretical Computer Science, vol. 94, pp. 7–18, 2004.

[4] Y. Lin and R. C. Holt, “Formalizing fact extraction,” Electronic Notes
in Theoretical Computer Science, vol. 94, pp. 93–102, 2004.

[5] D. Jin and J. R. Cordy, “Integrating reverse engineering tools using a
service-sharing methodology,” in 14th IEEE International Conference on
Program Comprehension (ICPC’06). IEEE Computer Society, 2006,
pp. 94–99.

[6] J. L. C. Izquierdo and J. G. Molina, “Extracting models from source code
in software modernization,” Software and Systems Modeling, vol. 13,
no. 2, pp. 713–734, 2014.

[7] E. J. Chikofsky and J. H. C. II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, 1990.

[8] G. Canfora, M. D. Penta, and L. Cerulo, “Achievements and challenges
in software reverse engineering,” Communications of the ACM, vol. 54,
no. 4, pp. 142–151, 2011.

[9] J. V. Garwick, “Programming languages: Gpl, a truly general purpose
language,” Communications of the ACM, vol. 11, no. 9, pp. 634–638,
1968.

[10] T. Buchner and F. Matthes, “Introspective model-driven development,”
Third European Workshop on Software Architecture (EWSA 2006),
Revised Selected Papers, Lecture Notes in Computer Science, vol. 4344,
pp. 33–49, 2006.

[11] F. Jouault, J. Bezivin, and I. Kurtev, “Tcs: a dsl for the specification
of textual concrete syntaxes in model engineering,” in Proceedings
of the 5th International Conference on Generative Programming and
Component Engineering (GPCE’06). ACM, 2006, pp. 249–254.

[12] J. Knodel and G. Calderon-Meza, “A meta-model for fact extraction
from delphi source code,” Electronic Notes in Theoretical Computer
Science, vol. 94, pp. 19–28, 2004.

[13] J.-M. Favre, M. Godfrey, and A. Winter, “First international workshop
on meta-models and schemas for reverse engineering atem 2003,” in
Proceedings of the 10th Working Conference on Reverse Engineering
(WCRE’03), A. van Deursen, E. Stroulia, and M.-A. D. Storey, Eds.
IEEE Computer Society, 2003, pp. 366–367.

[14] OMG, “Omg meta object facility (mof) core specification, version 2.5,”
2015.

[15] J.-M. Favre and T. NGuyen, “Towards a megamodel to model soft-
ware evolution through transformations,” Proceedings of the Work-
shop on Software Evolution through Transformations: Model-based
vs. Implementation-level Solutions (SETra 2004), Electronic Notes in
Theoretical Computer Science, vol. 127, no. 3, pp. 59–74, 2005.

[16] T. Clark, P. Sammut, and J. Willans, “Applied Metamodelling: A
Foundation for Language Driven Development (Third Edition),” ArXiv
e-prints, 2015.

[17] M. Alanen and I. Porres, “A relation between context-free grammars
and meta object facility metamodels,” TUCS Technical Report, No.606,
2003.

[18] I. Kurtev, J. Bézivin, and M. Aksit, “Technological spaces: An
initial appraisal,” in International Symposium on Distributed Objects
and Applications, DOA 2002, 2002, pp. 1–6. [Online]. Available:
http://doc.utwente.nl/55814/

[19] P. Klint, R. Lammel, and C. Verhoef, “Toward an engineering discipline
for grammarware,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 14, no. 3, pp. 331–380, 2005.

[20] M. Wimmer and G. Kramler, “Bridging grammarware and modelware,”
Proceedings of the Satellite Events at the MoDELS 2005 Conference,
Lecture Notes in Computer Science, vol. 3844, pp. 159–168, 2005.

[21] OMG, “Architecture-driven modernization: Knowledge discovery meta-
model (kdm), version 1.3,” 2011.

[22] S. Demeyer, S. Ducasse, and S. Tichelaar, “Why unified is not universal?
uml shortcomings for coping with round-trip engineering,” in UML’99:
The Unified Modeling Language - Beyond the Standard, Second In-
ternational Conference, Fort Collins, CO, USA, October 28-30, 1999,
Proceedings, 1999, pp. 630–644.

[23] ISO/IEC, “Iso/iec 14977:1996 information technology – syntactic met-
alanguage – extended bnf,” 1996.

[24] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, Eds., EMF:
Eclipse Modeling Framework, 2nd Edition, 2nd ed. Addison-Wesley
Professional, 2008.

[25] J. Earley, “An efficient context-free parsing algorithm,” Communications
of the ACM, vol. 13, no. 2, pp. 94–102, 1970.

[26] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Eds., Compilers:
Principles, Techniques, and Tools (2nd Edition), 2nd ed. Addison
Wesley, 2006.

[27] OMG, “Architecture-driven modernization: Abstract syntax tree meta-
model (astm), version 1.0,” 2009.

[28] R. Kollmann and M. Gogolla, “Capturing dynamic program behaviour
with UML collaboration diagrams,” in Fifth Conference on Software
Maintenance and Reengineering, CSMR 2001, Lisbon, Portugal, March
14-16, 2001, 2001, pp. 58–67.

[29] M. Imber, “Case data interchange format standards,” Information and
Software Technology, vol. 33, no. 9, pp. 647–655, 1991.

[30] M. Unterkalmsteiner, R. Feldt, and T. Gorschek, “A taxonomy for
requirements engineering and software test alignment,” ACM Trans.
Softw. Eng. Methodol., vol. 23, no. 2, pp. 16:1–16:38, 2014.

[31] R. L. Glass, “Sorting out software complexity,” Commun. ACM, vol. 45,
no. 11, pp. 19–21, 2002.

[32] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering -
a systematic literature review,” Information and Software Technology,
vol. 51, no. 1, pp. 7–15, 2009.

[33] B. Bellay and H. Gall, “A comparison of four reverse engineering tools,”
in Proceedings of the 4th Working Conference on Reverse Engineering
(WCRE 1997). IEEE Computer Society, 1997, pp. 2–11.

[34] M. N. Armstrong and C. Trudeau, “Evaluating architectural extractors,”
in Proceedings of the 5th Working Conference on Reverse Engineering
(WCRE 1998). IEEE Computer Society, 1998, pp. 30–39.

[35] T. C. Lethbridge, “Requirements and proposal for a
software information exchange format (sief) standard,”
http://www.site.uottawa.ca/ tcl/papers/sief/standardProposal.html,
1998.

[36] S. E. Sim, M.-A. Storey, and A. Winter, “A structured demonstration
of five program comprehension tools: Lessons learnt,” in Proceedings
of the 7th Working Conference on Reverse Engineering (WCRE 2000).
IEEE Computer Society, 2000, pp. 210–212.

[37] R. Ferenc, S. E. Sim, R. C. Holt, R. Koschke, and T. Gyimothy,
“Towards a stardard schema for c/c++,” in Proceedings of the 8th
Working Conference on Reverse Engineering (WCRE 2001). IEEE
Computer Society, 2001, pp. 49–58.

[38] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy, “Columbus
- reverse engineering tool and schema for C++,” in 18th International
Conference on Software Maintenance (ICSM 2002), Maintaining Dis-
tributed Heterogeneous Systems, 3-6 October 2002, Montreal, Quebec,
Canada, 2002, pp. 172–181.

[39] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, “A comparison of
reverse engineering tools based on design pattern decomposition,” in
Proceedings of the 2005 Australian Software Engineering Conference
(ASWEC’05). IEEE Computer Society, 2005, pp. 262–269.

[40] C. Amelunxen, A. Königs, and T. Rötschke, “MOSL: composing a visual
language for a metamodeling framework,” in 2006 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2006), 4-8
September 2006, Brighton, UK, 2006, pp. 81–84.

[41] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software En-
gineering Institute, Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990.

[42] S. R. Tilley, K. Wong, M. D. Storey, and H. A. Müller, “Programmable
reverse engineering,” International Journal of Software Engineering and
Knowledge Engineering, vol. 4, no. 4, pp. 501–520, 1994.

[43] G. Saint-Denis, R. Schauer, and R. K. Keller, “Selecting a model
interchange format: The SPOOL case study,” in 33rd Annual Hawaii
International Conference on System Sciences (HICSS-33), 4-7 January,
2000, Maui, Hawaii, USA, 2000, pp. 1–10.

[44] D. Jin, “Exchange of software representations among reverse engineer-
ing tools,” Department of Computing and Information Science, Queen’s
University, Tech. Rep., 2001.

[45] D. Jin, J. Cordy, and T. Dean, “Where’s the schema? a taxonomy of
patterns for software exchange,” in Proceedings of the 10th International
Workshop on Program Comprehension (IWPC 2002). IEEE Computer
Society, 2002, pp. 65–74.

[46] K. Czarnecki and S. Helsen, “Classification of model transformation
approaches,” in OOPSLA’03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, 2003.

[47] C. N. Christopher, “Evaluating static analysis frameworks,”
http://www.cs.cmu.edu/ aldrich/courses/654/tools/christopher-analysis-
frameworks-06.pdf, 2006.

[48] H. Wu, “Test case generation for programming language metamodels,”
in Proceedings of the 1st Doctoral Symposium of the International
Conference on Software Language Engineering (SLE), 2010, pp. 27–
30.

[49] J. Gray, J. Zhang, Y. Lin, S. Roychoudhury, H. Wu, R. Sudarsan,
A. Gokhale, S. Neema, F. Shi, and T. Bapty, “Model-driven program
transformation of a large avionics framework,” Proceedings of the 3rd
International Conference on Generative Programming and Component
Engineering (GPCE’04), Lecture Notes in Computer Science, vol. 3286,
pp. 361–378, 2004.

[50] D. Budgen, A. Burn, O. Brereton, B. Kitchenham, and R. Pretorius,
“Empirical evidence about the uml: A systematic literature review,”
Software: Practice and Experience, vol. 41, no. 4, pp. 363–392, 2011.

[51] A. Kunert, “Semi-automatic generation of metamodels and models from
grammars and programs,” Electronic Notes in Theoretical Computer
Science, vol. 211, pp. 111–119, 2008.

[52] F. Jouault and J. Bezivin, “Km3: a dsl for metamodel specification,”
Proceedings of 8th IFIP International Conference on Formal Methods
for Open Object-Based Distributed Systems, Lecture Notes in Computer
Science, vol. 4037, pp. 171–185, 2006.

[53] S. Ducasse, M. Lanza, and S. Tichelaar, “Moose: an extensible language-
independent environment for reengineering object-oriented systems,” in
2nd International Symposium on Constructing Software Engineering
Tools (COSET 2000), 2000.

[54] O. Nierstrasz, E. Tichelaar, and S. Demeyer, “Cdif as the interchange
format between reengineering,” in In: Proceedings of the OOPSLA
Workshop on Model Engineering, Methods and Tools Integration with
CDIF, 1998.

[55] M. van den Brand, H. de Jong, and P. Oliver, “A common exchange
format for reengineering tools based on aterms,” in Proceedings of
the Workshop on Standard Exchange Formats (WoSEF) at the 22nd
International Conference on Software Engineering (ICSE’00), 2000.

[56] M. van den Brand and P. Klint, “Aterms for manipulation and exchange
of structured data: It’s all about sharing,” Information & Software
Technology, vol. 49, no. 1, pp. 55–64, 2007.

[57] J. Czeranski, T. Eisenbarth, H. M. Kienle, R. Koschke, E. Plödereder,
D. Simon, Y. Z. V, J. Girard, and M. Würthner, “Data exchange in
bauhaus,” in Proceedings of the Seventh Working Conference on Reverse
Engineering, WCRE’00, Brisbane, Australia, November 23-25, 2000,
2000, pp. 293–295.

[58] T. Lin, R. Cheung, Z. He, and K. Smith, “Exploration of data from
modeling and simulation through visualization,” in Proceedings of the
3rd International SimTect Conference, Adelaide, Australia, 1998.

[59] R. Holt, “An introduction to ta: The tuple attribute language,” Depart-
ment of Computer Science, University of Waterloo and Toronto, 1998.

[60] S. Lapierre, B. Laguë, and C. Leduc, “Datrix
TM

source code model
and its interchange format: lessons learned and considerations for future
work,” ACM SIGSOFT Software Engineering Notes, vol. 26, no. 1, pp.
53–56, 2001.

[61] A. Schürr, “Developing graphical (software engineering) tools with
PROGRES,” in Pulling Together, Proceedings of the 19th International
Conference on Software Engineering, Boston, Massachusetts, USA, May
17-23, 1997., 1997, pp. 618–619.

[62] J. Ebert, B. Kullbach, and A. Winter, “Grax - an interchange format
for reengineering tools,” in Sixth Working Conference on Reverse
Engineering, WCRE ’99, Atlanta, Georgia, USA, October 6-8, 1999,
1999, p. 89.

[63] R. C. Holt, A. Schürr, S. E. Sim, and A. Winter, “GXL: A graph-based
standard exchange format for reengineering,” Sci. Comput. Program.,
vol. 60, no. 2, pp. 149–170, 2006.

[64] H. M. Kienle and H. A. Müller, “Rigi - an environment for software
reverse engineering, exploration, visualization, and redocumentation,”
Sci. Comput. Program., vol. 75, no. 4, pp. 247–263, 2010.

[65] W3C, “Extensible markup language (xml),” http://www.w3.org/XML/,
2000.

[66] OMG, “Xml metadata interchange (xmi), version 2.5.1,”
http://www.omg.org/spec/XMI/2.5.1/, 2015.

[67] G. Antoniol, M. D. Penta, and E. Merlo, “Yaab (yet another ast browser):
Using ocl to navigate asts.” in Proceedings of the 11th IEEE Interna-
tional Workshop on Program Comprehension (IWPC 2003), 2003, pp.
13–22.

[68] A. Bergmayr and M. Wimmer, “Generating metamodels from grammars
by chaining translational and by-example techniques,” Proceedings of
the First International Workshop on Model-driven Engineering By
Example co-located with ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2013),
CEUR Workshop Proceedings, vol. 1104, pp. 22–31, 2013.

[69] V. U. Gómez, S. Ducasse, and T. D’Hondt, “Ring: A unifying meta-
model and infrastructure for smalltalk source code analysis tools,”
Computer Languages, Systems & Structures, vol. 38, no. 1, pp. 44–60,
2012.

[70] ISO/IEC, “Iso/iec 25010:2011 systems and software engineering - sys-
tems and software qualityrequirements and evaluation (square) - system
and software quality models,” 2011.

[71] D. Smite, C. Wohlin, Z. Galvina, and R. Prikladnicki, “An empirically
based terminology and taxonomy for global software engineering,”
Empirical Software Engineering, vol. 19, no. 1, pp. 105–153, 2014.

[72] L. Martinez, C. Pereira, and L. Favre, “Recovering sequence diagrams
from object-oriented code - an ADM approach,” in ENASE 2014 -
Proceedings of the 9th International Conference on Evaluation of Novel
Approaches to Software Engineering, Lisbon, Portugal, 28-30 April,
2014, 2014, pp. 188–195.

[73] J. L. C. Izquierdo and J. G. Molina, “An architecture-driven modern-
ization tool for calculating metrics,” IEEE Software, vol. 27, no. 4, pp.
37–43, 2010.

[74] R. Pérez-Castillo, I. G. R. de Guzmán, R. Gómez-Cornejo,
M. Fernández-Ropero, and M. Piattini, “ANDRIU. A technique for
migrating graphical user interfaces to android (S),” in The 25th Interna-
tional Conference on Software Engineering and Knowledge Engineering,
Boston, MA, USA, June 27-29, 2013., 2013, pp. 516–519.

[75] R. S. Durelli, D. S. M. Santibáñez, M. E. Delamaro, and V. V.
de Camargo, “Towards a refactoring catalogue for knowledge discovery
metamodel,” in Proceedings of the 15th IEEE International Conference
on Information Reuse and Integration, IRI 2014, Redwood City, CA,
USA, August 13-15, 2014, 2014, pp. 569–576.

[76] D. S. M. Santibáñez, R. S. Durelli, and V. V. de Camargo, “A combined
approach for concern identification in KDM models,” J. Braz. Comp.
Soc., vol. 21, no. 1, p. 10, 2015.

[77] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A meta-
model for language-independent refactoring,” in Proceedings of the
International Symposium on Principles of Software Evolution, 2000, pp.
154–164.

[78] T. Mens and M. Lanza, “A graph-based metamodel for object-oriented
software metrics,” Electr. Notes Theor. Comput. Sci., vol. 72, no. 2, pp.
57–68, 2002.

[79] M. Lanza, “Codecrawler - lessons learned in building a software visu-
alization tool,” in 7th European Conference on Software Maintenance
and Reengineering (CSMR 2003), 26-28 March 2003, Benevento, Italy,
Proceedings, 2003, pp. 409–418.

[80] A. Brühlmann, T. Gı̂rba, O. Greevy, and O. Nierstrasz, “Enriching
reverse engineering with annotations,” in Model Driven Engineering
Languages and Systems, 11th International Conference, MoDELS 2008,
Toulouse, France, September 28 - October 3, 2008. Proceedings, 2008,
pp. 660–674.

[81] V., T. Mahesh, and A. Srivastava, “Performance and language compat-
ibility in software pattern detection,” in IEEE International Advance
Computing Conference, 2009 (IACC 2009), 2009, pp. 1639–1643.

[82] R. K. Keller, J. Bédard, and G. Saint-Denis, “Design and implementation
of a uml-based design repository,” in Advanced Information Systems
Engineering, 13th International Conference, CAiSE 2001, Interlaken,
Switzerland, June 4-8, 2001, Proceedings, 2001, pp. 448–464.

[83] M. K. Abdi, H. Lounis, and H. A. Sahraoui, “Analyzing change impact in
object-oriented systems,” in 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications (EUROMICRO-SEAA 2006),
August 29 - September 1, 2006, Cavtat/Dubrovnik, Croatia, 2006, pp.
310–319.

[84] I. Sora, “A meta-model for representing language-independent primary
dependency structures,” in ENASE 2012 - Proceedings of the 7th
International Conference on Evaluation of Novel Approaches to Software
Engineering, Wroclaw, Poland, 29-30 June, 2012., 2012, pp. 65–74.

[85] ——, “Unified modeling of static relationships between program ele-
ments,” in Evaluation of Novel Approaches to Software Engineering -
7th International Conference, ENASE 2012, Warsaw, Poland, June 29-
30, 2012, Revised Selected Papers, 2012, pp. 95–109.

[86] T. Gı̂rba and S. Ducasse, “Modeling history to analyze software evo-
lution,” Journal of Software Maintenance, vol. 18, no. 3, pp. 207–236,
2006.

[87] V. U. Gómez, A. Kellens, J. Brichau, and T. D’Hondt, “Time warp,
an approach for reasoning over system histories,” in Proceedings of
the joint international and annual ERCIM workshops on Principles of
software evolution (IWPSE) and software evolution (Evol) workshops,
Amsterdam, Netherlands, August 24-28, 2009, 2009, pp. 79–88.

[88] G. Antoniol, M. D. Penta, H. C. Gall, and M. Pinzger, “Towards the
integration of versioning systems, bug reports and source code meta-
models,” Electr. Notes Theor. Comput. Sci., vol. 127, no. 3, pp. 87–99,
2005.

[89] M. Pinzger, H. C. Gall, and M. Fischer, “Towards an integrated view on
architecture and its evolution,” Electr. Notes Theor. Comput. Sci., vol.
127, no. 3, pp. 183–196, 2005.

[90] E. Engström and K. Petersen, “Mapping software testing practice with
software testing research - serp-test taxonomy,” in Eighth IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST
2015 Workshops, Graz, Austria, April 13-17, 2015, 2015, pp. 1–4.

