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Abstract—Anti-patterns are poor design choices that hinder
code evolution, and understandability. Practitioners perform
refactoring, that are semantic-preserving-code transformations,
to correct anti-patterns and to improve design quality. However,
manual refactoring is a consuming task and a heavy burden for
developers who have to struggle to complete their coding tasks
and maintain the design quality of the system at the same time.
For that reason, researchers and practitioners have proposed
several approaches to bring automated support to developers,
with solutions that ranges from single anti-patterns correction, to
multiobjective solutions. The latter approaches attempted to re-
duce refactoring effort, or to improve semantic similarity between
classes and methods in addition to removing anti-patterns. To
the best of our knowledge, none of the previous approaches have
considered the impact of refactoring on another important aspect
of software development, which is the testing effort. In this paper,
we propose a novel search-based multiobjective approach for
removing five well-known anti-patterns and minimizing testing
effort. To assess the effectiveness of our proposed approach, we
implement three different multiobjective metaheuristics (NSGA-
II, SPEA2, MOCell) and apply them to a benchmark comprised
of four open-source systems. Results show that MOCell is the
metaheuristic that provides the best performance.

I. INTRODUCTION

Software system design is critical. Previous studies have
provided evidence that defects related to system design are
considerably more expensive to fix than those introduced
during its implementation [1–4]. Therefore, design quality
is an attribute that should be controlled, in order to ease the
introduction of new features, code enhancements and other
coding tasks. To assess the quality of a software system, several
quality models and metric suites haven been proposed in the
literature [5, 6]. Though these approaches allow to identify
problematic components in several aspects like cohesion,
coupling, or inheritance, they provide little or no information
about how to improve the quality in those components. Another
way to evaluate design quality is by the identification of poor
design choices known as anti-patterns [7].

Anti-patterns hinder the maintenance and evolution of a
system. An example of anti-pattern is the Spaghetti Code, which
is a class without structure that declares long methods without
parameters [8]. This anti-pattern depicts an abuse of procedural
programming in object-oriented systems, that prevents code
reuse. In a previous study, Bavota et al. [9] found that industrial
developers assign a very high severity level to this anti-pattern
and the Blob, which is a large controller class “that implements
too many responsibilities” and is associated with passive data

classes. Blob classes are considered to be bad programming
practices [7, 8] because they hinder code maintainability and
testing. In another study, Khomh et al. [10] found that there is
a strong correlation between the occurrence of anti-patterns and
the change-proneness of source files. Moreover, Taba et al. [11]
and D’Ambros et al. [12] found that source files that contain
anti-patterns tend to be more fault-prone than other source files.
To remove anti-patterns developers apply a series of behavior-
preserving code transformations known as refactoring [13–15].

Several studies have assessed the benefits of refactoring
in Academia and Industrial contexts. Rompaey et al. [16]
found that refactoring can reduce over 50% of memory usage,
and it can increase the startup time of an application by
33%. In an empirical study with several revisions of an
open-source system, Soetens and Demeyer [17] found that
refactorings could reduce the Cyclomatic complexity [18],
especially when they target duplicate code. Du Bois et al. [19]
performed an experiment with students and observed that the
decomposition of Blob classes improves the comprehensibility
of the source code. In another industrial setting at Microsoft,
Kim et al. [20] found that modules that undergo refactoring
have less inter-module dependencies and less post-release faults.
During the past years, practitioners and the research community
have formulated the problem of refactoring anti-patterns as a
combinatorial optimization problem [21–24]. These previous
works have interspersed the correction of anti-patterns with
other important objectives, like the reduction of coding effort,
the preservation of domain semantics between classes and
methods, etc. However, they have ignored another important
aspect of the software development process, which is the testing
effort.

Testing is an activity that aims to ensure that a system
behaves according to its design specifications on a finite, but
representative, set of test cases, taken from the infinite execution
domain [25]. Researchers have investigated different ways to
reduce testing effort and increase its effectiveness at different
levels, e.g., unit testing [26], integration testing [27], etc.; as
well as for different software artifacts like documentation [28],
and source code [26]. Refactoring operations are among the
factors that can impact the testing effort of a system. In fact,
move method or extract class refactorings applied to redistribute
the responsibilities of a large class, either to its collaborators or
to new entities, can allow units of code to be tested separately;
reducing the number of scenarios to test. Moreover, writing



test cases for the refactored class is simplified as its related
components can be easily replaced with mock objects during
testing.

However, to the best of our knowledge, despite its im-
portance, testing has been mostly overlooked so far, during
automated refactoring. We hypothesize that if we consider the
reduction of testing effort (as an additional objective) during
automated refactoring, we can obtain refactoring solutions that
not only improve the design quality of the system, in terms
of anti-patterns correction, but also reduce the testing effort at
the same time.

To test our hypothesis, we introduce TARF (Testing-Aware
Refactoring Framework), a novel multiobjective approach (MO)
for the problem of refactoring that minimizes the testing
effort while improving the design quality. We perform a case
study to assess the effectiveness of TARF using four different
metaheuristics (one single and three multiobjective) and a
benchmark of four open-source systems. Results show that
TARF can remove up to 63% of anti-patterns, while reducing
the testing effort by 21%.
Paper organization. The remainder of this paper is organized
as follows. Section II provides background details about
refactoring and testing. Section III describes our proposed
approach while Section IV describes our experimental method-
ology. Section V presents and discusses the results of our
experiments. Section VI discloses the threats to the validity of
our study. Section VII overviews the related literature. Finally,
Section VIII concludes our work and lays out some directions
for future work.

II. BACKGROUND

Refactoring. It is a reengineering technique that transforms the
structure of a code, without altering its behavior [25]. It aims
to improve the maintainability of systems at the class level by
reorganizing methods and attributes; at system level by adding,
modifying or removing entities (classes, interfaces, etc.) as
well as their respective relationships. As a result, the current
design of the system is transformed into an improved version
according to the goals defined by the software maintainer.
Refactorings can be used to remove anti-patterns [7] in a
system. Although anti-patterns do not cause direct failures in a
system, classes that contain anti-patterns have been identified
to change more frequently and to have a higher probability
to experience faults in the future, than classes without anti-
patterns [10]. In addition, classes with anti-patterns have been
found to require more testing effort [29] than other classes.
Hence, correcting anti-patterns is important to improve the
maintainability of software systems.

The process of refactoring starts by the detection of anti-
patterns. Once different anti-patterns have been detected,
they need to be corrected in an optimal way. This step
is cumbersome, as the number of candidate refactorings is
typically extensive, and the order in which they have to be
applied is uncertain. More formally, if k is the number of
available refactorings, then, the number of possible solutions
(NS) is given by NS = (k!)k [30], which results in a

space of possible solutions that is too large to be explored
exhaustively. Therefore, researchers have reformulated the
problem of automated refactoring as a combinatorial optimiza-
tion problem and proposed different techniques to solve it.
The techniques range from single-objective approaches using
local-search metaheuristics, e.g., hill climbing, and simulated
annealing [31, 32], to evolutionary techniques like single
genetic algorithm, and multiobjective approaches, e.g., NSGAII
and MOGA [30, 33–35]. In this research work, we propose
a MO approach that aims to optimize not only the number
of anti-patterns corrected, but also the testing effort. In the
following subsections, we explain how we measure and include
testing effort in our proposed approach.
Testing effort measurement. We refer to testing effort as
the number of test cases required for each class in a system,
according to the MaDUM testing strategy [36]. MaDUM as well
as other object-oriented (OO) testing strategies, e.g., state-based
condition [37], and the pre-and-post conditions testing [38]
have been proposed to overcome the limitations of traditional
techniques, e.g., white-box and black-box testing, when testing
OO systems. Indeed, as pointed out by many authors [36,
37], the traditional testing strategies used in the context of
procedural programming are insufficient to test OO programs
because they are conceived to test functions as stand-alone
code units, raising the possibility of missing state-based errors
occurring during intra-method interactions.

Among the testing strategies that consider the OO paradigm,
we choose MaDUM because it does not require any kind of
software artifact apart from the source code. Hence, a simple
static analysis of the source code is enough to estimate the
number of test cases required to find code deviations. Then, that
estimation can then be leveraged by an automated approach to
guide the refactoring process towards a design that minimizes
the unit testing effort. Because testing all possible interactions
between methods and attributes within a class is expensive,
if not impossible, OO testing strategies seek to reduce the
number of sequences of methods to test.

MaDUM testing uses a divide to conquer strategy to perform
unit testing: the class is divided in data slices and its correctness
is evaluated in terms of the correctness of all its slices tested
separately. A data slice is the set of methods that access to a
particular attribute (field) in a class. The identification of the
data slices is based on the enhanced call-graph (ECG) and
the minimal data members usage matrix (MaDUM). The ECG
represents the type of usages among the members of a class
and it is defined as: ECG(C) = (M(C), F (C), Emf,Emm),
where M(C) is the set of methods of C, F (C) is the set of
fields of C. Emf = (mi, fj) indicates that method i accesses
field j, and Emm(mi,mj) that method i invokes method j.
MaDUM is an nf × nm matrix where nf and nm are the
numbers of fields and methods in the class. It is built using the
ECG of the class. MaDUM defines four categories to classify
the methods, that are: class constructors (c), transformers (t),
i.e., methods that modify the state of a field, reporters (r),
i.e., methods that return the value of an attribute, and others
(o), i.e., methods that do not fall in the previous categories.



Once the MaDUM of a class has been built, the order for
testing that class is the following: first reporters are tested to
ensure that they do not alter the state of the attribute they
are reporting on. Constructors are then tested to ensure that
attributes are correctly initialized, and in the right order. The
testing of transformers is performed by generating for each
slice all permutations of transformers in that slice for each
constructor context. For example, let c be the set of constructors
and t the set of transformers in a given slice, it is necessary to
produce |c| × |t|! test cases, where the function |x| denotes the
cardinality of the set x. Others (o) are tested using traditional
black or white-box testing. Note that a method mj can access
a field fi directly or indirectly through another method mk

invoked by mj . Although, in the last scenario, if mj accesses
fi only through mk, and mk has been already tested in the fi
slice, there is no need to retest mj in the slice fi. The total
number of test cases required to test a given class is computed
as follows:

te(Ci) = |c|+ |r|+ |o|+
n�

i=1

|ci| ∗ |ti|! (1)

Where |x| is the number of methods of type x in the class,
n the number of slices in the class, and |xi| the number of
methods of type x in the slice i. When a class in a system
presents a high number of transformers in a slice, i.e., methods
that modify the state of an attribute, the probability of having
points of failures increases, and consequently a higher number
of test cases is required in order to thoroughly test the class.
Hence to reduce testing effort and the risk of failures, due
to state inconsistencies, the number of transformers within a
slice should be kept as low as possible. Considering testing
effort in automated-refactoring can alleviate the problem by
prioritizing refactorings that reduce the number of transformers,
and therefore the number of test cases required. For example,
since for each given slice we need a number of test cases
equivalent to the number of permutation of slice transformers ×
each constructor context, if we apply move method refactoring
to move one or more of these transformers from a large class
to any other class in the system that has a low number of
transformers, the number of test cases required for the large
class will decrease in a significant proportion, while the number
of test cases for the small class will only increase slightly,
making the sum of test cases for both, the large and small
classes, less than they were before the refactoring. Nevertheless,
certain refactorings like the introduction of parameter object
class increase the number of test cases (one for each parameter
extracted from the source class to the new class object, plus
one for the new constructor).

Multiobjective optimization (MO). It is the problem of
finding vectors of decisions variables which satisfies constraints
and optimize a vector function whose elements represent the
objective functions. In the following we describe the MO
search-based techniques used in this paper.

• The Non-dominated sorting genetic algorithm (NSGA-
II) [39] proceeds by evolving a new population from
a starting solution by applying variation operators like

crossover and mutation. Then it merges the candidate
solutions from both populations, and sort them according
to their rank, extracting the best candidates to create the
next generation. When there is a conflict of selecting
individuals with the same ranking, the difference is
solved using a measure of density in the neighborhood,
a.k.a., crowding distance.

• The Strength Pareto Evolutionary Algorithm 2
(SPEA2) [40] uses variation operators to evolve a
population, like NSGAII, but with the addition of an
external archive. The archive is a set of non-dominated
solutions, and it is updated during the iteration process to
maintain the characteristics of the non-dominated front.
In SPEA2, each solution is assigned a fitness value that is
the sum of its strength fitness plus a density estimation.

• The Multiobjective Cellular Genetic Algorithm (MOCell)
is a cellular algorithm [41], that includes an external
archive like SPEA2 to store the non-dominated solutions
found during the search process. It uses the crowding
distance of NSGA-II to maintain the diversity in the
Pareto front. Note that the version used in this paper is an
asynchronous version of MOCell called aMOCell4 [42].
The selection consists in taking individuals from the
neighborhood of the current solution (cells) and selecting
another one randomly from the archive. After applying
the variation operators, the new offspring is compared
with the current solution and replaces the current solution
if both are non-dominated, otherwise the worst individual
in the neighborhood will be replaced by the offspring.

We choose these MO algorithms because they are evolution-
ary techniques that have been successfully applied to solve
combinatorial discrete problems in several contexts.

III. TESTING-AWARE AUTOMATED REFACTORING

This section presents the foundations of our proposed
approach TARF that aims to improve the design quality of
OO systems, while minimizing the effort required to test the
system. We use the incidence rates of anti-patterns as a proxy
for software design quality and measure the testing effort as
the number of unit test cases required to find code deviations
in the classes of a system, according to the MaDUM technique.
Algorithm 1 summarizes the main steps of TARF. We describe
each step in more details in the following paragraphs.
Generation of Abstract Model. This step consists in gener-
ating a light-weight representation of the system under main-
tenance that contains information about the entities (classes,
methods, and attributes) and how they interact between each
other. This model is used to detect anti-patterns, compute
testing effort, and apply refactoring sequences in the serach of
non-dominated solutions.
Computation of MaDUM. At this step, we compute for each
individual class, the corresponding ECG, and MaDUM. Once
the MaDUM is built, we can compute the number of test cases
required per class, and then we sum this value for all classes
in the system to obtain the overall testing effort.
Detection of anti-patterns. This step consists in detecting



Algorithm 1: TARF Approach
Input : System to refactor (SW)
Output : Optimal refactoring sequence(s)

1 Pseudocode TARF(SW)
2 AM=Generation of Abstract Model

/* From the source code generate a light-weight
representation of the code */

3 MAD=Computation of the MaDUM matrix
/* Generate the ECG and the MaDUMs for each class in

the system */
4 AP=Detection of Anti-patterns

/* Detect anti-patterns in the system and generate a
map of classes that contain anti-patterns */

5 RS=Generation of refactoring opportunities
/* Generate a list of refactoring operation

candidates based on the previous step */
6 Search-based refactoring(AM, MAD, RS)/* This is a generic

template of a Metaheuristic used to find the
optimal refactoring solution */

7 return
8 Procedure Search-based refactoring(AM, MAD, RS)
9 AM � = AM

10 MAD� = MAD
11 S = RS
12 P0 = GenerateInitialPopulation(S)
13 A = ∅
14 for all Si ∈ P0 do
15 apply_refactorings(AM �, Si)
16 compute_Quality(AM �)
17 compute_TestingEffort(AM �, MAD)
18 end for
19 Evaluate(P0)
20 A = Update(A,P0)
21 t = 0
22 while not StoppingCriterion do
23 t = t + 1
24 Pt = V ariation_Operators(Pt−1)
25 for all Si ∈ Pt do
26 apply_refactorings(AM �, Si)
27 compute_Quality(AM �)
28 compute_TestingEffort(AM �, MAD�)
29 end for
30 Evaluate(Pt)
31 A = Update(A, Pt)
32 end while
33 best_solution = A
34 return best_solution

anti-patterns in the system. We use the count of anti-patterns
to assess the design quality of the system.
Generation of refactoring opportunities. Fowler [43] de-
scribes a set of refactoring operations that can be applied to
remove anti-patterns in a system. This step consists in selecting
refactoring operations that can remove anti-patterns detected
in the previous step.
Search-based refactoring. In this step, we apply search-
based techniques to find the best sequence of refactorings that
achieves a maximum reduction of the number of anti-patterns,
while keeping the testing effort as minimum as possible. Hence,
a candidate solution of our approach is represented as a
sequence of refactorings. A generic template for the search-
based techniques employed by TARF is presented from line 8
to line 34, and is described below:
The algorithm takes as input the abstract model (AM), the set
of MaDUMs for each class (MAD), and the list of candidate
refactorings (RS). With this information, it randomly generates
sequences of refactorings that constitutes the initial population
P0. In the next step, each sequence is applied to AM’ and the
number of anti-patterns and test cases are computed. Then, the
sequences are evaluated and sorted according to their objective

values, (lines 8-20), and the non-dominated solutions are
retrieved (A). After generating the initial population, the main
search loop starts (line 22). For each iteration t, a new set of
solutions Pt are evolved from Pt−1 using the variation operators
defined for each search technique. Then, each candidate solution
in Pt is applied on the system using a copy of the abstract
model. The testing effort and the number of anti-patterns are
then measured (lines 24-29). The non-dominated solutions are
retrieved (lines 30-31). The process ends when the algorithm
reaches the stop condition. For example a predetermined
execution time, or a maximum number of evaluations.

IV. CASE STUDY DESIGN

The goal of this case study is to assess the effectiveness of
TARF in correcting anti-patterns in OO systems, while reducing
the effort required to test the system.

The quality focus is the improvement of the design quality
of OO systems and the reduction of testing effort through
search-based refactoring. The perspective is that of researchers
interested in developing automated refactoring tools and
practitioners interested in improving the design quality of their
software system while controlling for testing effort.

The context consists of four open-source software systems
(ArgoUML, Gantt Project, JHotDraw, and Mylyn) and four
evolutionary metaheuristics one single objective algorithm
(i.e., Genetic Algorithm) and three MO algorithms (MOCell,
NSGA-II, and SPEA2). Table I presents relevant information
about the systems under study. We select these systems because
(1) they are open-source projects, with different purposes and
sizes; and (2) they have been used in previous studies on
anti-patterns and refactorings[23, 44, 45].

Table I: Descriptive statistics of the studied systems.

Name Num. of
classes

Num. of anti-
patterns

Num. of ini-
tial test cases

ArgoUML 0.34 1754 456 587220340
GantProject 1.10.2 188 38 2510
JhotDraw 5.4 450 89 10943
Mylyn 3.4 2365 183 7303813

We instantiate our generic approach TARF using one single-
objective approach (genetic algorithm) and compared to three
MO metaheuristics, described in Section II. We choose single-
objective Genetic Algorithm (GA) as it has been used in
previous studies [32, 46] on refactoring. More details about
these metaheuristics are available in [47].

The search of optimal solutions is guided by the following
two fitness functions.

• Quality = 1 − NDC
NC×NAT , where NDC is the number

of classes that contain anti-patterns, NC is the number of
classes, and NAT is the number of different types of anti-
patterns. This objective function was first formulated by
Ouni et al. [30]. We choose to follow his formulation
because it is easy to implement and computationally
inexpensive. The value of Quality increases when the
number of anti-patterns in the system is reduced after
applying a refactoring sequence. The output value of
Quality is normalized between 0 and 1. A value of 1



represents the complete removal of anti-patterns, hence
we aim to maximize the value of Quality.

• STF =
n�

i=1

te(Ci), where STF is the test effort of the

system, Te is calculated from Equation (1), and n is the
total number of classes. We aim to minimize the value of
STF .

In our GA implementation, a single objective function is
obtained by multiplying the values of NDC and STF , while
the other metaheuristics do not combine the values of the
fitness functions, but use them as a tuple.
Solution representation.. We use a vector representation
where each element is a refactoring operation (RO) that in-
cludes: an Id field (unique identifier) to know which refactorings
have been applied so far. The anti-pattern’s source class, and
the type of refactoring. The type of refactoring is used to
determine if a conflict with a previous RO in the sequence will
arise. In addition to this, we can have more fields providing
extra information, e.g., target class and method name for move
method, or long method names for spaghetti code class.
Variation operators. We define the variation operators as
follows. Binary tournament for individual selection, ‘Cut and
splice” as crossover operator, which consists in randomly
setting a cut point for each parent, and recombining with
the elements of the other parent’s cut point and vice-versa,
resulting in two individuals with different lengths. For mutation
we propose a new operator that consists in choosing a random
point in the sequence and removing the refactoring operations
from that point to the end. Then, we complete the sequence
by adding new random refactorings until we reach the original
size of the sequence. By doing this, we reduce the overhead of
validating the correctness of refactorings added in the middle
of a valid sequence, and bring more diversity.

A. Dependent and Independent Variables

To assess whether TARF can improve design quality while
reducing testing effort, we consider the following dependent
and independent variables:
The independent variables are our four selected metaheuristics,
i.e., GA, MOCell, NSGA-II, and SPEA2.
The dependent variables are the following two metrics used
to evaluate the effectiveness of TARF at improving the design
quality of systems while reducing the testing effort.

• Difference of number of anti-patterns between the original
and the refactored version (DAP). DAP is an indication
of the improvement of the design quality of the system.
A DAP value close to the number of of anti-patterns in
the original system denotes good design quality as most
of the anti-patterns are removed, while a negative value
indicates a degradation of the quality after refactoring,
i.e., a rise in the number of anti-patterns.

• Difference of required test cases between the original and
the refactored version (DTC). Like DAP, a positive DTC
value indicates a reduction of the testing effort, while a
negative value means the contrary effect, and 0 means
not improvement at all.

The anti-patterns considered in this case study are: Long
parameter list, Blob, Lazy class, Speculative Generality, and
Spaghetti Code. We select these anti-patterns because (1) they
are well defined in the literature, with the recommended steps
to remove them [7, 43], (2) they are recognized easily by
developers [9], (3) they have been studied in previous works [10,
44, 45, 48] and have been identified to be problematic to the
evolution of systems [9].

To detect anti-patterns in a system, we use the tool
DECOR [44]. We select this tool because it reports the highest
recall in the literature, and has been applied in several studies
on anti-patterns and code smells[10, 23, 49, 50].
We now briefly describe the characteristics of each anti-pattern
and the refactoring strategies followed to correct them.
Blob (BL): two main characteristics of classes containing BL
anti-pattern is that they have a large size with low cohesion.
Hence the strategy for refactoring such classes is to decompose
them by moving functionality to related classes, through move
method. In this way we do not only reduce the size of the BL
class, but distribute the responsibilities among other classes in
the system. To detect candidate classes to receive functionality
from BL classes, we search for classes that contain methods
or attributes that are extensively used by the BL class. When
there is no suitable class to move any existing method, we try
to extract functionality to a new class by selecting the methods
that do not call or are called by other methods in the class,
i.e., with low cohesion. After moving the functionality from
the Blob to an existing or newly created class, we update the
existence references in all the classes in the system.
Lazy class (LC) is a small class with low complexity that
does not justify its existence in the system, hence the proposed
refactoring is to inline that class, removing the LC after moving
its features to another class in the system. This refactoring is
comprised of a series of low level refactorings that have to be
applied in a specific order, e.g., move method(s), move field(s),
update call sites, and delete class. Also, we have to satisfy
certain preconditions and postconditions in order to preserve
the semantic of the classes. For example, one precondition is
that we do not inline parent classes, as inlining those classes
will introduce regression, but instead we could collapse the
hierarchy of a LC. An example of postcondition is that the
target class implements the features of the LC class after
refactoring. In order to improve the quality of the design, in
terms of cohesion, the destiny class has to be related to the LC
class to some extent. To select such a class, we iterate over all
the classes in the system, searching for methods and attributes
that access the features of the LC class directly, or by public
accessors (getters or setters). From those classes, we choose
the one with the larger number of access to the LC class.
Long parameter list classes (LP) are classes that contain one
or more methods with an excessive number of parameters, in
comparison with the rest of the entities (to detect LP classes,
DECOR defines a threshold based on the computation of
boxplot statistics involving all the classes in the system). Hence,
the refactoring strategy consists in (1) extracting a new class
for each long parameter list method, that will encapsulate a



group of parameters that are often passed together, and that
can be used by more than one method or class (improving
the readability of the code); and (2) updating the signature of
each method to remove the migrated parameters, and updating
the callers and method body in the LP class to instantiate and
replace the parameters with the new parameter object.
Spaghetti Code (SC) are characterized by their lack of structure
and the presence of long methods without parameters. The
refactoring strategy proposed for SC includes the extraction of
one or more long methods as new objects. This requires creating
a new class for each long method, where the local variables
become fields, and a constructor that takes as parameter a
reference to the SC class; the body of the original method
is copied to a new method compute, and any invocation of
the method in the original class will be referenced through
the parameter (stored as final field) to the SC class. Finally,
the original long method is replaced in the SC class by the
creation of the new object, and a call to compute method.
Finally, for classes affected by Speculative Generality (SG)
(i.e., an abstract class that is not actually needed, as it is not
specialized by any other class), we first pull up the methods
and attributes from the child class to the parent class. Next,
we update the constructor and then we remove the children
class from the system, the abstract modifier from the parent
class, and update the call sites and types to point to the parent
class. There is one case where we omit the application of this
strategy, and it is when the child class is defined as inner class
inside a different class. Inner classes are an integral part of the
event-handling mechanism in user interfaces events [51], which
differs from the definition of the SG anti-pattern, ergo moving
the features of inner classes to other entities may introduce a
regression in the system

B. Research Questions

We formulate the research questions of our case study as
follows :
(RQ1) To what extent can the proposed approach correct

anti-patterns and reduce testing effort?
This research question aims to assess the effectiveness
of TARF at improving design quality, while reducing
testing effort.

(RQ2) To what extent is design quality improved after
refactoring when considering testing effort?
While the number of anti-patterns in a system serves
as a good estimation of design quality, there are other
quality attributes such as those defined by the QMOOD
quality model [5] that are also relevant for developers.
This research question aims to assess the impact that
the application of TARF has on these aforementioned
attributes.

C. Analysis Method

To answer RQ1, we compared the results of applying the
three MO metaheuristics (MOCell, NSGA-II, and SPEA2),
to the ones of the mono-objective approach to ensure that
the refactoring solutions found by the first ones provide

better compromise solutions between quality and testing effort,
than those found by the former single objective formulation.
Otherwise, there is no need to define a MO formulation. We
implement all the metaheuristics described before using the
jMetal Framework [52], which is a wide-use library for solving
optimization problems. Given that we are comparing techniques
with different sources of information (population, archive, etc.),
we opt for number of evaluations as the stop criteria, and set it
to 2500, which is an accepted value for optimization problems
in general.

Parameters of the metaheuristics. We are using four evolution-
ary metaheuristics in our experiments. As we mentioned before,
they make use of variation operators (selection, mutation and
crossover) to move through the decision space in the search
for an optimal solution. To determine the best parameters
for our metaheuristics, we run each algorithm with different
configurations 30 times, in a factorial design in the following
way: we test 16 combinations of mutation probability pm = (1,
0.8, 0.5, 0.2), and crossover probability pc = (1, 0.8, 0.5, 0.2),
and obtained the best results with the pair (0.8, 0.8). This
is not a surprise as in [22] they found high mutation and
crossover values to be the best trade for algorithm performance.
For the specific problem of automated refactoring, setting the
initial size of the refactoring sequence is crucial to find the
best sequence in a reasonable time, especially when we have
a huge number of candidate refactorings, because setting a
low value will lead to find poor solutions in terms of anti-
patterns correction. On the contrary, if the initial size is very
large, we may obtain the reverse effect because applying
many refactorings not necessarily implies better quality, as
refactorings can improve one aspect of quality while worsen
others. Hence, we experiment running the algorithms with three
relative thresholds: 25%, 50%, 75% and 100%, of the total
number of refactoring opportunities, and found that 50% give
us the best results in terms of removal of anti-patterns and
reduction of testing effort. The population size is set to 100
individuals as default value.

In order to measure the performance of the MO meta-
heuristics used here, we need to consider the quality of their
resulting non-dominated set of solutions [53]. We use two
quality indicators for that purpose; the Hypervolume (HV)
and Spread (Δ). HV provides a measure that considers the
convergence and diversity of the resulting approximation set.
Higher values of the HV metric are desirable. Spread measures
the distribution of solutions into a given front. Lower values
close to zero are desirable, as they indicate that the solutions
are uniformly distributed. For further details we refer the reader
to the source references [39, 54].

To answer RQ2, we use the Quality Model for Object-
Oriented Design (QMOOD) [5] to evaluate the impact of the
proposed refactoring sequences on several quality attributes.
This model is suitable for automated-refactoring experimen-
tation because the definition of quality attributes is obtained
from a metric-quotient weighted formula to determine how
close does the refactored design conforms to QMOOD model.



The rational for selecting QMOOD is that previous studies
have used it before to assess the effect of refactoring [21,
22, 32]; it defines six desirable quality attributes (reusability,
flexibility, understandability, functionality, effectiveness and
extendibility) based on 11 OO metrics. From the six quality
attributes proposed by QMOOD, we omit functionality because
refactoring per se is behavior-preserving, hence we do not
expect an impact on this attribute. The formulas to compute
the aforementioned quality attributes are presented in Table II.
We present a brief descriptions of the attributes considered in
this study below:

• Reusability: the degree to which a software module or
other work product can be used in more than one computer
program or software system.

• Flexibility: the ease with which a system or component
can be modified for use in applications or environments
other than those for which it was specifically designed.

• Understandability: the properties of designs that enable
it to be easily learned and comprehended. This directly
relates to the complexity of design structure.

• Effectiveness: the design’s ability to achieve desired
functionality and behavior by using OO concepts.

• Extendibility: The degree to which a system can be
modified to increase its storage or functional capacity

Table II: QMOOD evaluation functions.

Quality Factors Quality Index Calculation

Reusability -0.25 * DCC + 0.25 * CAM + 0.5 * CIS + 0.5 * DSC
Flexibility 0.25 * DAM - 0.25 * DCC + 0.5 * MOA +0.5 * NOP
Understandability -0.33 * ANA + 0.33 * DAM - 0.33 * DCC + 0.33 * CAM -0.33

* NOP - 0.33 * NOM - 0.33 * DSC
Effectiveness 0.2 * ANA + 0.2 * DAM + 0.2 * MOA + 0.2 * MFA + 0.2 * NOP
Extendibility 0.5 * ANA -0.5 * DCC + 0.5 * MFA + 0.5 * NOP
where DSC is design size, NOM is number of methods, DCC is coupling, NOP is
polymorphism, NOH is number of hierarchies, CAM is cohesion among methods, ANA
is avg. num. of ancestors, DAM is data access metric, MOA is measure of aggregation,
MFA is measure of functional abstraction, and CIS is class interface size.

We obtain the quality gain of the refactored design (D�)
by dividing each quality attribute value by the corresponding
value for the original design (D).

V. CASE STUDY RESULTS

In this section we present the results of our case study with
respect to our two research questions.

(RQ1) To what extent can the proposed approach correct anti-
patterns and reduce testing effort?

One main feature of MO metaheuristics is that they do
not produce a single solution as mono-objective techniques,
e.g., GA, but a set of solutions. From this set of solutions
we are interested in those that are non-dominated, i.e., the
solutions whose objective values cannot be improved without
worsening others. The set of non-dominated solutions for an
instance of a problem is known as the Pareto set. The image of
the Pareto optimal set by the vector objective functions is the
Pareto front. Pareto reference Front (RF) is an approximation
of the true Pareto Front, and similar to other combinatorial
optimization studies [21], we assume that the production of
the true Pareto front is not feasible, hence we use the reference

front, created from the optimal values after 30 independent
executions. In Figure 1 we present the Pareto reference front
for JHotDraw, extracted from the three MO metaheuristics
analyzed. The points in Figure 1 represent a compromise
between quality and testing effort. The x − axis represents
the normalized values of quality, measured in terms of number
of anti-patterns corrected; y − axis represents the number
of required test cases for that solution. The best solutions
are found in the right-bottom corner of the plot. Hence, the
software maintainer is able to choose a solution according to
its preferences, for example if someone is interested mostly in
reducing the number of test cases, she can opt for a solution
located in the left-bottom of the plot. However, that solution
would not remove as many anti-patterns as the solutions located
in the middle or in the extreme right position in the plot. The
advantage of considering testing as another objective function
is that maintainers obtain the possibility to choose among trade
multiple solutions.
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Fig. 1: The Pareto reference front of JHotDraw.
Note that to compare the three MO with GA, we need to

select one solution (bs) in the Pareto front. One technique often
used to determine the best solution in the Pareto Front of a
problem, is selecting the solution that has the minimal distance
with a hypothetical ideal solution using the Euclidean distance.
The ideal solution for our approach is the one where we end
with zero anti-patterns and the number of test cases is close to
zero. The complete equation is provided in Equation (2).

bs =
n

min
i=1

��
(1−Quality[i]2) + (−1 ∗ te[i]2)

�
, (2)

where n is the number of solutions in the Pareto front returned
by the MO metaheuristic.

Once we extract the best solution from the Pareto reference
front, we are able to compare it with the one of the single
objective metaheuristic (GA). In Table III we present the
number of anti-patterns corrected, per anti-pattern, in total,
and the resulting number of test cases after applying the four
metaheuristics studied. The values presented in Table III are
median values for the 30 independent runs we performed for
each algorithm. Columns 2 to 6 are the type of anti-patterns;
DAP is the difference between the number of anti-patterns in
the original and the refactored version; DTC is the difference



of number of required test cases between the original and
the refactored version, and ROs is the number of refactoring
operations. A negative number in a column indicates an increase
from the original value, and “−” (columns 2-6) indicates zero
anti-patterns detected. The best results of columns DAP and
DTC are highlighted with dark grey. We observe that in general
the three MO metaheuristics reduce more the number of test
cases than the single approach. Moreover, in two systems
(ArgoUML, JHotdraw) the mono-objective technique did not
reduce, but considerably increase the testing effort. On the
contrary, concerning anti-pattern correction, GA overcomes the
MO metaheuristics (in the same systems), being ArgoUML
the one with highest correction of anti-patterns and with the
highest increase of test cases at the same time. Gantt project
is championed by MOCell, and in Mylyn the average of
the two metrics favor MOCell as well. If we consider the
number of refactorings applied (column ROs), we observe that
while longer refactoring sequences seem to reduce more anti-
patterns, at least for the three first studied systems, a pattern to
characterize the behavior of testing effort is less evident. While
in ArgoUML and JhotDraw the shortest sequences report the
less number of test cases, in Mylyn and Gantt the trend seems
to be inverted.

Table III: Median count of anti-patterns removed, and number
of test cases after refactoring.

Metaheuristic BL LC LP SC SG. DAP DTC ROs
ArgoUML

GA -1 34 335 1 1 370 -1336 1847
MOCell 0 1 8 0 0 9 140 64
NSGA-II 0 1 9 0 0 10 177 63
SPEA2 0 2 14 0 0 16 218 92

Gantt Project
GA 0 1 12 – 2 15 -55 93

MOCell 4 2 14 – 4 24 535 381
NSGA-II 3 2 9 – 4 18 519 317
SPEA2 3 2 13 – 4 22 499 346

JHotDraw
GA – 1 59 – – 60 -507 454

MOCell – 0 21 – – 21 5321 216
NSGA-II – 1 28 – – 29 5283 350
SPEA2 – 0 30 – – 30 5301 389

Mylyn
GA 1 19 101 – – 121 556 1959

MOCell 1 18 77 – – 96 7266802 2159
NSGA-II 1 17 81 – – 99 7266748 1974
SPEA2 1 19 83 – – 103 7266765 2047

☛

✡

✟

✠
We conclude that considering testing effort as an objec-
tive to minimize when applying automatic refactoring,
one can significantly reduce the number of test cases,
while keeping reasonable correction results.

Performance of the three multiobjective metaheuristics.
In Table IV we present the mean and the standard deviation of
the quality indicators (HV, Spread) values of the metaheuristics
for each system on 30 independent runs. A special notation
appears in the table: a gray colored background denotes the best
(dark gray) and second-best (lighter gray) performing technique.
The HV indicates that MOCell has been able to approximate
the Pareto fronts with the highest indicator values, while in the

second-best is disputed between NSGA-II and SPEA2, except
for JHotDraw, where the former one overcomes the first one.
Concerning the spread indicator, the best spread is divided
between SPEA2 and MOCell, and NSGA-II appears to be the
less effective metaheuristic. To determine the significance of
the obtained results, we compute the Wilcoxon rank-sum test
between two metaheuristics at time. The results are summarized
in Table V. In each cell, a � or a � symbol implies a p-value
< 0.05, indicating that the null hypothesis (the two distribution
have the same median) is rejected; otherwise, a – is used.
The � denotes that the metaheuristic in the row obtained a
better value than the one in the column; the � indicates the
opposite. Hence, the only conclusion we can draw from these
results is that 1) MOCell overcomes SPEA2 and NSGA-II
in more than a half of the systems analyzed in terms of HV,
while the performance between NSGA-II and SPEA2 remains
unclear. Concerning the spread indicator, we omit the results
of the Wilcoxon test because the results were not statistically
significant, thus we cannot draw any conclusion about the
performance of the metaheuristics using this indicator. Note
that the aim of this paper is not to propose a new multiobjective
algorithm to perform automated refactoring, but reformulate
the problem of refactoring to include testing effort as a goal
regardless of the metaheuristic employed.✎

✍

☞

✌

Although the obtained results point out that MOCell
is the most effective technique for the formulation of
automatic refactoring considering quality and testing
effort, and among the metaheuristics studied, further
studies with more systems, and more quality indicators
are required to validate this result.

Table IV: Quality indicators Mean and standard deviation

SPEA2 MOCell NSGAII
Hypervolume

ArgoUML 4.80e − 015.7e−03 5.04e − 014.8e−03 4.89e − 011.1e−02

Gantt 0.00e + 000.0e+00 2.30e − 011.6e−01 1.00e − 022.0e−02

JHotDraw 5.37e − 012.3e−02 5.93e − 012.5e−02 5.36e − 013.0e−02

Mylyn 1.49e − 014.6e−02 2.40e − 015.7e−02 2.01e − 013.5e−02

SPREAD
ArgoUML 5.60e − 011.0e−01 5.94e − 016.3e−02 6.12e − 012.2e−02

Gantt 8.48e − 018.1e−02 7.89e − 011.7e−01 8.97e − 018.3e−02

JHotDraw 6.95e − 014.3e−02 6.45e − 015.0e−02 7.23e − 013.7e−02

Mylyn 9.63e − 011.3e−01 9.77e − 011.6e−01 1.09e + 002.3e−01

Table V: Wilcoxon rank-sum test for HV indicator.

MOCell NSGA-II

ARG GAN JHD MYL ARG GAN JHD MYL
SPEA2 � � � – – – –
MOCell – � � –

(RQ2) To what extent is design quality improved after refac-
toring when considering testing effort?

Although we have shown that automated refactoring can
improve the quality of the system and reduce the testing
effort, some software maintainers may wonder whether the
refactorings applied will produce a new code that is still
readable, or if it will be easy to come back later and
modify it or extend it. Since concepts such as reusability,
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Fig. 2: The quality gain of the best refactoring solutions on QMOOD quality attributes.

or understandability in design quality are quite vague and
hard to define, we consider the QMOOD evaluation functions
as examples of how to correctly characterize good design
properties. In Figure 2 we present the obtained quality gain
values (change quotient) that we computed for each QMOOD
quality attribute (QQA) before and after refactoring for each
studied system.

We can observe that the system quality increases across
the five QQA in an even manner, that ranges from 1.15
in effectiveness (Jhotdraw, MOCell) to 0.33 in flexibility
(JHotDraw, NSGA-II).

We suggest that the low value in flexibility compared to
effectiveness is in part the result of the weight that each of
these two quality function assigns to MOA metric (0.2, 0.5
respectively). According to QMOOD, MOA is the number of
user-defined classes, and we observe in Table III that MOCell
removed less long parameter list anti-patterns than GA. We
remind that the suggested refactoring for LP is introduce
parameter object, which creates new classes to store the
long parameter list, hence the increment in the number of
user-defined classes is less in MOCell compared to GA. On
the other hand, effectiveness assigns a lower weight to this
metric (0.2), but integrates other desirable metrics related
to OO design like abstraction, encapsulation and inheritance.
Finally, understandability, reusability, and extendibility factors
are benefited from the extensive application of move method
refactorings, and reported an increment similar to effectiveness,
because Move method is known to impact metrics like coupling
(DCC), cohesion (CAM) and design size (DSC) that serves to
calculate these quality attributes.✎

✍

☞

✌

We conclude that our approach was successful in
improving design quality not only in terms of anti-
patterns correction, but also in terms of quality
attributes such as understandability, reusability, flexi-
bility, effectiveness and extendibility.

VI. THREATS TO VALIDITY

This section discusses the threats to validity of our study
following common guidelines for empirical studies [55].

Construct validity threats concern the relation between theory
and observation. This is mainly due to possible mistakes in
the detection of anti-patterns, in the refactorings applied. We
based the APs detection on DECOR [44], and despite the

high recall and precision of DECOR, there is no warranty
that we detect all the possible APs, or that those detected are
indeed true APs. Concerning the application of refactorings,
we manually validate the outcome of refactorings performed
in source code and the ones applied to the abstract model
to ensure that the output values of the objective functions
correspond to the changes performed. However, we rely on the
correct representation of the code by the abstract model. In
this study we use PADL [56], which has been used in several
studies concerning anti-patterns, design patterns, and software
evolution with more than ten years of active development.

A second threat is the use of MaDUM as proxy to estimate
the testing effort, because other techniques could bring different
results. Moreover, MaDUM estimation does not include the
effort of writing and running each test case. Instead, it gives
an estimate of the number of test cases required to test the
class and highlights classes with multiple transformers as
difficult classes to be tested. Finally MaDUM only works at the
level of unitary testing, without considering class interactions.
Therefore, we can only claim that, no matter the testing strategy,
automated-refactoring approaches should consider the impact
of refactorings not only in terms of design quality but in testing
effort.

Threats to internal validity concern our selection of anti-
patterns, tools, and analysis method. In this study we used a
particular yet representative subset of anti-patterns as proxy
for design quality

Conclusion validity threats concern the relation between the
treatment and the outcome. We paid attention not to violate
assumptions of the constructed statistical models. In particular,
we used a non-parametric test, Wilcoxon rank sum, that does
not require any assumption on the underlying data distribution.

Threats to external validity concern the possibility to
generalize our results. Our study focuses on four open source
software systems having different sizes and belonging to
different domains. Nevertheless, further validation on a larger
set of software systems is desirable, considering systems from
different domains, as well as several systems from the same
domain. Future replications of this study are necessary to
confirm our findings.



VII. RELATED WORK

In this section, we present works related to automated
refactoring of anti-patterns, testing strategies, and discuss their
differences with our work.
Automated refactoring. Harman and Tratt [21] introduce
for the first time a multiobjective (MO) approach for the
problem of refactoring, where objective functions were defined
based on two conflicting quality metrics, and showed that
this approach can find a good sequence of move methods
refactorings solutions. The disadvantage of this approach is
that they restricted the refactoring operations to one type and
did not consider other aspects like the testability of the code.
Ouni et al. [24] propose a MO approach based on NSGA-II,
with two conflicting objectives: removing anti-patterns, while
preserving semantic coherence. For the first objective, they
generate a set of rules to characterize anti-patterns from a
set of bad design examples. The second objective is achieved
by implementing two techniques to measure similarity among
classes, after refactoring. The first technique evaluates the
cosine similarity of the name of the constituents, e.g., methods,
fields, types; and the second technique considers dependencies
between classes. Mkaouer et al. [57] propose an extension
of this work, by allowing user’s interaction with refactoring
solutions. Their approach consists in the following steps: (1) a
NSGA-II algorithm proposes a set of refactoring sequences;
(2) an algorithm ranks the solutions, and present them to
the user to be judged; (3) a local-search algorithm updates
the set of solutions after several user iterations, or when
many refactorings have been applied. However, they did not
consider the impact of the refactorings proposed on testing
effort. Moghadam and Cinnéide [58] propose a single-objective
automated approach to conform a desired design, described
as an UML diagram. The approach takes as input the original
source code and the UML diagram of the desired model. Then
it generates an UML diagram from the source code and maps
the differences between the two design models to a sequence
of code-level refactorings to be applied in the source code to
reach the desired model. The disadvantage of this approach is
that they assume that this model can represent all the design
quality features that a software maintainer wants to improve,
which is not always the case.

Our proposed approach differs from the aforementioned
works in the following points: it introduces for the first time
testing effort as a new objective to satisfy; 3 out of 4 of these
approaches require additional input from the user, e.g., bad
design examples, or desired design model. However, in practice
it is not always feasible to have that information at hand.
Moreover, it is also discouraging for an automated approach
to put extra work on the user like creating and managing a
database of bad design examples.
Testing Strategies. Testing is an essential but expensive activity
to ensure software quality and reliability. Beizer [59] estimates
the cost of software testing at 50% of the overall cost of
software, hence researchers investigate various directions to
reduce testing effort and increase its effectiveness. Studies

related to factors that impact testing effort can be found
in [26, 29]; while approaches to automatically generate test
data are found in [60, 61]. Finally other studies define
strategies that can efficiently target specific type of system
or specific kind of faults. In this category, we can cite the
different OO strategies that have been proposed to overcome
traditional testing strategies limitations regarding the test of
OO systems: state based testing [36], pre-and-post conditions
testing [38], and MaDUM testing [62]. Another direction to
reduce testing effort is to refactor a system specifically for
testing. Belonging to this last category are the refactoring
as testability transformation works [63, 64]. Refactoring as
testability transformation is different from refactoring of anti-
patterns in the sense that the system is not changed to improve
the design quality of a system, but another version is created
just to facilitate the generation of test data that will be used to
test the original system. To the best of our knowledge, there is
no work that automatically apply refactoring of anti-patterns to
reduce testing effort. Sabane et al. [29] present some refactoring
actions to reduce testing effort based on the MaDUM strategy.
They manually apply some extract method refactorings to
reduce the number of transformers of a class under test. These
refactorings were performed manually, attempting to reduce the
testing effort, not to remove APs or improve design quality. In
fact, some of them were found to decrease the understandability
of the class. However our approach aims to provide a mean to
remove the anti-patterns automatically, considering the number
of test cases to propose solutions that lead to a design with
good quality and with less effort for the testers.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a novel search-based refactoring ap-
proach that includes testing effort, for the first time, as a mean
to reduce testing effort of refactoring solutions that improve
the design quality of a system. We found that the solutions
proposed by our approach maintain a compromise between
anti-patterns corrected, and number of test cases required to test
an object-oriented system, according to MaDUM strategy. We
validate our approach with four different metaheuristics, one
single and three multiobjective, and found that we get better
results with the latest approach in a benchmarking comprised
of four open-source systems. The results suggest that MOCell,
a cellular genetic algorithm, can provide the best performance
among the other two multiobjective metaheuristics. But this
finding has to be corroborated with more extensive studies.

We also assessed the design quality of the solutions proposed
using five quality attributes defined in the hierarchical QMOOD
model, and found that we can increase the quality in terms
of reusability, flexibility, understandability, effectiveness, and
extendibility.

As future work, we plan to extend our approach with
additional refactorings to remove anti-patterns from other
domains such as web and mobile applications, and also consider
the impact of refactoring in other aspects of testing like derived
classes and integration testing.
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