On the Detection of Licenses Violations in the
Android Ecosystem

Ons Mlouki, Foutse Khomh, Giuliano Antoniol
SWAT-SOCCER Labs., Polytechnique Montréal, Québec, Canada
{ons.mlouki, foutse.khomh, giuliano.antoniol } @polymtl.ca

Abstract—Mobile applications (apps) developers often reuse
code from existing libraries and frameworks in order to reduce
development costs. However, these libraries and frameworks are
governed by licenses to which developers must comply. A failure
to comply with a license is likely to result in penalties and fines. In
this paper, we analyse the licenses of 857 mobile apps from the F-
droid market with the aim to understand the types of licenses that
are mostly used by developers of open-source mobile apps and
how these licenses evolve over time. We also investigate licenses
violations and the evolution of these violations over time.

Results show that developers of open-source mobile apps
mostly use GPL and Apache licenses. We found licenses violations
in 17 out of 857 apps, and 7 apps still had violations in their
latest release at the time of this study. We also observed that
many files are not licensed in their first release. Developers seem
to have some difficulties understanding the legal constraints of
licenses’ terms.

Index Terms—Licenses violations, android applications, clone
detection, libraries provenance.

I. INTRODUCTION

When developing a new software, developers often reuse
code chunks and components that have been made available
under a variety of licenses (e.g., Apache, BSD, GPL, or
LGPL). Software licenses govern the way a software com-
ponent or chunk of code can be reused or distributed. These
software licenses describe the liabilities and responsibilities
of parties interested in using, modifying, or redistributing
software artifacts. Unlike proprietary licenses, open-source
licenses allow access to the source code at any time and
without any restriction. However, reuse and—or distribution
are often limited by certain conditions [1]. For example, the
Section 5 of the GPLv3.0 license [2] states the following
about code modification: “You must license the entire work,
as a whole, under this License to anyone who comes into
possession of a copy”. Hence, the use of components governed
by different licenses into a same software system can generate
a licence violation if the rules of the different licenses are not
compatible. This is the case for GPLv2 and Apachev2. In fact,
GPLV2 requires that any software system using a component
licensed under its terms should be licensed under the GPLv2
license while the Apache Software Foundation requires that
all Apache software must be distributed under the Apachev2
license. These two licenses are therefore incompatibles and
any software system that contains components under these two
licenses (at the same time) is exposed to penalties [3].

With the very high speed of apps development (on average
2,371 new apps are published in Google Play [4] every day),

developers are increasingly inclined to reuse code from other
open source projects. Vendome et al. [5] who investigated how
developers of open-source projects adopt and change licenses
found that these developers often experience difficulties un-
derstanding licensing terms. These factors combined with the
large number of available licenses (i.e., more than 70 open
source licences exist today [1]) that developers could choose
from, makes license violations very likely. This paper presents
the results of an empirical study that aims to understand the
state of license usages and violations in the Android Ecosys-
tem. We mine the license information of 857 apps from the
F-droid market and investigate license usages and evolutions.
We also detect and track licenses violations overtime. Overall,
we answer the following three research questions:

RQ1: What are the most common licenses used in open
source mobile apps?

Among the 857 android apps analyzed in our study, when
considering only the latest releases reported in F-droid,
we find that 35% of apps are licensed under GPLV3,
24% under Apachev2 and 12% under the MIT License.
If we take into account all the releases of each app, the
numbers are a bit different, with 37% of releases licensed
under GPLv3, 8% under Apachev2 and 4% under the MIT
License. The difference is due to the fact that many apps
change their licenses overtime. At the file level, GPL and
Apache are still the most used licenses; they represent
47% and 12% of files respectively. However, there are
more files licensed under the BSD license than the MIT
license. We also observed that 85% of apps contain
files with potential licenses violations. These potential
licenses violations were mostly between GPL and non
GPL licenses. We found many files licensed under a non
GPL license, that contain code chunks similar to those
of GPL files. We investigated the domains of the apps
(e.g., Games, Multimedia, office, etc...) involved in these
potential violations and found that the similar files that
are licensed under different terms mostly belong to apps
from different domains. This suggests that developers tend
to copy code from apps that are not in the same category
as their app (i.e., a Games app vs. a Multimedia app).

RQ2: How do mobile apps licenses evolve overtime?

In RQ1, we observed that many apps change their licenses
overtime. In this research question, we analyse the evo-
lution of licenses overtime both at project and file levels,

in order to identify the main licenses evolution patterns
followed by developers of mobile apps. Our goal is to
determine if overtime, developers tend to make their apps
more—or—less open for reuse. Results show that developers
often change the license of their mobile apps towards a
less restrictive license.

RQ3: How do mobile apps licenses violations evolve over-
time?

In RQI, we observed that 85% of apps contain files with
potential licenses violations. In this research question, we
investigate license violations in more details and analyze
their evolution overtime. Out of the 857 studied apps,
we found 17 apps with clear license violations. These 17
apps have inconsistencies between their declared licenses
and the licenses of their files and—or the licenses of their
dependencies. We do not claim license violations for the
85% of apps that contain files with inconsistencies because
although these apps contain files that share code with
files licensed under a different (conflicting) license, it is
possible that the two apps copied the code from a third app
that released the code under a dual license, and the two
apps simply picked different licenses. For the 17 projects
that clearly violate license terms, 10 of them corrected
the issue after 19 releases in average. The remaining 7
projects still had a license violation at the time of this
study.

The remainder of this paper is organized as follows. Sec-
tion II presents the motivation behind our work. Section III
explains our methodology for license identification. Section IV
discusses our data collection and processing. Section V de-
scribes and discusses the results of our three research ques-
tions. Section VI presents threats to the validity of our study,
while Section VII summarizes related works. Section VIII
concludes the paper and outlines some avenues for future
works.

II. MOTIVATING EXAMPLES

The reuse of different pre-existent components to build a
new system may lead to licenses violations. In March 2011,
OpenLogic, a company that advocates for (and helps ensure)
the proper use of open source software ran their OSS Deep
Discovery license compliance scanner against 635 apps from
both the Android Market and the Apple App Store, and found
that 71% of the apps that were using open source code
failed to comply with the terms of the open source licenses.
The apps did not license their code properly. In the case of
Apache licenses, information about the notice/attribution of
the licenses were missing. For GPL licenses, developers of
the apps failed to provide information about how to access
the code. Although these developers were not pursued in court
for these infringements, penalties for licensing violations can
be severe. In August 2012, Samsung was found guilty of
violating Apple’s iPhone and iPad technologies licenses, and
condemned to pay to Apple a billion dollars in damages. In
march 2015, VMware was also sued by Christoph Hellwig, a

Linux developer and the nonprofit organisation SFC (Software
Freedom Conservancy) over an improper use of the Linux ker-
nel [3]. Christoph and SFC claimed that VMware violated the
terms of the copyright license of the Linux kernel. These few
examples highlight the importance of tracking and correcting
eventual licenses violations early on before the distribution of
a software system.

III. IDENTIFICATION OF LICENSES INFORMATION FROM
MOBILE APPS

License identifier

(e)/ N Clone Source files pairs
e Clone data — P
ST CCFinder i —>{ /" T analysor with # licenses

\ ~ Projects’ ‘
- 2 Licenses

Android STEF'l I N icense — —

: ——»{license data —

Apps »| Ninka 1: / aggltyasor’ ——w Source Files' ‘

licenses
- ;; ~a
4’ Joa }7 |,/ Dependencies) , [HTML+XML DépfenEFenEies"
\) N links parser licenses
Maven
database

repository

Fig. 1: Identification of license information

Our goal in this paper is to identify licenses usages and
violations in the Android ecosystem. To achieve this goal, we
first need to identify license information from mobile apps.
License information can be found in source file as a license
statement or in a separate text document generally included
in the main directory of the project. Android apps also, as
any project, may use some external libraries. However, those
libraries are in the binary format, making it impossible to
retrieve their license information through a textual analysis. In
the following, we explain the steps of the approach followed
in this work to retrieve the license information of mobile apps.
Figure 1 summarizes the steps of this approach.

Step 1: Identification of license statements

A license statement is a textual information included in
the top of each source code file or in a separate textual
file often named (COPYING, LICENSE, README or POM)
stored under the main repository of the project. It includes
copyright information, such as the names of contributors to a
source code file, the copyright owner, warranty, and liability
statements. Multiple tools have been proposed in the literature
to extract license’s information from source code or license
files (e.g., README files): Ninka [6], FOSSology [7] and
OSLC!. Table I summarizes the reported performances of
these tools.

Among these three tools, we selected Ninka for our study,
since it is reported to have a high accuracy and performance.
To identify license information in files, Ninka splits statements
from source code or license files into textual sentences,
normalizes them, and matches them against known licences
tokens.

1 http://oslc.sourceforge.net/

TABLE I: Evaluation of license identification tools [6]

Tools Recall | Precision | Execution Time
Ninka 82.3% 96.6% 22s
FOSSology | 99.2% 55.0% 923s
OSLC 29.5% 29.5% 372s

TABLE II: Licensing Rules [14]

Library License | Project include Combination
must be under
GPLv2 LGPLv2.1 GPLv2 only
GPLv2 LGPLv2.1+ GPLv2 only
GPLv2+ LGPLv2.1 GPLv2+
GPLv2+ LGPLv2.1+ GPLv2+
GPLv2+ LGPLv3+ GPLv3
GPLv3 GPLv2+ GPLv3
GPLv3 LGPLv2.1 GPLv3
GPLv3 LGPLv2.1+ GPLv3
GPLv3 LGPLv3+ GPLv3
LGPLv3 GPLv2+ GPLv3

Step 2: Identification of the licenses of libraries used by Apps

Mobile apps frequently use externally developed libraries
to provide their services. However, these libraries are often
deployed in the form of binaries, making it impossible for
Ninka, or any of the above mentioned tools to extract licenses
information from these libraries. To address this issue, we
make use of the JOA tool proposed by Davies et al. [8].
JOA allows to track the provenance of software artifacts (both
source code and binaries). In fact, Davies et al [8] downloaded
libraries from the Maven repository, computed signatures for
these libraries and stored them in a database. They also
developed the tool JOA that can compute the signature of
any new library and match it against the database to identify
the identity of the new library. Knowing the identity of the
libraries used by our studied mobile apps allows us to extract
their license information by parsing the POM files available in
the Maven repository. In this study we use the same database
as Davies et al [8], which contains all libraries that were
available in the Maven repository in April 2013.

Step 3: Detection of similarities between the files in mobile
apps

Even though Ninka does a great job identifying licenses
from licenses statements, we should not forget that license
statements are just blocks of comments in some files. Hence,
they are subject to modifications. To compensate for potential
inaccuracies in the licenses information extracted from source
and license files using Ninka, we use clone detection tech-
niques to identify source files pairs that share similar code,
but are not under the same license.
Among multiple clone detection tools that exist, we choose
to work with CCFinderX [9] since it is known to scale well.

CCFinderX represents the content of source code files as se-
quences of tokens and uses a suffix-tree matching algorithm to
compute matchings. Clone location information is represented
as a tree with sharing nodes for leading identical subsequence.
It gives as a result a list of clone pairs.

IV. STUDY DESIGN

This section presents the data collection and data processing
of our case study, which aims to address the following three
research questions:

o RQI1: What are the most common licenses used in open

source mobile apps?

+ RQ2: How do mobile apps licenses evolve overtime?

« RQ3: How do mobile apps licenses violations evolve

overtime?

A. Data Collection

We crawled the F-droid Website and downloaded 857 mo-
bile apps from the android market F-Droid. We chose these
apps because their source code is available on Github?. Next,
for each app, we downloaded all its releases from the Github
repository. Figure 2 shows the distribution of our data across
the categories of apps.

250

200

150

50

Wallpapers

!—\’—"—‘!—\

PhonedSMS Reading ScienceSEducation Securty System

Fig. 2: F-Droid categrories

B. Data Processing

Figure 3 shows an overview of our data processing ap-
proach. First, we used our license identification approach
described in Section III to extract licenses information for
all the 857 apps. Next, we built four databases containing
respectively, Android apps licenses, source files licenses, de-
pendencies (i.e., libraries) licenses and pairs of cloned files
found with different licenses. To track licenses violations, we
implemented a script that checks for licenses inconsistencies
using information from Table II and Table III . Then, we ran
this script against our four databases to obtain information
about licenses violations.

V. CASE STUDY RESULTS

This section presents and discusses the results of our three
research questions. For each question, we present the motiva-
tion, the approach followed to answer the question, and the
findings.

2 http://github.com

:

: Y
=l T HTML o —
' parser g ownloaderangroid apps
F-Droid S

Data collection | Detection
—————— | {icenses) |
Source files pairs| :: Llcens_es\] 3
_with #licenses | :! \CPnStr(f“rltS/ i
Maven e
repository \PTocht?// ‘
_ licenses N A
S Violations
License identifier “— detector
s » Source Files' |«
_ licenses |/
‘\ NlnkaJ \\CCFlnder/\ ‘ Joa | Dependencies' /. ||’
Maven S Apps with
database violations

Fig. 3: Overview of our approach to identify applications with license violation in an android market

RQI1: What are the most common licenses used in open source
mobile apps?

Motivation.

This research question is preliminary to the others and aims
to identify licenses that are frequently used by developers
of Android apps. The results of this research question will
provide insights about the preferences of mobile apps devel-
opers among the more than 70 open source licenses that are
available.

Approach.

To answer this research question, we perform our analysis
both at file and project levels following the approach described
in Section III. We extract the licenses information of a
project and its source files using the Ninka tool. We use the
JOA tool to identify the provenance of libraries used by the
android apps; tracing them to the Maven repository. Then, by
analysing their POM files, we obtain their license information.
To identify licenses inconsistencies at file level, we use the
CCFinderX clone detection tool.

Findings.

F-Droid provides licence information only for the latest
release of each app. When considering only this information,
we obtain that 35% of apps are licensed under GPLv3,
24% under Apachev2 and 12% under MIT License.
Figure 4 presents the licenses distribution of the final releases
of all the apps in our data sets.

When considering all the released versions of each app from
our data set, the picture is a bit different. We obtain that 37 %
of releases are licensed under GPLv3, 8% under Apachev2
and 4% under MIT License. This difference is due to the
fact that many apps change their licenses overtime. Figure 5
presents the distribution of licenses for all the releases of all
the apps in our data set. We can observe that more than 3,250
apps releases out of 8,938 apps releases are unlicensed or their
license information is not declared in any of our analysed files
(described in Section III).

At the file level, GPL and Apache are still the most used
license; representing 47% and 12% of files respectively.

100 150 200 250 300
I I I I |

50

GPLv3 Apache2 MIT

0
L

GPLv3+ GPLv2 GPLv2+ NewBSD GPL WTFPL AGPLv3+ (Other)

Fig. 4: Projects licenses when considering only the latest
release of each app

NONE

1000 1500 2000 2500 3000 3500

500
I

L o

MITX11

0
L

GPLv3+ UNKNOWN Apachev2 GPLv2+ spdxBSD2 (Other)

Fig. 5: Projects licenses when considering all the releases of
the apps

However, there are more files licensed under the BSD license
than the MIT license. Table IV summarizes results obtained
at the file level. Our set of apps contained in total 1,429,330
source code files (1,168,899 written in Java; 81,378 written
in C; and 138,396 C++ files). In Table IV the keywords

TABLE III: License incompatibilities

Incompatible license Reason for the incompatibility

Apachev2 vs. GPLv2

Copyleft licenses are “reciprocal”, “share-alike”, or “viral” license
each of them says, “If you include code under this license in a larger program,

the larger program must be under this license too.”[10]

Apachev2 vs. GPL (except GPLv3)

restrictions of copyleft licenses; each of them says, “If you include code under this license ... the larger program must be under
this license too.” “Apachev2 software can ... be included in GPLv3 projects”

Copyleft licenses
Apachev2 vs. GPLv3

But one way is permitted; project under GPL3 source may have Apachev2[10]

Apachev2 vs. LGPL 2, 2.1, 3

“The LGPL is ineligible primarily due to the restrictions it places on larger works,

violating the third license criterion. Therefore, LGPL-licensed works must not be included in Apache products”[11]

GPLV2 vs. GPLv3+
this license to0o.”

restrictions of copyleft licenses; each of them says, “If you include code under this license ... the larger program must be under

GPLv2 vs. GPLv3
this license too.”

restrictions of copyleft licenses; each of them says, “If you include code under this license ... the larger program must be under

LGPLv3+ vs. GPLv2 [12]

GPL vs Apachevl.0

“a lax, permissive non-copyleft free software license with an advertising clause.
This creates practical problems like those of the original BSD license,

including incompatibility with the GNU GPL” [12]

GPL vs Apachevl.1

“a permissive non-copyleft free software license.
It has a few requirements that render it incompatible with the GNU GPL,

such as strong prohibitions on the use of Apache-related names” [12]

http://www.gnu.org/licenses/license-list.en.html

GPL vs CDDL “It has a weak per-file copyleft. This means a module covered by the GPL
and a module covered by the CDDL can not legally be linked together.” [13]
GPL vs CPLvI “its weak copyleft and choice of law clause make it incompatible with the GPL” [12]

GPL vs EPLv1

“its weak copyleft and choice of law clause make it incompatible with the GPL” [12]

GPL vs MPLv1.1

“a free software license which is not a strong copyleft; unlike the X11 license,

it has some complex restrictions that make it incompatible with the GNU GPL” [12]

GPL vs BSD4

“a lax, permissive non-copyleft free software license with a serious flaw: the “obnoxious BSD advertising clause™.” [12]

“SeeFile”, “UNKNOWN” and “ERROR” are used by Ninka
to indicate that the analyzed file points to another file that may
contain the license, that the found license is not recognized,
and that Ninka encountered an error.

We tracked the licenses of libraries used by our studied
apps and obtained the distribution shown in Figure 6. There
we report only libraries that perfectly matched a known library
from the Maven repository; i.e., the proportion of files in the
library that matched the files contained in a library from the
Maven repository is 100%. We opted for this conservative
approach because if a library used by an app is licensed under
Apachev2 and only matches 50% of the files in a library from
the Maven repository that is licensed under GPLv3, we cannot
know for sure if the app is using the part of the features
provided by the files under the GPLv3 license, and hence,
we cannot conclude on a potential license violation. In fact,
a GPLv3 library can contain files licensed under Apachev2
(since a project containing Apachev2 sources code and GPLv3
source code must be licensed under GPLv3) and the app may
be using only the Apachev?2 files.

We applied clone detection to identify potential inconsisten-
cies between the license statements reported in files. License
inconsistencies are a symptom of licenses violations, since
each license is protected by a different copyright. Table V

30000 20000 50000

20000

10000

[

UNKNOWN LopL2 1+ 8sD (omer)

CODLOrGPLY2 ClassPainExceplionGPL2 NONE Apacherz

Fig. 6: Licenses of libraries used by the studied apps

summarizes inconsistencies found among the licenses state-
ments of our studied apps. We investigated the domains of apps
involved in these inconsistencies and found that the similar
files that are licensed under different terms mostly belong to
apps from different domains (as presented in Table VI). This
result suggests that developers tend to copy code from apps
that are not in the same category as their app. This was the
case for 60,72% of the inconsistencies found.

TABLE IV: Licenses detected at file level

License Version # Occurrence | %

noVersion 32

v2 37 388
GPL v2+ 395 198 45,68

v3 19 125

v3+ 201 171

Apache 2
Apache V1o 2 12,39

vl.l 6

v2 184 765

v2 84

v2.1 2 962
LGPL v2.1+ 7 634 L3

v2+ 95

v3 2 097

v3+ 3284

3NoWaranty 2279

BSD3 6 759
BSD BSD4 168 L7

spdxBSD2 2 281

spdxBSD3 3 655

spdxBSD4 130

oldwithoutSelland 5

oldwithoutSelland 147

NoDocumentationRequi
MIT MIT Variant 1 0.87

MITX11 11 965

X11BSDvar 4

X11noNotice 343
PublicDomain 2 957 0,21
artifex 136 0,01
BeerWareVer42 6 0
CDDLorGPLv2 475 0,03
CPLvl 20 0
DoWTFYWv2 48 0
EPLv1 13 0
FreeType 1714 0,12
MPLvI_1 4 0
ZLIBref 137 0,01
SunSimpleLic 555 0,04
SimpleLicencel 18 0
orGPLv2+0orLGPLv2.1+ 234 0,02
None 392 314 27,45
SeeFile 8 053 0,56
UNKNOWN 139 484 9,76
ERROR 930 0,07
Total number of source code files analysed 1 429 330

RQ2: How do mobile apps licenses evolve overtime?

Motivation.
Our first research question showed that developers often
change the license of their mobile apps after a few releases.

TABLE V: Inconsistencies found among the license state-
ments of the studied apps
Kind of disagreement #Files #Releases | #Apps
GPLv2-Apachev2 54 335 1067 70
GPL-OTHER 18 853 940 7141 685
Others 18 284 150 - -
Apps with license inconsistency - - 731

TABLE VI: License inconsistencies by categories

Category Part of desagreement (%)
Inconsistent files from dif- | 60,72
ferent domains

SystemApps 1,09
OfficeApps 14,69
InternetApps 16,62
ScienceAndEducationApps | 3,65
ReadingApps 1,75
GamesApps 0,08
MultimediaApps 0,29
DevelopmentApps 0,09
NavigationApps 0,73
PhoneAndSMSApps 0,28
Security Apps 0,01

In this research question, we analyse the evolution of licenses
overtime both at project and file levels, in order to understand
the main patterns of licenses evolution in the Android Ecosys-
tem.

Approach.

For each file in each app, we track the evolution history
of the file and build a genealogy. We identify files across
the releases using their absolute paths. To handled cases of
renaming, we apply clone detection to track files with similar
contents that were renamed. Next, using licenses information
collected in RQI1, we map licenses to the different versions
of each file and compute all licenses evolution patterns.
Finally, we build state transition models capturing the license
evolution patterns at file and project levels, respectively. For
each transition in our state-transition diagrams, we compute
the probability of the transition following Equation 1. To focus
our interest, we narrow the data analyzed to only entities
that experienced at least one change in their life-cycle. Thus,
to calculate the probability of a transition from License A
to License B, we calculate the occurrence of License A —
License B divided by the occurrence of License A in our
reduced data set.

OccurrenceOf(A—B) / OccurrenceOf(A) (1)

Findings.
1) License changes at the file level: Among the 857 apps
from our data set, 128 apps experienced a license change.

0,0720
38

0,00

0,0061

0,0003 0,0071

Fig. 7: Evolution of licenses at the file level

These 128 apps contain 2,062 Java files that experienced at
least a license change during their app’s life-cycle. Figure 7
summarizes the transition patterns found in our data set and
their probabilities. As one can see, the probability for a file
to stay under the same license is very high for almost all
the licenses (0.9 in average). We classify our patterns into
two categories: general patterns (summarized in Table VII),
which contains patterns that include no license or unknown
license; and specific patterns (summarized in Table VIII),
which contains only patterns where we have changes between

two known licenses. In the following, we discuss each of these
categories in more details.

General patterns: files in this category generally start with
no License (NONE) in their first release. This finding is
consistent with observations made by Vendome et al. [5] that
developers tend to delay their decision about license selection.
Regarding transitions from a known license to NONE or UN-
KNOWN license, we could not find a plausible explanation,
after manually examining all these patterns. It is unclear why
some developers remove the license of their app. Below are

1

GPLv3+.Apachev2 3>

0256

spdxBSD3 L 0.9487

spdxBSD3MITX11 3>

1

Fig. 8: Evolution of licenses at the projects level

TABLE VII: General patterns

Pattern #Occurence
UNKNOWNorNONE — GPL3+ 820
UNKNOWNorNONE — Apachev2 269
UNKNOWNorNONE — MITX11 92
UNKNOWNOrNONE —spdxBSD2 79
GPL2+ — UNKNOWNorNONE 77
UNKNOWNorNONE — GPL3 75
UNKNOWNorNONE — GPL2+ 50
NONE — spdxBSD3 22
UNKNOWNOrNONE — LGPLv3+ 17
MITX11 — UNKNOWN 17
GPL3+ — UNKNOWNorNONE 10
NONE — LGPLv3 6
Apachev2 — UNKNOWNorNONE 3
LGPLv3 — NONE 1
MITX]11noNotice — NONE 1
GPLv3+,Apachev2 — NONE 1
NONE — GPLv3+,Apachev2 1

TABLE VIII: Specific patterns

pattern #Occurrence
GPLv3+—GPLv2+ 109
GPLv3+—GPLvV3 73
Apachev2—GPLv3+ 56
GPLv3+— Apachev2 50
GPLv2+—GPLv3+ 52
GPLv2+— Apachev2 23
GPLv2—GPLv2,GPLv2+ 5
MITX11—GPLv3+ 4
Apachev2—GPLv2+ 2
LGPLv2.1—LGPLv2.1+ 2
LGPLv3+—GPLv3+ 1
LGPLv3+—GPLv3 1
GPLV2+,GPLv3+—GPLv2+,GPLv3+,Apachev2 1

some examples of general patterns found: The app PageTurner
started with no license. Later on developers licensed it to
GPLv3+ and changed all its Apachev?2 files to GPLv3+.
Wifi-Fixer also didn’t have any license initially but later on
was licensed under GPLv3+ and all its Apachev2 files were
licensed under GPLv3+.

AndroidCaldavSyncAdapater was initially under no license,
developers later on changed all its Apachev2 files to GPLv3+
and licensed the app under GPLv3+. All other source files in
that app are under BSD3.

Specific patterns: We examined transitions between known
licenses and noticed cases of license upgrade and downgrade.
We discuss some of these cases in the coming paragraphs.
The app keepassdroid was initially released under the GPLv2
license. However it contained files licensed under Apachev2
and GPLv2 licenses which are incompatible. Later on, the
project was changed to the dual license “GPLv2, GPLv2+” in
order to solve its license violation.

The app open-keychain was initially licensed under Apachev2,
then, developers changed all Apachev2 Java files to the
GPLv3+ license and updated the license of the app to GPLv3+.
The app geopaparazzi is now under GPLv3+. It started with
no license, then, developers changed some Apachev2 files
to the GPLv3+ license. The app also contain files under
LesserGPLv2.1+ and GPLv3 licenses. The last 15 releases of
the app (out of a total of 79 releases) are under GPLv3+.
The connectbot app started under the GPLv3+ license. It
maintained this license through 11 releases. It contains files
under BSD3, BSD, GPL2+, MITX11, GPLv3+ and apachev2
licenses. The license of connectbot was changed to Apachev2
in the last 22 releases (out of a total of 33 releases). During
this transition, developers changed the license of all GPLv3+
files to Apachev2.

gnhucash-android was first released under GPLv2+, files were
under GPLv2+ and Apachev2 licenses, then, the license of
the app was changed to Apachev2 and all GPLv2+ files were
licensed under Apachev2.

2) Licenses changes at the project level: We noticed that
the probability for a project to stay under the same license
is very high (see Figure 8). Only 122 apps out of 857 apps
changed their license at least once during their lifetime. Apps
license changes are generally toward more permissive licenses
(see Table IX)

RQ3: How do mobile apps licenses violations evolve overtime?

Motivation. In RQ1, we found 85% of apps containing files
with licenses inconsistencies. However, not all of these incon-
sistencies are likely to be license violations. In fact, since it is
possible to release code under a dual license (e.g., Apachev2
and GPLv2), two apps reusing a code licensed under a dual
license could simply chose to pick different licenses (e.g., the
first app picking Apachev2 and the second app GPLv2). Our
clone analysis described above would report this as a case of
license inconsistency. However, there is no license violation
in this case. In this research question, we aim to identify clear
cases of licenses violations in the Android free software apps
ecosystem and examine if and—how developers address these
violations.

Approach.

To track license violations, we adopt a conservative ap-
proach. We consider that an app violates some license terms
only when there are inconsistencies between the declared
license of the app and the licenses of its files, among its files
and—or the license of its dependencies.

Findings. Table X shows the proportion of license violations
found in our data set. Among the 857 studied apps, 17 apps
(totaling 229 releases) clearly violate the terms of some open-
source licenses. From the 17 apps that contain a license
violation, only 10 apps solved the license violations after some
releases. The remaining 7 projects still had a license violation
at the time of this study. To solve license violations, developers
either changed the licenses of some of the app’s files or
removed the contentious files from the apps. For the 10 apps
that solved licenses violations. We noticed that it took them on

TABLE IX: License change patterns at project level

Patern Occurence
General Patern
UNKNOWNorNONE —GPLv3+ 40
UNKNOWNorNONE— Apachev2 16
GPLv3+—UNKNOWNorNONE 7 7
UNKNOWNorNONE— GPLv2+ 6
NONE—MITX11 6
UNKNOWNorNONE—GPLv3 4
GPLv2+—UNKNOWN 2
UNKNOWNorNONE—spdxBSD2 2
NONE—MITX1 InoNotice 2
NONE—spdxBSD3 2
NONE—GPLv3+,BSD3 1
Apachev2—NONE 1
GPLv3—NONE 1
GPLv3+,BSD3—NONE 1
LesserGPLv2.1 -UNKNOWN 1
Specific Pattern
GPLv3+— Apachev2 3
GPLv2+— Apachev2 3
Apachev2—GPLv3+ 2
GPLv2+—GPLv3+ 2
Apachev2—GPLv3+,Apachev2 1
GPLv3—GPLv3+ 1
GPLv3+—GPLv2+ 1
GPLv2+—GPLV2 1
GPLv2— Apachev2 1
spdxBSD3—spdxBSD3,MITX11 1
spdxBSD3— Apachev2 1
GPLv2—GPLnoVersion 1
GPLv2,GPLv2+MITX11—GPLv2,GPLv2+,Apachev].0,MITX11 1
GPLv2,GPLv2+,Apachevl.0MITX11 |
—GPLV2,GPLv2+,LesserGPLv2.1,Apachev1.0,MITX11

average 19 releases to correct the violation. This means that
19 releases of some apps were distributed into the Android
market with license violations, which is quite troubling.

VI. THREATS TO VALIDITY

This section discusses the threats to validity of our study
following the guidelines for case study research [15].

Construct validity threats concern the relation between
theory and observation. In this study, the construct validity
threats are mainly due to measurement errors. We rely on
Ninka, a state-of-the-art tool for license identifications in
textual files. It has 97% precision and 82% recall. For our
license inconsistency detection, we rely on CCFinderX for
clone detection. Although, it doesn’t have a 100% precision
and recall, CCFinderX has the advantage that it can process
a large amount of data in a reasonable time [16]. It has been
used successfully in previous studies on clone detection [17].
The precision of the JOA tool has a limited impact on our
results since we considered only libraries that were perfectly

matched. To the best of our knowledge, JOA is the only tool
that can detect the provenance of software artifacts. Our study
relies on a copy of the Maven repository that was obtained in
2013, therefore, it is possible that some libraries are missing.
However, it is no more possible to obtain a full copy of the
Maven repository. Nevertheless, it is possible that the license
of some of the libraries from our Maven repository copy were
changed after 2013.

Internal validity do not affect this particular study, being an
exploratory study [15]. Thus, we cannot claim causation, but
just relate the occurrence of license violations, although our
discussion tries to explain why license violations occurred.
Also, to track file’s license changes, we relied only on the
absolute path of the file. However, we required that the files
in the subsequent releases share a significantly large similarity
(measured using CCFinderX).

Conclusion validity threats concern the relation between
the treatment and the outcome. License terms could be in-
terpreted in deferent ways. There are ongoing discussions
among developers about the interpretations of the legal terms
of some open-source licenses. In our study, we relied only on
the information explicitly written in the official websites of
the licenses. This conservative approach may limit us from
detecting more incompatible licenses. However, our proposed
approach to detect license violations can be easily extended to
include more license rules.

External validity threats concern the possibility to gener-
alise our results. Although we only conduct our case study
with 857 mobile apps from the F-droid market, most of
our findings are consistent with previous studies (e.g., [5]).
We share our data and scripts at: http://swat.polymtl.ca/data/
SANER16/AndroidAppsDataONF-DroidJanv2015.7z. Further
studies with different sets of mobile apps (including close
source apps) from different markets are required to verify our
results and make our findings more general.

VII. RELATED WORK

In this section, we introduce some related literature about
licenses inconsistency issues.

In [1], the authors manually examined 124 OSS packages
to understand the way in which developers solve license
incompatibilities. They built a model to document integration
patterns that are used to help developers to solve license
inconsistency issues and highlighted the characteristics of
certain licenses and their applicability.

[18] proposes a method to detect licenses incompatibilities
in software packages. They compared the declared licenses
of binary packages with the licenses of their source files
and dependencies, to identify possible inconsistencies. They
validated their approach on 3,874 binary packages from the
Fedora-12 GNU/Linux distribution and identified the presence
of license inconsistencies. Companies, like Black Duck?® and
HewlettParckard* proposes their own infrastructure to help

http://blackducksoftware.com

4 http://www.hp.com

TABLE X: Projects with violation

Category Name License Nb releases | releases with Violation | Kind of violation
. GPLv2vsApachev2
Security afwall UNKNOWN 31 5-19
GPLv2vsGPLv3+
GPLv2vsApachev2
PhoneAndSMS | batphone GPLv3+ 37 16 - 23
GPLv2vsGPLv3+
Navigation MozStumbler UNKNOWN 86 58 - 86 Apachev2vsGPLnoVersion
Vimtouch Apachev2 22 20 - 22 (proj)Apachev2vsGPLv3+(source)
Travis-Jr Apachev2 2 1-2 (proj) Apachev2vsLGPL (lib)
Development servdroid Apachev2 1-5 (proj) Apachev2vsLGPL (lib)
andlytics Apachev2 26 24 - 26 (proj) Apachev2vsLGPL (lib)
BalandruinoAndroidApp | GPLv2 10 1-4 (proj) GPLv2vsApachev2(source)
Apachev1.0vsGPLv3+
pPpsspp UNKNOWN 24 1-13
Apachev1.0vsGPLv2+
Games . 1,35-7 Apachev1.0vsGPLv3+
dolphin NONE 9
1-7 Apachev1.0vsGPLv2+
open-keychain Apachev2 30 1-4 (proj)Apachev2vsGPLv3+(source)
1-32 GPLv2vsApachev2
. . GPLv2vsGPLv3+
frostwire-android GPLv3+ 64
1-24 (source)GPLv2vsApachev2(lib)
Internet 13 GPLv2vsLGPLv3+
android GPLv2 38 15 - 31 (proj)GPLv2vsApachev2(source)
. . GPLv2, GPLv2+, LGPLv2.1, 1-90 GPLv2vsGPLv3+
Office Keepassdroid 144
Apachev1.0, MITX11 36 - 90 GPLv2vsApachev2
host-editor-android Apachev2 6 2 (proj) Apachev2vsLGPL (lib)
. Apachev1.1vsGPLv2+
gogodroid GPLv2 7 1-7
System (proj) GPLv2vsApache
. GPLv2vsGPLv3+
920-Text-Editor GPLv3+ 2 1-2
GPLv2vsApachev2

users avoid license incompatibility issues. They build their
own databases and validate that it does not contain any license
violations. The databases are then provided to users who can
reuse code from them without any fear of license violation.
Although this technique solves license incompatibility issues
and makes developers feel safe, it is quite limited by the scope
of the databases that are built. In [19], authors introduced
BAT, a tool that detects code cloning in binaries. They
implemented three binary clone detection techniques. The tool
helps users to detect clones between a subject binary and the
binaries from their repository. Although in theory BAT could
track license violations, in practice, its accuracy is poor.

VIII. CONCLUSION

This paper reports the results of a large empirical study
aimed at understanding licenses usages and violations in the
Android Ecosystem. The results of the study suggests that
developers of mobile apps frequently fail to comply with
the terms of licenses. Even more problematic is the fact that
licenses violations persist through multiple releases of the apps
before they are eventually resolved. Developers seem to lack

proper knowledge about licenses management or it may be
that the lack of consistency and standardization in license
declarations fosters confusion among developers (as suggested
by Vendome et al. [S]). Indeed, the fact that some licenses are
contained in source code heading comments, while others are
put in separate license files or README documents may cause
developers to miss some license information. To help address
this issue, we advocate for the development of tools that can
assist developers in the management of licenses throughout
the lifecycle of their apps. In the future, we plan to investigate
further our fining that app developers tend to copy the code of
apps from different domains, in order to understand the root
causes of this behaviour.

REFERENCES

[1] D. M. German and A. E. Hassan, “License integration patterns: Ad-
dressing license mismatches in component-based development,” in ICSE
-09: Proceedings of the 31st International Conference on Software
Engineering. 1EEE, 2009, pp. 188-198.

“GNU General Public License,” http://www.gnu.org/licenses/gpl.html,
2015, online; accessed October 05th, 2015.

[2]

[3]

[4]

[6]

[7]

[8]

[10]

“lawsuit,” http://www.infoworld.com/article/2893695/open-source-
software/vmware-heading-to-court-over-gpl-violations.html, 2015,
online; accessed April 15th, 2015.

J. Koetsier. (2013, August) 700k of the 1.2m apps available for iphone,
android, and windows are zombies: Last accessed: November 14, 2015.
[Online]. Available: http://venturebeat.com/2013/08/26/700k-of-the- 1-
2m-apps-available-for-iphone-android-and- windows-are-zombies/

C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. German,
and D. Poshyvanyk, “When and why developers adopt and change soft-
ware licenses,” in Proceedings of the 31st IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2015.

D. M. German, Y. Menabe, and K. Inoue, “A sentence-matching method
for automatic license identification of source code files,” in Proceedings
of the IEEE/ACM international conference on Automated software
engineering. ACM, 2010, pp. 437-446.

R. Gobeille, “The fossology project,” in Proceedings of the 2008 inter-
national working conference on Mining software repositories. ACM,
2008, pp. 47-50.

J. Davies, D. M. German, M. W. G. Godfrey, and A. Hindle, “Software
bertillonage: Finding the provenance of software development artifacts,”
Empirical Software Engineering, vol. 18, no. 6, pp. 1195-1237, 2013.
T. Kaniya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
Software Engineering, IEEE Transactions on software engineering,
vol. 28, no. 7, pp. 654-670, 2002.

“Apache License vs GPLv3,” http://www.apache.org/licenses/GPL-
compatibility.html, 2015, online; accessed September 17th, 2015.

[11]
[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

“Apache License Legal,” http://www.apache.org/legal/resolved.html,
2015, online; accessed September 17th, 2015.

“GNU General Public License Legal,” http://www.gnu.org/licenses/
license-list.en.html, 2015, online; accessed September 09th, 2015.
“CDDL License,” http://www.whitesourcesoftware.com/top-10-cddl-
license-questions-answered/, 2015, online; accessed September 29th,
2015.

“GNU General Public License Legal,” http://www.gnu.org/licenses/gpl-
faq.html#AllCompatibility, 2015, online; accessed September 09th,
2015.

R. K. Yin, Case Study Research: Design and Methods - Third Edition,
3rd ed. SAGE Publications, 2002.

S. Dang and S. A. Wani, “Performance evaluation of clone detection
tools,” INTERNATIONAL JOURNAL OF SCIENCE AND RESEARCH
(IJSR), pp. 1903-1906, 2015.

L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software
clones,” in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on, Sept 2011, pp. 273-282.

D. M. German, M. Di Penta, and J. Davies, “Understanding and
auditing the licensing of open source software distributions,” in Program
Comprehension (ICPC), 2010 IEEE 18th International Conference on.
IEEE, 2010, pp. 84-93.

A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,” in
Proceedings of the 8th Working Conference on Mining Software Repos-
itories. ACM, 2011, pp. 63-72.

